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Abstract—This work focuses on a recently developed bio-
logically inspired architecture, here denoted as Sensorimotor
Network (SNet), able to co-develop sensorimotor structures
directly from data acquired by a robot interacting with its
environment. Such networks learn efficient internal models of
the sensorimotor system, developing simultaneously sensor and
motor representations as well as predictive models of the senso-
rimotor relationships adapted to their operating environment.
Here we describe our recent model of sensorimotor development
and compare its performance with neural network models in
predicting self-induced stimuli. In addition, we illustrate the
influence of available resources and environment characteristics
in the development of the Sensorimotor Network structures.
Finally, a Sensorimotor Network is trained using real data
recorded during a quadricopter drone flight.

Index Terms—Stimuli prediction, Neural Networks, Senso-
rimotor Network, forward model, receptive fields, movement
fields.

I. INTRODUCTION

Nature shows that evolution tends to improve the efficiency
of organisms. Solutions found in nature are an important
source of inspiration for the design of autonomous systems.
At the same time bio-mimetic solutions are gaining increas-
ing interest in the development of embedded applications
where resource constraints and computational bottlenecks are
the rule rather than the exception.

In terms of visual capabilities, that require a significant
amount of computation, it is important to understand both the
role that motor actions have in visual perception and visual
stimulus prediction, as well as their relationship with the
neural circuits organization. Living organisms’ visual systems
are continuously trained and improved while relationships be-
tween motor actions and sensory feedback are learned by the
agent during the interaction with its habitat or environment.

Without perception one is left with little criteria to decide
which actions to take, while at the same time there is no
purpose in having perception if you cannot act on the world.
An ideal rational agent [1] always takes the actions which
maximize its performance measure based on its percepts and
built-in knowledge. This definition frames perception as a
component used to choose the right action, and not as a
goal by itself. Under this light a broad goal is to develop
sensorimotor structures which support choosing the right
action. To be able to do so one crucial faculty that organisms

developed is the ability to discern the origin of sensory input
between changes in the environment (exafference) and the
result of their own movements (reafference) [2]. The ability
to discern between these two origins of sensory input requires
a forward model [3] to predict the effect a given movement
(action) has on its sensory input.

A recently proposed adaptive model [4] learns to predict
visual stimuli based on motor information resulting from self-
induced actions. This model maps motor input in a visual
predictive network, creating direct relationship between the
robot’s actions and its perceived visual stimuli. Following
a specific learning process it was possible to minimize the
mean square prediction error between the predicted image
and the expected image after a specific motor action.

In the proposed Sensorimotor Network, we consider a
visual sensor where each neuron’s receptive field (RF) col-
lects information from arbitrary retina cells, without any
predefined shape or topology. Those will emerge from the
developmental process as the agent explores the environment.
Simultaneously, the motor layer organizes into movement
fields (MF) that will cluster actions which produce similar
perceptual results. This simultaneous development promotes
a coherent representation for similar stimuli (sensory) and
actions (motor), which greatly improves the effectiveness of
the model.

A key issue of our model is its specialized structure, that
exploits the most of the limited computational resources to
enable the best possible prediction of future perceptions,
in the least squares sense. The presented work compares
the performance of the proposed model with other common
sensorimotor mapping models, with more general purpose
structures, such as the multilayer perceptron. Because of its
specialized topology, the SNet can attain significant advan-
tages over fully connected networks. Taking one step further,
we trained the SNet structures, for the first time with real
visual and motor data acquired by a flying drone navigating
in an outdoors natural environment.

This paper follows our original formulation for sensori-
motor learning presented in [4] and the constrained gradient
descent based optimization algorithm detailed in [S]. In [6]
we have presented the comparison of the proposed model
with a standard neural network with simulated data and
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introduced the interpretation and visualization of the learned
predictive structures as a set of motion fields overlayed in
the sensor topology. In the current paper, we extend [6]
by providing novel experiments to illustrate the influence
of the environment in the derived sensorimotor structures,
both in a real environment with images acquired during
a quadricopter flight, and in an artificial environment with
images of strongly organized visual patterns. Furthermore,
we perform experiments to assess the influence of available
computational resources in the learned topologies. The ex-
periments with a real robotic platform, validate the method’s
ability to self-organize relevant sensorimotor structures for
real-world applications.

II. RELATED WORK

Considering a limited amount of resources, an organism
needs to choose which actions to represent in its motor
system. A criteria which fits well with the stimulus predic-
tion rationale is to represent actions which have predictable
effects [7]. Assuming a particular sensory structure for the
simultaneous development of a motor system and a forward
model (which predicts the sensory input for a given action)
a topology emerges in the motor system to support the
predictability of the actions [8].

It has been shown that, while maximizing the sensor’s
self-similarity under a given set of transformations, highly
regular structures emerge which resemble some biological
visual systems [9]. Still, for these structures to emerge, apriori
knowledge is required about the sensor spatial layout. The
retinotopic structure of an unknown visual sensor has been
reconstructed using an information measure, as well as the
optical flow induced by motor actions [10]. In [11], informa-
tion measures are also exploited to define similarity metrics
between sensorimotor experiences with extended temporal
ranges. A robot with the goal of estimating the distance to
objects using motion parallax developed a morphology for
the position of movable light sensors which was fit for the
task [12].

Guiding the development of a sensorimotor system to max-
imize the ability of predicting the effect an action has on its
sensory input (see III-B2), allows for the emergence of highly
regular sensory structures without any prior knowledge. To
develop such ability we follow two main principles: the
sensory system should capture stimuli which are relevant to
motor capabilities, and the actions of the motor system should
have predictable effects on the sensory system [4].

These principles are related to idea of “morphological
computation” in robotics and artificial intelligence, which
aims at reducing the computational complexity of a problem
by using a specifically designed body to solve it (e.g. [13]).
The human visual system representation of the visual world is
progressively differentiated from what is captured through the
retina to support complex tasks, e.g. cells which are selective
to objects. Also, in machine learning it is known that for
recognition tasks there are huge advantages in using specific

architectures [14] (e.g. convolutional) relatively to a fully-
connected network.

III. PREDICTIVE ARCHITECTURES
A. Prediction

We consider an agent capable of observing its environment
by sensing a light field 7o which falls on a sensory surface.
Additionally this agent is able to interact with its environment
when performing certain actions (movements), each resulting
from the activation of a particular motor primitive q on
its motor coordinates, which will produce a new visual
stimulus ¢;. The agent should learn to predict the effects
of its actions q in its visual space (i;). In order to give the
agent the ability to predict the future visual stimulus (i;)
we consider two possible predictive architectures: a general
purpose Neural Network (Multi-Layer Perceptron) and our
Sensorimotor Network (Figures 1 and 2).

The Neural Network is organized in a classical architec-
ture. Its input image data iy and action data q project directly
to an hidden layer by a set of weights Wy (refer to Fig.
1). Then, the activation of the hidden units project to the
output layer via weights W, to create a prediction ) of the
future image i,. The hidden layer plays the role of a joint
sensorimotor encoder, receiving directly the raw sensor and
motor data.

Instead, the proposed Sensorimotor Network , follows a
more complex organization, inspired by the role and connec-
tions between the superior colliculus and frontal-eye field
structures of the human brain [8]. Separate encoders for
sensor and motor data are considered (refer to Fig. 2). A set
of weights S encodes the input image into a compact visual
representation og. A different set of weights M encode the
motor coordinates in a compact action representation ag. This
can be interpreted as a clustering of the motor commands that
correspond to similar visual effects. Each cluster k represents
a canonical action, and is associated to a canonical predictor
represented by a set of weights Py. These weights are used
to convert the encoded input stimulus og into a predicted
output code of. Finally a decoding layer ST reconstructs the
predicted image . .

For implementation purposes, we represent the light field
as a vector i of N, pixels, and the action space is represented
as a vector ¢ with IV,,, elements (number of motor actions),
where a single non-zero entry represents the activated motor
primitive. If the n‘" index of q is 1, then the n*" motor action
is performed (e.g. shift left by a certain amount). Note that
no topological assumptions exist on the spatial locations of
either the sensors or the motor primitives, i.e. the order of
pixels and actions in their vector representations is arbitrary.

Among the many existing types of supervised learning
machines, we chose a Multi-Layer Perceptron as a compari-
son baseline for our method for its simplicity and biological
relevance. Other biologically inspired learning machines such
as Deep Neural Networks (DNN) [15] or Recurrent Neural
Networks (RNN) [16] also have the ability to address our
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problem but are significantly more complex in terms of the
number of parameters and amount of data required for its
training. Multi-Layer Perceptrons are mature and standard
learning machines that can be implemented by off-the shelf
tools and libraries and easily customized to have a similar
number of parameters to the proposed model, so as to
present roughly the same computational complexity. Also
they have the ability to fit arbitrary non-linear functions.
According to the universal approximation theorem [17], a
standard multilayer feed-forward network with as few as a
single hidden layer and arbitrary bounded and non-constant
activation function are universal approximators provided only
that sufficiently many hidden units are available. Beyond non-
linear activation units, we consider also linear units so as to
match the activation functions of the units in the proposed
model.
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Fig. 1: Neural Network: schematic diagram representing the
total data triplets (Ip,I;,q) used to train the model (blue) its
parameters (W1, Ws) and predicted stimulus I’y (orange).
The hidden layer can have different transfer functions (linear
or non-linear).

The Neural Network and SNet are then compared in terms
of: 1) their predictive capabilities, i.e. how well they can
predict i; given iy and q; 2) their simplicity, i.e. the number
of parameters learned.

B. Learning Algorithms

During the learning phase, the agent interacts with the
environment by choosing a motor primitive q while col-
lecting pre-action and post-action sensory stimuli (ip and i,
respectively). A set of (ip,i1,q) triplets is collected and the
full batch is used as training data. In the current work, the
process that chooses the actions is considered independent
from the current state of the sensorimotor system and, thus,
not adapted during the learning process. In the current work
we only address the learning of the sensory predictive system
and undelying structures, leaving the learning of the action
selection policy for future work.
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Fig. 2: Sensorimotor Network: schematic diagram represent-
ing data triplets (Ip,I1,q) used to train the model (blue), its
parameters (P, M, S) and predicted stimulus I’y (orange).

1) Neural Network: In this case we consider a feedfor-
ward network with ny elements in its hidden layer emulating
sensor receptive fields. The sensor input iy is concatenated
with the activated action q (working as an action identifier)
and used as input to the network predicting i;. The optimiza-
tion problem solved is thus

ok 2

1o

k
argmin W, F(Wa ql ) —i’f @))
Wi, W, .

which is illustrated by the neural network represented in Fig.
1. Here, Wy is an (N,,, + Ns + 1) X ns matrix, and Wy is
(ns + 1) x N, where each matrix includes a constant bias
term and f represents the activation function (linear or non-
linear).

2) Sensorimotor Network: The sensory prediction system
described in [4], explicitly models the existence of light
sensitive receptors represented as a Vs X ng matrix S which
integrates the light field i falling on the sensory surface.
The sensor observation is then a vector o = Si. On the
motor side a dual structure exists, where a set of discrete
motor movement fields modelled as a IV, X n,, matrix M
cover the available motor primitive space q, providing an n,,
dimensional motor field activation vector a = M”q, where
a; is a scalar representing the activation of motor field j.
These activations are then fed to a predictive layer, where a
predictor P* is composed as a linear combination of n,,
canonical predictors P; with linear weights given by the
motor movement fields activations,

Nm,

2)

where mJT represents transposed of the j** column of M and
the corresponding motor receptive field.
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The full model description is provided in [4]. The network
parameters are obtained by minimizing the mean squared
reconstruction error under positivity and topological con-
straits:! The optimization problem solved is thus

2
Nm

argmin Z s” Z(m;‘-qu) P; | Sif —if
k

S>0,M>0,P>0 S
(3)

A diagram representing this optimization problem in a
network-like view is shown in Figure 2. Unlike in the ar-
tificial neural network architecture, the sensor reconstruction
model is simplified to be ST. In [4] the authors argue
that this simplification is justified by the particular solutions
obtained from the model, particularly the fact that the matrix
S will be nearly orthogonal. The algorithm to solve the
optimization problem is shown in Algorithm 1. To impose
positivity constraints the projected gradient method is used.
The detailed calculation of the gradient for each variable is
presented in [5].

The computational complexity of the proposed architecture
is dependent on the complexity of the matrix product which
for matrices A(n x p)*B(p x m) is &(npm). The time
complexity of the model is & (n,,*n2+ns*Ny), i.e. quadratic
on the number of sensor fields and linear on the number of
motor fields

Data: Triplets (i, i1,q).

Result: Trained model for visual stimuli prediction.
initialization;

for each sequential iteration do

for each P iteration do

apply gradient step to P with Data;

P < max(P,0);

end

for each M iteration do

apply gradient step to M with Data;
M < max(M,0);

end

M + M/norm(M);

for each S iteration do

apply gradient step to S with Data;
S + max(S,0);

end
S < S/norm(S);

end
Algorithm 1: Pseudo-Code: Sensorimotor Optimization

IV. EXPERIMENTS

In this section we describe experiments performed to
illustrate the properties of the proposed model, both on

ITo remove gauge freedom and avoid numerical problems the matrix norm
of S and the matrix norm of M are constrained to a constant through a scalar
division (see Algorithm 1)

simulated data and on data acquired from a real robotic
platform.

Simulated experiments use real imagery but virtual actions
to produce the training, test and validation data for experi-
ments. Actions are predefined and chosen from a finite set.
Simulations are performed to evaluate the proposed model
on several dimensions: (i) compare its performance with
linear and non-linear neural network models; (ii) analyse the
topology of the sensor and motor spaces after development;
(iii) evaluate the influence of sensor size and environment
type in the topology of the sensor and motor spaces, and (iv)
will assess the predictive ability of the derived models.

Real experiments were performed with a drone flying
freely in a forest environment. Actions are selected by the
drone navigation system while travelling along a predefined
GPS trajectory. A large dataset of real images and corre-
sponding motor commands was acquired. Training for the
first time our SNet model with real data, we were able to
assess the ability of the model to derive apropriate senso-
rimotor models with noisy data and operate in challenging
outdoor scenarios.

A. Simulation Environment

In our simulation environment, a virtual agent is equipped
with a square retina of 15 by 15 pixels (Ns; = 225) which is
used to acquire grayscale images with intensity ranging from
0 to 1. Triplets (ip.i;,q) are sampled from a large (2448 by
2448 pixels) image representing the full environment. First,
the agent is positioned in a random place in the environment
and an image iy is sampled by its 15 by 15 pixel retina. Then
action u is performed and the new image i; is sampled. This
process is illustrated in Figure 3.

Fig. 3: Triplet acquisition process. In the left we show the
full environment image. In the right we show a portion of
the environment where the agent is placed to acquire the pre-
action 15 x 15 pixel image, iy, then transformed by action u,
and acquire the post-action image, 4; (best seen in color).

We consider two different motor spaces. One composed
of translation actions (ActXY) and another composed of
rotations and zooms (ActRZ). Both motor spaces are two di-
mensional so their topology can be easily visualized. ActXY
is composed of translation actions on the setu = {—4:1:
4} x {—4:1:4}, and ActRZ combines rotations and zoom
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actions u = {—100° : 25° : 100°} x {0.80 : 0.05 :
Thus, each set consists of 81 different motor actions.

The first set of actions mimic an agent that either moves
its sensor parallel to the environment surface or performs
small pan-tilt rotations of the sensor when observing far
objects. The second set of movements can approximately
represent the observations of an agent moving in a tubular
structure translating and rotating along its optical axis, or the
observations of an agent while actively tracking an object
that rotates and changes its distance to the observer.

To train our sensorimotor models, we use training sets with
8100 triplets (ip,i1,q) generated by random initialization of
the sensor position in the simulated environment (100 triplets
per each one of the N, = 81 primitive actions). Test sets to
evaluate generalization ability, and validation sets to define
stopping criteria are generated similarly. The test set has the
same number of triplets and the validation set has half the
number of samples.

Unless otherwise stated, all simulated experiments are per-
formed by executing ten independent runs of model learning,
and results are averaged over the ten runs. Experiments
defined in such way using the ActXY and ActRZ sets of
actions are denoted ExpXY and ExpRZ, respectivelly.

1.20}.

B. Model Comparison

We compare the proposed Sensorimotor Network archi-
tecture with both a linear and a non-linear artificial Neural
Network (Multi-Layer Perceptron with one hidden layer).

After acquiring its exploration data in the given envi-
ronment, using experimental protocols ExpXY and ExpRZ,
the agent processes the data in order to obtain the network
parameters for the Sensorimotor Network (S, M, P) and for
the Neural Network (W7, Wy). The optimization criteria
is Mean Squared Error (MSE) between the predicted and
observer images, in Eqgs. (1) and (3). In both experiments,
the SNet model is formed by a motor structure composed
by 9 motor movement fields (n,,, = 9) and a sensor structure
composed by 9 sensor receptive fields (n; = 9). The SNet
is compared with both a linear Neural Network (NNet) and
a non-linear Neural Network (nNNet) with a hyperbolic
tangent sigmoid transfer function, each with a hidden layer
of 9 neurons. The neural networks were implemented using
the Neural Network Toolbox from Matlab™. In these experi-
ments an identical number of sensor receptive fields (RF) and
motor movement fields (MF) are used for the SNet model but
they can differ. The number of hidden units can be chosen
taking into account the resources available in the particular
hardware used to deploy the system. Also, a higher sensor
resolution should be followed by a higher number of sensor
RFs or a higher number of actions should be followed by a
higher number of motor MFs.

The optimization problem for the Sensorimotor Network
showed in Equation (3) is iteratively improved using a
projected gradient descent method [18] within the sequential
optimization of P, M, S, and the input triplets are considered

in batches as in [4] (see Algorithm 1). For both Sensorimotor
Network and Neural Networks, the RMSE between predicted
and expected images is computed,

N Ng

2
( La,p) 1<L p>>

“4)

3

RMSE = NiL
XX N S =1

N

where L stands for the number of samples per action.

The RMSE on the validation set is used as a stopping
criterion: the optimization stops when the training error
becomes almost constant and the validation error starts to
grow.

After convergence of training on the 10 runs for all models,
we obtained the performance statistics for evaluation. Results
are shown in Tables I and II. In both experiments, (ExpXY,
ExpRZ), we can observe that the SNet has significantly less
RMSE (about 5 to 15% lower) and uses a much lower
number of effective (non-zero) parameters (about 4-6x) than
the other models. Because SNet promotes sparsity in the
solution, we obtain a much lower number of non-zero param-
eters, that lead to a much higher computational efficiency.
Most likely, the regularization properties of sparse coding
also help in reducing overfit and, thus, achieving a better
generalization error. The distribution of the RMSE on the
10 runs is illustrated in Figure 4. There we can observe that
the RMSE difference between the sensorimotor and neural
networks is significant in both the translation and rotation-
zoom experiments.

In Figure 5 we graphically illustrate the average RMSE
at each pixel of the retina over all images of the test set.
We can observe the localization of the pixels that contribute
to a higher error and compare the effectiveness of the
reconstruction between both methods. For both experiments
the prediction error is higher near the retina’s boundary.
These image regions cannot be reliably predicted for some
actions because they rely on information outside iy image
boundaries; there are image regions which are not possible to
predict because they are out of the pre-action image. Anyway,
this fact is exacerbated in the NNet, showing its limitations
in this problem.

C. Emergent Sensorimotor Topologies

Here we revisit the emergent properties [4] of the sensor
and motor spaces after the optimization problem (3) with
SNet. These results illustrate some interesting outcomes of
the optimization process in terms of the shape and distribu-
tion of the sensor and motor fields. After the development
process described in the previous experiment, the sensor
receptive fields (rows of S) organize into a regular structure
(after 500 iterations) starting from a random initialization
(see Fig. 6). Notice that sensor organization is more uniform
for translation actions than for rotations and zooms. With
rotations and zooms the sensor RFs tend to create a group of
smaller receptors in the middle of the retina and bigger fields
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ExpXY SNet NNet NNet/SNet
All Parameters 3483 5013 1,44
Parameters # 0 1140 5013 4,40
Parameters > 103 803 4910 6,11
Average RMSE 0.1004 | 0.1087 1,08
ExpRZ SNet NNet NNet/SNet
All Parameters 3483 5013 1,44
Parameters # 0 1053 5013 4,76
Parameters > 103 743 4925 6,63
Average RMSE 0.0955 | 0.1100 1,15

TABLE I: Comparison between Sensorimotor Network
(SNet) and linear Neural Network (NNet) in both translation
and rotation experiments. The presented values are the av-
erage over 10 runs. As observed, the sensorimotor approach
uses less parameters and produces less reconstruction error.

ExpXY SNet nNNet | nNNet/SNet
All Parameters 3483 5013 1,44
Parameters # 0 1140 5013 4,40
Parameters > 10~ 2 803 4992 6,22
Average RMSE 0.1004 | 0.1241 1,24
ExpRZ SNet nNNet | nNNet/SNet
All Parameters 3483 5013 1,44
Parameters # 0 1053 5013 4,76
Parameters > 10~° 743 4993 6,72
Average RMSE 0.0955 | 0.1233 1,29

TABLE II: Comparison between Sensorimotor Network
(SNet) and non-linear Neural Network (nNNet) in both
translation and rotation experiments. The presented values
are the average over 10 runs. nNNet uses the same number
of parameters with higher RMSE than NNet (see Table I).
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Fig. 4: Box plots of the RMSE distribution for the tested
conditions. On each box, the central mark is the median,
the edges of the box are the 25th and 75th percentiles, the
whiskers extend to the most extreme data points not consid-
ered outliers, and outliers are plotted individually. Notice the
significant differences between the SNet and NNet structures,
bot for translations and rotation-zoom experiments.
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Fig. 5: Comparison between Sensorimotor Network (SNet)
and linear Neural Network (NNet) methods regarding RMSE
per pixel for reconstruction in a test set. (Top) Taken from 10
runs average in ExpXY. (Bottom) Taken from 10 runs average
in ExpRZ. Vertical and horizontal axis represent sensor pixels
(Best seen in color).

near the boundaries (a rotation produces a bigger movement
far from the center).

In Figure 7 we can observe the evolution of the motor
MFs (columns of M) for both experiments. Again, ExpXY
has its action space uniformly sampled by pixels, producing a
near uniform organization of the motor MFs. The performed
zooms in ExpRZ had low impact on their images in compari-
son with the rotations, which caused the MFs to organize in a
way that each one represents an angular range. Exception for
the middle ones where no rotation is performed and zooms
have influence in their organization.

D. Emergent Predictive Structures

After training the Sensorimotor Network we can use it
for making stimulus prediction of the agent’s actions. For
a certain planned motor action q we can compute: (i) the
activation of the motor fields, a = MTq; (ii) the prediction
matrix P by Equation (2); (iii) the predicted stimulus by
o1 = PSip; and finally (iv) obtain the predicted image by
ill = ST01.

Here we use the SNet model trained in the previous
experiments with 9 sensor receptive fields and 9 motor
movement fields. In Figure 8, steps (i), (ii) and (iii) are
graphically illustrated for the translational action u = (4,4)
and the rotation/zoom action u = (50°,1.0). On the left, the
resulting predictor P* for the activated action is represented.
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Fig. 6: Sensor RFs initialization and final organization after
500 iterations in one of the runs of ExpXY (Top) and ExpRZ
(Bottom). Each color represents a receptive field which after
training covers a continuous part of the considered visual
area (vertical and horizontal axis represent sensors as pixels
in an image i) (Best seen in color).

On the middle the location of the motor movement fields
and its activation (gray shade) is shown. Finally, on the
right, we can observe the motion flow map generated by the
predictor, overlaid on the sensor receptive fields distribution.
The arrows represent the main directions of flow of the
resulting prediction P*. The predictor translates motor effects
on the visual area, by weighting connections between the
receptive fields and identifying areas of observation which
will move from a receptive field (transmitter) to another
(receiver). The arrows thus indicate the contribution of the
transmitter in the formation of the target receptor field, with
the weights proportional to the arrows gray level. Figure 9
displays the motion flow maps for many other actions.

The formation of the predicted image, step (iv), is illus-
trated in Figure 10. This is interpreted as the prediction of
what will appear in the agent’s field of view after its action
is executed. Comparing the predicted image with the actual
post-action image, we can conclude that the former is a low
pass version of the latter, i.e. the best encoding of the reality
in a least squares sense, with the available computational
Iesources.

E. Influence of Sensor Size

In this experiment, denoted ExpSize, we analyse the in-
fluence of the size of the sensor space. Maintaining the

Motor Topology M
[Movement Fields]

Motor Topology M
[Movement Fields]

Iteration: O Iteration: 500

Motor Topology M
[Movement Fields]

Motor Topology M
[Movement Fields]

Iteration: 0 Iteration: 500

Fig. 7: Motor MFs initialization and final organization after
500 iterations in a run of ExpXY (Top - vertical axis repre-
sents up and down translations and horizontal axis represents
left and right translations) and ExpRZ (Bottom - vertical axis
represents rotations and horizontal axis represents zooms)
(Bottom). Each color represents a movement field which after
training covers a continuous part of the considered motor area
(Best seen in color).

same motor structure (n,, = 9) and environment (Fig. 3)
of the previous experiments, new models were trained with
three different number of sensor receptive fields (ng; = 9,
Ngg = 16, ngg = 25).

In Figure 11 we can observe the organized sensor topolo-
gies with the three different sensor sizes. Again, the recon-
struction error RMSE was computed using a test set with
the same size of the training set (8100 triplets). Examples
of original and predicted images are shown: for a particular
action and pre-action image, the prediction is computed and
compared with the actual observed post-action image.

As expected, the quality of the reconstruction improves
with the number of sensor receptive fields. Although the pre-
diction error decreases with the number of available receptive
fields, this also presents an increase on the number of empty
receptive fields. In the case where 9 sensor receptive fields
were considered, the model used all of them. However, when
using a higher number of sensor receptive fields, some are
not used for the adapted model (1 out of 16 RFs and 7 out of
25 RFs). All in all, a trade-off can be found in increasing the
sensor complexity. The number of receptive fields should be
increased only up to the point that prediction error decreases,
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Fig. 8: (Left) Predictive structure | (Mid) Motor MFs
activations corresponding to particular actions. (Right) In-
duced motion flow maps in the sensory space. (Top) Action
u = (4,4) on the translation network (Bottom) Action
u = (50°,1.0) in the rotation/zoom network. The sensor
RFs connections are represented by arrows with intensity
proportional to the corresponding prediction matrix entry (see
details in text). Only prediction links with weights over 0.25
are shown. Voronoi diagrams are used to split the motor and
Sensor spaces.

otherwise unnecessary complexity and computational costs
may be incurred.

E Influence of Environment Type

As discussed in many works [19], [20], [21] the eye, retina
and visual system evolved in many species in very distinctive
manners, but still reaching highly efficient forms with specific
ecological advantages. Three main characteristics can be enu-
merated which directly influence their structures: organism’s
nervous system, organism’s motor capabilities and organism’s
perception of the environment.

Here we test the environment influence on the sensory
structure developed by our model. Again we use 9 sensor
receptive fields, 9 motor movement fields, and the ExpXY
/ExpRZ experimental protocols, but now use four different
environment images: 3 synthetic images (vertical stripes,
diagonal stripes and dots) and 1 natural (textured picture
of dry soil). In Figure 12, the 4 different environment and
resulting sensor organizations, S, are shown.

From the presented results we can conclude that the sensor
structure organization depends on the environment. In this
sense, our results validate the hypothesis in [22], that a retina
does acquire knowledge, in its organization, about the natural
scenes (environment). However, our results show that it is not
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Fig. 9: Motion flow maps induced by predictive structure.
Predictive structure influences sensor receptive fields after
receiving a motor activation from action space ActXY (top)
and action space ActRZ (bottom). On each example, the
boxed arrow in the top left corner of each figure represents
the direction and/or amplitude of the sensor translation or
rotation action with respect to the environment.

only the environment that matters for the developed visual
sensor topology. It also greatly depends on the motor reper-
toire of the agent. Even with very different environments, we
can realize that only by changing the set of movements the
agent can perform, a particular visual topology can emerge.
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actions: (Top) Translation action example: u = (4,—4)
and (Bottom) Rotation and zoom action example: u =
(—75°,1.20), using both SNet and linear NNet methods. As
shown, reconstructions obtained by SNet optimization show
a more coherent prediction of visual stimuli regarding the
expected images (vertical and horizontal axis represent sensor
pixels).
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As we can observe in Figure 12, translational movement
in environments with stripes very clearly map the visual
structure in the retina organization. However, the mapping
is not so clear in the more random types of environments
such as the artificial dots and the natural texture. Also, for
rotation and zoom actions, the characteristics of the tested
environments are not clearly reflected in the retina. There
may be other environments where the retina may approximate
better the visual characteristics but we did not actively search
for those cases. In summary, we may conclude that the
sensor organization depends not only in the environment
characteristics but also in the agent’s motor actions. However,
it is still unclear how to make predictions on the sensor
structure for different types of actions and environments.
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Fig. 12: Environment influence on visual sensor topology.
Sequence of visual sensor topologies resulting from training
the sensorimotor system using action spaces from ExpXY
and ExpRZ, and four different environments: three artificial
environments (vertical stripes, diagonal stripes and dots) and
one natural environment (textured picture of dry soil). The
number of iterations until convergence for each experience
indicated is shown below.

G. Sensorimotor Development with Real Data

In this experiment, we used a Parrot AR.Drone2.0 aerial
quadrotor to acquire images from a natural environment in
Monsanto park in Lisbon. This drone is equipped with a
fixed HD camera always pointing forward. During the flight a
video was recorded at a rate of 30 frames per second, together
with drone position variation (Az,Ay) from GPS, orientation
variation (Af) and altitude variation (Az). As such, the motor
space is 4-dimensional. For the sake of simplicity, data from
drone taking off or landing was excluded.

The data acquisition (image and actions) was performed
while the drone followed a pre-planned trajectory, on constant
altitude, where it had to pass over some specific GPS coor-
dinates using its inner flight planner set through QRGround
Flight Control, as shown in Figure 13.

iGN R 201409 ToL 115361208

Fig. 13: Drone flight path in Monsanto, Lisboa.

The full data set recorded has 8340 samples, with a
rate of 30 samples per second. However, with this rate,
the variation between a pre-action and a post-action image
was practically unnoticeable. This considered, the training
samples were cut to 556 with a time difference between two
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consecutive images of 0.5 seconds (2 samples per second).
The retina was trained using 556 data triplets, (ig,i1,q),
with 95 different action identifiers. The original HD color
images were converted to grayscale and reduced to 15x15
pixels through bilinear subsampling.

In this experiment a motor space with 4 degrees of freedom
is considered. Differently form the simulated experiments,
where actions were atomic and exact, here the motor space
spans a continuous domain and must be quantized. Each de-
gree of freedom was separately quantized in 4 bins, using the
k-means clustering algorithm [23]). These were concatenated
and then, to each unique combination of the concatenated
vectors a specific action identifier q is assigned.

In Figure 14 three examples of visual stimuli prediction are
shown, using two different complexities of sensor structure:
one with 9 sensor receptive fields and another with 16. As

Real
Post-Action Image

Real
Pre-Action Image

Predicted
Image (9 RFs)

Predicted
Image (16 RFs)

Subsampled
Post-Action Image

™

Fig. 14: Visual stimuli prediction using two different Sensor
complexities (9 and 16 sensor receptive fields).

we can observe, the reconstruction is slightly better using the
more complex retina. In Figure 15 are shown both sensor
organization topologies and respective RMSE. Interestingly,
the retina develops horizontal elongated receptive fields,
reflecting both the structure of the environment (clear contrast
between sky and land) and the structure of the motor system
(dominated by motions inducing camera translations). The
area with lower error corresponds to ground which occupies
the bottom half of the field of view. Becasue the ground
does not present significant texture, bigger receptive fields
are developed in this region. Looking at the top half of the
drone’s field of view, it can be seen that a greater variability
exists due to vegetation, originating a denser distribution of
sensor receptive fields.

The presented sensorimotor model has a small dimension
but was able demonstrate adaptation to challenging real-
world scenario and stimulus prediction skills. However, if
this model is to be used in a certain task, it may required
a higher image resolution, which will demand a higher
number of sensor receptive fields. For this purpose, it is

essential to research more scalable and efficient mechanisms
for sensorimotor optimization.
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Fig. 15: Sensor organization topologies after training, and
respective prediction error map (RMSE).

V. CONCLUSIONS AND FUTURE WORK

In robotics, as in many other engineering fields, there are
numerous problems where nature is often the best role model
to solve them. The development of sensor receptive fields
taking into account the changes induced by motor actions
allows a good adaptability of the organism to the environment
and thus a cheaper way for an agent to process and predict
visual stimuli. A specialized network architecture like the
SNet described in this work is advantageous for predicting
the interactions between a sensory and a motor system, as
well as obtaining more reliable predictions of what an agent
is expecting to see given its actions.

This tight relationship between perception and actions
is key for guiding the development of sensory and motor
systems which will support acting upon the environment. The
comparison performed in this work between standard feed-
forward neural networks and the Sensorimotor Network, sug-
gests that the latter might prove useful in bringing computers
a step closer to biological performance. At the same time, the
sensorimotor approach presents a tight relationship between
its structures and shows that by changing each sensor or mo-
tor configuration or even the agents environment, the system
will successfully adapt and develop efficient topologies for
visual stimuli prediction, even with real data (quadricopter)
and different motor representations. This image processing
capability makes such a system a good candidate for tasks
such as anomaly detection or tracking.
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Currently we are developing new approximate solvers for
the proposed sensorimotor optimization problem. Up to now
we have been able to tackle a small number of sensor and
motor fields but new models will be able to address larger
problems by an order of magnitude. Also of relevance for
future work is the use Deep Learning techniques, which
will allow sequential training of many layers and possibly
address even larger problems. Finally, an online optimization
algorithm would allow an easier adaptation of robots to
dynamically changing environments.

ACKNOWLEDGMENT

This work was supported by the

BIOMORPH-EXPL/EEI_AUT/2175/2013
OE/EEI/LA0009/2013 and also by
POETICON++ [FP7-ICT-288382].

FCT projects
and Pest-
EU  Project

REFERENCES

[1] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice Hall, 2002.

[2] T. B. Crapse and M. A. Sommer, “Corollary discharge
across the animal kingdom.” Nat. Rev. Neurosci., vol. 9,
no. & pp. 587 — 600, 2008. [Online]. Available:

http://www.ncbi.nlm.nih.gov/pubmed/18641666

[3] R. C. Miall and D. M. Wolpert, “Forward models for physiological
motor control,” Neural networks, vol. 9, no. 8, pp. 1265 — 1279, 1996.

[4] J. Ruesch, R. Ferreira, and A. Bernardino, “A computational approach
on the co-development of artificial visual sensorimotor,” Adaptive
Behavior, vol. 21, no. 6, pp. 452 — 464, 2013.

[5] J. Ruesch, “A computational approach on the co-development of visual
sensorimotor structures,” Ph.D. dissertation, Instituto Superior Tcnico,
2014.

[6] R. Santos, R. Ferreira, A. Cardoso, and A. Bernardino, ‘“Sensori-
motor networks vs neural networks for visual stimulus prediction,” in
Development and Learning and Epigenetic Robotics (ICDL-Epirob),
2014 Joint IEEE International Conferences on, Oct 2014, pp. 287—
292.

[71 J. Ruesch, R. Ferreira, and A. Bernardino, “A measure of good motor
actions for active visual perception,” IEEE International Conference
on Development and Learning, ICDL 2011. , vol. 2, pp. 1-6, 2011.

[8] ——, “Predicting visual stimuli from self-induced actions: an adap-
tive model of a corollary discharge circuit,” IEEE Transactions on
Autonomous Mental Development,, vol. 4, no. 4, pp. 290-304, 2012.

[9] S. Clippingdale and R. Wilson, “Self-similar neural networks based on

a Kohonen learning rule,” Neural Networks, vol. 9, no. 5, pp. 747 —

763, 1996.

L. A. Olsson, C. L. Nehaniv, and D. Polani, “From unknown sen-

sors and actuators to actions grounded in sensorimotor perceptions,”

Connection Science, vol. 18, no. 2, pp. 121 — 144, 2006.

N. A. Mirza, C. L. Nehaniv, K. Dautenhahn, and R. te Boekhorst,

“Anticipating Future Experience using Grounded Sensorimotor Infor-

mational Relationships,” in Proc. of Eleventh International Conference

on the Simulation and Synthesis of Living Systems, Artificial Life XI,

2008. , 2008, pp. 412 — 419.

L. Lichtensteiger and P. Eggenberger, “Evolving the morphology of a

compound eye on a robot,” in Third European Workshop on Advanced

Mobile Robots, 1999. (Eurobot *99) 1999 , 1999, pp. 127 — 134.

C. Paul, “Morphological computation: A basis for the analysis of

morphology and control requirements,” Robotics and Autonomous

Systems, vol. 54, no. 8, pp. 619 — 630, 2006.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based

learning applied to document recognition,” Proceedings of the

IEEE, vol. 86, no. 11, pp. 2278-2324, 1998. [Online]. Available:

citeseer.ist.psu.edu/lecun98gradientbased.html

Y. Bengio, “Learning deep architectures for ai,” Foundations and

Trends in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

[23]

Y. Yamashita and Y. Tani, “Emergence of functional hierarchy in a
multiple timescale neural network model: A humanoid robot experi-
ment,” PLoS Computational Biology, vol. 4, no. 11, pp. 1-18, 2008.

K. Hornik, “Approximation capabilities of multilayer feedforward
networks,” Neural Networks, vol. 4, no. 2, pp. 251-257, 1991.

P-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on
matrix manifolds. Princeton University Press, 2009.

R. Gregory, H. E. Ross, and N. Moray, “The curious eye of copilia,”
Nature, vol. 201, no. 4925, pp. 1166-1168, 1964.

M. Land, “Movements of the retinae of jumping spiders (salticidae:
Dendryphantinae) in response to visual stimuli,” Journal of experi-
mental biology, vol. 51, no. 2, pp. 471-493, 1969.

J. Stone and P. Halasz, “Topography of the retina in the elephant
loxodonta africana,” Brain, behavior and evolution, vol. 34, no. 2,
pp. 84-95, 1989.

J. J. Atick and A. N. Redlich, “What does the retina know about natural
scenes?” Neural computation, vol. 4, no. 2, pp. 196-210, 1992.

J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Applied statistics, pp. 100-108, 1979.

2379-8920 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



