
Relational Affordances for Multiple-Object
Manipulation

Bogdan Moldovana, Plinio Morenob, Davide Nittia, José Santos-Victorb, Luc
De Raedta

aDepartment of Computer Science, Katholieke Universiteit Leuven, Belgium
bInstitute for Systems and Robotics (ISR/IST), LARSyS, Instituto Superior Técnico, Univ

Lisboa, Portugal

Abstract

The concept of affordances has been used in robotics to model action opportu-
nities of a robot and as a basis for making decisions involving objects. Affor-
dances capture the interdependencies between the objects and their properties,
the executed actions on those objects, and the effects of those respective actions.
However, existing affordance models cannot cope with multiple objects that may
interact during action execution. Our approach is unique in that possesses the
following four characteristics.

First, our model employs recent advances in probabilistic programming to
learn affordance models that take into account (spatial) relations between differ-
ent objects, such as relative distances. Two-object interaction models are first
learned from the robot interacting with the world in a behavioural exploration
stage, and are then employed in worlds with an arbitrary number of objects.
The model thus generalizes over both the number of and the particular objects
used in the exploration stage, and it also effectively deals with uncertainty.

Secondly, rather than using a (discrete) action repertoire, the actions are
parametrised according to the motor capabilities of the robot, which allows
to model and achieve goals at several levels of complexity. It also supports a
two-arm parametrised action.

Thirdly, the relational affordance model represents the state of the world
using both discrete (action and object features) and continuous (effects) ran-
dom variables. The effects follow a multivariate Gaussian distribution with the
correlated discrete variables (actions and object properties).

Fourthly, the learned model can be employed on planning for high-level goals
that closely correspond to goals formulated in natural language. The goals are
specified by means of (spatial) relations between the objects.

The model is evaluated in real experiments using an iCub robot given a
series of such planning goals of increasing difficulty.

Keywords: affordances, relational affordances, probabilistic programming,
object manipulation, planning

The final publication is available at Springer via
http://dx.doi.org/10.1007/s10514-017-9637-x

1. Introduction

The goal of robotics is to develop mobile, physical agents capable of reason-
ing, learning and manipulating their environment. Firstly, to achieve this, the
physical agents need to deal with uncertainty in their physical world, including
interpreting data from noisy sensors, processing image streams from cameras,
and controlling noisy physical actuators for manipulation. To model this un-
certainty, the use of probabilistic techniques is widespread in robotics [63], yet
mostly without employing rich logical representations. Secondly, the physical
agents need to deal with higher level knowledge for reasoning and planning in
their environment. For this purpose, early approaches, such as the well-known
Shakey robot, used the logical STRIPS representation [15], and several related
symbolic representations [22, 61] have been used later. To model both uncer-
tainty and high-level action knowledge, we shall employ representations from
statistical relational learning (SRL) [18, 12, 11] and probabilistic programming
languages (PPLs) [13], which combine expressive logical representations or pro-
grams with probabilistic reasoning and machine learning. Their use has recently
been explored in robotics and their effectiveness has been shown in a kitchen
scenario [24].

Recent advances in robotics have also led to increased capabilities of ad-
vanced humanoid robots, such as the PR2, iCub, NAO, and other robotic plat-
forms. One characteristic of these humanoid robots is having two symmetrical
arms with which they can manipulate their environment. The goal for humanoid
robots is to manipulate objects in a household environment, such as a kitchen or
a living room. In these cases, the robot should also consider background knowl-
edge about the environment and objects to be manipulated, knowledge which a
human would posses about the environment and task. For example, objects that
are close together are likely to interact during manipulation, or several given
types of objects are used together to achieve a task (e.g., a fork and a knife).
Probabilistic programming (PP) is well suited to model background knowledge
with the help of logical rules, while symmetries and generalisations are easily
handled by the use of logic variables. Finally, PP can be used to model the
uncertainties in the task, sensing, or actuators, with the help of probabilities.

Another recent and promising approach for the development of humanoid
robots’ skills has been the learning of object affordances. Affordances model
the robot-world interaction by capturing action opportunities to structure the
robot’s environment (i.e., what can the robot do with an object?). For this,
an affordance model captures the relationships between three variables: object
properties, actions, and effects [38, 47]. Affordances have been used in various
settings, from the modelling of relations between the numerical values of the
object properties, actions, and effects [47], to the modelling of the effects of
tool use [60, 58]. The concept of affordances follows the developmental robotics
framework, which proposes acquiring new skills on top of old ones by experi-
mentation and interaction with the environment [40].

Our goal is for a humanoid robot to be able to achieve a table-top object
manipulation and arrangement task, involving multiple manipulation actions

2

on various objects. We will make use of relational affordances[46, 45], a recent
extension of the concept of affordances with the help of PP, which allows to
model interactions and spatial relations between multiple objects in the envi-
ronment. Our relational affordances is defines a joint probability distribution
of the object properties, actions, and effects, considering: (i)Actions executed
on only one object and (ii) actions executed on pairs of objects. Then, we add
rules that allow to apply the joint distribution in scenarios with any number of
objects. Thus the robot will be able to use this model to do probabilistic infer-
ence in a multiple object scenario, given his observations in the environment in
order to achieve its task.

The distinguishing feature of our approach is the use of probabilistic pro-
gramming, as opposed to previous approaches using Bayesian Networks [38, 47],
which cannot capture the relationships amongst multiple objects. Using PP has
the advantage that less data is needed for training, and that PP models can
generalise to any number of objects in the scene without the need for retrain-
ing. Through interaction with the environment, the robot will learn a relational
affordance model for its basic actions. The model for single-arm actions will
be transferred to the other arm similar to our previous work [44], which elimi-
nates the re-training phase of the other arm. We also consider the simultaneous
two-arm pushing action that can produce similar effects independently of the
size of the object. Once this model is learnt, the robot is given a high-level
object arrangement task in terms of relations between objects (e.g., place all
the cylinders to the left of the cubes). The task can be achieved by a sequence
of actions, each of them involving any of the two hands of the robot. The robot
will need to create a plan of basic actions that can achieve the goal. We will
illustrate the approach with an iCub robot in a table-top setting.

1.1. Approach and Contributions

The main contribution of this article is a relational affordance model that
considers continuous and discrete random variables for modelling the state of
the world. The states and the transitions between them are modeled by a joint
probability distribution over the actions, their effects and the objects. The main
tool used to define the hybrid state distribution is the Distributional Clauses
(DCs) formalism [21, 53], a PPL that integrates logic programming and prob-
ability theory. More specifically, we shall use an extension of DCs, Dynamic
DCs (DDCs) together with the DC Particle Filter (DCPF) [54, 52, 53] for rea-
soning and planning. Compared to previous papers on relational affordances
[46, 45, 44], the contribution of this paper is the first affordances model that
(i) considers relations and interactions between multiple objects, (ii) represents
the state of the world using discrete and continuous random variables, (iii)
parametrizes the actions according to the robot capabilities, and (iv) employs
sequential planning algorithms working with these hybrid representations. The
following paragraphs detail the important aspects of our approach.

In our previous work, the main contribution was: (i) To introduce the re-
lational affordances [46], which can model multi-object scenes with a variable
number of objects by generalising a model trained with two-object interactions

3

using probabilistic programming. Relational affordances allow for modelling ac-
tions and effects based also on the environment and relationships with other
objects (e.g., a fork affords different actions if on the table or on the ground),
and for modelling action effects on other objects in the environment with which
the object acted upon might interact (e.g., picking up that fork might also move
the knife next to it). As opposed to the previous methods of modelling affor-
dances with BNs, the use of a PP model works for any number of objects in
the scene, while also providing increased model comprehensibility. In [44] we
extended the notion of a relational affordance to a hybrid one and realized (ii):
the interactions between continuous and discrete random variables were learned
using a Linear Continuous Gaussian Bayesian Network (LCG), and the learned
model was then generalised to other environments using the DCs.

In our work on relational affordances [46, 44], the action repertoire of the
robot was limited to actions having only one parameter. In the present paper,
we expand the action repertoire by adding a parameter to each action to realize
(iii), which enlarges the possible number of setups, allowing the robot to perform
more tasks than before. In addition, we enlarge the repertoire of the actions
by transferring a single-arm model of its symmetric counterpart, and add a
simultaneous two-arm pushing action that causes similar effects as single-arm
pushes, independently of the size of the object.

Other work on relational affordances [45, 44] have extended the previous
models to more complex table-top manipulation tasks. This includes learning
and using sequences of actions learnt by imitation, and extending the model to
two-arm use by the robot in settings where two-arm actions can be approximated
by combinations of single-arm actions in the discrete case. The models could use
additional background knowledge in the form of logical rules in order to better
model the given manipulation task. As opposed to [45] we will present a plan-
ning algorithm that represents the state of the world as a mix of continuous and
discrete random variables (ii), being able to deal better with uncertainty during
execution because it considers the effects as continuous random variables. (iv)
The goal presented to the robot will be a high-level goal composed of spatial
relations between the objects. This is in accordance with human-robot interac-
tion approaches and represents a more realistic goal a human would ask from a
robot, which has a more compact representation and could be easily explained
in natural language text. For example, a human would ask the robot to place a
cup near the plate to the right of the glass, rather than define a goal based on
specific x-y coordinate locations for all the objects in the scene.

The system was be tested with a real iCub robot with its perception used
to detect objects, and with its available motor skills (while the model learning
will be done in the iCub simulator).

The full object arrangement planning task we tackle is based on previous
research on relational affordances [46, 45, 44], extended with parameterised ac-
tions (iii), high-level goals (iv), and a planning algorithm (iv), in order to fully
model a table-top task for a robot.

4

1.2. Structure of the Paper

This paper is organized as follows: Section 2 presents background informa-
tion and related work, Section 3 the relational affordances for manipulation,
and in Section 4 we describe our approach for learning a relational affordance
model from exploration data. In Section 6 we describe our approach for using
the affordances model as the state of the world for sequential planning. Finally,
Section 7 presents experimental results, and we conclude in Section 9.

2. Background and related work

In this section we will present an overview of affordances and their relational
extensions, followed by the necessary background on probabilistic programming
languages, which will be used to build our models. Finally, we describe sequen-
tial planning from an artificial intelligence point of view and its application to
robotic manipulation.

2.1. Affordances

Affordance models for robots are based on a concept introduced by J. J.
Gibson [19]. Affordances define the relationships between the robot and the en-
vironment through the robot’s available sensing and motor capabilities [38, 47].
Object affordances are learnt by a robot through an initial motor exploration
phase, during which the robot manipulates objects in the environment, and per-
ceives the effects of its actions. Although there are many different definitions
of affordances in the literature, we view an affordances model as a joint prob-
ability distribution over three sets of variables, representing objects,
actions and effects, as proposed previously [47]. Using an affordances model,
given two of these variables, one can predict the third, allowing to perform
three tasks: i) predict the outcome of an action (infer E, given O and A), ii)
recognize a performed action (infer A, given E and O), or iii) select objects
according to a task requirement (determine O, based on observed A and E)
[47]. For example, affordances can be used for imitation learning [38] or action
prediction by computing the maximum a posteriori probability (MAP) estimate

arg maxA P (A|O,E) = arg maxA
P (A,O,E)
P (O,E) , given the values of O and observing

the E. A generic affordance model and its three uses are shown in Figure 1.
Research on affordances ranges from object categorisation from human demon-

stration [28], to learning predictive features in affordance-based robotic percep-
tion systems [16], and to the learning and use of the traversability affordance
using range images on a mobile robot [65]. Affordances have been used espe-
cially in the context of imitation learning [38, 47, 33]. However, these latter ones
used Bayesian Networks to model affordances, which are tailored to a specific
number of objects in the scene and cannot easily generalise to any number of
objects.

Other work related to the present paper includes research on tool use for
robots [4], which learns the tool affordances of an object from a human demon-
stration together with a set of robot experimentations based on inductive logic

5

Figure 1: Affordances: relations between objects, actions, effects [38, 47].

programming, and research on behaviour-grounded tool affordances [60, 58],
which provides algorithms for the robot to learn the effects of its actions with
given tools on other objects.

An overview of the several affordance formalisms and their relation to plan-
ning and robot control was presented in [10]. Among the latest research, there
is affordance learning for multi-step planning [66], which tackles a related prob-
lem, but where the learnt affordance model is only for single objects single-arm
actions, and where object relationships and interactions are not taken into ac-
count. Similar work on affordance frameworks [6, 59] have defined affordance
formalisms for control and planning, but without involving learning from demon-
strations or a generalised modeling of multiple object interactions.

Finally, this paper is in the same area as that of probabilistic robotics [63] and
of providing robots with logic and probabilistic reasoning capabilities [24, 22].

2.2. Probabilistic Programming Languages

We will now introduce basic concepts of PPLs, and illustrate how they can be
used to model our setting from Figure 2. To create a model in PPL, one writes
a program that consists of a set of probabilistic facts and a set of logical rules
(which express domain knowledge). Once the program defining the probabilistic
relational model is designed, inference methods are available for computing the
probabilities of a user’s query.

In logic programming, an atomic formula or atom pred(t1, ..., tn) consists of a
predicate pred/n of arity n and ti terms. A term is either a (lowercase) constant,
(uppercase) variable, or functor (function) func/n applied on n terms. These
can be used to represent our object properties O and effects E. For example,
the atom shape(o1, square) represents the object property shape(o1) = square
from Figure 2, and touches(o1, o2) that the objects touch one another.

A definite clause is an expression of the form h← b1, ..., bn, where h and bi
are atoms. It states that h is true whenever all bi are true. For example, the

6

Figure 2: Table-top setting with two objects: (left): initial state, (right): final state after a
push action.

clause:

displ(Obj, D)← push(Obj).

states that for all objects pushed, the object will have a displacement of D
(centimeters). The term Obj is a logical variable, that does not refer to a par-
ticular object, and can be substituted with any other term. Variables in clauses
are assumed to be universally quantified.

A substitution θ = {Y1 = t1, ..., Yn = tn} maps each variable Yi to a term ti.
Applying a substitution θ to an atom pred yields predθ, where each occurrence
of Yi in pred is replaced with ti. For example, for θ = {Obj = o1, D = 3}, the
above example becomes:

displ(o1, 3)← push(o1).

and states that o1 is displaced by 3cm when pushed, as in Figure 2.
Distributional Clauses (DCs) [21, 53], an extension of the distribution se-

mantics in [57], augment the traditional logic programming formalism to define
random variables. DCs are a well suited PPL for our task since they allow
one to define random variables with any distribution, continuous or discrete.
The mix of continuous and discrete variables deals better with uncertainty than
the purely discrete distribution from ProbLog, which was used in our previous
affordances model [46].

A distributional clause is an expression of the form h ∼ D ← b1, ..., bn,
where bi are atoms and ∼ a binary predicate written in infix notation. Infor-
mally speaking, whenever the conditions in the body b1, . . . , bn hold, a random
variable h is defined with distribution D. A distributional clause is a powerful
template to define conditional probabilities, indeed bi, h, and D can contain
logical variables that parameterise the clause. Formally, in a DC, each ground
instance of the clause (h ∼ D ← b1, ..., bn)θ, for a substitution θ, defines the
random variable hθ being distributed according to distribution Dθ when all biθ
hold. For example, we can model that all pushed objects have a displacement

7

represented by a Gaussian distribution with mean 3cm and variance 1cm:

displ(Obj) ∼ gaussian(3, 1)← push(Obj).

A term '(d) constructed from the reserved functor '/1 represents the value
of the random variable d.

Once the model is defined, inference algorithms based on sampling [21, 54]
can be used to compute the probability of a query. For example, one can
compute the probability of the displacement of o1 from Figure 2 being greater
than 6cm: P ('(displ(o1)) > 6).

The procedure used to generate possible worlds of a DC program, defines the
semantics and a basic inference algorithm [21]. A possible world is generated
starting from the empty partial world x = ∅; then for each distributional clause
h ∼ D ← b1, . . . , bn, whenever the body {b1θ, . . . , bnθ} is true in the set x
for the substitution θ, a value v for the random variable hθ is sampled from
the distribution Dθ and hθ = v is added to the new partial world x̂. This is
also performed for deterministic clauses, adding ground atoms to x̂ whenever
the body is true. This process is then recursively repeated until a fixpoint is
reached, that is, until no more variables can be sampled and added to the world.
This sampling procedure can be viewed as a generalization of ancestral sampling
for Bayesian networks, in which a random variable is sampled when its parents
are already sampled.

Sampling full worlds is generally inefficient. More efficient sampling algo-
rithms [21, 53] have been proposed to sample only those random variables that
are relevant for answering the query.

In the context of temporal domains and sequential planning, we will use
Dynamic Distributional Clauses (DDCs) [54, 52, 53], which are an extension
of DCs for temporal domains. DDCs define a discrete-time stochastic process
following the same idea of a Dynamic Bayesian Network [50], by using sets of
clauses that define:

1. the prior distribution: {h0 ∼ D ← body0},

2. the state transition model: {ht+1 ∼ D ← bodyt},

3. the measurement model: {zt+1 ∼ D ← bodyt+1},

4. a random variable at time t from other variables at the same time: {ht ∼
D ← bodyt}.

For example, to model an environment with balls, where the next position
of every ball is equal to the current position plus some Gaussian noise, one can
write:

pos(Obj)t+1 ∼ gaussian('(pos(Obj)t), cov)← ball(Obj).

8

This signifies that the position of the object at time t + 1 is given by a
Gaussian distribution with mean equal to the position of the object at time t,
and covariance cov.

Note that if no DDC clauses that define the random variable ht+1 apply for
a given state and action, ht+1 is undefined. This is useful to describe negative
effects, e.g. a fact that is no longer true1, or when a random variable is no
longer needed in the next state. For example, if we care only about the objects
on a table for manipulation, we can ignore and thus remove from the next state
all the objects that fall off the table or that are grabbed by a human.

Given a set of DDC clauses, the Distributional Clauses Particle Filter (DCPF)
[54, 53] can be used to perform filtering inference. Filtering, or state estimation,
computes the probability density function P (xt|z1:t, a1:t), where xt is the cur-
rent state, z1:t is the set of observations, and a1:t the actions (inputs) performed
from time step 1 to t.

2.3. Planning

Even though the focus of the current paper is on affordances, our work is also
related to planning and learning to plan. We first discuss probabilistic planning
using MDPs, then its extension towards probabilistic STRIPS like representa-
tions, and finally some more specific approaches tailored towards robotics.

2.3.1. Probabilistic planning

Probabilistic planning is generally performed by solving a Markov deci-
sion process (MDP) for fully-observable problems or a POMDP for partially-
observable problems. An MDP [69, 62] consists of a set S of states, a set A
of actions the agent can take, a state transition model T from time t to time
t+ 1, T : S ×A× S → [0, 1] where T (st, at, st+1) = p(st+1|st, at), and a reward
function R : S ×A→ R that assign a reward r(s, a) when the agent is at state
s and performs action a. In our case, the state is relational, that is the state s
is a set of ground relational atoms and/or pairs (variable, value). The goal of

the agent is to maximize the expected (discounted) reward E[
∑d
t=0 γ

trt]. If d
is finite we have a finite horizon MDP otherwise an infinite horizon MDP. The
term γ ∈ [0, 1] is a discount factor needed to keep the sum bounded for infinite
horizon MDPs, thus generally γ = 1 is used for finite horizon MDPs.

To maximize the expected reward, we need to find a (deterministic) policy
π that assigns for each state s and time t the action to perform. For infinite
horizon MDPs we can use stationary policies π : S → A that do not depend on
the time t without loss of generality. While, a stochastic policy π : S×A→ [0, 1]
assigns a distribution over actions p(a|s) for each state s.

The expected reward starting from state st = s and following a policy π
is called value function (or V function): V πd (s) = E[

∑d
k=0 rt+k|st = s, π] for

finite horizon MDPs (assuming γ = 1) and V π(s) = E[
∑∞
k=0 γ

krt+k|st = s, π]
for infinite horizon MDPs. In the finite case the V function depends on the

1we assume the close-world assumption: anything that is undefined is considered false

9

number d of remaining steps, this is not the case for infinite horizon MDPs.
The expected reward starting from state st = s executing action At = a and
following a policy π is called action-value function (or Q function). For finite

horizon MDPs: Qπd (s, a) = E[
∑d
k=0 rt+k|st = s,At = a, π] and for infinite

horizon MDPs: Qπ(s, a) = E[
∑∞
k=0 γ

krt+k|st = s,At = a, π].
An optimal policy π∗ is a policy that maximises the V function for all states.

The goal of planning goal is to obtain such a policy.
Our state representation involves both discrete and continuous variables,

where the optimal V function and policy cannot be computed exactly in the
general case. In [72], a propositional exception is proposed for a determinis-
tic transition model at least for the continuous part. For more general cases
approximations are needed, such as Monte-Carlo methods.

The class of planning algorithms closest to our needs are sampled-based
planners that use Monte-Carlo methods to estimate the optimal Q/V function.
Some of the more notable examples include ε-soft on-policy Monte Carlo control
[62], sparse sampling [26], UCT (Bandit based Monte-Carlo planning) [29], and
PRADA for noisy probabilistic relational rules [36]. In Section 5.2, we shall
introduce a simple probabilistic planner that suffices for our aims even though
we have recently developed an extension of that planner for use with DDC [51].

2.3.2. Planning with STRIPS

For dealing with relations and objects in planning, one typically employs
extensions of STRIPS like representation [15], such as Planning Domain Defi-
nition Language (PDDL) [41, 71]. The key idea is that actions are described
using a pre-condition and the effects of the actions using an add- and delete-list.
STRIPS and PDDL have been extended towards a probabilistic setting.

The representation that we shall use in Section 5 for modeling the state-
transitions and for planning will be based on DDC rather than probabilistic
STRIPS. We shall show that it is easy to map probabilistic STRIPS into the
DDC representation. There are also some more subtle differences between the
two representations. The DDC formalism does not make an explicit frame
assumption, i.e. it is not assumed that what is not explicitly mentioned in the
effects does not change. Another difference is that our affordances explicitly
model a delta change between the two states, cf. also Figure 8 and Table 1.

Starting with Buridan [34] and Graphplan [3], many planners for probabilis-
tic STRIPS have been developed, some of which are relevant to the present
paper. For instance, some works on noisy indeterministic deictic rules are also
concerned with planning and learning STRIPS rules from data or from noisy
observations [55, 73], and some are applied on planning for object manipulation
in a relational domain [37, 64]. Other related work focuses on learning action
effects in partially observable domains [48]. However, all these related works are
not done within an affordance framework that can learn and generalise from a
robot motor exploration stage so they do not generalise from two-object interac-
tions to a multiple object environment, or model the effects of actions performed
with the other arm of a two-arm robot by symmetry. They also do not map

10

demonstrations to the action space of a robot and are rarely performed in a
real-world robotics setting that requires dealing with continuous distributions.

More related research in the context of planning is [35] and action object
complexes (OACs) [70, 32] which have been proposed for enabling efficient plan-
ning and execution of actions at all levels of the cognitive architecture, by com-
bining STRIPS rules with the concept of affordances. Other research in this
direction includes [17] and [31], but this formalism doesn’t involve the generali-
sation of multiple object interactions obtained from exploratory actions as done
by relational affordances.

Some approaches in decision-theoretic planning tackle similar problem do-
mains [68], but usually work with predefined and full action models, whereas we
learn the affordance models. Finally, there is further research concerned with
grounding planning operators by affordances [39] or an affordance formalism for
planning from the perspective of user interfaces [1] among others.

2.3.3. Planning in Robotics Manipulation

Research on two-arm robot manipulation includes research on learning, rep-
resenting and generalising a task which presents a programming-by-demonstration
framework for extracting and generalising knowledge about a given task [7], and
similarly a programming-by-demonstration framework for dual-arm manipula-
tion tasks [74]. There is also research on motion planning for dual-arm ma-
nipulation and re-grasping tasks [67]. However, these do not use the concept
of affordances, model or generalise over relations and interactions between ma-
nipulated objects and other objects in the environment, or build a two-arm
manipulation model generalised from environment experimentation and the use
of background knowledge.

Related to a table-top setting with multiple interacting objects, there is work
on detecting [30] and manipulating [2, 20, 25] objects in cluttered environments,
but this is usually concerned with detecting the objects and motion-planning
for the arm in order to perform a grasp [20, 25], rather than creating a plan in
order to solve a given task.

A related task as the one presented in this paper, planning push actions for
object placement on a cluttered table surface, is performed in simulation [9]
and with a PR-2 robot [14]. However, in these cases the object interactions are
determined by a dynamics simulator based on the object physical properties, not
taking uncertainty into account. This work does not generalise from two-object
interactions to learn a model of a multiple-object setting.

3. Relational Affordances for Manipulation

In this section we describe the basic skills of the robot, an overview of the
problem we address: The relational affordances model and its extension to se-
quential planning.

11

3.1. Basic Skills of the Robot

We employ, both in a real setting and in simulation, the iCub humanoid
robot [43], which has a head with two cameras, two arms and two legs. The legs
of the robot are immobile, and we use both arms, and both cameras. Each arm
has a force-torque sensor that provides the observations for an impedance arm
controller (i.e. from the shoulder joint to the wrist joint). However, the finger
joints can be controlled only in position mode. The cameras allow to obtain the
disparity map using stereo algorithms.

We assume the robot is provided with a set of core motor actions and per-
ceptual skills. The motor actions are based on a Cartesian controller [56], which
allows the hand to move between points in the space considering constraints in
hand orientation and forces being exerted. The perceptual skills are based on
color segmentation in images and stereo vision algorithms that allow to locate
objects and their respective sizes. We build on these elements the basic skills of
the robot: motor skills to perform the actions and perceptual skills to measure
object features and effects.

Motor actions tap and push are parameterised with the arm (left, right), the
distance in cm and the direction that the hand moves over. The two arm push
action is parametrised with the distance in cm that the hand moves over and the
size of the object. The distance is relative to the current location of the objects,
while the direction of the actions could be from left to right, right to left and
nearer to further. The location of landmark points of the objects (see examples
in Fig 3) provides the initial points in space for the actions, and each point is
associated to the direction of the action. A point on the left side of the object
will be the initial point for left-right direction, the bottom point of an object
will be associated to nearer-further direction and so on. Figure 3 illustrates
the detected action points on the segmented image of four objects. According
to the position of the object’s centroid relative to the robot, the right and left
landmark points were either retrieved from the image or estimated from the
other points. If the centroid was on the left side of the robot, the right point
was retrieved and the left one estimated. Similarly, if the center was on the
right side, the left point was retrieved and the right one estimated. The bottom
points are always retrieved from the image.

The action execution procedure is provided with a force trigger, which is ac-
tivated when the magnitude of the force is above a previously defined threshold.
The motion of the arms is performed by a minimum-jerk Cartesian controller
which reaches a position as close as possible to a given target position while
coping with the kinematic and dynamic constraints of the iCub [56]. Figure 4
illustrates the object locations before and after every action execution by the
real iCub.

Regarding visual perception, we assume object identification is provided by
color segmentation, and object size is provided by stereo vision. Color segmen-
tation is based on an algorithm relying on a synergistic approach combining
a confidence-based edge detector and mean shift segmentation [8]. The image
segmentation algorithm is applied on both cameras in order to find the enclosing

12

(a) Robot and objects

(b) Raw image (c) Segmented image with landmark points

Figure 3: Illustration of the table-top scenario for the real iCub, with its correspondent point
of view of the robot and the segmentation result. The coloured points are associated to points
as follows: cyan to centroids, black to bottom, magenta to right and blue to left.

region of objects on each image. Then, the centroid of the segmented region
is extracted on both cameras in order to perform stereo triangulation. This
process provides the 3D position of the object’s centroid, which represents its
location.

Object size is computed from the combination of segmentation and stereo
algorithms. From the segmented image of one of the eyes, we extract the ellipse
that encloses each coloured region 2. The points in the ellipse that intersect its
major axis are mapped onto the stereo disparity image for 3D perception. The
distance between the 3D mapped ellipse points provide the object size.

2having the same normalized second central moments

13

(a) Push (Left arm, 15cm) (b) Tap (Right arm, 10cm) (c) Tap (Left arm, 20 cm)

Figure 4: Action execution examples from the iCub’s left camera point of view. The top
row images show the location of the objects before the action execution and the bottom row
images show their locations after action execution. Each column represents a different action

3.2. Problem Statement and Approach

We tackle a table-top scenario where a two-arm robot needs to manipu-
late multiple objects, that can interact with one another, in order to reach a
given goal. To reach the goal, the robot will need to execute a sequence of its
basic actions, whose relational affordance model it previously learns during a
behavioural exploration stage.

One example of such setting can be seen in Figure 6. The robot will use
its perception to detect the initial setting of the objects, as in Figure 6 (left).
The robot is then given a high-level goal, specified as spatial relations between
the objects in the setting. In this case, the goal is to place the long prisms to
the left of the small prisms (as seen from the robot’s point of view), while all
objects need to be “in the shelf” (considered at the back of the table, behind
the dashed line). One possible goal configuration the robot can reach can be
seen in Figure 6 (right). To achieve this task, the robot first needs to: (1) tap
the red object with the right arm (towards the left), then (2) tap the magenta
object with the left arm (towards the right), and finally (3) push the magenta
object with any of its arms. Note for example that in step (2) the object is only
reachable with the left arm, and after it is tapped it is in a position where it
can be acted upon with both arms.

Tackling such object manipulation scenario is composed of three different
tasks, shown in Figure 7:

• Task (i) is learning a two-arm continuous relational affordance model:
given: a) a set of corresponding O, A, E values collected from exploratory
one-arm and simultaneous two-arm action executions in two-object envi-

14

(a) Disparity image (b) Segmented image with landmark points

Figure 5: Illustration of the object size computation. Left-hand image shows the disparity
map of the example shown in Figure 3. The orange points in the right-hand image show the
points that intersect with the ellipse’s major axis. The orange points are mapped onto 3D
using their associated disparity value, and the 3D distance between each pair is defined as the
object size.

Figure 6: Table-top scenario with sequence of arm actions for object placement: (left): initial
setting, (middle): actions to reach goal, (right): possible goal arrangement.

ronments, and b) background information about symmetries of left and
right arm actions, find: c) a continuous setting relational affordance model
of two-arm actions, modelled in a PPL.

• Task (ii) is modelling a state transition model: given: a) the relational
affordances model learnt in Task (i), and b) a set of task constraints rules
for determining applicable actions (e.g., do not act on potentially occluded
objects), find: c) a state transition model for the robot actions, to be used
for planning tasks.

• Task (iii) is the planning task used to evaluate our model: given: a) an
initial scene from which using its perception the robot extracts the set of
object properties values O, and b) a target goal, given as a set of spatial
relations between the objects, together with, c) the state transition model
for the robot actions obtained by Task (ii), find: d) the next best action

15

to execute towards reaching the goal.

The robot can then repeat the next best action inference and action execu-
tion until the goal is reached, or until we reached a predefined maximum number
of actions.

Figure 7: Pipeline for table-top two-arm object manipulation.

To solve these tasks, several steps are required, as shown in Figure 7:

• 1a) learn a Linear Continuous Gaussian (LCG) Bayesian Network (BN)
from single arm and simultaneous two-arm exploratory data,

• 1b) from the LCG model, build the two-arm continuous domain relational
affordances model in a PPL,

• 2) build a state transition model from the relational affordances model,
and

• 3) infer best action to execute to reach goal (step repeated until goal
reached).

Thus, the planner will use the low level information it acquires from its
sensors, and will employ the state transition model obtained from the previously
learnt relational affordances model together with the set of given background
rules about its actions.

3.3. Relational affordances

Affordances are modeled as relations between the following three variables:
the set of objects and their properties as being detected by the robot sen-
sors: O = {o1, o2..., on}, the repertoire of actions available to the robot, A =
{a1, a2..., an}, and the effects of performing those actions E = {e1, e2..., en} as
detected by the sensors as changes in object features.

A relational affordance is an extension of the affordances model of Figure 1,
where rather than using a propositional representation for object properties,

16

actions, and effects, we now use a relational one. Thus a relational affordance
is a joint distribution over a relational representation for O, A, and E.

More formally, the relational representation for O, A, E can be expressed as
follows. Let Z represent the set of all objects in the environment that the affor-
dances model, and an uppercase Z, optionally followed by a subscript, a variable
in the domain Z. Then the object properties O are represented by the set of all
random variable atoms of the form oi(Z1, ..., Zmi) (e.g., distance(ball, book)).
The set of actions on object Z is denoted by: A(Z), and the effects E are the
set of all random variable atoms ei(Z1, ..., Zni).

For example, a relational affordance could represent a joint probability dis-
tribution that could specify that :

P(shape(ball) = sphere, distance(ball, book) > 3,
A(ball) = tap(ball), rel displacement(ball, book) > 0) = 0.58

To define the joint probability distribution P (O,A,E) we will use a relational
representation in the form of a PPL program.

3.4. Planning with Relational Affordances

We will now describe our concept of relational affordances for solving table-
top planning tasks. An example of such setting with two objects can be seen in
Figure 2. The general relational affordances formalism defined a joint probabil-
ity distribution over O, A, E. In order to be able to tackle a temporal domain
and a planning task, we will additionally define a state transition model and
action representation. We will illustrate this with a DDCs-style syntax.

A state represents a description of the environment of the robot at a given
time. A state is a conjunction of all grounded atoms oi(Z) for all the objects in
the domain Z.

For example, in the table-top setting from Figure 2, considering just the ob-
ject properties shape and distance, we could have the following state at time t:

shape(o1)t = square, shape(o2)t = rect, distance(o1, o2)t = 5.

We will define actions, their preconditions and their effects using dynamic
distributional clauses.

The preconditions pre are a set of relations on the random variable atoms
oi(Z) from O. An action A(Z) can be executed in the current state St only if
there is a substitution θ for the variables in pre such that preθ holds in St. As
an example, consider an action push(Z1), whose preconditions can be:

pre(push(Z1)t)←'(shape(Z1)t) = square, object(Z2), Z2 6= Z1,
'(distance(Z1, Z2)t) < 5.

where object(Z2) holds if Z2 is an object in the scene. The preconditions
hold for the substitution: θ = {Z1/o1, Z2/o2}.

17

Furthermore, in this paper we will refer to an action as applicable in the
current state if it can be executed in the current state, thus if the preconditions
hold. Note that the applicability refers to the action and the object involved,
thus the same action (e.g., push) can be applicable for an object o1 but not
applicable for another object o2.

To define action applicability we use a set of (deterministic) DDC clauses
of the form applicable(a(Z)t)← pre(a(Z)t). For example, push is applicable
only in those states where the object is reachable by the robot’s arm:

applicable(push(Obj))t ← reachable(Obj)t.

The effect eff describes the state change after the execution of the action
A(Z). In DDCs, this can be achieved by defining a state transition model. So,
for each atom that will be defined in the next state at time t + 1, we need to
define a state transition model clause: ht+1 ∼ D ← bodyt. The body of the
clause contains the action and the preconditions that depend on the current
state:

ht+1 ∼ D ← A(Z)t, pre(A(Z)t).

For example, to specify the effect on displacement of push action on a square
object from Figure 2, we can write:

displ(Obj)t+1 ∼ gaussian(3, 1)← push(Obj)t,
'(shape(Obj)t) = square.

Note that compared to the rule effects eff , in our table-top setting affor-
dance effects E represent relative changes in one or more object properties O
due to the action. Thus the affordance effects can be seen as a delta change
between the states St and St+1. In the following section we describe how to
discover the relations between the variables of the relational affordances model:
O,E and A.

4. Learning Relational Affordance Models

In this section we will describe the learning of a two-arm continuous
relational affordances model from a behavioural exploration stage, which is
Task (i) of our approach.

4.1. Affordances in Table-top Setting

We will define now the object properties (O), actions (A), and effects (E)
that we will use in our model.

The object properties O are the following: shape, and relations rela-
tive distance along the x-axis (distX) and y-axis (distY) between two objects
(in cm). All distances will be measured from the centroids of the objects, as

18

observed from perception and determined by stereo triangulation of the cen-
troids obtained from color segmentation. These object properties distX and
distY are shown in Figure 8(l), with the objects’ position before (l) and after
(r) an action (tap) execution. The x and y-axes correspond with the iCub x
and y-axes from the robot’s viewpoint. To facilitate modelling in a continu-
ous domain setting, we use a Cartesian coordinate system instead of a polar
one as in [46, 45]. We will use five different objects of one of three differ-
ent shapes. The shape of two of the objects is small prism (sprism) (sizes:
4cm× 8cm× 8cm and 4cm× 9cm× 7.5cm). There are two big prisms (bprism)
(sizes: 4cm × 14.5cm × 9cm and 4cm × 16cm × 8cm). There is one long bar
(lbar) (size: 27cm× 6cm× 5cm).

The action A is one of two basic arm core motor actions: tap (right-to-left
hand movement for the right arm, left-to-right for the left) and push (away
movement for both arms). As an extension of previous affordances models [46],
the action is parameterised by the distance in cm that the arm is moved from
its pre-action position next to the object until the action is finished. The arm
movement distance values can be one of: 10cm and 20cm for the tap actions,
and 15cm and 25cm for the push actions (but more can be modelled as well).
We will also have a two-arm simultaneous push action on the same object.
Alternatively, this could also have been modelled by a combination of single-
arm actions as in [44], but because of iCub limitations and to increase accuracy,
the robot will directly learn from two-arm push exploration data.

The effects E correspond to differences in object attributes before and after
the action is performed. We use the displacements along the x-axis (displX)
and y-axis (displY) of the centroid of each object. These effects displX and
displY are shown in Figure 8(r), which overlays the initial objects’ positions
over their final positions.

To learn an affordances model, the robot first performs a behavioural explo-
ration stage, in which it explores the effect of its actions on the environment.
For this behavioural exploration stage, for the single-arm actions the robot uses
its right-arm only. For these actions a model of the left-arm will be later built by
exploiting symmetry as in [44]. We include the simultaneous two-arm push on
the same object in the exploration phase, allowing for a more accurate modelling
of action effects for the iCub.3

The exploration phase consists of placing pairs of objects in front of the robot
at various positions. The robot executes one of its actions A described above on
one object (named: main object, OMain). OMain may interact with the other
object (secondary object, OSec) causing it to also move. Figure 8 shows such
a setting, with the objects’ position before (l) and after (r) a right-arm action
(tap(10)) execution.

During this behavioural exploration stage, data for O, A and E are collected

3As opposed to the two-arm affordances modelling in [44], we also include in the exploration
phase the two-arm simultaneous actions whose effects might not always be well modelled by
the sum of the individual single-arm actions.

19

Figure 8: Relational O before (l), and E after the action execution (r).

for each of the robot’s exploratory actions. The robot executed 150 such ex-
ploratory actions. One example of collected data during such an action is shown
in Table 1. Note that these values are obtained by the robot from its perception,
which naturally introduces uncertainty, which the relational affordances model
takes into account (e.g., the displacement of OMain is observed to be a bit more
than 10cm).

Table 1: Example collected O, A, E data for action in Figure 8

Object Properties Action Effects
shapeOMain

: sprism
shapeOSec

: sprism
distXOMain,OSec

: 6.94cm
distYOMain,OSec

: 1.90cm

tap(10)

displXOMain
: 10.33cm

displYOMain
: −0.68cm

displXOSec
: 7.43cm

displYOSec
: −1.31cm

During the exploration phase, we also learn the action space of each action.
As the iCub is not mobile, and each arm has a specific action range, each ai ∈ A
can be performed when an object is located in a specific action space. An object
can be acted upon by both arms, by one arm but not the other, or it can be
completely out of the reach of the robot. If the exploratory arm action on an
object fails because no inverse kinematics solution was found, then that object is
not in that arm’s action space. We will show later how any spatial constraints,
such as action space, can be modelled with logical rules.

4.2. Learning the Model

The model will be learnt from the data collected during the robot’s 150
exploratory actions, one instance of such data as illustrated in Table 1. We
will model the (relational) object properties: distX, distY (the x and y-axis
distance between the centroids of the two objects), and the effects: displX and
displY (the x and y-axis displacement of an object) with continuous distribution
random variables. We will start by learning a Linear Conditional Gaussian
(LCG) Bayesian Network [27]. An LCG BN specifies a distribution over a
mixture of discrete and continuous variables. In an LCG, a discrete random
variable may have only discrete parents, while a continuous random variable may
have both discrete and continuous parents. A continuous random variable (X)
will have a single Gaussian distribution function whose mean depends linearly

20

on the state of its continuous parent variables (Y) for each configuration of its
discrete parent variables (U) [27]. This LCG distribution can be represented
as: P (X = x|Y = y, U = u) = N (x|M(u) +W (u)T y, σ2(u)), with M a table of
mean values, W a table of regression (weight) coefficient vectors, and σ a table
of variances (independent of Y) [27].

To learn an LCG BN for our setting, we will approximate displX, displY ,
and distX and distY by conditional Gaussian distributions over the short dis-
tances over which objects interact. These distances will be enforced by adding
logical rules.

The LCG model of our setting is shown in Figure 9, where discrete random
variables are represented by a single ellipse, and continuous ones by a double
ellipse. displXOMain

and displYOMain
only depend on A and the object shape

since the hand is moved over a fixed distance (with a given tolerance) for each
parameterised action. displXOSec

and displYOSec
depend on both the relative

distance OSec is away from OMain and the shapes of both objects. According
to the objects, static friction coefficients and masses, the structure of the LCG
BN in Fig. 9 may be different. For instance, if the secondary object’s mass is
significantly larger that the main object’s mass, the relational distance between
objects (distXOMain,OSec and distYOMain,OSec) may be linked to the displace-
ment of the main object (displXOMain and displYOMain). In the case of our
experimental setup the displacement of the main object does not have the rela-
tional distance between the objects as parents because the arm action is strong
enough and the objects light enough such that as the arm is pushed along over
the specific distance, so is the main object which is dragged along the respective
distance.

Figure 9: LCG BN model for two-object interaction (single ellipse = discrete random variable,
double ellipse = continuous random variable)

The parameters of the LCG model are learnt from the collected exploration
data (e.g., Table 1) by using the maximum likelihood parameter estimation from
the BNT toolbox [49] for Matlab. For example, during our tap(10) action for
two interacting cubes (as in Figure 8), the displacement of OSec on the x-axis
is (in cm):

N (7.05 + 0.57 ∗ distXOMain,OSec
+ 0.02 ∗ distYOMain,OSec

, 0.41). (1)

21

This makes sense intuitively as the second cube is moved along by the tap(10)
action, so we expect its displacement to depend mainly on distX, but also a
little bit on distY if the objects are not aligned, as in Figure 8.

The obtained LCG BN models two-object interaction due to the robot’s
basic actions. Now we can model the LCG using DCs syntax (as introduced in
Section 2), to generalise to a relational affordances model for a multiple object
setting. For the modelling of affordances using DCs for our task, the main
predicates we will use are presented in Table 2.

Table 2: Predicates used for affordance modelling

Predicate Meaning
shape(Obj, Shape) The shape of object Obj is Shape.
distX(Obj1, Obj2) Distribution of the relative x-axis distance between

objects Obj1 and Obj2.
distY(Obj1, Obj2) Distribution of the relative x-axis distance between

objects Obj1 and Obj2.
displX(Obj) Distribution of the x-axis displacement of Obj.
displY(Obj) Distribution of the y-axis displacement of Obj.
tap(Obj, Arm, Param) A parameterised tap on object Obj where the arm

Arm is moved a distance of Param. Arm can be left

or right.
push(Obj, Arm, Param) A parameterised push on object Obj where the arm

Arm is moved a distance of Param.
approx ok(A, ObjM,
ObjS, DX, DY)

True if the Gaussian approximation for the action
effect holds for the action A on main object ObjM and
with secondary object ObjS when the x-axis distance
between the objects is DX and the y-axis distance
between the objects is DY.

coordX(Obj) Distribution of the x-axis coordinate of object Obj.
coordY(Obj) Distribution of the y-axis coordinate of object Obj.
occluded(Obj) True if object Obj is potentially occluded behind

any other object in the scene.
left(Obj1, Obj2) True if object Obj1 is to the left of object Obj2.
inshelf(Obj1) True if the y-axis coordinate of the centre of object

Obj1 is greater than 40cm.
near(Obj1, Obj2) True if the centre-to-centre distance between objects

Obj1 and Obj2 is less than 10cm.

We generalise over the number of objects as in [46], by introducing variables
for objects (e.g., displX(OMain) for the displXOMain

in the LCG), and so build
a general multiple object PPL model from the two-object LCG BN.

For example, to transform the LCG Equation 1 in DCs, one writes:

displX(OSec) ∼ gaussian(Mu, 0.41)← tap(OMain, 10),

22

shape(OMain, sprism), shape(OSec, sprism),
Mu is 7.05 + 0.57∗ '(distX(OMain, OSec)) + 0.02∗ '(distY(OMain, OSec)).

meaning for a tap action, if the two shapes are small prisms, displX of OSec is
distributed according to a Gaussian with mean given by Mu, as in Equation 1.

There will be a displacement of a secondary object due to an action on a
main object only if the two objects are close enough to interact, otherwise the
secondary object will remain in the same position. So, to model that the above
Gaussian approximation as in Equation 1 holds only in these cases, we can define
the predicate approx ok, which is true when the distance DX and DY between
OMain and OSec is sufficiently small for the action to have an effect on OSec.
For example, for a tap(10) for two small prisms as in Figure 8, we can use the
definite clause:

approx ok(tap, 10, sprism, sprism, DX, DY)← DX > 4, DX < 14,
DY > −8, DY < 8.

The smallest x-axis centre-to-centre distance between two objects is 4cm, so
for the objects to interact during a tap their centres need to be between 4cm
and 14cm away on the x-axis. On the y-axis, since the y-axis dimension of a
sprism is 8cm, their centres need to be between −8cm and 8cm away for an
interaction to occur.

Then we just need to add approx ok(tap, 10, sprism, sprism, DX, DY) to the
body of the DC clause defining displX above. Doing so the displacement
displX(OSec) will be defined only when close to OMain. Similar rules can be
added to enforce the action space.

At this point we can fully model the right arm relational affordances model,
as well as the two-arm simultaneous push, with the learnt parameters.

For the left arm, given the symmetry of the iCub, the model is equivalent
to the model for the right arm mirrored through the plane perpendicular to
the table that passes through the centre of the robot. For our model, in the
left-arm model all the y-axis values are the same as for the right-arm model,
but the x-axis values are the negative of their right-arm equivalent.

In our DC framework, the displX and displY random variables for left and
right arm actions need to be defined by different probability distributions. So,
we need to add an extra term to our action atoms to signify the arm performing
the action. At this point, we can automatically generate the PPL code for the
left arm. For our running example, the equivalent code for Equation 1 for the
left arm:

displX(OSec) ∼ gaussian(Mu, 0.41)← tap(OMain, left, 10), ...
Mu is −7.05− 0.57∗ '(distX(OMain, OSec))− 0.02∗ '(distY(OMain, OSec)).

At this point we have a relational affordances model for single right and left-
arm actions, as well as the simultaneous two-arm actions learnt with the explo-
ration data. Once the program is defined, the inference algorithm based on sam-
pling in [21] or [54] can be used to compute the probability of a query. For exam-

23

ple, given our example, one can ask for the probability of the x-axis displacement
of the secondary object o2 being greater than 5cm given some initial distances
between the main object o1 and o2: P ('(displX(o2)) > 5|action(o1, tap, 10),'
(distX(o1, o2)) = 7,'(distY (o1, o2)) = 2).

Task (i) is thus achieved, and the robot has a relational affordances model
for modelling single-arm left and right-arm actions, and simultaneous (push)
two-arm actions in the environment.

5. Planning

In this section we present Task (ii), namely modelling a state transition
model from the relational affordances model, and Task (iii), namely inferring
the next best action to execute towards reaching the goal. These are required
in order for the robot to reach a more complex goal, which requires several
actions on objects which can interact with one another during the actions.

5.1. States and Action Representation

This subsection will present Task (ii), learning the state transition model.
To model the state transition model of the dynamics of the world we will use the
DDCs formalism introduced in Section 2. In our table-top object placement set-
ting, states will have to describe the objects’ shape and spatial configurations.
An object’s position is defined by the x (coordX) and y-coordinates (coordY)
of its centroid. As opposed to [44], where the states were a conjunction of the x
and y-axis distance between objects, in order to facilitate planning over multiple
steps we will define a state as a conjunction of the coordX and coordY grounded
atoms for all the table-top objects: ∧ncoordX(oi, xi)t ∧n coordY (oi, yi)t.
The state before executing an action is obtained by the iCub by using its per-
ception to obtain object shapes and centroids. For example, the current state
st corresponding to Figure 8 (l) before the tap can be seen in Table 3, where or
is the right (red) object, and ol the left one.

Table 3: Example states for tap action in Figure 8

st st+1

coordX(or)0 : −10.11
coordY (or)0 : 42.70
coordX(ol)0 : −3.17
coordY (ol)0 : 44.60

coordX(or)1 : 0.22
coordY (or)1 : 42.02
coordX(ol)1 : 4.26
coordY (ol)1 : 43.29

In our setting we will use high-level goals, represented by a conjunction of
spatial relations between objects. For example, the goal can be to place a small
prism to the left of a big prism:

goal← shape(O1, sprism)t, shape(O2, bprism)t, left(O1, O2)t.

24

Note that the goal is true if there exists at least a pair of objects O1 and O2

that satisfy goal. If we want to achieve the goal for specific objects, we just need
to replace the logical variables O1 and O2 with the constants of the objects.

Each spatial relation will be defined in terms of the x and y-coordinates of
objects. For example:

left(O1, O2)t ← '(coordX(O1)t) > '(coordX(O2)t).
inshelf(O1)t ← '(coordY(O1)t) > 40.
near(O1, O2)t ← O1 6= O2, ('(coordX(O1)t)−'(coordX(O2)t))

2+
'(coordY(O1)t)−'(coordY(O2)t))

2 < 100.

An object is considered in the shelf (inshelf) if the y-axis coordinate greater
than 40cm, corresponding to objects behind the dotted yellow line in Figure 6).
Two objects are considered near each other if their centre-to-centre distance is
less than 10cm.

The state transition model can be defined from our learnt affordances model.
Using the affordances model, we can compute the object displacements displX
and displY caused by an action with its respective probability distribution.
More specifically, the new x and y-axis coordinates of an object defining state
st+1 are given by the sum between the old coordinates in state s and the dis-
placement of the object due to the action, or are the same as in the previous
state if there is no object displacement. For example, for the x-axis:

coordX(O1)t+1 ∼ val(X)← X is '(coordX(O1)t)+ '(displX(O1)t).
coordX(O1)t+1 ∼ val(X)← X ='(coordX(O1)t), not(displX(O1)t).

The distribution val(v) assigns probability 1 to the value v, in this case the
value is defined in the body of the clause. While not(expr) succeeds if the query
expr fails or is undefined, in this case when displX(O1)t is undefined. In our
running example from Figure 8 the next state x and y-axis coordinates due to
the tap(right, 10) action can be seen in Table 3. For example, the new x-axis
coordinate for the or object in the next state st+1 is: −10.11 + 10.33 = 0.22.

5.2. Adding Goal Constraints in the Environment

As mentioned in Section 2, the DDC framework allows for the definition of
action applicability. The planning algorithm will only select from the applicable
actions, i.e., applicable(action)t holds. In a normal household environment
there are many objects present, however acting on all of them might not make
sense in order to achieve goals (e.g., picking up a fork and a book at the same
time), or an action might not be possible in a given object configuration (e.g., an
object might be hidden behind another object or out of reach). So we want to
define applicable(action)t to enforce any goal constraints in the environment,
which will also narrow down the state space search of the robot when doing
planning.

We showed in previous work [44] how goal constraints about two-arm actions
were added. As a show-case, we show below the precondition that an action

25

should not be executed on a possibly occluded object, that is an object that is
behind another object. We define a possibly occluded object, as any object that
has a y-coordinate greater than that of another object placed in front of it, and
an x-coordinate of its center within ±10cm of that object in front of it. This
can be defined for example with the help of logical rules as follows:

occluded(Obj)t ←'(coordY(SecO)t) >'(coordY(Obj)t),
'(coordX(SecO)t) >'(coordX(Obj)t)− 10,
'(coordX(SecO)t) <'(coordX(Obj)t) + 10.

applicable(push(X))t ← object(X), not(occluded(X)).

Further preconditions for object applicability can be coded depending on the
background knowledge one has about the goal the robot needs to execute. For
example, some actions might only be desirable on certain objects. The DDC
makes it easy to define these goal constraints with the help of logical rules,
which in turn limits the search space of the robot when doing planning.

5.3. Proposed Planning Algorithm

This subsection will present Task (iii), by introducing a planning algorithm
that will allow us to infer the next best action to execute towards reaching the
goal. Once we have defined the DDC state transition model, we adopt a simple
sample-based planner4. The algorithm starts with an initial state s0, a goal G
and a reward function r(s, a|G) derived from G, which we will define shortly.
For each applicable action a0 it samples Ne episodes following a default policy
πD and averages the obtained rewards to estimate Q(s0, a0). Finally, choose the
action that maximizes argmaxa0Q(s0, a0).

Algorithm 1 Planning algorithm for finding the best action towards the goal

1: procedure FindBestAction(s0)
2: for a0 ∈ {applicable actions in s0} do
3: sample Ne episodes of length d from (s0, a0) with default policy πD

4: Q(s0, a0)←
∑d

t=0 rt
Ne

5: end for
6: return argmaxa0Q(s0, a0)
7: end procedure

The default policy πD is a uniform distribution in the applicable actions in
the state s: πD(a|s) = uniform({applicable actions in s}). In DDC this be-
comes:

4An improved, but more involved planner for DDCs, is described in [51], but is outside the
scope of this paper.

26

policyt ∼ uniform(List)← findall(A, applicable(A)t, List).

This algorithm is naive because it evaluates the Q function using a flat pol-
icy, indeed it does not have a policy improvement mechanism. In a discrete
state space policy improvement would be easy to implement, however in a hy-
brid relational domain this requires a non-trivial representation to store the Q
function.

Despite its simplicity, a similar strategy has been used in Monte Carlo Tree
Search with the name “Flat Monte Carlo” [5] with good results in computer
games. In addition, this algorithm is faster than sparse sampling as showed in
preliminary experiments.

In our setting we want to reach a goal G in the minimum number of steps.
That is minimizing the expected cost of reaching the goal assuming each ac-
tion has the same cost c in any state. This is equivalent to maximising the
expected reward in an MDP with a reward function r(s, a|G) = 0 for s |= G,
and r(s, a|G) = −c otherwise, with c > 0. The value assigned to c is not im-
portant (e.g. c = 1), since it gives the same policy. In addition, we assume
a maximum number of steps d to reach the goal (finite horizon MDP). While
the state transition model p(st+1|st, at) is defined as a set of DDCs of the form
ht+1 ∼ D ← bodyt. ht+1 defines a random variable in the next state st+1 with
distribution D when bodyt holds. The body of the clause includes the action
and other conditions that specify when the clause applies.

To implement the planner we use DCPF [52]: a particle filter for DDCs. We
initialize the particles with the initial state s0 (that contains the last observed
object positions) and generate episodes with the default policy as described
in the algorithm. We assume full observability, thus the observation model is
not needed (as in HMM/DBN). Therefore, we exploit DCPF only to generate
sequential samples and store the total reward without observations. The gener-
ation of sequential samples is similar to the procedure described in Section 2.2
for DCs.

As an example, suppose in our model, we observe the initial state with two
sprism objects, object o1 at coordinate (10, 35) and object o2 at coordinate
(12, 55). The goal is to have the two objects near each other, according to the
previously defined near relation (centre-to-centre distance of less than 10cm).
We limit the sampled episode length to d = 4. Table 4 shows the output Q
function estimated by running the planning algorithm for each of the applicable
initial actions. Therefore, the best first action to execute is: push(o1, left, 25).

6. Evaluation and Results

In this section, we shall report on an empirical evaluation of our method us-
ing the iCub robotics platform. First, we will summarize our previous results in
Section 6.1 where we evaluate the differences between the relational affordances
model and the multiple Bayesian Network models needed to cope with multiple
objects in a model using discrete variables only. This comparison aims at eval-
uating the most important property of the model, the action-object selection

27

Table 4: Q function estimate obtained by running planning algorithm

Action Q function estimate
action(push(o1, left, 15)) −3.718
action(tap(o1, left, 10)) −4.434

action(push(o1, left, 25)) −2.402
action(tap(o1, left, 20)) −4.918
action(tap(o1, right, 10)) −4.224
action(tap(o1, right, 20)) −4.999

for an expected effect. Secondly, in section 6.2, we shall investigate whether
the learned relational affordance models can be used for table-top object ma-
nipulation in a setting where a sequence of actions is necessary to reach a goal.
Section 6.2 significantly extends our approaches to relational affordances in that
more complex multi-action plans are needed to reach the goal in a mixed dis-
crete continuous setting. The evaluation is based on the goal success, which is
the number of times that the requested goal is accomplished, a very challenging
task given the uncertainty coming from the model and the robot skills.

6.1. Comparison to Affordances Modelled with BNs

Previous research [46] has also investigated how our relational affordances
approach compares with affordances modelled with the aid of BNs. We will
present here an overview of those results.

The experiments consisted of 200 settings in simulation with an iCub, each
setting with six objects of two possible shapes (square and rect, as seen from
above). Three objects are always in the field of action of the robot, though
the robot might not be able to perform all the actions on every object as this
might violate some rules (e.g. action space for that action, interference with
the hand from nearby objects). The other three objects are placed behind these
and might interact with them when performing an action. All the objects are
randomly placed within certain margins and have a random shape. One such
placement is shown in Figure 10(1). In this setting, we execute all possible
actions with the iCub to get real-world matching effects. Given these effects
and the object properties, the action was predicted and compared against the
ground truth action performed.

Figure 10: Six objects(1), left eye image(2) and its segmented objects(3).

28

In these experiments, the discrete-only variables version 5 of the affordances
model was used, composed of the following variables: (i) Object shape, (ii)
relative location (2D vector) between objects’ centroids, which corresponds to
the relative distance and orientation angle variables. In the continuous model for
planning experiments (shown in Fig. 9, the equivalent variables are displX− and
displY− After an initial domain analysis, they were discretized as follows: the
relative distance in 4 clusters separated at 6cm, 10cm and 14cm; the orientation
angle in 8 clusters of 45 ◦. The action was one of the three possible actions:
grasp, push, tap. The effects are the displacement and its angle orientation,
which are similarly clustered, with the displacement clusters separated at 1cm,
3cm and 5cm, and contact between pairs of objects (possible values: true/false)
[46].

The relational affordances model predicts the action and main object by cal-
culating arg maxA,ObjMain P (AObjMain|O,E) and comparing to the real action-
object pair. The best predicted object to act on is computed by summing over
all possible actions in the above formula, and the best predicted action by sum-
ming over all possible main objects. The six-object BN model has an action
node with 9 possible values (3 actions for each of the 3 reachable objects), and
the MAP estimate is computed to find out the predicted object-action duo. For
the BN model, the data was split into two sets, where one was used for training
and one for testing. For each BN, the results shown in Table 5 are averaged
over 6 runs.

Table 5: Action prediction in six-object scenarios [46].

Prediction Task Total exp. Success Pct.

ProbLog
Model

ObjMain 200 149 74.5%
A 200 137 68.5%
ObjMain and A 200 116 58%

BN Model ObjMain 100 67 67%
(avg over 6 A 100 69.2 69.2%

train/test sets) ObjMain and A 100 67 67%

The two approaches have comparable results; the PPL model is slightly
better at predicting the object to act on, while the BN is slightly better for the
object-action duo. However, the PPL model can be used without being changed
for any number of objects, while the BN needs to be learned again and its size
is approximately proportional to the number of objects in the environment (a
six-object setting BN already has 65 nodes). In addition, the PPL enables
transferring structural parts of the model (e.g. abstract action-effect rules) to
similar domains with more, less or other types of objects. If we want improved

5The hybrid model was developed later

29

accuracy tailored to a setting, the PPL model can also be trained with more
data [46].

We also looked at some learning statistics of the PPL model (summarized in
Table 6): i) the confidence of the predictions (i.e. the value of P (A|O,E)) and
(ii) the number of correct effects produced by an incorrect predicted action.

Table 6: Learning statistics of the PPL affordances model [46].

Prediction Result Statistic Pct.

Success
ObjMain confidence 73.1%
A confidence 90.1%
ObjMain and A confidence 62.6%

Failure Correct effects 67.2%

We see that the confidence of predicting an action is very high, while (as
expected) that of the object-action duo is lower. When our prediction is wrong,
executing the action still manages to produce about 2

3 of the 27 effects correctly,
sometimes a good compromise in complex scenarios [46].

The affordances model is able to achieve the expected configuration of the
objects in a very complex setting, where the number of objects to act upon
is between 3 and 6. The model is able to cope with the object selection, even
though the model does not enforce it, because the goal is to reach a configuration
of the objects independently of which object is acted upon. On one hand, the
BN models perform better for some tasks but at the cost of having multiple
models running at the same time, which includes learning multiple models for
each scenario and selecting the model at runtime. On the other hand, our PPL
model is able to cope with multiple objects, being able to select the action and
object on scenarios with multiple objects (3-6), with the additional advantage
of learning just one model with interactions between two objects.

6.2. Continuous Model performance in two-arm manipulation

In these experiments we evaluate the improvement provided by the continous
model LCGBN, performing action selection as in the experiments of the previous
section. These experiments were presented previously [44], where the PR2 robot
in simulation6 is performing a single arm actions and two-arm actions using the
continuous relational affordance model. Similar to the experiments in Section
6.1, we investigated the action prediction on a scenario with four or six objects
on the table. The relational affordance model was learnt from 300 exploratory
single-arm actions, which were initially modelled by the same LCGBN as in
this paper in Figure 9. The model was then extended by symmetry to the other
arm, and extended by the use of logical rules to represent constraints on two-
arm robot actions (e.g., one arm acts on an object, while the other acts on an

6Gazebo simulator

30

object that interacts with the first object). We then extended the model by
modelling either the sequential or simultaneous use of the arms.

We ran this experiment on 100 action prediction scenarios, where given the
set of object properties O and effects E, we tried to predict the best left and
right arm actions AL, and AR, and the best objects the two arms act on, OL
and OR respectively. We use the SRL model to compute

arg max
AL,OL,AR,OR

P (twoArmA(AL, OL, AR, OR)|O,E)

and compare these to the ground truth action-object pairs.

Table 7: Two-arm model action prediction results [44]

Total exp. Success Pct.
Correct two-arm object(s)/actions 100 68 68%
Correct manipulated objects 100 74 74%
Correct left/right actions 100 68 68 %

Random choice 2.78%
Random choice given constraints 9.52%

Table 7 illustrate that the single arm actions (left/right) modeled by the mix
of continuous and discrete variables perform better than the discrete model. be-
low. For comparison, the robot picks the correct two-arm actions and object(s)
to act on in 68% of the cases in this continuous two-arm experiment, compared
to the single-action affordance model which was 58% (See Table 5). This shows
the improvement of around 10% on single-arm action selection by using the
LCGBN model, and also the viability of a two-arm model for action prediction.

6.3. Sequential planning based on the relational affordances model

We now investigate whether our learnt two-arms probabilistic relational af-
fordances model can be used successfully in a table-top object manipulation
setting, where a sequence of actions of the two arms is necessary to reach a
goal. The goal success of the planning is influenced mainly by: (i) uncertainty
of the affordances model, (ii) uncertainty of the motor capabilities of the robot
and (iii) uncertainty of the visual skills. Thus, the planning algorithm should
be able to cope with accumulated errors from these factors, a very challenging
task.

For the experiments, we use the iCub in a real setting. The iCub uses its
perceptual capabilities to detect the shapes and positions of the objects on the
table. After detecting the objects in the scene, the observations are used by the
planner, which infers the best action to execute towards the goal. The iCub
executes this action. If the goal has not been reached, this process is continued.
We limit in the planner the number of iCub actions to a sequence of maximum 4
actions. Figure 11 shows the data flow between the main software components,
denoted as boxes.

31

Several software libraries and modules available at the iCub software reposi-
tory were utilized and/or extended in order to learn the model and perform the
experiments. The main software modules include the parametric actions mod-
ule, the stereo vision, the image segmentation and the planner. Finally, there is
a master module that controls the perception-planner-action loop, which runs
while the goal has not been reached and the number of actions needed to reach
the goal is less than four.

Perception Planner

Motor action

Stereo

Segmentation

Affordance model

Task definition

Object id, size and location

Action selected,
parameters

Contact detection

Cartesian controller

Images from
cameras

Figure 11: Main software components running for the experiments

The parametric actions module is largely inspired on the actionsRenderin-
gEngine 7 but defining an additional action, the two-hands push. In addition,
all the actions are parametrized with the arm selection and hand displacement
vector, which follows the description of Section 4.1. Similar to the actionsRen-
deringEngine, our parametric actions module is built on top of the actionsPrim-
itive library 8 that allows to define actions as a set of end-effector points in the
Cartesian space. The actionsPrimitive library provides interfaces to stop the
execution if the forces on the arms exceed a threshold, which we utilize to stop
the execution of the pre-action and post-action motions in case of contacts with
the table or other objects. The stereo vision module 9 utilizes the OpenCV 10

stereo algorithm in [23], considering the kinematic chain of the iCub and the
mechanical mounting error of its eyes. After an initial calibration, the stereo
module provides: stereo triangulation and pixel-to-3D mappings. The image

7https://github.com/robotology/icub-main/tree/master/src/modules/actionsRenderingEngine
8https://github.com/robotology/icub-main/tree/master/src/libraries/actionPrimitives
9https://github.com/robotology/stereo-vision

10http://opencv.org/

32

segmentation module 11 provides a YARP [42] wrapper to the confidence-based
edge detector and mean shift segmentation algorithm 12. The planner module
is a script written in the DDCs 13 that receives the input from the perception
module in the form of clauses and outputs the action to be performed by the
robot for a specific goal, so each goal has an associated script. The master
module is a set of Python 14 classes and a script that integrates the perception,
planner and parametric actions in a loop that aims to reach the goal while the
current action leads to the goal in four steps.

Each experiment is set up as follows. The iCub is placed in front of a table
with several objects on it in front of the robot, and the perception-planner-
action loop is executed until the success or failure of the high-level goal. The
robot is also given a high-level goal it needs to achieve. One such example of
initial setting and given goal following the definitions in Sec. 4.1 is:

Initial : shape(o1, sprism), shape(o2, bprism), shape(o3, bprism)
coordX(o1,−22.3), coordY (o1, 37.5),
coordX(o2,−10.5), coordY (o2, 43.2),
coordX(o3, 9.6), coordY (o3, 41.5),

Goal : shape(Q, sprism), shape(R, bprism), near(Q,R)

This initial configuration for the iCub can be seen in Figure 12(l). The
final configuration shows the goal being reached successfully by placing the red
object next to the orange object, where next means the distance between object
centroids less than a predefined value (10cm).

Figure 12: Initial object placement (l), and final object locations (r). The goal is two of the
objects in the environment close to each other

For the goals we assign to the robot, we will use an object placement game

11https://svn.code.sf.net/p/robotcub/code/trunk/iCub/contrib/src/poeticon/poeticonpp/edisonSegmentationModule/
12http://coewww.rutgers.edu/riul/research/code/EDISON/
13https://dtai.cs.kuleuven.be/ml/systems/DC
14https://www.python.org/

33

setting, inspired from [38]. The high-level goal presented to the robot will be one
of the following four, involving spatial relations between objects, in increasing
order of complexity:

• Goal 1. Place any two objects near each other

• Goal 2. Place all sprism to the left of all bprism

• Goal 3. Place two objects in the shelf, namely: a sprism and a bprism.
The sprism must be to the left of a bprism

• Goal 4. Place all objects in the shelf, all sprism to the left of all bprism

two three six
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Goal 1

Goal sucess
Action success
Perception success

two three six
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Goal 2

Goal sucess
Action success
Perception sucess

two three six
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Goal 3

Goal sucess
Action success
Perception success

two three six
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Goal 4

Goal sucess
Action success
Perception success

Figure 13: Performance over goals and discriminated by number of objects. Goal 1 is to place
two of the objects in the world close to each other. Goal 2 is to place all the small objects on
the left of all middle size ones. Goal 3 is to place two objects in shelf, a small and a middle
ones, being the small on the left side of the middle one. Goal 4 is to place all the objects in
shelf, placing all small on the left of all middle ones

For each type of goal, a person placed the objects on the table for the initial
table top setting. Every goal was repeated 30 times, splitted into 10 configura-
tions with two objects, 10 configurations with three objects and 10 configura-
tions with six objects. The tests with six objects were performed in simulation.
Thus, 120 experiments were performed in total, where 80 were performed with
the real robot. It is important to remark that the affordances model learning
was done in simulation, meaning that the uncertainties coming from the fric-
tion, illumination changes and the arm and head motion execution were not

34

included in the affordances model. These variations in perception, action and
physical properties of the objects decrease the success criteria, but will allow to
demonstrate experimentally the robustness of the affordances model to “unex-
pected” perception and action. The success of achieving goals is analysed by
the following criteria:

• Goal Success. The ratio between the number of reached goals and the
number of attempts.

• Motor Skills Success. For each goal attempt, this criterion is 1 if every ac-
tion performed by the robot led to effects observed during the exploratory
phase. If any of the effects were not observed in the previous exploratory
phase, this criterion is 0.

• Perceptual Skills Success. For each goal attempt, this criterion becomes
1 if all the object properties observed (object centroid and object size)
during the sequence of actions were computed in a range of admissible
values (+/- 2 cm). Any object property out of the admissible range will
lead to 0.

It is worth stressing that since the data for learning was acquired in the sim-
ulation, there will be unobserved/unpredicted effects when the robot operates
on a real environment. Examples of such unobserved effects not sampled during
the exploratory phase in simulation include: (i) Errors in the motion controllers
that turned into trajectories that collide with the table and objects, which in
simulation do not happen; (ii) actions that cause large rotations of the objects
(more than 30◦), which in simulation are usually smaller due to the friction
model.

The “Motor Skill Success” along with the “Goal Success” evaluate the ro-
bustness of the decision making process to uncertainty in the action execution,
while the “Perceptual Skills Success” along with the “Goal Success” evaluate
the robustness of the decision making to uncertainty in the perception.

The results summarized in Table 8 were gathered from 120 experiments and
allow us to draw a number of observations: Firstly, the “Goal Success” is larger
than the “Motor Skills Success” for the two-object and three-object subsets,
so the perception + planner modules are robust enough to deal with failures
in the action execution. However, the six-object experiments do not follow
the same pattern because of three types of situations: (i) The experiments
were performed in simulation so the motor and perceptual uncertainty are less
than in the real world and (ii) The planner failed to find a solution in 4 steps
a lot more times than in the other cases. Secondly, the “Goal Success” is
below the “Perceptual Skills Success” as expected, because of the propagation
of uncertainty from the perceptual module to the planner. The execution of
the actions lead to unreachable states due to noisy observations. Thirdly, we
observe that in a ”Perfect world” where neither the action or perception errors
occur, the affordances model + planner is able to reach the goals as expected.
Finally, we remark in the last row of Table 8 the success criteria for every action

35

Table 8: Consolidated results by type of goal. Every goal has three diferent setups (2,3 and 6
objects). The two-objects row averages the two-row settings over all the goals and so on. The
main evaluation criterion of the relational affordances model + planning algorithm is the Goal
Success, which evaluates the robustness of the decision making to uncertainty in the action
execution and perceptual capabilities. The motor skills success and perceptual skills success
acts as reference for the goal success.

Goal Average # of Motor skills Perceptual
success(%) actions success (%) skills success(%)
(± std. dev.) (± std. dev.) (± std. dev.) (± std. dev.)

Two 72.5(9.57) 2.675(0.478) 52.5(15) 75(12.9)
objects
Three 57.5 (17.07) 3.725(1.07) 50(11.54) 62.5(17.07)
objects

Six 55 (23.8) 1.9(0.82) 75(12.9) 70(21.6)
objects

All 61.66 (18.07) 2.76(1.08) 59.16(16.76) 69.16(16.76)
goals

Perfect 95.23 - 100 100
world

Per action - - 85.54 83.73
exec.

executed by the robot, which correspond to the highest possible performances of
the affordances model + planner. Remark that the total performance (62%) is
good when compared to the highest possible performance (85%). This indicates
that the affordances model is very robust to the unobserved/unpredicted effects,
and the generalization properties of the model.

Figure 13 shows the performance measures marginalized by task and com-
plexity, where it can be observed that all of the success criteria decrease their
values as there are more objects in the world. This is expected, since the affor-
dances model was learned in an simplified version of the world, where only two
objects were visible to the robot. Nevertheless, the affordances model + planner
is able to reach goals for table top configurations that were not seen before by
the robot, even in test scenarios where the number of objects is three times more
than the training scenario. In order to increase the success rate of the Goals
3 and 4, the addition of motion planning capabilities for action execution will
avoid undesired contacts with other objects.

The results presented in this section show that basic motor and perceptual
skills (i.e. low-level visuomotor features) can be integrated with highly abstract
representations of the world (i.e. objects and their interactions), reaching suc-
cessfully abstract goals in a multi-object table top environment. The integration
between the low-level and high-level skills consider a hybrid representation of
the world, where continuous and discrete variables are mixed in the learning
and inference processes. In addition, the planning capabilities added to the
affordances model allow to solve for several object arrangements that have not

36

been taught to the robot previously.
Experiments were run on computers with Intel Core i5− 2500 3.3GHz pro-

cessors, 6MB cache, and 8GB memory. We implemented our model with DDCs
and used 1000 samples for planning. Each planning step took about 15(±5.2)
secs. for two object scenarios, 40(±11.1) secs. for three object scenarios, and
220(±22.5) secs. for six object scenarios. The action execution on the real iCub
tool 0.7(±0.12) seconds.

7. Conclusion and Future Work

We have presented a relational affordances model that is able to deal with
continuous and discrete variables, being able to select correctly the action from
a large repertoire while reaching for abstract goals. The robot first learns an
affordances model through its interactions with the environment and is then
able to use the model to plan for and realize its goals. The relational model
generalizes across any number of objects, and can be applied in complex sort-
ing tasks that need planning of manipulation actions in order to reach a goal
configuration. The generality of the model is shown by training the model only
with two-object interactions, which provide the necessary information to per-
form decision making (i.e. action selection) in scenarios having up to six objects.
Configurations in a table-top setting were used, and where acting on one ob-
ject may produce also effects on neighbouring objects. The experiments showed
that the robot is able to realize fairly complex goals while only having a set of
simple perceptual capabilities. The goals are expressed in logic programming
DC syntax, which has the advantage of associating a semantic goal description
to a set of fairly complex rules. The planning algorithm is rather simple, but is
able to solve a larege number of tasks where the number of objects in the world
is not known a priori. The main limitation of the planning algorithm is the
computational complexity, which is exponential in the number of objects in the
scenario. When compared to similar works on affordances, we provide a com-
prehensive affordance model that (i) Considers the relations between mulitple
objects, (ii) model jointly continuous and discrete variables, and (iii) integrate
planning algorithms in order to solve sequential decision making problems in
relational scenarios. The model is not only relevant to affordances, but also to
show the promise of a probabilistic programming approach for robotics.

There are many opportunities for further work. One question is whether it
is possible to learn even more complex affordances that would take into account
tactile perception during the exploration phase. Another one is whether the
addition of spatial relations from conventional motion planning and the use of
other background rules could improve the accuracy of the learned models and the
performance of the planner. Finally, we are currently also working on ways to
directly learn the distributional clauses from observations, rather than indirectly
through the learning via the generalization of a learned Bayesian network. The
addition of those improvements to the relational affordances model and the
planning algorithm should allow to solve more complex tasks and to improve
the performance of the robot.

37

Acknowledgements

This work was partly supported by the EU FP7 Project FIRST-MM, the
IWT via scholarships for BM and DN, the Research Foundation Flanders, and
the KULeuven BOF. Also by Research Infrastructure 22084-01/SAICT/2016 -
Robotics, Brain and Cognition (RBCog-Lab) and Project FCT UID/EEA/50009/2013

Bibliography

[1] Amant, R. S., 1999. Planning and user interface affordances. In: Proceed-
ings of the 1999 international conference on Intelligent user interfaces. pp.
135–142.

[2] Berenson, D., Srinivasa, S. S., 2008. Grasp synthesis in cluttered environ-
ments for dexterous hands. In: Humanoids.

[3] Blum, A. L., Langford, J. C., 1998. Probabilistic planning in the graphplan
framework.

[4] Brown, S., Sammut, C., 2013. A relational approach to tool-use learning in
robots. In: Inductive Logic Programming.

[5] Browne, C., Powley, E. J., Whitehouse, D., Lucas, S. M., Cowling, P. I.,
Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, S., 2012.
A survey of monte carlo tree search methods. IEEE Trans. Comput. Intellig.
and AI in Games 4 (1), 1–43.

[6] Cakmak, M., Dogar, M. R., Ugur, E., Sahin, E., 2007. Affordances as a
framework for robot control. In: International Conference on Epigenetic
Robotics (EpiRob).

[7] Calinon, S., Guenter, F., Billard, A., 2007. On learning, representing, and
generalizing a task in a humanoid robot. Systems, Man, and Cybernetics,
Part B: Cybernetics 37 (2), 286–298.

[8] Christoudias, C. M., Georgescu, B., Meer, P., Georgescu, C. M., 2002.
Synergism in low level vision. In: ICPR.

[9] Cosgun, A., Hermans, T., Emeli, V., Stilman, M., 2011. Push planning for
object placement on cluttered table surfaces. In: IROS.

[10] Şahin, E., Çakmak, M., Doğar, M. R., Uğur, E., Üçoluk, G., 2007. To afford
or not to afford: A new formalization of affordances towards affordance
based robot control. Adaptive Behavior 15 (4), 447–472.

[11] De Raedt, L., 2008. Logical and Relational Learning. Springer.

[12] De Raedt, L., Kersting, K., 2008. Probabilistic inductive logic program-
ming. In: Probabilistic Inductive Logic Programming. pp. 1–27.

38

[13] De Raedt, L., Kimmig, A., Toivonen, H., 2007. Problog: A probabilistic
Prolog and its application in link discovery. In: IJCAI.

[14] Emeli, V., Kemp, C., Stilman, M., 2011. Push planning for object place-
ment in clutter using the PR-2. In: IROS PR2 Workshop.

[15] Fikes, R. E., Nilsson, N., 1971. STRIPS: A new approach to the application
theorem proving to problem solving. Artificial Intelligence 5 (2), 189–208.

[16] Fritz, G., Paletta, L., Breithaupt, R., Rome, E., Dorffner, G., 2006. Learn-
ing predictive features in affordance based robotic perception systems. In:
IROS. pp. 3642–3647.

[17] Geib, C., Mourão, K., Petrick, R. P. A., Pugeault, N., Steedman, M.,
Krueger, N., Wörgötter, F., 2006. Object action complexes as an inter-
face for planning and robot control. In: Workshop: Towards Cognitive
Humanoid Robots at IEEE RAS.

[18] Getoor, L., Taskar, B., 2007. Introduction to statistical relational learning.
The MIT press.

[19] Gibson, J. J., 1979. The Ecologial Approach to visual perception. Boston:
Houghton Mifflin.

[20] Gienger, M., Toussaint, M., Goerick, C., 2008. Task maps in humanoid
robot manipulation. In: IROS.

[21] Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., Raedt, L. D.,
2011. The magic of logical inference in probabilistic programming. CoRR
abs/1107.5152.

[22] Hertzberg, J., Chatila, R., 2008. AI reasoning methods for robotics. In:
Handbook of Robotics. Springer, pp. 207–223.

[23] Hirschmuller, H., Feb 2008. Stereo processing by semiglobal matching
and mutual information. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 30 (2), 328–341.

[24] Jain, D., Mösenlechner, L., Beetz, M., 2009. Equipping robot control pro-
grams with first-order probabilistic reasoning capabilities. In: ICRA. pp.
3626–3631.

[25] Jetchev, N., Toussaint, M., 2010. Trajectory prediction in cluttered voxel
environments. In: ICRA.

[26] Kearns, M., Mansour, Y., Ng, A. Y., 2002. A sparse sampling algorithm
for near-optimal planning in large markov decision processes. Mach. Learn.
49 (2-3), 193–208.

[27] Kjærulff, U. B., Madsen, A. L., 2005. Probabilistic networks - an introduc-
tion to Bayesian networks and influence diagrams. Aalborg University.

39

[28] Kjellström, H., Romero, J., Kragić, D., 2011. Visual object-action recog-
nition: Inferring object affordances from human demonstration. Computer
Vision and Image Understanding 115 (1), 81–90.

[29] Kocsis, L., Szepesvári, C., 2006. Bandit based Monte-Carlo planning. In:
ECML. pp. 282–293.

[30] Kragic, D., Björkman, M., Christensen, H. I., Eklundh, J. O., 2005. Vi-
sion for robotic object manipulation in domestic settings. Robotics and
Autonomous Systems 52 (1), 85–100.

[31] Krüger, N., Geib, C., Piater, J., Petrick, R., Steedman, M., Wörgötter,
F., Ude, A., Asfour, T., Kraft, D., Omrčen, D., Agostini, A., Dillmann,
R., 2011. ObjectAction complexes: Grounded abstractions of sensorymotor
processes. Robotics and Autonomous Systems 59 (10), 740–757.

[32] Kruger, N., Piater, J., Worgotter, F., Geib, C., Petrick, R., Steedman,
M., Asfour, T., Kraft, D., Hommel, B., Agostini, A., Kragic, D., Eklundh,
J.-O., Kruger, V., Torras, C., Dillmann, R., 2009. A formal definition of
object-action complexes and examples at different levels of the processing
hierarchy. Computer and Information Science, 1–39QC 20120426.

[33] Krunic, V., Salvi, G., Bernardino, A., Montesano, L., Santos-Victor, J.,
2009. Affordance based word-to-meaning association. In: ICRA.

[34] Kushmerick, N., Hanks, S., Weld, D. S., 1995. An algorithm for probabilis-
tic planning. Artificial Intelligence 76 (1-2), 239–286.

[35] Lang, T., Toussaint, M., 2009. Approximate inference for planning in
stochastic relational worlds. In: ICML. pp. 585–592.

[36] Lang, T., Toussaint, M., 2010. Planning with noisy probabilistic relational
rules. Journal of Artificial Intelligence Research 39, 1–49.

[37] Lang, T., Toussaint, M., 2010. Planning with noisy probabilistic relational
rules. Journal of Artificial Intelligence Research (JAIR) 39, 1–49.

[38] Lopes, M., Melo, F. S., Montesano, L., 2007. Affordance-based imitation
learning in robots. In: IROS. pp. 1015–1021.

[39] Lorken, C., Hertzberg, J., 2008. Grounding planning operators by affor-
dances. In: International Conference on Cognitive Systems.

[40] Lungarella, M., Metta, G., Pfeifer, R., Sandini, G., 2003. Developmental
robotics: A survey. Connection Science 15, 151–190.

[41] Mcdermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso,
M., Weld, D., Wilkins, D., 1998. PDDL - The Planning Domain Defini-
tion Language. Tech. rep., CVC TR-98-003/DCS TR-1165, Yale Center for
Computational Vision and Control.

40

[42] Metta, G., Fitzpatrick, P., Natale, L., 2006. YARP: Yet another robot
platform. International Journal on Advanced Robotics Systems 3 (1), 43–
38.

[43] Metta, G., Sandini, G., Vernon, D., Natale, L., Nori, F., 2008. The iCub
humanoid robot: an open platform for research in embodied cognition. In:
PerMIS.

[44] Moldovan, B., De Raedt, L., 2014. Learning relational affordance models
for two-arm robots. In: IROS.

[45] Moldovan, B., Moreno, P., van Otterlo, M., 2013. On the use of probabilistic
relational affordance models for sequential manipulation tasks in robotics.
In: ICRA.

[46] Moldovan, B., Moreno, P., van Otterlo, M., Santos-Victor, J., De Raedt,
L., 2012. Learning relational affordance models for robots in multi-object
manipulation tasks. In: ICRA.

[47] Montesano, L., Lopes, M., Bernardino, A., Santos-Victor, J., 2008. Learn-
ing object affordances: From sensory-motor coordination to imitation.
IEEE Transactions on Robotics 24, 15–26.

[48] Mourão, K., Petrick, R. P. A., Steedman, M., 2010. Learning action effects
in partially observable domains. In: ECAI. pp. 973–974.

[49] Murphy, K., et al., 2001. The Bayes net toolbox for Matlab. Computing
science and statistics 33 (2), 1024–1034.

[50] Murphy, K. P., 2002. Dynamic bayesian networks: Representation, infer-
ence and learning. Ph.D. thesis, University of California, Berkeley.

[51] Nitti, D., Belle, V., De Raedt, L., 2015. Planning in discrete and continuous
Markov decision processes by probabilistic programming. In: Proceedings
of the European Conference on Machine Learning and Knowledge Discovery
in Databases (ECML/PKDD) 2015, Part II. Vol. 9285 of Lecture Notes in
Computer Science. Springer International Publishing, pp. 327–342.

[52] Nitti, D., De Laet, T., De Raedt, L., 2014. Relational object tracking and
learning. In: Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA) 2014. pp. 935–942.

[53] Nitti, D., De Laet, T., De Raedt, L., 2016. Probabilistic logic programming
for hybrid relational domains. Machine Learning, 1–43.

[54] Nitti, D., Laet, T. D., Raedt, L. D., 2013. A particle filter for hybrid
relational domains. In: Proceedings of the 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). pp. 2764–2771.

[55] Pasula, H. M., Zettlemoyer, L. S., Kaebling, L. P., 2004. Learning proba-
bilistic relational planning rules. In: ICAPS. pp. 73–82.

41

[56] Pattacini, U., Nori, F., Natale, L., Metta, G., Sandini, G., 2010. An ex-
perimental evaluation of a novel minimum-jerk cartesian controller for hu-
manoid robots. In: IROS.

[57] Sato, T., 1995. A statistical learning method for logic programs with dis-
tribution semantics. In: ICLP. pp. 715–729.

[58] Sinapov, J., Stoytchev, A., 2007. Learning and generalization of behavior-
grounded tool affordances. In: ICDL. pp. 19–24.

[59] Steedman, M., 2002. Formalizing affordance. In: Annual Meeting of the
Cognitive Science Society. pp. 834–839.

[60] Stoytchev, A., 2005. Behavior-grounded representation of tool affordances.
In: ICRA. pp. 3060–3065.

[61] Stulp, F., Beetz, M., 2008. Combining declarative, procedural, and predic-
tive knowledge to generate, execute, optimize robot plans. Robotics and
Autonomous Systems 56, 967–979.

[62] Sutton, R. S., Barto, A. G., 1998. Reinforcement Learning: An Introduc-
tion. MIT Press.

[63] Thrun, S., Burgard, W., Fox, D., 2005. Probabilistic Robotics. MIT Press.

[64] Toussaint, M., Plath, N., Lang, T., Jetchev, N., 2010. Integrated motor
control, planning, grasping and high-level reasoning in a blocks world using
probabilistic inference. In: ICRA.

[65] Ugur, E., Dogar, M. R., Cakmak, M., Sahin, E., 2007. The learning and
use of traversability affordance using range images on a mobile robot. In:
ICRA. pp. 1721–1726.

[66] Ugur, E., Sahin, E., Oztop, E., 2009. Affordance learning from range
data for multi-step planning. In: International Conference on Epigenetic
Robotics (EpiRob).

[67] Vahrenkamp, N., Berenson, D., Asfour, T., Kuffner, J., Dillmann, R., 2009.
Humanoid motion planning for dual-arm manipulation and re-grasping
tasks. In: IROS. pp. 2464–2470.

[68] van Otterlo, M., 2009. The Logic of Adaptive Behavior. IOS Press, Ams-
terdam, The Netherlands.

[69] Wiering, M. A., van Otterlo, M., 2012. Reinforcement Learning: State-of-
the-Art. Springer.

[70] Wörgötter, F., Agostini, A., Krüger, N., Shylo, N., Porr, B., 2009. Cog-
nitive agents – a procedural perspective relying on the predictability of
object-action complexes (OACs). Robotics and Autonomous Systems 57,
420–432.

42

[71] Younes, H. L., Littman, M. L., 2004. Ppddl1. 0: An extension to pddl for
expressing planning domains with probabilistic effects.

[72] Zamani, Z., Sanner, S., Fang, C., 2012. Symbolic dynamic programming
for continuous state and action mdps. In: Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence.

[73] Zettlemoyer, L. S., Pasula, H., Kaelbling, L. P., 2005. Learning planning
rules in noisy stochastic worlds. In: AAAI. pp. 911–918.

[74] Zöllner, R., Asfour, T., Dillmann, R., 2004. Programming by demonstra-
tion: dual-arm manipulation tasks for humanoid robots. In: IROS. pp.
479–484.

43

