
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

Monitoring Human State in a Robotic
Assistive Platform: Data Acquisition and

Person Detection Systems

AI & R Lab
Laboratorio di Intelligenza Artificiale
e Robotica del Politecnico di Milano

Relatore: Prof. Matteo Matteucci
Correlatore: Prof. Alexandre Bernardino

Tesi di Laurea di:
Christian Vismara, matricola 804763

Anno Accademico 2014-2015

Ai miei genitori.

Abstract

During the last decade, problems related to a sedentary lifestyle increased sig-
nificantly and became one of the greatest burden of today’s society. Robotic
technologies are possibly one of the main resources we have to tackle the
problem due to their versatility and adjustment capabilities.
The AHA (Augmented Human Assistance) project has the final aim of build-
ing a robotic assistive platform that could be employed to raise motivation
in patients while monitoring their progresses and assessing their health con-
ditions. In this thesis work the acquisition and Pedestrian Detection module
of the final platform have been designed and developed.
In order to provide a satisfying human-robot interaction experience, aware-
ness of the position of people is a crucial aspect in Robotic Mobile Platforms.
Vision is one of the richest and most employed sensor in today’s Robotic Sys-
tems due to the diversity of features that can be extracted and used to analyse
the surrounding environment, people included. Omnidirectional cameras, in
particular, give us the possibility to exploit and increased field of view at the
price of an increased distortion in acquired images.
This work explores different ways to process omnidirectional images to ob-
tain versions of them more suitable to be used together with state-of-the
art pedestrian detectors and to assess their performance by using different
training and testing combinations. Results showed that better performances
can be achieved using unwrapped or rectified images and by training the
detector with ad Hoc datasets, but there is still a big margin for further
improvements.
In addition, due to the critical role acted by datasets, I present a system to
accelerate the labelling task using skeletal data provided by Microsoft Kinect
V2.
Finally, I introduce an architecture to acquire, store and visualize the differ-
ent information obtainable from the different sensors and cameras connected
to the system.

I

Acknowledgements

I would like to thank my main advisor, Prof. Alexandre Bernardino, for his
precious guidance during my time in Portugal, his support has been essential
for the success of this experience.
I want also to thank Prof. Jose Gaspar for his valuable advices and Prof.
Matteo Matteucci for the confidence he placed in me, allowing me to carry
out this priceless experience.
I wish to thank all the people from VisLab for their warm reception, in
particular a big thanks goes to Matteo Taiana for being always available to
answer my questions.
Finally, I also would like to thank Patricia Keleher for the patience and
dedication she showed while inspecting my thesis work.

III

Chapter 0

Introduzione

0.1 Formulazione del problema

Nella società di oggigiorno i problemi e le malattie causate da uno stile di vita
sedentario sono uno dei più grandi pesi sociali ed economici. La promozione
di uno stile di vita attivo, durante gli ultimi anni, ha iniziato a mostrare i
suoi effetti positivi e ad invertire lentamente il trend. Il problema, però, è
ancora ben lontano dall’essere risolto e l’ictus è ancora una delle principali
cause di morte, specialmente nella società occidentale (quinta causa negli
Stati Uniti [34]).
Il progetto Augmented Human Assistance (AHA) tenta di contrastare questo
scenario promuovendo uno stile di vita salutare, sostenendo l’invecchiamento
attivo e supportando le persone con deficit motori. Lo scopo di questo pro-
getto è quello di costruire una nuova piattaforma assistenziale robotica per
la gestione di programmi d’allenamento salutari, capaci di attirare gli utenti,
monitorare l’esecuzione di esercizi e supportare i medici durante la riabili-
tazione.

Lo scopo di questa tesi è stato quello di sviluppare una parte del sistema
finale, in particolare sono stati prodotti tre risultati:

• il sistema di acquisizione, utilizzato per acquisire, archiviare e visual-
izzare immagini e dati ottenuti dai vari dispositivi;

• il sistema di rilevamento in grado di individuare le persone attorno
al robot utilizzando algoritmi di Pedestrian Detection. Verrà utiliz-
zato dalla piattaforma mobile per indirizzarsi automaticamente verso
il paziente;

• un sistema di etichettatura non supervisionato il quale utilizza i dati

scheletrici ottenuti dal Kinect per tracciare automaticamente le Bound-
ing Boxes. Questo sistema è importante per la creazione automatica
di dataset da utilizzare successivamente per il training personalizzato
dei Detector basato sul modello di camera.

Il rilevamento di persone è un’istanza canonica nell’area del rilevamento
oggetti. Grazie alle sue applicazioni dirette nella sicurezza automobilistica,
sorveglianza e robotica, ha attirato una crescente attenzione negli ultimi anni
[10]. Il suo scopo è quello di apprendere le features in grado di descrivere
una persona in posizione eretta e quindi ricercare altri pedoni in immagini e
sequenze video. Le performance di questi detector sono strettamente corre-
late con i set di dati utilizzati durante la fase di training [53], e il rischio di
compromettere la funzione di classificazione, adattandola eccessivamente ai
dati del set utilizzato per il training, è sempre dietro l’angolo.

In molti sistemi la conoscenza dell’ambiente circostante è cruciale. Lo si ot-
tiene utilizzando sensori in grado di trasformare informazioni dall’ambiente
circostante in segnali che possano essere interpretati dal sistema. Una classe
di sensori normalmente utilizzata per questo scopo è quella delle video-
camere, dispositivi che proiettano la luce irradiata dall’ambiente su di un
sensore, un piano di celle CCD o CMOS, che successivamente converte queste
informazioni in cariche elettriche, costruendo l’immagine digitale. Una sotto-
classe di videocamere diventata recentemente popolare è quella delle camere
omnidirezionali, per vie del loro campo visivo allargato, al prezzo di una
maggiore distorsione nell’immagine finale [45].
I detector standard non sono stati pensati per funzionare con immagini omni-
direzionali, questo rende necessario uno sforzo addizionale per trovare quale
sia la soluzione migliore di combinare il detector con questo tipo di immagini.

In questo lavoro di tesi ho inizialmente sviluppato il sistema di acquisizione
affrontando alcune sfide tra cui, in particolare, problemi di disconnessione e
e sincronizzazione.
Quindi ho esplorato la possibilità di utilizzare camere fish-eye per fornire un
campo di visione di circa 360˝ alla piattaforma mobile. Ho esaminato varie
soluzioni proposte in letteratura [43] per la calibrazione di camere diottriche e
catadiottriche e varie tecniche per la trattazione di immagini omnidirezionali
[28, 11], anzi che applicare direttamente il detector sulle immagini originali.
Prima, per comprendere a fondo il comportamento di questi modelli, ho
dovuto studiare i modelli di camere prospettiche presenti in letteratura.
Ho eseguito diversi test sui set di dati acquisiti utilizzando una camera diot-

VI

trica omnidirezionale, così da poter verificare l’efficacia dei metodi.
Infine, ho scritto uno script per sfruttare i dati scheletrici ottenuti dal Kinect
per poter etichettare automaticamente i dataset.
I test sui dataset sono stati eseguiti utilizzando un’implementazione del
LCDF/ACF-Caltech+ Detector proposto in [39].

Tutto il codice prodotto durante la mia esperienza è stato scritto utilizzando
C++ e MATLAB, sfruttando le librerie MongoDB, YARP e OpenCV.

Ho effettuato la calibrazione delle camere montate sul sistema e ho eseguito
vari esperimenti valutando le performance del detector quando applicato ad
immagini omnidirezionali, unwrapped e rectified dopo aver effettuato la fase
di training con dataset ad Hoc.
In futuro ho intenzione di estendere i dataset utilizzati per gli esperimenti,
testare il detector su sequenze di immagini ottenute unendo le immagini om-
nidirezionali, frontale e posteriore. Possibile direzione di ricerca potrebbe
anche essere quella di tentare di individuare altre possibili vie per miglio-
rare le performance del detector, ed esempio adattando le feature al tipo di
immagine utilizzato.

0.2 Descrizione del sistema

Ho implementato un sistema di rilevamento di persone per robot autonomi
fornito di due camere omnidirezionali diottriche, una per la visione frontale
e una per la visione posteriore.
Ho utilizzato un detector a "finestra scorrevole" basato sull’algoritmo di ma-
chine learning AdaBoost [26] e Aggregate Channel Features [16]. In questa
tesi considero solo l’individuazione di persone in posizione eretta in quanto
la maggior parte dei dataset disponibili si concentrano su questa categoria
e anche perché il contesto consente questo tipo di ipotesi, essendo pensato
per individuare persone in posizione eretta di fronte al sistema pronte per
eseguire gli esercizi.
I tipi algoritmi utilizzati per individuare pedoni, normalmente, non sono
pensati per funzionare con immagini altamente distort quindi ho dovuto
effettuare alcuni studi per capire come applicare il detector su immagini
omnidirezionali. In particolare, ho descritto la relazione che intercorre tra
la degradazione delle performance e la distanza della persona dal centro
dell’immagine e dalla camera.
Ho anche esplorato varie modalità per ripetere la fase di training e migliorare
le performance quando il detector viene applicato ad immagini fish-eye e ho

VII

verificato la propensione ad apprendere gli artefatti e la distorsione introdotti
da questo tipo di camere e dalla conseguente manipolazione delle immagini
effettuata.

Inoltre, ho sviluppato il sistema di acquisizione per la piattaforma robotica
finale in grado di acquisire, archiviare e visualizzare le informazioni acquisite
dai sensori connessi al robot.
In particolare, la presenza di vari dispositivi come camere omnidirezionali,
Microsoft Kinect V2 e biosensori, ha richiesto una particolare attenzione du-
rante la fase di definizione della struttura dati e un’attenta gestione della
concorrenza e sincronizzazione.

Infine, ho sviluppato un etichettatore automatico di dataset in grado di
sfruttare i dati scheletrici forniti dal Kinect per creare autonomamente dei
dataset con le immagini acquisite. Il sistema richiede una fase di calibrazione
per calcolare la matrice di rotazione e traslazione che permetta di mappare i
punti dallo spazio tridimensionale del Kinect allo spazio bidimensionale della
camera omnidirezionale. La calibrazione può essere eseguita manualmente,
aggiustando alcuni parametri, a risolvendo un problema di ottimizzazione.
Una volta che la matrice è stata calcolata, il sistema è in grado di diseg-
nare le Bounding Boxes all’interno dell’area dell’immagine omnidirezionale
corrispondente al campo visivo del Kinect, dove gli scheletri sono stati indi-
viduati.

0.3 Struttura della tesi

Nel capitolo 2 descrivo lo stato dell’arte nel campo dei detector di persone
e nel campo della calibrazione di camere omnidirezionali. Nel capitolo 3 de-
scrivo la struttura del detector a finestra scorrevole utilizzato per il progetto.
Nel capitolo 4 presento una visione d’insieme dei modelli di camera, a par-
tire dalla camera Pinhole fino ai modelli di camera omnidirezionale utilizzati
per descrivere le videocamere impiegate nel sistema, dedicando una sezione
alla calibrazione e manipolazione di immagini omnidirezionali. Nel capitolo
5 propongo una soluzione per la creazione di un sistema per etichettare set
di dati senza supervisione sfruttando i dati scheletrici forniti dal Kinect. Nel
capitolo 6 espongo in dettaglio la struttura del sistema proposto. Nel capi-
tolo 7 espongo i risultati sperimentali ottenuti, mentre nel capitolo 9 illustro
le conclusioni ricavate e delineo gli sviluppi futuri di questo lavoro.

VIII

Contents

Abstract I

Acknowledgements III

0 Introduzione V
0.1 Formulazione del problema V
0.2 Descrizione del sistema . VII
0.3 Struttura della tesi . VIII

1 Introduction 3
1.1 Problem formulation . 3
1.2 Description of the system . 5
1.3 Structure of the thesis . 6

2 Survey and State of the Art 7
2.1 Benchmarking and Dataset Overview 7

2.1.1 Role of the Dataset . 7
2.1.2 Dataset Overview . 8
2.1.3 Evaluation Methodology 9

2.2 Pedestrian Detection . 10
2.2.1 Milestone Detectors 10
2.2.2 Top-Performing Detectors 11

2.3 Omnidirectional Camera Models 11

3 Sliding Windows Detector 17
3.1 Sliding Window . 17
3.2 Feature Extraction . 19
3.3 Window Classifier . 21

4 Camera Models 25
4.1 Perspective Cameras . 26

IX

4.1.1 The Pinhole Model . 26
4.1.2 Projection Using Homogeneous Coordinates 27
4.1.3 Perspective Cameras with Intrinsics Parameters 29
4.1.4 The Projective Camera 30
4.1.5 Distortion in Perspective Cameras 30

4.2 Cameras Which Do Not Capture the Perspective Effect 31
4.2.1 The Affine Camera . 32
4.2.2 The Orthographic Camera 32
4.2.3 The Weak-Perspective Camera 33

4.3 Omnidirectional Camera . 34
4.3.1 The Model Proposed by Scaramuzza 34
4.3.2 The Calibration Procedure 36
4.3.3 Omnidirectional Image Unwrapping 38

5 Unsupervised Labeller 41
5.1 Point Projection . 41
5.2 Kinect Calibration . 43

5.2.1 Manual Calibration . 44
5.2.2 Function Minimization 44

5.3 Dataset Labelling . 44

6 System Architecture 47
6.1 System Overview . 47

6.1.1 Current Version of the System 48
6.2 Acquisition Module . 50

6.2.1 Software Architecture 50
6.2.2 Database Structure . 52
6.2.3 Main Issues . 53

7 Experimental Results 55
7.1 Omnidirectional Camera Calibration 55
7.2 Pedestrian Detection . 57

7.2.1 Dataset Description 57
7.2.2 Detection Results . 57
7.2.3 Performance Evaluation 60

7.3 Unsupervised Labeller . 64

8 Conclusions and future work 65

Bibliography 69

1

2

Chapter 1

Introduction

“It’s showtime, folks.”

Saul Goodman, Better Call Saul.

1.1 Problem formulation

In today’s society the problems and diseases caused by a sedentary lifestyle
are one of the greatest social and economical burden. The promotion of an
active lifestyle during the past few years is starting to give positive effects
and slowly inverting the trend but the problem is still far away from being
solved as stroke is still one of the top leading causes of death, especially in
the western society (fifth in the United States [34]).
The Augmented Human Assistance (AHA) Project tries to tackle this chal-
lenging scenario promoting healthy lifestyle, sustaining active aging and sup-
porting those with motor deficits. The scope of this project is to build a novel
robotic assistive platforms for health exercise program management, able to
engage users, monitor execution, and support therapists in rehabilitation.

The purpose of this thesis has been to develop part of the final system,
in particular three main outcomes were produced:

• the acquisition system, used to acquire, store and display images from
the various attached devices;

• the detection module able to locate people around the robot using
Pedestrian Detection algorithms. This will be used by the mobile plat-
form to automatically point itself toward the patient;

• an unsupervised dataset labeller that uses skeletal data from the Kinect
to autonomously draw Bounding Boxes. This is important for the auto-
matic creation of datasets for training Pedestrian Detectors customized
to the given cameras.

Pedestrian detection is a canonical instance of object detection. Because
of its direct applications in car safety, surveillance, and robotics, it has at-
tracted much attention in the last years [10]. Its scope is to learn the features
describing a person in a standing position and then seek images and video
sequences to detect them. Pedestrian detector performances are strictly
related to the dataset used during the training phase [53], and the risk to
compromise the classification function with bias is always around the corner.

In many system the awareness of the surrounding environment is crucial.
This is attained by using sensors able to transform information from the
surrounding environment into signals that can be interpreted by the sys-
tem. One class of sensors which is commonly used is cameras. Devices that
project light rays radiating from the environment onto the image sensor,
a plane of CCD or CMOS cells, which in turn convert this information to
electrical charges, forming the digital image. One subclass of cameras that
gained popularity is the omnidirectional camera, due to the fact it offers an
increased field of view, at the price of getting distorted images [45].
Standard PD detectors are not conceived to work with omnidirectional im-
ages, so an additional effort is needed to find what is the best way to combine
detectors with this kind of images.

In this thesis work I started developing the acquisition system facing some
challenges especially due to disconnection and synchronization issues.
Then I explored the possibility of using fisheye cameras to provide an almost
360˝-wide field of view to the mobile platform. I examined the various solu-
tions [43] for dioptric and catadioptric camera calibration proposed in liter-
ature and the different techniques to unwrap omnidirectional images [28, 11]
rather than applying the detector over unwrapped and highly-distorted ones.
Before, to fully understand the behaviour of these models, I had to study
the perspective and non-perspective camera models available in literature.
I ran several tests on datasets acquired using a dioptric omnidirectional cam-
era in order to verify the effectiveness of the method.
Finally, I coded the script to exploit skeletal data from Kinect in order to
autonomously label the acquired datasets.
Tests on the datasets were performed by running an implementation of the

4

LCDF/ACF-Caltech+ Detector proposed in [39].

All the code produced during my experience has been written using C++
and MATLAB technologies, relying on MongoDB, YARP and OpenCV li-
braries.

I performed camera calibration on the omnidirectional cameras mounted on
the system and I ran several experiments assessing the performances of the
detector applied to omnidirectional, unwrapped and rectified images when
trained with standard and ad Hoc datasets.
In future work I plan to extend the acquired datasets, test the detector on
sequences obtained by joining the frontal ad rear fish-eye images, and explore
new ways to improve detector performances in these particular situations,
e.g. adapting the features to the kind of images used.

1.2 Description of the system

I implemented a Pedestrian Detection system for autonomous robots equipped
with two omnidirectional dioptric cameras, one for the frontal and one for
the rear view.
I use a sliding window detector relying on the AdaBoost [26] machine learning
algorithm and Aggregate Channel Features [16]. In this thesis I considered
only the detection of standing people since the majority of the most suc-
cessful datasets used in Pedestrian Detection are also focused on standing
pedestrians and also because the context implies the presence of a standing
person waiting for the robot to start the exercises.
Typical Pedestrian Detection algorithm, normally, are not conceived to work
with highly-distorted images so I had to make some studies to understand
how to apply the detectors over omnidirectional images. In particular, I de-
picted the correlation that exists between loss of performances and distance
of the imaged pedestrian from the image center.
I also explored different ways to retrain the Detector in order to improve its
performances when operating over fish-eye images and verify its ability to
learn the distortion and artefacts introduced by the imaging system and the
subsequent processing applied to the acquired images.

In addition I implemented the acquisition module of the Robotic assistive
platforms able to acquire, store and display the data acquired by the sensors
connected to the robot.
In particular, the presence of very diverse kinds of devices such as omnidi-

5

rectional cameras, Microsoft Kinect V2 and biosensors, required a particular
attention when shaping the data structure and a careful management of con-
currency and timestamps.

Finally, I coded a dataset labeller able to exploit skeletal data returned by
Kinect to autonomously label the acquired datasets. This system requires a
calibration to find the rotation and translation matrix that permits to map
points from the Kinect 3D space to the omnidirectional 2D camera space.
Calibration can be performed manually, by tweaking a few parameters, or
by solving an optimization problem.
Once the rotation and translation matrix is provided, the system is able to
draw Bounding Boxes inside the area of the Omnidirectional Images corre-
sponding to the Kinect field of view where skeletons have been detected.

1.3 Structure of the thesis

In Chapter 2 I describe the state of the art on Pedestrian Detection and
Omnidirectional Camera Calibration. In Chapter 3 I describe the structure
of the Sliding Window Detector used in the project. In Chapter 4 I present
a survey of camera models, from the Pinhole camera to the Omnidirectional
Camera Model used to describe the two fish-eye cameras, dedicating a section
to delineate how the rectification and unwrapping of omnidirectional images
is performed. In chapter 5 I propose a way to build an unsupervised dataset
labeller using Kinect skeleton data. In Chapter 6 I detail the structure of the
proposed system. In Chapter 7 I present the experimental results obtained,
while in Chapter 8 I draw conclusions and present future developments of
this work.

6

Chapter 2

Survey and State of the Art

“Have no fear of perfection - you’ll never reach it.”

Salvador Dalí.

This chapter lists and describes some of the most popular and top per-
forming Pedestrian Detection algorithms, mostly following the comparison
made in [21], after giving an overview on how the benchmarks on these de-
tectors are performed, together with a survey of the most successful datasets
used to test and train.
Finally, in section 2.3, some of the models used to describe omnidirectional
cameras are introduced.

2.1 Benchmarking and Dataset Overview

During the last decade the forest of pedestrian detectors has grown signifi-
cantly making necessary the definition of a common tool to test and compare
detector performances. I will refer to the current standard benchmark used
by the PD community, proposed by Dollar et al. in 2009 [20] and refined
in 2012 [21], named Caltech. Another less popular but still noteworthy
benchmark is KITTI [29], mostly aimed at evaluating autonomous driving
systems.

2.1.1 Role of the Dataset

Dataset are a critical aspect for systems relying on Machine Learning since
the classification function resulting from the learning process depends mostly
on the images used to train the detector.
Furthermore, datasets are also used to test the detector performances and,

despite it has been shown that results are reasonably consistent over different
datasets [21], outcomes may vary a lot depending on some dataset properties,
especially when testing the detector on a dataset different from the one used
to perform the training part.
In the context of PD there are many aspects that should be taken into
account while choosing the dataset to train and test:

• Dataset size: providing a greater variety of images we are simultane-
ously supplying more information to the training algorithm, allowing
it to learn a more fine tuned function.

• Imaging set-up: while mobile set-ups provide a variety of settings and
backgrounds, video-surveillance videos have a high bias due to the fixed
position of the cameras. Datasets made of collections of pictures, like
INRIA [14], are likely to suffer from a selection bias introduced by the
author [53].

• Data purity: data contained in the dataset can be pure if clearly repre-
senting the class of interest (non occluded, reasonably sized and stand-
ing pedestrian) or impure if not respecting the previous conditions. A
good balance between these two classes should be kept while training
the dataset.

• Labelling technique: It is not always clear what should be considered
as positive, that is why some alternative labelling technique were in-
troduced during the years to solve ambiguities arising when using only
ground truth bounding boxes. For instance, in [21], the authors pro-
posed an improved labelling introducing the so-called "ignore" regions.

2.1.2 Dataset Overview

In this section I will present the main dataset used to train and test the state-
of-the-art detectors, briefly summarizing their main characteristics, plus a
dataset introduced by the research group I am working with aimed at showing
the impact of high-definition images on detector performances.

• INRIA [14]. It has been gathered from photos and it is one of the
oldest PD dataset and small sized if compared to newer ones but the
variety of pedestrian imaged makes it still a popular choice, especially
when a fast training process is needed.

• Caltech [21]. Built with videos acquired on a vehicle in regular traf-
fic, it is probably the most popular dataset for PD training and test-
ing, due to its size (it contains about 105 pedestrian labelled in about

8

106 frames), its labelling completeness and also because the bench-
marks made using this dataset are the most popular in PD community.
The authors offer three versions of the dataset: Training, Testing and
Japan, where the latter offers the same characteristics of the Training
dataset but has been filmed in Japan.

• ETH [23], TUD-Brussels [56] and Daimler [22]. These datasets are
similar to the Caltech one described above but their lower size and
other peculiarities (e.g. Daimler lacks in colour channels) limited their
popularity. Currently they are mostly used as a secondary detector
benchmark, after Caltech.

• KITTI [29]. Gathered from a mobile set-up and mainly aimed at au-
tonomous driver tasks, it is one of the predominant benchmark for PD.
Even if not popular as the Caltech dataset, it is appreciated by the PD
community because of its size and diversity.

• HDA [40] and then HDA+ after the improvememnts presented in [24].
Acquired by a network camera system to test Pedestrian Detection
and Re-Identification system, it is used to test algorithms in video
surveillance environments and to test the impact of high resolution
images.

2.1.3 Evaluation Methodology

Evaluations is performed by running each detector over a testing dataset.
Each frame is given to the detector, which returns a Bounding Box (BB), i.e.
a rectangle on the image, paired with a confidence value for each detection.
To match, a detected BB (BBdt) and a ground truth BB (BBgt) have to
overlap more than 50%, in particular:

ao “ areapBBdt X BBgtq
areapBBdt Y BBgtq ą 0.5 (2.1)

Matches are counted as True Positives, where unmatched BBdt count as
False Positives and unmatched BBgt as False Negatives (also called Missed
Detections).

To compare detectors it is common to log-log plot miss detection rate against
False Positives per image, by varying the threshold on detection confidence.
In addition, to summarize detector performance in one value, it is common
to use the log-average miss rate. It is computed by averaging miss rate at
nine False Positive per image (FPPI) rates evenly log-spaced between 10´2

9

and 100.

Evaluation is usually performed using a few different datasets but, since
in [21] the authors showed that the performance of detectors is quite consis-
tent across datasets, I will discuss mostly the results obtained with Caltech
Pedestrian Dataset. In order to explore detector performances in various
circumstances, evaluations on this dataset have been performed considering
different conditions, rather than just running the detectors on the entire an-
notated dataset (see Fig. 2.1). Benchmarks have been performed considering
different pedestrian scales and different cases of occlusion. The "reasonable"
subset used by the authors includes only pedestrians taller than 50 pixels
and under no or partial occlusion.

Due to the fact that applications for detectors include real-time tasks, an-
other aspect that must be taken into account is the number of frames per
second that each detector is able to process. To easily visualize and com-
pare computational performances of algorithms it is common to plot the
log-average miss rate versus the frames per second values achieved by each
detector when run on a specific computer.

Some other little tweaks are performed to assure a fair comparison, e.g.
ground truth filtering and aspect ratio standardization. For all the details
please refer to [21].

2.2 Pedestrian Detection

Interest in Pedestrian Detection (PD) is constantly growing as proven by the
increasing number of publications about it during the past years. Many new
detectors have been presented, reaching an accuracy in detecting people that
was unimaginable only a few years ago.
Although some attempts building detectors using segmentation [31] or key-
point [35] approaches have been made, the sliding window approach is the de
facto standard approach in Pedestrian Detection so I will focus on detectors
of this kind.

2.2.1 Milestone Detectors

Some pioneering detectors are nowadays outdated but still deserve to be
cited, at least as a baseline to track PD evolution during the years. These
detectors are Viola and Jones [54], known for the usage of AdaBoost with

10

an improved cascade (see Section 3.3), and the HOG detector by Dalal and
Triggs [14], that popularized the histogram of oriented gradient features (see
Section 3.2).

2.2.2 Top-Performing Detectors

By evaluating benchmark results plotted in Figure 2.1, it can clearly be
noticed that in every case there are always three detectors alternating in the
top 3 positions:

• LCDF/ACF-Caltech+, [39]. To avoid the usage of computational ex-
pensive oblique decision trees [38], the authors used the Aggregate
Channel Feature (ACF) detector [16] as their baseline and introduced
a technique that suits better orthogonal decision trees by locally decor-
relating features, instead of decorrelating them globally as in [32].

• Katamari, [10]. This approach was used to show how, by combin-
ing complementary features, it is possible to build better performing
methods.

• SpatialPooling+, [41]. In this work they showed how to successfully
apply spatial pooling, a technique to compute local features by group-
ing data from the selected region and extracting a statistic value out
of it, to PD tasks.

Instead, when the aim is to build a real time system (or frame-rate, i.e. at
30 fps or higher, as defined in [17]), results depicted in Figure 2.2, where
Log-average miss rate is plotted versus frames per second, become more rel-
evant.
Here the two detectors that stand out for their speed over a satisfactory
miss rate are: (i) Crosstalk [17], that exploits communication between cas-
cade evaluations at nearby locations, and (ii) FPDW [18], where feature
responses computed at a single scale are used to approximate features re-
sponses at nearby scales. The MultiFtr+Motion detector [55], in spite of
having the lowest log-average miss rate, is not suited for real-time applica-
tions because its runtime speed is clearly inadequate.

A complete list of all the available detectors and their respective benchmark
results is stored and kept updated by the Caltech Vision Group [1].

11

(a) Overall (b) Near scale

(c) Medium scale (d) No occlusion

(e) Partial occlusion (f) Reasonable

Figure 2.1: Evaluation results under six different conditions on the Caltech Pedestrian
Dataset, plots taken from [21]

12

(a) Considering only pedestrians over 100 pixels

(b) Considering only pedestrians over 50 pixels

Figure 2.2: Log-average miss rate versus frames per second plot obtained running de-
tectors on the Caltech Pedestrian Dataset, using a specific machine and in two different
conditions. plots taken from [21]

13

(a) Vivotek FE8174
dioptric camera, im-
age taken from [3]

.

(b) Catadioptric cam-
era

.

(c) Point Grey La-
dybug5 polydioptric
camera, image taken
from [2]

.

Figure 2.3: Examples of omnidirectional cameras. Dioptric cameras offer a field of view
of 180˝ over the vertical and horizontal plane. Catadioptric cameras offer a 360˝ field
of view over the horizontal plane but must be placed on top of the robot at a reasonable
height. Polydioptric cameras are the only ones able to acquire the entire sphere around
the camera.

2.3 Omnidirectional Camera Models

Omnidirectional cameras offers a more extended field of view with respect to
the standard cameras and, as illustrated in [45], they can be manufactured
in many different ways:

1. Dioptric or fish-eye cameras (see Fig. 2.3a) use a combination of shaped
lenses and can reach a field of view even bigger than 180˝ on the hori-
zontal plane, if placed parallel to the floor.

2. Catadioptric cameras (see Fig. 2.3b) combine a standard perspective
camera with a shaped mirror, normally with a parabolic shape but
there are also cases with hyperbolic or elliptical mirror, that are, as
shown in [4], the only shapes having the useful property of maintaining
a single projection centre. This kind of camera succeed in providing
a 360˝ field of view in the horizontal plane and more than 100˝ in
elevation.

3. Polydioptric cameras (see Fig. 2.3c) use multiple cameras with over-
lapping field of view, the only omnidirectional camera model able to
provide a 360˝spherical field of view.

Usually, in robotic and computer vision fields, the options 1 and 2 are the
most used due to their good quality/price ratio. In my case, since I needed

14

to detect people from a mobile robotic platform lower than a standing pedes-
trian, I preferred to use two dioptric cameras, one on the front and one on
the back, instead of having a camera on top of the robot. This solution
allows us to have almost 360˝ field of view on the vertical and the horizontal
planes. It was not possible to obtain the full sphere due to the hidden area
between the two cameras. The solution 3, instead, has been discarded due
to its unaffordable cost.
For all the details about the system architecture, please refer to Chapter 6
and Figure 6.1.

There are projection systems whose geometry cannot be described using the
conventional pinhole model because of the very high distortion introduced
by the imaging device. Some of these systems are omnidirectional cameras
[45].
Many models have been developed to describe the omnidirectional cameras
and, to compare them, I followed the work presented in [43] where the per-
formances of four calibration methods based on the respective models have
been compared. These have been chosen because of their popularity, due to
the fact that they work quite well, and because the authors provided open
source Matlab toolboxes simplifying a lot the work of the people interested
in omnidirectional camera calibration.

The above-mentioned models are:

1. Model by Mei and Rives [37] which uses the sphere camera model
depicted in [30] and [6] and requires several images of a 2D pattern.
This is the better performing one at the price of a complex model;

2. Model by Puig et al. [42], it also uses the sphere camera model and
obtains a solution in closed form requiring a set of 3D-2D correspon-
dences;

3. Model by Barreto and Araujo [7], that also uses the sphere camera
model, it requires a single omnidirectional image containing a mini-
mum of three lines. In the study I followed to evaluate model per-
formances, the authors showed that this model fails in representing
fisheye cameras;

4. Scaramuzza et al. [46] which does not exploit the spherical model
but assumes that the image projection function can be described by a
polynomial, based on Taylor series expansion. In spite of its simplicity,

15

this model achieved performance results close to the top-performing
one.

Another well-known method not cited in the comparison I followed is the
Division Model [25]. This method is more general: it can be applied to
both omnidirectional and non-omnidirectional images and allows to correct
distortion without having access to the original lens. This method success-
fully corrects distortion even using pictures with lack of straight lines but,
in general, the performances are lower than the ones obtained with ad Hoc
methods [37].

16

Chapter 3

Sliding Windows Detector

“All truly great thoughts are conceived while walking.”

Friedrich Nietzsche.

Sliding window detectors follow a one-way work flow composed by differ-
ent steps aimed at scanning the entire image and detecting people inside it
(see Fig. 3.1).
First, the image pyramid is created out of the original image. Then, the fea-
tures are extracted from each level of the image pyramid and the detection is
run inside the feature space by sliding a detection window, a rectangle inside
which the detector seeks for people. Finally, the classifier returns its out-
come, paired with a confidence value in case it is positive, and the detection
is mapped back in the original image, merging the overlapping detections.
In the following section I will explain more in detail each step and, for each
one, list some of the various alternatives present in the literature.

3.1 Sliding Window

To detect people that may be spread all over an image, a window of fixed size
is passed along a grid of locations on the picture. Every scanned position
is classified either as "person" or "not person". For the case of "person",
the position is associated with a value that encodes the confidence of the
classifier in the presence of a person.

Since there may be people in the image that are taller, shorter, closer,
further away from the camera, etc. and appear in very diverse sizes, the
sliding window itself is not enough to ensure that all the pedestrians will be

Figure 3.1: Sliding window detector work flow. Step 1: construction of the image
pyramid. Step 2: padding of the image pyramid. Step 3: computation of the image
features. Step 4: sliding-window-based detection. Step 5: Non-Maximum Suppression
and mapping of the detections to the input image. Detection Windows are padded in
order to exploit information from the context around pedestrians so, to keep the size
of the window constant, the same amount of padding is applied to each pyramid level.

classified by a window of the correct size. To solve this problem it is com-
mon to run the sliding window over a set of scaled versions of the original
image, named image pyramid (see Fig. 3.3a). Running the same window
classifier on a shrunk version of the input image corresponds to running a
larger window classifier on the input image. Normally 8-16 layers per octave
(the size range that goes from one image height to its half or its double) are
used and padding is performed after scaling.
An alternative way used by the Fastest Pedestrian Detector in the West
(FPDW) [18] is to estimate the features of the layers between the different
octaves instead of effectively sliding the window over them (see Fig. 3.3b).
In addition, the authors of [9] proposed to calculate one model for each oc-
tave at training time and then compute features only at the base scale of
the image (see Fig. 3.3d), providing even further temporal performance im-
provements.

18

Figure 3.2: Sliding window running over the image allowing for the detection of pedes-
trians. The padding area of the detection window is marked with a blue shading.

One side effect of image pyramid I have to take into account is the pos-
sibility of generating more than one detection for a single pedestrian. To
account for this, many Non-Maximum Suppression (NMS) techniques have
been developed, like the one described in [21], which groups boxes overlap-
ping for more than a certain threshold, and discards the ones with the lower
confidence value.

3.2 Feature Extraction

The feature extraction phase aims at extracting meaningful informations
from the raw pixels enclosed by the detection window and the choice of
these features often marks the line between success and failure in detecting
pedestrians.

One of the first family of features used in PD was made of multi scale Haar-
like wavelets (see Fig. 3.4a). These features are, essentially, rectangular
areas applied on the detection window, inside which the difference between
the sum of the pixels within two or more rectangular regions is computed.
These features are very successful when detecting frontal faces, as shown in
[54], but are unable to perform at the same level when used in PD task.
In [57] Wu and Nevatia presented a new family of features specifically devel-
oped for PD tasks, named edgelets (see Fig. 3.4b). Those feature describe
a way to represent shapes locally by using a set of short lines and curves.
This method can be considered as a variation of the well known Chamfer
matching [8].
Big improvements of the detector performances arrived with the introduc-
tion of Histograms of Oriented Gradients (HOG) features (see Fig. 3.4c) in

19

(a) N models, 1 image scale (b) 1 model, N image scales

(c) 1 model, N{k image scales (d) N{k models, 1 image scale

Figure 3.3: Different image pyramid approaches. Method in 3.3a does not take in
account the similarity between pedestrians imaged at similar scales and learns a model
for each scale. Approach in 3.3b, instead, learns only one model and uses N different
versions of the original image. Methods in 3.3c and 3.3d use, respectively, one model
over N

k images and fracNk models over one image, exploiting the correlation between
the levels instead of calculating all of them explicity. Images taken from [9]

[14]. HOG compute descriptors over small square portions of image windows,
named cells, pooling the gradient information. The gradient is computed for
different orientations, each contributing to build the final histogram. In this
way it is possible to represent both soft transitions and strong edges in a
robust way with respect to small changes in orientation since the different
gradient values are collected in angular bins grouping all the ones within a
range.
After HOG came the Integral Channel Features (ICF) (see Fig. 3.4d) [19],
employed in many modern detectors such as the Fastest Pedestrian Detector
in the West (FPDW) [18]. This method assume the usage of different chan-
nels to describe a single window, in particular six channels are dedicated to
different orientations of the gradient, one is for the gradient module and the
last three encode the image with the LUV colour space, separating bright-
ness from colour channels.
Finally, recent publications like [48], have shown a way to apply Convolu-
tional Networks to PD tasks, inspired by neuroscience and biological pro-
cesses. They showed how to reach the sate-of-the-art performance level by
exploiting hierarchical feature extraction systems and unsupervised learning

20

algorithms (see Fig. 3.4e).

(a) Haar-like features, image taken
from [54] (b) Edgelet, image taken from [57]

(c) Histogram of Oriented Gradi-
ents, image taken from [14]

(d) Integral Channel Features, image taken
from [19]

(e) Automatically trained filters,
image taken from [48]

Figure 3.4: Examples of different features used in PD tasks.

3.3 Window Classifier

The window classifier is the fundamental module of the sliding window de-
tector work flow. Its role is to get as input the set of features collected from
an image window and to return a confidence value that expresses how con-
fident the classifier is on the presence of a pedestrian inside the window.
The function in charge of mapping a point from the feature space to a score
is learned by the classifier during an initial training phase by using a set of la-
belled images taken from a dataset and a machine-learning-based algorithm.
Labelled datasets normally contain windows enclosing a pedestrian, labelled
as positive, and windows that don’t contain human being, labelled as nega-
tive, so that the machine learning algorithm can use the features extracted
from these windows to learn the mapping function. The two most used ML
algorithms in PD are the Support Vector Machines [13] and AdaBoost [26].

21

The maximal margin classifier compute the optimal separating hyperplane as
the one that is farthest from the training observations. It is not always pos-
sible to find an hyperplane separating the two classes so, rather than seeking
the largest possible margin so that every observation is on the correct side of
the hyperplane, the soft margin classifier allows some observations to be on
the incorrect side. Finally, since classes might be separable but not with a
linear boundary, the concept has been extended defining the support vector
machine (SVM), a class of classifiers able to separate classes with non-linear
boundaries using the so-called "kernel trick". This technique intrinsically ap-
plies a linear boundary in a transformed version of the feature space which
corresponds to a non-linear boundary in the original feature space.

The AdaBoost algorithm works by building a Strong Classifier (StC) as a
combination of many Weak Classifiers (WkC). The basic version of WkC is
the decision stump: the classification is based only on the value assumed by
a feature, compared to a threshold. More advanced and better performing
WkC classifiers, as shown in [19], are the depth-2 decision trees. They con-
sist in three decision stumps arranged as a tree where the output of the first
one decides which one will be the next decision stump to be used. Deeper
trees are not used due the tendency they have to overfit the data.
To build the StC, the AdaBoost method starts by assigning a weight to the
various examples of the training set and then by iterating over two phases:
first, it learns the best possible WkC given the current weights; Second,
chooses the classifier with the lowest error and updates the weights so that
the examples that have been misclassified by best WkC have higher impor-
tance. This ensures that the following WkC will focus on those examples.
Eventually, a Basic StC is built by summing the outputs of all the WkC
weighted by their confidence value.
Viola and Jones presented in [54] an alternative to the Basic Strong Clas-
sifier, named Attentional Cascade. Here every example has to go through
a cascade of strong classifiers, aimed at rejecting negative examples as fast
as possible. Due to the fact that less computational effort is wasted with
negative samples, it is much faster than the Basic Strong Classifier. In [58]
a variant of the Attentional Cascade has been introduced, the so-called Soft
Cascade. This method entails the usage of WkC instead of StC as building
blocks of the cascade.
Normally, AdaBoost methods are slower than SVM during the training part
but the fastest PD systems in the literature are mostly based on AdaBoost
classifiers.

22

The last aspect that must be taken in account when training a classifier
is the number of bootstrap epochs. Since the quantity of negative examples
is much bigger than that of the positive ones, a technique to avoid an un-
necessarily long training phase has been introduced: the classifier is trained
multiple times alternating a training phase and a phase in which the detec-
tor is run over images that don’t contain people. Every positive detection
on those images is considered "hard negative" and added to the negative
training set that will be used in the following iteration. It is common to use
from 3 to 5 epochs of bootstrapping.

23

24

Chapter 4

Camera Models

“No one takes photographs of something they want to forget.”

Sy Parrish, One Hour Photo.

Cameras are sensors that allow to acquire light rays coming from the sur-
rounding environment. Every camera has its own characteristics that make
it more suited for a task than another. Parameters that differentiate cam-
eras can be the way the image is represented, digitally or analogically, the
resolution, that is how close lines can be to each other in the picture and still
be visibly resolved, and the number of frames that can be acquired. If more
than one frame can be acquired in sequence, the maximum frequency of ac-
quisition is also an important parameter. Nowadays cameras are employed
in many different fields: movies we watch at the cinema, pictures posted on
the internet, video streaming during video conferences, and so on. All of
them are light rays acquired by a sensor. In our case cameras are the way
we have to observe the world from a machine. In particular, since our scope
is to continuously detect people in the area around the system by processing
images on a computer, we will use a camera able to acquire multiple digital
frames with an adequate speed and resolution.

Another critical aspect of cameras is the angle of view. This represents
the angular portion of a scene that the camera is able to acquire, varying
from 0 to 360˝. For instance, the human eye has an horizontal field of view of
approximately 160˝, even if at the extremities it is just able to barely detect
the movements. Because of this, eyes modelled as cameras are an imprecise
model.

Finally, we also had to take in account the radial distortion, introduced
by camera lenses. Radial distortion is responsible for line bending so, due to
this phenomenon, what in world appears as a straight line, in images might
look curved.

Camera models are functions with particular properties representing the
mapping between 3D world and 2D images. The most common model for
cameras is the perspective camera, whose model can be represented by a
matrix operating in homogeneous coordinates. Most of the digital cameras
we use can be represented using this model that offers a reduced angle of
view but also low radial distortion, making images acquired by this kind of
cameras more similar to the way we perceive the world.

In the next sections I will present the models of the previously listed
cameras, following the overviews presented in [33] and [5], and then the
chosen Omnidirectional Model proposed by Scaramuzza.

4.1 Perspective Cameras

In the following section I will go through the perspective camera model.
Starting from the simplest and most specialized camera model that can be
found in literature, the pinhole model, and progressively removing assump-
tion in order to get a more generalized an versatile model.

4.1.1 The Pinhole Model

In pinhole cameras, all the light rays coming from the real world pass through
a single point, with infinitesimal size, and form an image on a plane placed
behind the hole, which is called image plane or focal plane. In this case, no
lenses are employed so no radial distortion occurs.

The model can be specified by naming f the distance between the image
plane and the hole (focal length), and defining an euclidean system where the
pinhole hole becomes the origin C, called camera centre or optical centre,
and z the axis perpendicular to the image plane passing by C, also known
as principal axis or principal ray. The point where the principal axis meets
the focal plane is said principal point p.
A point in the 3D world X “ rX,Y, ZsT is mapped to x “ rx, ysT on the

26

Figure 4.1: Illustration of the pinhole camera model having the focal plane in front of
the camera centre. Notice that this way of placing the focal plane is commonly used to
describe the horizontal and vertical flipping of the image, originally projected on a plane
placed behind the camera centre at the same distance f . Without this transformation
the image would appear mirrored and upside-down.

image plane according to the following relationship:

x “ ´f
X

Z
y “ ´f

Y

Z
(4.1)

Notice that the minus sign is due to the fact that the image is flipped hori-
zontally and vertically. Normally this minus sign is removed with a posteriori
processing of the image. Removing this sign, for the sake of the model, means
moving the image plane in front of the hole, exactly at the same distance f

(see Fig. 4.1). By applying this to Equation 4.1 we obtain a new couple of
equations:

x “ f
X

Z
y “ f

Y

Z
(4.2)

The angle of view of the camera is strictly dependent on the size of the image
plane. In particular, if 2r is the size of the plane, the field of view is equal
to:

θ “ arctanpr{fq (4.3)

with an upper limit of 180˝.

4.1.2 Projection Using Homogeneous Coordinates

Instead of considering the point in camera reference system coordinates, we
express it in world coordinates, getting Xw “ rXw, Yw, ZwsT . The map-
ping between a point in world coordinates and the same point in camera

27

coordinates is defined as follows:

Xc “ RXw ` T where R P R3x3 and T P R3x1 (4.4)

where Xc “ rXc, Yc, ZcsT is the point expressed in camera coordinate sys-
tem, R is the rotation matrix and T is the translation vector describing the
transformation to pass from one reference system to the other.
Remembering Equation 4.2, we have that Xc is projected onto the image
plane in point x, defined as follows:

x “
«

x

y

ff
“ f

Zc

«
Xc

Yc

ff
(4.5)

that can be rewritten using homogeneous coordinates as:

ZC

»
—–

x

y

1

fi
ffifl “

»
—–

f 0 0 0

0 f 0 0

0 0 1 0

fi
ffifl

»
———–

Xc

Yc
Zc

1

fi
ffiffiffifl (4.6)

In addition, the 3x4 matrix can be decomposed as following:
»
—–

f 0 0 0

0 f 0 0

0 0 1 0

fi
ffifl “

»
—–

f 0 0

0 f 0

0 0 1

fi
ffifl

»
—–

1 0 0 0

0 1 0 0

0 0 1 0

fi
ffifl “ KfΠ0 (4.7)

Where Π0 is canonical projection matrix.
From here on I will indicate that I am expressing x in homogeneous coor-
dinates by calling it rx. The Zc factor preceding vector rx in Equation 4.6
represents the depth and is usually unknown, so it can be better expressed
calling it λ P R`. Composing Equation 4.6 with Equations 4.7 and 4.4,
and substituting Zc with λ, we get the geometric model of an ideal camera,
defined as follows:

λ

»
—–

x

y

1

fi
ffifl “

»
—–

f 0 0

0 f 0

0 0 1

fi
ffifl

»
—–

1 0 0 0

0 1 0 0

0 0 1 0

fi
ffifl

«
R T

0 1

ff
»
———–

Xw

Yw
Zw

1

fi
ffiffiffifl (4.8)

where

«
R T

0 1

ff
“ Sc

w is the rotation and translation matrix between world

and camera reference systems.
Finally, rewriting everything with matrix notation, we obtain:

λrx “ KfΠ0S
c
w

rXw (4.9)

28

4.1.3 Perspective Cameras with Intrinsics Parameters

The model depicted in Equation 4.8 assumes the principal point as origin of
the coordinates in image plane and metric units. In real cameras, images are
expressed as pixels and the origin is normally defined in a corner, usually in
the upper-left one.
We start by defining the relation that exists between the two units of mea-
sure, in particular, if x and y are defined in metres and xs and ys are the
equivalent in pixels, xs and ys are a scaled version of the coordinates x and
y. The relation can be expressed as:

«
xs
ys

ff
“

«
sx 0

0 sy

ff «
x

y

ff
(4.10)

Moreover, sx and sy may be different between each other, defining a rectan-
gular pixel. The most general case would be the one of a trapezoidal pixel
but, since in no modern camera it is used, we will omit this case assuming
sθ, the second element of the fist row of the scale matrix, equal to 0.
Now we still have to take in account the coordinate system origin problem:
to solve it we will need to apply the following translation:

«
x1

y1

ff
“

«
xs
ys

ff
`

«
xc
yc

ff
(4.11)

where rxc, ycsT are the coordinates in pixels of the principal point and rx1, y1sT
the coordinates in pixel of the point rxs, yssT according to the new coordi-
nate system.
By merging the previous equations and writing the result using homogeneous
coordinates we obtain:

rx1 “

»
—–

x1

y1

1

fi
ffifl “

»
—–

sx 0 xc
0 sy yc
0 0 1

fi
ffifl

»
—–

x

y

1

fi
ffifl (4.12)

or, using matrix notation:
rx1 “ Ksrx (4.13)

Now, by mixing Equation 4.8 and Equation 4.12, we can get the perspective
camera complete geometrical model, defined as:

λrx1 “ λ

»
—–

x1

y1

1

fi
ffifl “

»
—–

sx 0 xc
0 sy yc
0 0 1

fi
ffifl

»
—–

f 0 0

0 f 0

0 0 1

fi
ffifl

»
—–

1 0 0 0

0 1 0 0

0 0 1 0

fi
ffifl

«
R T

0 1

ff
»
———–

Xw

Yw
Zw

1

fi
ffiffiffifl

29

or, equivalently:
λrx1 “ KsKfΠ0S

c
w

rXw (4.14)

Parameters defined in Ks and Kf are normally unknown and can be es-
timated just through a calibration procedure. This process is not able to
retrieve all the single matrix coefficients but just the product between the
two matrices, for this reason could be more convenient to express them as a
single matrix K “ KsKf in the following way:

K “ KsKf “

»
—–

fsx 0 xc
0 fsx xc
0 0 1

fi
ffifl “

»
—–

fx 0 xc
0 fy yc
0 0 1

fi
ffifl (4.15)

Matrix K is named intrinsics parameters matrix.

4.1.4 The Projective Camera

The perspective camera model analysed during all this section is just a special
case of the Projective Camera, the most general way to describe the mapping
of a point from the 3D world to the 2D one. In particular we have the
following general equation describing the relation between P3 and P2:

»
—–

x1
x2
x3

fi
ffifl “

»
—–

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

fi
ffifl

»
———–

X1

X2

X3

X4

fi
ffiffiffifl (4.16)

where S “ rSijs is the transformation matrix and, since only the ratios of
elements Sij are important, it has 11 degrees of freedom. px1, x2, x3qT and
pX1, X2, X3, X4qT are homogeneous coordinates related to x and X by:

px, yq “ px1{x3, x1{x3q
pX,Y, Zq “ pX1{X4, X2{X4, X3{X4q (4.17)

The previous model can still be specialized, in different ways with respect
to the perspective camera, by adding different constraints, obtaining other
models suitable to describe other kinds of cameras. More details and exam-
ples are given in Section 4.2.

4.1.5 Distortion in Perspective Cameras

Pinhole camera model is widely used in camera theory even if, in reality,
there are no cameras corresponding to that model because the light energy
reaching the sensor from a single infinitesimal point is not enough. To get

30

enough light we would need to lengthen the exposition, and this might be
acceptable for still scenes but is bad for general purposes because even small
movements of the camera or of the pictured object will compromise the
image, or enlarge the hole but, in this case, there will be more than one
light ray coming in corresponding to a single point, compromising the image
focus.
These problems are currently avoided by adding a series of lenses able to
convolve many rays to a an adequately small hole, allowing the sensor to
get enough light energy. However, by adding lenses, we also introduce some
distortion. The Brown-Conrady mathematical model comes in handy to
describe the introduced distortion that can be divided in two terms: the
radial distortion and tangential distortion, even if the second one is not very
relevant in case of perspective cameras.
By calling xd and yd the coordinates of a point xd on the image affected by
distortion and xu, yu the coordinates of the point xu obtained after distortion
removal, called rectification, the distortion model is defined as follows:

xu “ xd ` pxd ´ xcqpK1r
2 ` K2r

2 ` ¨ ¨ ¨ q ` pP1pr2 ` 2pxd ´ xcq2q ` 2P2pxd ´ xcqpyd ´ ycqqp1 ` P3r
2 ` ¨ ¨ ¨ q
(4.18)

yu “ yd ` pyd ´ ycqpK1r
2 ` K2r

2 ` ¨ ¨ ¨ qloooooooooooooooooomoooooooooooooooooon
Radial distortion

` pP1pr2 ` 2pyd ´ ycq2q ` 2P2pxd ´ xcqpyd ´ ycqqp1 ` P3r
2 ` ¨ ¨ ¨ qloomoon

Tangential distortion

(4.19)
Where:

• xc and yc are the coordinates of the principal point

• Ki is the i-th coefficient of radial distortion

• Pi is the i-th coefficient of tangential distortion

• r “ apxd ´ xcq2 ` pyd ´ ycq2 is the distance between xd and the prin-
cipal point.

In case of perspective cameras, normally K1 and K2 coefficients are enough
to describe radial distortion.

4.2 Cameras Which Do Not Capture the Perspec-
tive Effect

As stated at the end of the previous section, the general projective camera
model can be specialized by adding different constraints. In this section we

31

will present a brief overview about some different special cases of cameras
derived from the projective model but defined in a way that does not preserve
the perspective effect obtained with the perspective camera.

4.2.1 The Affine Camera

The first special case of projective camera we can have is the affine camera,
obtained by constraining T such that T31 “ T32 “ T33 “ 0:

»
—–

x1
x2
x3

fi
ffifl “

»
—–

T11 T12 T13 T14

T21 T22 T23 T24

0 0 0 T34

fi
ffifl

»
———–

X1

X2

X3

X4

fi
ffiffiffifl (4.20)

By defining M as a 2 ˆ 3 matrix with elements Mij “ Tij{T34 and t “
rT14{T34, T24{T34sT as a 2-vector giving the projection of X “ 0, in terms of
image and scene coordinates, the mapping written in inhomogeneous coor-
dinates becomes:

x “ MX ` t (4.21)

A key property of the affine camera is that it preserves parallelism so lines
that are parallel in the world remain parallel in the image.

4.2.2 The Orthographic Camera

Orthographic cameras are a specialization of the affine camera model. In
this case light rays, instead of coming in all from the optical centre as in
the perspective camera model, travel and reach the image plane in a parallel
fashion as shown in Figure 4.2.
This kind of camera is formally represented by choosing a matrix M that
represents the first two rows of a rotation matrix. In particular, the simplest
form is:

Morth “
«

1 0 0

0 1 0

ff
(4.22)

so:

Torth “

»
—–

1 0 0 0

0 1 0 0

0 0 0 1

fi
ffifl (4.23)

and «
x

y

ff
“

«
X

Y

ff
(4.24)

32

Figure 4.2: The orthographic camera model. Notice that light rays, instead of coming
in all from the optical centre as in the pinhole camera model, travel and reach the
image plane in a parallel fashion.

4.2.3 The Weak-Perspective Camera

When the camera field of view is small and the depth variation of pictured
objects is small compared to the distance of the objects from the camera Zc

ave

([52] suggests a 1:10 ratio), the individual depth Zc
i can be approximated

with the average Zc
ave, leading to:

x “
˜

x

y

¸
“ f

Zave

«
X

Y

ff
(4.25)

So the weak-perspective camera combines orthographic and perspective pro-
jections because points are orthographically projected onto the average plane
and then perspectively onto the image.
the weak-perspective mapping written in inhomogeneous coordinates can be
written as:

x “ MwpX ` twp (4.26)

where Mwp is a 2x3 matrix whose rows are the uniformly scaled rows of a
rotation matrix and twp is a 2-vector. The simplest form is:

Mwp “ f

Zave

«
1 0 0

0 1 0

ff
(4.27)

33

and so:

Twp “

»
—–

1 0 0 0

1 0 0 0

0 0 0 Zave{f

fi
ffifl (4.28)

4.3 Omnidirectional Camera

In case of detection tasks would be more desirable to use cameras with a
wider angle of view, in order to be able to scan a bigger portion of reality.
A category of cameras that offers this property is the omnidirectional cam-
eras, sensors able to acquire images with an high angle of view, up to 360˝.
Unfortunately, this convenient property comes along with side effects: due
to the lens used to get an higher field of view, the resulting image suffers of
a huge radial distortion that doesn’t allow us to model this kind of cameras
with any of the previous model.
The usefulness of omnidirectional cameras is significantly reduced without
a procedure to remove distortion as much as possible: in the following sec-
tions I will also depict the calibration procedure followed to compute the
camera parameters, and then how I used these parameters to perform om-
nidirectional image rectification and unwrapping to get images in which the
Pedestrian Detector could perform better.

4.3.1 The Model Proposed by Scaramuzza

(a) Sensor Plane (b) Image Plane

Figure 4.3: Camera Sensor Plane and Image Plane. If X is a scene point, u2 “ ru2, v2sT
is the projection of X onto the sensor plane and u1 “ ru1, v1sT its image in the camera
plane.

34

Figure 4.4: The camera image plane and the sensor plane in the case of a catadioptric
camera. In the dioptric case, the sign of u2 would be reversed because of the absence
of a reflective surface. All coordinates are expressed in the coordinate system placed in
O, with the z axis aligned with the sensor axis.

We start by identifying two distinct reference planes: the camera image
plane pu1, v1q (see Fig. 4.3b) and the sensor plane pu2, v2q (see Fig. 4.3a).
In Figure 4.4 the two planes are shown in the catadioptric case. In case,
instead, the camera is dioptric, the sign of u2 would be reversed because of
the absence of a reflective surface. The coordinate system will be placed in
O, with the z-axis aligned with the sensor axis. The two systems are related
by an affine transformation:

u2 “ Au1 ` t (4.29)

where u2 “ ru2, v2sT is the projection of a scene point X onto the sensor
plane, u1 “ ru1, v1sT is the respective point onto the image plane, A P R2x2

and t P R2x1.
Then, we have to introduce image projection function g, used to describe
the relationship between a point u2 and the vector p that goes from the
viewpoint O to a scene point X (see Fig. 4.4), allowing us to write the model
of an omnidirectional camera as:

λp “ λgpu2q “ λgpAu1 ` tq “ P rX, λ ą 0 (4.30)

where rX P R4 is expressed in homogeneous coordinates and P P R3x4 is the
projection matrix.
Once the omnidirectional camera will be calibrated, we will be able to re-
construct, from each pixel, the direction of the corresponding scene point in
the real world. To calibrate the camera we need to estimate A, t and the
non-linear function g so all the vectors gpAu1 ` tq satisfy the Equation 4.30.

35

To define better the model we also assume that the function g has the fol-
lowing form:

gpu2, v2q “ pu2, v2, fpρ2qT q, ρ2 “ 2
a
u22 ` v22 (4.31)

where f can be thought as rotationally symmetric with respect to the sensor
axis. This assumption makes sense because, with nowadays technologies,
mirrors and lenses can be shaped with high precision allowing us to suppose
them symmetric.
The novel part introduced by the Scaramuzza’s model is the way function f

is defined, in particular, the following polynomial form has been presented:

fpρ2q “ a0 ` a1ρ
2 ` a2ρ

22 ` ¨ ¨ ¨ ` aNρ2N (4.32)

coefficients ai, i “ 0, 1, 2, ¨ ¨ ¨N and the degree N are parameters that will
be determined by the calibration process.
Putting everything together, we can rewrite the Equation 4.30 as:

λ

»
—–

u2

v2

w2

fi
ffifl “ λgpAu1 ` tq “ λ

«
pAu1 ` tq
fpu2, v2q

ff
“ P rX, λ ą 0 (4.33)

4.3.2 The Calibration Procedure

First of all, the image view field (see Fig. 4.3) is transformed from an ellipse
to a circle centred on the ellipse centre allowing us to reduce the number
of parameters by computing the matrices A and t up to a scale factor α.
This transformation is performed automatically by following the procedure
described in [47]. Now an image point u1 is related to the corresponding
point on the sensor plane u2 by u2 “ αu1. By substituting it in Equation
4.33 we obtain:

λ

»
—–

u2

v2

w2

fi
ffifl “ λgpαu1q “ λ

»
—–

pαu1q
pαv1q
fpαρ1q

fi
ffifl “

“ λα

»
—–

pu1q
pv1q

a0 ` ¨ ¨ ¨ ` aNρ1N

fi
ffifl “ P rX, α,λ ą 0 (4.34)

where ρ1 “ 2
?
u12 ` v12. We can further lower the number of parameters

pa0, a1, ¨ ¨ ¨ , aN q to be estimated by joining the α and the λ factors, reducing
them to N ` 1.

36

As said before, to calibrate the camera, images of a planar calibration pattern
are acquired in different positions. Those positions are related to the camera
by a rotation matrix R “ rr1, r2, r3s and a translation t, called the extrinsic
parameters. By defining I i as an observed image of the calibration pattern,
Mij “ rXij , Yij , ZijsT as the 3D coordinates of each point in the pattern
coordinate system (with Zij “ 0 since the pattern is planar) and mij “
ruij , vijsT as the relative coordinates on the image plane expressed in pixel,
we can transform Equation 4.34 in:

λij ¨ pij “ λij

»
—–

uij
vij

a0 ` ¨ ¨ ¨ ` aNρNij

fi
ffifl “ P i rXij “

“
”

ri1 ri2 ri3 ti
ı

»
———–

Xij

Yij
0

1

fi
ffiffiffifl “

”
ri1 ri2 ti

ı
»
—–

Xij

Yij
1

fi
ffifl (4.35)

Then we can remove the dependence from λij by performing vector multi-
plication by pij in both sides of the equation:

λij ¨ pij ˆ pij “ pij ˆ
”

r1i r2i r3i
ı

»
—–

Xij

Yij
1

fi
ffifl “ 0 ñ

ñ

»
—–

uij
vij

a0 ` ¨ ¨ ¨ ` aNρNij

fi
ffifl ˆ

”
r1i r2i r3i

ı
»
—–

Xij

Yij
1

fi
ffifl “ 0 (4.36)

and, by focusing on a single observation i, we obtain that each point of the
pattern contributes to three equations:

vjpr31Xj ` r32Yj ` t3q ´ fpρjqpr21Xj ` r22Yj ` t2q “ 0 (4.37)

fpρjqpr11Xj ` r12Yj ` t1q ´ ujpr31Xj ` r32Yj ` t3q “ 0 (4.38)

ujpr21Xj ` r22Yj ` t2q ´ vjpr11Xj ` r12Yj ` t1q “ 0 (4.39)

One of the three equations we got (Equation 4.39) is linear in the unknown
extrinsic parameters so, if Xj , Yj , Zj , uj and vj are all known, it is possible
to get a linear estimation of all the extrinsic parameters, t3 excluded.
The procedure to get the values of Xj , Yj , Zj , uj and vj expects the usage of
a calibration pattern of a known shape and the graphical interface offered
by Scaramuzza. Then, by clicking on some given points, we can retrieve
the coordinates of the points in both coordinate systems: image plane and

37

pattern coordinate system.
Once we managed to estimate the extrinsic parameters, we can go back to
Equations 4.38 and 4.39, substitute the values we got and find the least-
squares solution for the camera intrinsic parameters a0, a1, a2, ¨ ¨ ¨ , aN and
the missing extrinsic one, t3.
The only missing parameter is the polynomial degree N and we have to esti-
mate it by starting from N “ 2 and increasing it by unitary steps, computing
each time the re-projection error and choosing the one with the lowest value.
For all the details about the calculations, refer to [46].

4.3.3 Omnidirectional Image Unwrapping

Now, once obtained the camera parameters it is possible to perform image
rectification and unwrapping. In particular I will follow these three common
approaches [11, 28]:

(a) Original image (b) Unwrapped Image (c) Rectified Image

Figure 4.5: Examples of omnidirectional images unwrapping. Notice how the lines that
were highly distorted in the Omnidirectional Image have been rectified in Figure 4.5c.
The Unwrapped image, instead, still suffer of distortion, especially with horizontal lines
but preserve the entire field of view.

• Raw Image (see Fig. 4.5a): applying the algorithm to an unwrapped
omnidirectional image may seem a naive approach but, since the high
distortion is not constant along the image, will be interesting to test
how the algorithm performs when used in a real case.

• Cylinder Unwrapping (see Fig. 4.5b): it can be done using an open-
ended cylinder plane wrapping around the sphere. The mapping be-
tween the coordinates is done so that the vertical coordinates on the
resulting image are proportional to the tangent of the elevation angle

38

Figure 4.6: Cylindrical Projection of points on a unit sphere centered at O. Line OS

is extended for each point S until it intersects a cylinder tangent to the sphere at its
equator at a corresponding point C. Then Cartesian coordinates become x “ λ ´ λ0

and y “ tanφ, where λ ´ λ0 is the difference in longitude (azimuth) and φ is the
latitude (elevation).

on the sphere and the horizontal ones are proportional to the azimuth
(see Fig. 4.6).

• Camera Calibration (also called Bird’s Eye View, see Fig. 4.5c): this
approach allows us to look at the imaged scene as if it was done through
a pinhole camera, maintaining the linearity of the imaged 3D straight
lines. Drawback of this approach is that with one pinhole camera is
not possible to see the entire scene so, in order to explore it entirely,
I will have to apply some transformations to simulate camera rotation
and then process multiple images.

39

40

Chapter 5

Unsupervised Labeller

“Once you label me you negate me.”

Søren Kierkegaard.

I this chapter I will illustrate the approach I followed to build an un-
supervised dataset labeller exploiting Kinect skeleton data. This comes in
handy to accelerate the creation of ad hoc datasets and, subsequently, the
detector training phase.
Notice that the scope of the Unsupervised Labeller was not to completely
label the dataset but only to speed up that phase. A complete labelling with
only one Kinect camera is not possible due to many technical limitations:
first of all, the angle of view of the RGB camera from the Kinect is smaller
than the Omnidirectional one, second, Kinect is able to track people only
until a certain distance from the sensor and, finally, the tracking precision is
not 100% so a final inspection by an external agent is still needed.

5.1 Point Projection

Microsoft Kinect V2 uses an anthropomorphic model to describe human
skeleton, more in detail it tracks some specific points in the human body
and returns their position inside the camera space (see Fig. 5.1).
I exploited these information to draw the Ground Truth Bounding Boxes
around people depicted in the omnidirectional images but, in order to cor-
rectly map the points in the 3D Kinect space into the omnidirectional camera
2D space, I had to apply some transformations:

First of all, I had to map the Kinect 3D space with the Omnidirectional

camera 3D space. This is realized by applying the following 4 ˆ 4 rotation
and translation matrix:

Rt “

»
———–

R11 R12 R13 t1
R21 R22 R23 t2
R31 R32 R33 t3
0 0 0 1

fi
ffiffiffifl (5.1)

where the Rij terms are the rotation components and ti the translation ones.
Second, The 3D points from the Omnidirectional Camera 3D reference

system have to be projected over the image plan. This step has been achieved
using the parameters computed during the camera calibration procedure and
the Scaramuzza’s toolbox.

Finally, in case the labelling procedure was applied over unwrapped or recti-
fied images, I had to transform the point coordinates according to the chosen
unwrapping method (see Sections 4.3.2 and 4.3.3).

(a) Kinect Space

(b) Kinect Skeleton

Figure 5.1: Kinect Reference Systems

42

5.2 Kinect Calibration

Scope of the Kinect calibration phase is to compute the Rt matrix in charge
of mapping points from the 3D Kinect space to 3D Omnidirectional space.
In particular, the equation that must be satisfied is the following:

Xo “ Rt ¨ Xk “

»
———–

Xo

Yo
Zo

1

fi
ffiffiffifl “

»
———–

R11 R12 R13 t1
R21 R22 R23 t2
R31 R32 R33 t3
0 0 0 1

fi
ffiffiffifl

»
———–

Xk

Yk
Zk

1

fi
ffiffiffifl (5.2)

where Xo are the 3D homogeneous coordinates on the Omnidirectional Cam-
era reference system and Xk are the 3D homogeneous coordinates on the
Kinect reference system.
The rotation matrix R can be built with a sequence of three translations on
the three axis. In particular, the three separated rotation matrices are:

Rx “

»
———–

1 0 0 0

0 cospαq ´ sinpαq 0

0 sinpαq cospαq 0

0 0 0 1

fi
ffiffiffifl (5.3)

Ry “

»
———–

cospβq 0 sinpβq 0

0 1 0 0

´ sinpβq 0 cospβq 0

0 0 0 1

fi
ffiffiffifl (5.4)

Rz “

»
———–

cospγq ´ sinpγq 0 0

sinpγq cospγq 0 0

0 0 1 0

0 0 0 1

fi
ffiffiffifl (5.5)

The general rotation matrix depends on the order of rotations, e.g. by mul-
tiplying the matrices in the order RzRyRx means that the rotation has been
performed around the x, the y and the z axis.
In my case, since the Kinect is placed above the Omnidirectional Camera on
a parallel horizontal plane (see Chapter 6 for all the details about the System
Architecture), I could consider that there is no rotation around the z axis,
so γ “ 0, and also no translation along the z axis, so t3 “ 0. Consequently,
the Rt matrix becomes:

Rt “

»
———–

cospβq sinpαq sinpβq cospαq sinpβq t1
0 cospαq ´ sinpαq t2

´ sinpβq cospβq sinpαq cospαq sinpβq 0

0 0 0 1

fi
ffiffiffifl (5.6)

43

5.2.1 Manual Calibration

I built a graphical user interface that applies the current Rt matrix to some
given 3D coordinates and then plots the results over a picture imaged with
the Omnidirectional Camera. The GUI allows the user to tweak the four
parameters (α, β, t1 and t2) and consequently match the plotted points with
their correct position in the Omnidirectional Image in order to find the Rt

matrix.

5.2.2 Function Minimization

This approach consider the minimization of the following function:

min
Rt

ÿ

xprj

pxclk ´ xprjq2 (5.7)

where xclk are 2D coordinates in the Omnidirectional Camera Image Plan
given by asking to the user to click on the parts of the body tracked by the
Kinect skeleton, in a given order (see Fig. 5.2).
xprj are the 2D coordinates obtained by applying the Rt transformation
matrix to the Kinect skeletal body points, projecting them onto the om-
nidirectional 3D space (Xk “ Rt ¨ Xk), and then multiplying the Xk with
the Projection Matrix P obtained with the Camera Calibration (see Section
4.3.2).
I performed unconstrained non-linear optimization using the fminunc MAT-
LAB function.

5.3 Dataset Labelling

Once I managed to obtain the complete mapping from Kinect 3D world to
the Omnidirectional Camera Image Plan, I had to translate these coordinates
into label coordinates, following the convention used by the Dataset Utility
released by Piotr Dollar [15].
More in detail, to describe the position and the dimension of a window, four
numbers are needed: the px, yq coordinates of its upper-left corner, the width
and the height.
To retrieve these values I iterate the positions of all the joints of the Kinect
skeleton and, for both the x and the y coordinates, I retrieve the lowest and
the highest values. The lowest ones are stored as coordinates of the upper-
left corner while the differences between the hight and the lowest are used
as width and height.
In the script I coded I also offered the possibility to define an amount of

44

Figure 5.2: Example of Kinect auto calibration where the user to click on points on the
image corresponding to Kinect skeleton joints, in a given order. These point coordinates
will be later used to solve the optimization problem.

padding that will be added to all the detected windows.
In Figure 5.3 it is possible to see an example of the labeller output, notice
that the two pedestrian on the left are outside from the Kinect field of view
and so they have not been detected and labelled.

45

Figure 5.3: Example of image labelled using the Unsupervised Labeller with Padding “
0. Notice that only the two people inside the Kinect field of view have been labelled
whether the other two have been ignored and I had to label them manually.

46

Chapter 6

System Architecture

“Being a robot’s great, but we don’t have emotions and sometimes that makes
me very sad.”

Bender, Futurama.

6.1 System Overview

The final version of the robotic assistive platforms will be composed of many
different modules, in particular:

• Virtual Coach Module: Exploits artificial intelligence to enhance machine-
human interaction performing virtual-therapist tasks;

• Monitoring Module: Is the part of the system in charge of monitor-
ing the activity and estimating the physiological state of the patient
providing an overview of the user conditions to the other modules and
contingent specialists;

• Game Adaptive Training Module: Provides gamified and personalized
training sessions to increase user engagement and motivation;

• Robotic Assistance Platform: Able to autonomously navigate inside a
scene using human and object detection technologies and interact with
the patient.

All the high-level modules mentioned above will strongly rely on the acqui-
sition and Pedestrian Detection system I developed during my thesis work.

Figure 6.1: Current Version of the System. The peripherals are, in order: (1) Micorsoft
Kinect V2; (2) Vivotek FE8174 Omnidirectional Cameras; (3) LCD Display and wireless
keyboard; (4) Bitalino/Bioplux Biosensors; (5) Computer; (6) Eight port switch.

6.1.1 Current Version of the System

At the current version of the system the autonomous mobile platform is still
missing so all the peripherals are mounted on a metal stand and the platform
must be pointed by an agent toward the patient we want to monitor during
the training session.
The devices connected to the system at its current state (see Fig. 6.1) are:

1. Microsoft Kinect V2 : Motion sensing input device simultaneously ac-
quiring RGB images, scene depth information and infra-red. Further-
more, the provided software is able to compute the body skeleton and
the face expression data.

2. Vivotek FE8174 Omnidirectional Cameras : Sensors able to acquire
images with a field of view of 180˝, by using two of them it is possible
to image almost the entire sphere around the system. For all the details
about omnidirectional cameras, see Section 4.3.

3. LCD Display and wireless keyboard : Display the program interface
allowing user interaction.

48

4. Bitalino/Bioplux Biosensors : Wireless real-time biosignal acquisition
and transmission units, the first one is a low-cost hardware and open-
source software toolkit whereas the second is a professional combinable
platform. Currently the system is able to acquire the signals from both
of them and we are currently performing some test to figure out the
best set-up. The different sensors are placed according to the schema
illustrated in Figure 6.2.

5. Computer : Currently all the modules are running on this machine. It
is equipped with an ethernet port and a bluetooth dongle in order to
acquire signals from the different peripheral devices.

6. Eight port switch: Allows the usage of multiple ip network cameras.

Figure 6.2: Biosensor placement schema. The available sensors are: ECG, for elec-
trocardiography, RESP, measuring the respiration, BVP, that is for the Blood Volume
Pulse and ACC, the accelerometer.

49

Figure 6.3: System Architecture Schema. Biosensors are connected via bluetooth
whether Kinect uses and USB link and the omnidirectional cameras rely on RTSP
protocol. Once acquired the signals are spread using YARP ports. Currently only the
respective data savers are reading from these ports but this configuration supports
the extension of the systems with new modules reading from them, in an effortless
way. Aim of Reader Modules is to receive the signal, parse and store it in MongoDB
database. Matlab scripts access the MongoDB dabase via TCP protocol to retrieve
stored information and then visualize or process them.

6.2 Acquisition Module

This part of the platform has fundamental role of acquiring signals and
images of all the connected devices, store them in a database and provide an
interface to visualize and process the acquired data.
To build the architecture I relied on YARP, a middle-ware framework that
allows to build the robotic system as a collection of programs communicating
using ports in a peer-to-peer way using different connection types. Thanks to
YARP all the acquired data can be easily replicated and spread to different
application, e.g. we can send one copy to the application in charge of storing
data in a database and another copy to the application doing the real-time
processing.

6.2.1 Software Architecture

The software architecture is currently composed by three main blocks: The
acquisition applications, the storing applications, and the visualization/processing
application.

The acquisition modules exploit the APIs provided by the sensors manu-

50

(a) Kinect Avatar (b) Body plot

Figure 6.4: Visualization Examples. On the left there is the Kinect Avatar created with
Unity whether on the right the skeletal joints connected with lines are plotted.

(a) Channel 0: Electrocardiogram (b) Channel 1: Respiration

(c) Channel 2: Blood Volume Pulse (d) Channel 4: Accelerometer on axis x

(e) Channel 5: Accelerometer on axis y (f) Channel 6: Accelerometer on axis z

Figure 6.5: Example of data acquired using the bioplux sensor. Notice that there were
no sensors connected to channels 3 and 7.

51

facturer to access their digital outputs. Kinect acquisition drivers represent
an exception: we access Kinect data using Unity graphical engine in order
to provide real time visualization of the avatar built using Kinect skeleton
data (see Fig. 6.4a).
All the acquired signals are then sent out relying on YARP framework, with-
out knowing who will receive them. YARP allows to connect many input
ports to a single output port, currently this feature is not completely ex-
ploited but it will become in handy in the next stages of the project since
will allow us to add new modules (e.g. on-line processing and real-time
visualization) without any additional effort to manage the communication
among the different agents.

The storing applications receive the signals broadcast by the acquisition
modules and store them in a database. In more detail, I am using Mon-
goDB, a NoSQL document-oriented database. Data such as biosignals and
Kinect Skeleton already comes in a text format so it is stored as a docu-
ment; images, instead, must be stored as binary data. More details about
the structure of the database are described in Section 6.2.2.

The visualization and processing part is composed by a collection of MAT-
LAB scripts. Currently they only allow off-line management of the stored
data retrieved from the database. In the future versions we will add scripts
to read data directly from the YARP ports and perform real-time operations.
Some of the functions offered by the module are: Visualization and plotting
of acquired data (see Fig. 6.5), detection of pedestrian over acquired images,
unsupervised labelling, and image unwrapping. In Figure 6.4b it is depicted
an example of Kinect skeletal data plotting.

6.2.2 Database Structure

MongoDB document data model allows to store data of any structure and
dynamically modify the schema. Nevertheless, the data stored so far comply
with the schema illustrated in Figure 6.6.
Bioplux and bitalino collections store the biosignals acquired from the respec-
tive device. CameraBack and cameraFront store the images from the omni-
directional cameras whether the collections which name start with "kinect"
store the data acquired from Kinect, that could be the RGB images, the
depth images, the infra-red images, the skeletal data or the data about the
detected faces. All the previous collections have as attributes the ID of the
patient the data is about, the number of the acquisition that patient is doing,

52

a progressively increasing number used to number the different samples part
of the same acquisition, and the timestamp. The timestamps indicate the
number of milliseconds since the 1st of January, 1970 (UTC).
A particular collection is the one dedicated to settings, used to store some
choices made by the user until the next execution of the acquisition software.

Figure 6.6: MongoDB database schema. The arrows represent 1 to N or 1 to 1
relationships. This is an indicative schema, since MongoDB is a NoSQL database,
it does not guarantee that the store data follow the suggested schema.

6.2.3 Main Issues

One of the main requirements of the system was to keep all the data syn-
chronized. To address the problem I attached to all the signals an absolute

53

timestamp immediately after their acquisition. This still leaves a little im-
precision due to the different times the data take to go through the commu-
nication channel but the delay is small enough to not affect significantly the
system synchronization.
Another problem that could affect the system is the access concurrency to
the database. MongoDB already provides concurrency control measures such
as locking to prevent multiple clients from modifying the same piece of data
simultaneously.

54

Chapter 7

Experimental Results

“I never said he was a COMPLETELY successful experiment.”

Dexter, Dexter’s Laboratory.

In the following section I illustrate the results obtained from the exper-
iments I made. In particular I show the output achieved by effectuating
camera calibration, then I discuss the plots resulting from applying detec-
tors using different combinations of training and testing datasets. Finally, I
report the performances of the unsupervised dataset labeller.

7.1 Omnidirectional Camera Calibration

Figure 7.1: Example of image used to calibrate the Omnidirectional Camera. The
calibration pattern is imaged in different positions and orientations.

Figure 7.2: The extrinsic camera parameters. The plot shows the position of every
checkerboard with respect to the reference frame of the omnidirectional camera.

Figure 7.3: Plots of the polynomial function f , and the angle θ of the corresponding
3D vector with respect to the horizon.

56

To perform the Omnidirectional Camera calibration I used 13 calibration
images, like the one shown in Figure 7.1, and a polynomial order of 4. For
the details about Camera Calibration, please refer to Section 4.3.2.
In Figure 7.2 are represented the extrinsic parameters as a plot of every
position used during calibration with the grid pattern. In Figure 7.3 are
depicted the plot of the polynomial function f , and the plot of angle θ of the
corresponding 3D vector with respect to the horizon.

7.2 Pedestrian Detection

Initially, I tried to apply the detector on the omnidirectional images and
their unwrapped and rectified versions. Then I tried to train the detectors
with custom datasets, to asses how much a different training is affecting the
performances, and I ran them again over the acquired images, omnidirec-
tional, unwrapped and rectified. From these results I also extracted some
informations about detector performances in relation with position of the
pedestrian inside the image and size of the window.

7.2.1 Dataset Description

I acquired the images in 6 different places imaging 14 different people and I
flipped all the images horizontally to increase the size of the dataset. Then I
randomly divided the sequence in two sets, one for training and the other one
for testing. Finally I unwrapped and rectified the acquired images to obtain
datasets also for these class of images. Rectification has been performed us-
ing focal distance of 3 because the images obtained using this value seemed
the best compromise between the field of view width and the amount of
artefacts introduced. The statistics of these datasets are illustrated in Tab.
7.1.

When training or testing the detectors, I used the full set of people la-
belled, without any kind of filtering based on size or occlusion (an example
of dataset filtering is the one applied to Caltech dataset, described in [21]),
making the detection more challenging.

7.2.2 Detection Results

In this phase of the experiment I first applied the detector trained with the
Inria and Caltech datasets, two of the most successful datasets use to train
detectors by the PD community, over three datasets described in the previous

57

(a) Original dataset, sample number 1 (b) Original dataset, sample number 2

(c) Unwrapped dataset, sample number
1

(d) Unwrapped dataset, sample num-
ber 2

(e) Rectified dataset, sample number 1 (f) Rectified dataset, sample number 2

Figure 7.4: Sample images taken from the ad Hoc datasets created to train and test
the detectors showing some of the different places and people imaged. Every green
window represents a labelled person.

58

Dataset Name Train Size Test Size Pedestrians in Train Pedestrians in Test
Omnidirectional 261 267 607 679

Unwrapped 261 267 607 679
Rectified 261 267 508 547

Table 7.1: Dataset Statistics

(a) Detector applied on the Omnidirectional Dataset

(b) Detector applied on the Unwrapped Dataset

(c) Detector applied on the Rectified Dataset

Figure 7.5: Detection Results comparing, for the three different cases, the performance
of the detector when trained with the dataset of the same kind versus the performance
reached with INRIA or Caltech trainings.

59

Figure 7.6: Comparison of detector performances for the three cases when it is trained
and tested with datasets of the same kind.

section in order to assess how standard PD tools perform in this particular
situation.
From the plots in 7.5, it is quite clear that the detector performs better when
applied to unwrapped or rectified images but, still, the performances are far
from the State of the Art values.

Then I trained the detector with the new training sets and I applied it in the
respective test set (e.g. I ran the detector trained using unwrapped images
over the test set composed of the same kind of images) to assess the impact
of a different training. The results of these experiments are illustrated in
Figure 7.5.
On all the three datasets the performances of the ad Hoc detector improved
significantly.

In Figure 7.6 the performances of the detector when trained and tested with
sets of the same kind are showed, pointing out that the usage of unwrapped
images outperform the usage of the original ones only when the number of
False Positives per Image is higher than 10´1. The performances of the de-
tector that uses rectified images are generally worse than the one that uses
original images, outperforming them only in few points.

7.2.3 Performance Evaluation

In Figure 7.7 some successful examples where the detector managed to cor-
rectly locate all the people in a scene are shown. Unfortunately, in some other
cases, the detector fails in properly detect people or returns False Positive
detections, windows that do not enclose people correctly or do not enclose

60

(a) Original (b) Unwrapped

(c) Rectified

Figure 7.7: Sample images showing successful detection cases in chellenging situations.
The green windows reprent a correct detection.

61

(a) Original (b) Unwrapped

(c) Rectified

Figure 7.8: Sample images showing situations in which the detector fails. The green
windows reprent a correct detection, the blue ones represent false positives and the red
ones represent missed detections.

Figure 7.9: Plot representing the three non-linear functions fitting the experimental
data about the missed detections over the euclidean distance from the image center,
obtained from the previous experiments. Notice that the distance from the image center
is rescaled over an interval from 0 to 100.

62

Figure 7.10: Plot representing the three non-linear functions fitting the experimental
data about the missed detections over the window height, obtained from the previous
experiments. Notice that the window height is rescaled over an interval from 0 to 100.

people at all.

To better explore and understand in which conditions the detector was
failing, I coded a MATLAB script to analyse the results of the previous ex-
periments. In particular, I extracted information about the amount of missed
detections related to the distance of the person from the image center and
the size of the Bounding Box.
After collecting data about the detections missed when applying the detec-
tor trained with the ad Hoc datasets on the respective ones, I ran the script
described above.
More in detail, the Distance from the Image Center of a person is the eu-
clidean distance of center of the the Bounding Box to the image center.
The condition to consider a detected window as a correct detection is de-
scribed in Section 2.1.3. I considered as Missed Detections all the Ground
Truth windows without a correspondent detection. As a threshold for the
confidence value I considered the arithmetic mean computed over all the
confidence values in the Ground Truth.
In Figures 7.9 and 7.10 the percentage of missed detections is put in relation
with the distance from the image center and with the size of the Bounding
Box, for all the three datasets.
To better compare the results I pooled the distance from the image centre
and the window size values in 30 bins and then I rescaled the values from 1

to 100. Then I applied a non-linear regression to the resulting experimental
data using the fitnlm MATLAB function. Beyond the data used to estimate

63

the non-linear model, this function requires three more parameters:

• The functional form of the model, I used the exponential function αeβx;

• The origin, I chose the p0, 0q point;

• The weight attributed to each data value. This is an optional param-
eter and is used to give more importance to the values obtained from
an higher number of observations. In my case I used as a weight vector
the number of Ground Truth entries for each bin.

From the plot in Figure 7.9 we can observe that the curve corresponding to
the original dataset is steeper than the ones corresponding to the unwrapped
and rectified datasets, meaning that, in the original case, performances de-
grade more when people to be detected are close to the image border.
The plot in Figure 7.10, instead, shows us that, whether the original and the
rectified datasets do not suffer that much people proximity, the unwrapped
set is very sensitive to vicinity and the performances degrade quickly when
the window size increases.

7.3 Unsupervised Labeller

To test the effectiveness of the Unsupervised Labeller I used subset of the
original dataset and I compared the labelling obtained from the Unsupervised
Labeller with the one I did manually, considering as correct detection all the
detections satisfying the following rule:

ao “ areapBBkinect X BBmanualq
areapBBkinect Y BBmanualq ą 0.5 (7.1)

In particular, I ran three different test using three different Rt matrices:

1. In the first case I obtained the Rt matrix by using the GUI and man-
ually tweaking the parameters. The system correctly located the 64%

of the labels inside the Kinect field of view.

2. In the second case I used the Rt matrix obtained by solving the opti-
mization problem, using as initial guess the zero 4 ˆ 4 matrix. In this
case the successful detections were the 56%.

3. Finally, I obtained the Rt matrix by solving the optimization problem
again but this time by using as initial guess the Rt matrix obtained at
the point 1. With this settings the system correctly detected the 60%

of the labels.

64

Chapter 8

Conclusions and future work

“End? No the journey doesn’t end here.”

Gandalf, The Return of the King.

In this thesis I developed a system able to acquire, visualize and store
signals from multiple peripherals. The system supports the acquisition of
biosignals, images from omnidirectional cameras and data from Microsoft
Kinect V2 and it is robust to synchronization and concurrency problems.
Exploiting skeletal information provided by Kinect I could track movements
of people and, by using the biosignals, it will be possible to assess their
health condition. Omnidirectional cameras, instead, are used to detect peo-
ple in the environment around the system and they will be essential for the
human-robot interaction module of the system.
I also studied how imaging systems are modelled. In particular, I learnt how
to model and calibrate omnidirectional cameras. I performed the calibration
of the two Vivotek FE8174 cameras used in the system. The parameters ob-
tained from this phase have been used to process the omnidirectional images
and perform unwrapping and rectification.
I acquired a reasonable amount of omnidirectional images and I used them
to build a train and a test dataset. Finally, I processed the two datasets to
create train and test unwrapped and rectified datasets.
With the test sets mentioned above I evaluated the performance of one of
the state-of-the-art Pedestrian Detectors when ran on these kinds of images.
I found out that using the processed version of the omnidirectional images it
is possible to improve the performances obtaining a log-average miss rate 10-
20% lower. The best result was a log-average miss rate of 58,36%, obtained
when using a detector trained with the INRIA dataset on the unwrapped
test set. This value is still too high and unsatisfactory for uses in real cases.

To improve the performance of the detector I tried to train it with the train
sets acquired beforehand and then I applied the detector on the respective
test set. In all the three cases the performances improved considerably. In
particular, the omnidirectional case was the one performing better in terms
of log-average miss rate (30,01%) but, if considering more than 10´1 false
positives per image, the unwrapped set is the one performing better.
A closer look to the results showed us the weak points of the different meth-
ods, in particular I found out that the original dataset is the most sensitive
to the distance from the image center whether the cylindrical one fails more
when people are too close to the camera. The rectified dataset did not show
a particular sensitivity to these two aspects, meaning that we have to look
somewhere else to improve the performances with this kind of images.
In light of the obtained results I opted for the detector trained with the un-
wrapped images. The performances of the unwrapped and the original case
are close. The first one is performing a little bit worse in the image center,
probably due to some artefacts introduced with the unwrapping procedure,
but it is more reliable when people are close to the image boundary and,
in general, its performances are more stable along the field of view. The
degrade of performances related to people closeness is not a big deal since,
in the project context, people will not be often so close to the camera.

Finally, I built an unsupervised dataset labeller that exploits skeleton data
acquired by the Kinect to autonomously label datasets and accelerate the
task. Experimental results showed that Kinect is not able to label 100% of
the people in its field of view (it probably fail when they are too close or too
far) but can still accelerate the task. I obtained the best results when using
the manually calibrated transformation matrix.

In future work I intend to extend the ad Hoc datasets to alleviate the over-
fitting side effects and, in the case of rectified images, try different focal
length. I also plan to test the detector on images composed by joining the
frontal and the rear fish-eye images testing, in particular, the performance
in the area corresponding to the two blind spots between the two cameras.
Eventually, I also plan to explore different ways to improve the performance
of the detector, e.g. testing modified features thought particularly to deal
with omnidirectional highly-distorted images.
About the unsupervised labeller, I am planning to assess if it is possible to
improve its performances when using the Rt matrix obtained by solving the
optimization problem. Possible ways that can be explored are: (i) increasing
the number of points provided by the user; (ii) try different minimization

66

techniques.

67

68

Bibliography

[1] Caltech Pedestrian Dataset: Evaluated Algorithms. pages 1–4.

[2] Point Grey Research, Product Catalogue.

[3] Vivotek, Product catalogue, 2015.

[4] Simon Baker and Shree K Nayar. A theory of single-viewpoint cata-
dioptric image formation. International Journal of Computer Vision,
35(2):175–196, 1999.

[5] Subhashis Banerjee. Camera Models and Affine Multiple Views Geom-
etry. 2001.

[6] Joao P Barreto and Helder Araujo. Issues on the geometry of central
catadioptric image formation. In Computer Vision and Pattern Recog-
nition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer So-
ciety Conference on, volume 2, pages II–422. IEEE, 2001.

[7] Joao P Barreto and Helder Araujo. Geometric properties of central
catadioptric line images and their application in calibration. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 27(8):1327–
1333, 2005.

[8] Harry G Barrow, Jay M Tenenbaum, Robert C Bolles, and Helen C
Wolf. Parametric correspondence and chamfer matching: Two new tech-
niques for image matching. Technical report, DTIC Document, 1977.

[9] Rodrigo Benenson, Markus Mathias, Radu Timofte, and Luc Van Gool.
Pedestrian detection at 100 frames per second. In Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2903–
2910. IEEE, 2012.

[10] Rodrigo Benenson, Mohamed Omran, Jan Hosang, and Bernt Schiele.
Ten years of pedestrian detection, what have we learned? In Computer
Vision-ECCV 2014 Workshops, pages 613–627. Springer, 2014.

69

[11] Nguan Soon Chong, Yau Hee Kho, and Mou Ling Dennis Wong. A
closed form unwrapping method for a spherical omnidirectional view
sensor. EURASIP Journal on Image and Video Processing, 2013(1):1–
17, 2013.

[12] Ibrahim Cinaroglu and Yalin Bastanlar. A direct approach for human
detection with catadioptric omnidirectional cameras. In Signal Process-
ing and Communications Applications Conference (SIU), 2014 22nd,
pages 2275–2279. IEEE, 2014.

[13] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Ma-
chine learning, 20(3):273–297, 1995.

[14] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for
human detection. In Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, volume 1, pages
886–893. IEEE, 2005.

[15] Piotr Dollár. Piotr’s image and video matlab toolbox (pmt). Software
available at: http://vision. ucsd. edu/˜ pdollar/toolbox/doc/index. html,
2013.

[16] Piotr Dollár, Ron Appel, Serge Belongie, and Pietro Perona. Fast fea-
ture pyramids for object detection. Pattern Analysis and Machine In-
telligence, IEEE Transactions on, 36(8):1532–1545, 2014.

[17] Piotr Dollár, Ron Appel, and Wolf Kienzle. Crosstalk cascades for
frame-rate pedestrian detection. In Computer Vision-ECCV 2012, pages
645–659. Springer, 2012.

[18] Piotr Dollár, Serge Belongie, and Pietro Perona. The fastest pedestrian
detector in the west. In BMVC, volume 2, page 7. Citeseer, 2010.

[19] Piotr Dollár, Zhuowen Tu, Pietro Perona, and Serge Belongie. Integral
channel features. In BMVC, volume 2, page 5, 2009.

[20] Piotr Dollár, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedes-
trian detection: A benchmark. In Computer Vision and Pattern Recog-
nition, 2009. CVPR 2009. IEEE Conference on, pages 304–311. IEEE,
2009.

[21] Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedes-
trian detection: An evaluation of the state of the art. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 34(4):743–761, 2012.

70

[22] Markus Enzweiler and Darieu M Gavrila. Monocular pedestrian detec-
tion: Survey and experiments. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 31(12):2179–2195, 2009.

[23] Andreas Ess, Bastian Leibe, and Luc Van Gool. Depth and appearance
for mobile scene analysis. In Computer Vision, 2007. ICCV 2007. IEEE
11th International Conference on, pages 1–8. IEEE, 2007.

[24] Dario Figueira, Matteo Taiana, Athira Nambiar, Jacinto Nascimento,
and Alexandre Bernardino. The hda+ data set for research on fully
automated re-identification systems. In Computer Vision-ECCV 2014
Workshops, pages 241–255. Springer, 2014.

[25] Andrew W Fitzgibbon. Simultaneous linear estimation of multiple view
geometry and lens distortion. In Computer Vision and Pattern Recog-
nition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer So-
ciety Conference on, volume 1, pages I–125. IEEE, 2001.

[26] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization
of on-line learning and an application to boosting. In Computational
learning theory, pages 23–37. Springer, 1995.

[27] Lufang Gao. Human detection by omni-directional camera. 2011.

[28] Jose Gaspar, Niall Winters, Etienne Grossmann, and Jose Santos-
Victor. Toward robot perception through omnidirectional vision. In
Innovations in Intelligent Machines-1, pages 223–270. Springer, 2007.

[29] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite. In Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,
pages 3354–3361. IEEE, 2012.

[30] Christopher Geyer and Kostas Daniilidis. A unifying theory for central
panoramic systems and practical implications. In Computer Vision-
ECCV 2000, pages 445–461. Springer, 2000.

[31] Chunhui Gu, Jasmine J Lim, Pablo Arbeláez, and Jagannath Malik.
Recognition using regions. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 1030–1037. IEEE, 2009.

[32] Bharath Hariharan, Jitendra Malik, and Deva Ramanan. Discrimina-
tive decorrelation for clustering and classification. In Computer Vision–
ECCV 2012, pages 459–472. Springer, 2012.

71

[33] Richard Hartley and Andrew Zisserman. Multiple view geometry in
computer vision. Cambridge university press, 2003.

[34] Kenneth D Kochanek, Sherry L Murphy, Jiaquan Xu, and Elizabeth
Arias. Mortality in the united states, 2013. NCHS data brief, 178:1–8,
2014.

[35] Bastian Leibe, Edgar Seemann, and Bernt Schiele. Pedestrian detection
in crowded scenes. In Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, volume 1, pages
878–885. IEEE, 2005.

[36] Miguel Lourenço. Keypoint Detection, Matching, and Tracking in Im-
ages with Non-linear Distortion: Applications in Medical Endoscopy and
Panoramic Vision. PhD thesis, 2014.

[37] Christopher Mei and Patrick Rives. Single view point omnidirectional
camera calibration from planar grids. In Robotics and Automation, 2007
IEEE International Conference on, pages 3945–3950. IEEE, 2007.

[38] Bjoern H Menze, B Michael Kelm, Daniel N Splitthoff, Ullrich Koethe,
and Fred A Hamprecht. On oblique random forests. In Machine Learn-
ing and Knowledge Discovery in Databases, pages 453–469. Springer,
2011.

[39] Woonhyun Nam, Piotr Dollár, and Joon Hee Han. Local decorrelation
for improved detection. arXiv preprint arXiv:1406.1134, 2014.

[40] Athira Nambiar, Matteo Taiana, Dario Figueira, Jacinto C Nascimento,
and Alexandre Bernardino. A multi-camera video dataset for research
on high-definition surveillance. International Journal of Machine Intel-
ligence and Sensory Signal Processing, 1(3):267–286, 2014.

[41] Sakrapee Paisitkriangkrai, Chunhua Shen, and Anton van den Hengel.
Pedestrian detection with spatially pooled features and structured en-
semble learning. arXiv preprint arXiv:1409.5209, 2014.

[42] Luis Puig, Yalin Bastanlar, Peter Sturm, José Jesús Guerrero, and João
Barreto. Calibration of central catadioptric cameras using a dlt-like
approach. International Journal of Computer Vision, 93(1):101–114,
2011.

[43] Luis Puig, Jesús Bermúdez, Peter Sturm, and José Jesús Guerrero. Cal-
ibration of omnidirectional cameras in practice: A comparison of meth-
ods. Computer Vision and Image Understanding, 116(1):120–137, 2012.

72

[44] Martin Rufli, Davide Scaramuzza, and Roland Siegwart. Automatic
detection of checkerboards on blurred and distorted images. In Intel-
ligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on, pages 3121–3126. IEEE, 2008.

[45] Davide Scaramuzza. Omnidirectional camera. In Computer Vision,
pages 552–560. Springer, 2014.

[46] Davide Scaramuzza, Agostino Martinelli, and Roland Siegwart. A flexi-
ble technique for accurate omnidirectional camera calibration and struc-
ture from motion. In Computer Vision Systems, 2006 ICVS’06. IEEE
International Conference on, pages 45–45. IEEE, 2006.

[47] Davide Scaramuzza, Agostino Martinelli, and Roland Siegwart. A tool-
box for easily calibrating omnidirectional cameras. In Intelligent Robots
and Systems, 2006 IEEE/RSJ International Conference on, pages 5695–
5701. IEEE, 2006.

[48] Pierre Sermanet, Koray Kavukcuoglu, Sandhya Chintala, and Yann Le-
Cun. Pedestrian detection with unsupervised multi-stage feature learn-
ing. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE
Conference on, pages 3626–3633. IEEE, 2013.

[49] Larry S Shapiro, Andrew Zisserman, and Michael Brady. 3d motion re-
covery via affine epipolar geometry. International Journal of Computer
Vision, 16(2):147–182, 1995.

[50] Matteo Taiana, Jacinto Nascimento, and Alexandre Bernardino. On the
purity of training and testing data for learning: The case of pedestrian
detection. Neurocomputing, 150:214–226, 2015.

[51] Matteo Taiana, Jacinto C Nascimento, and Alexandre Bernardino. An
improved labelling for the inria person data set for pedestrian detection.
In Pattern Recognition and Image Analysis, pages 286–295. Springer,
2013.

[52] Daniel W Thompson and Joseph L Mundy. Three-dimensional model
matching from an unconstrained viewpoint. In Robotics and Automa-
tion. Proceedings. 1987 IEEE International Conference on, volume 4,
pages 208–220. IEEE, 1987.

[53] Antonio Torralba, Alexei Efros, et al. Unbiased look at dataset bias. In
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Con-
ference on, pages 1521–1528. IEEE, 2011.

73

74 Bibliography

[54] Paul Viola and Michael J Jones. Robust real-time face detection. In-
ternational journal of computer vision, 57(2):137–154, 2004.

[55] Stefan Walk, Nikodem Majer, Konrad Schindler, and Bernt Schiele.
New features and insights for pedestrian detection. In Computer vision
and pattern recognition (CVPR), 2010 IEEE conference on, pages 1030–
1037. IEEE, 2010.

[56] Christian Wojek, Stefan Walk, and Bernt Schiele. Multi-cue onboard
pedestrian detection. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 794–801. IEEE, 2009.

[57] Bo Wu and Ram Nevatia. Detection and tracking of multiple, partially
occluded humans by bayesian combination of edgelet based part detec-
tors. International Journal of Computer Vision, 75(2):247–266, 2007.

[58] Cha Zhang and Paul A Viola. Multiple-instance pruning for learning ef-
ficient cascade detectors. In Advances in Neural Information Processing
Systems, pages 1681–1688, 2008.

View publication statsView publication stats

