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Abstract—In many robotics tasks involving impacts (e.g.
grasping, hitting, kicking) the existence of complex interactions
between the physics of the objects and of the robot makes it
hard to create an analytical model of the interactions that can
be used for prediction and planning. Exploration learning can
enable a robot to autonomously learn such tasks and models
simultaneously by trial and error. The Cost-Regularized Kernel
Regression (CrKR) algorithm has been used successfully for
learning robot skills such as table tennis, ball-in-a-cup, and dart-
throwing. However, despite its effectiveness for fast exploration
learning with few data samples, a matrix inversion is required
for each new trial. This matrix inversion makes the method
computationally expensive so that exploration must finish before
the task is fully learned. We present a novel method that can
learn continually, by selecting the best information for learning at
each step. Using an Adaptive Non-Maximal Suppression (ANMS)
filter, we select a sparse subset of points for the regression for
each new trial. This enables the robot to continue acquiring
samples without the need to discard potentially informative trials.
We compare our algorithm with the original CrKR regression,
showing a good trade-off between the performance and efficiency
of the exploration.

I. INTRODUCTION

The perception of robots as future helpers, capable of
performing tasks with the same dexterity as a human, has
been driving the research of robots with increasing mechanical
complexity. Today robots take the place of humans in the
most tedious and dangerous jobs. They can already be seen
vacuuming people’s homes and searching for life on mars.
However, these are still relatively simple robots, with a high
degree of specialization for a single task. More general robots
with many degrees of freedom and a large number of sensors
have become common in research (e.g. iCub, PR2) and are
also showing signs of increasingly more industrial use (e.g.
Baxter). However, this increase in mechanical sophistication
demands for more advanced control methods. Many tasks that
are relatively simple for humans, such as driving a car or
repairing a broken object, today remain an immense challenge
to robots. The increased complexity of the robots leads to an
increase in the required human effort to model the robot and
its environment for each new task.

An appealing alternative to extensive analytical modeling is
to learn the task and model together by demonstration or by
trial and error.

One practical way to allow robots to learn motor skills
is through the ”programming by demonstration” paradigm
[1]. The main idea is that the motor skill is demonstrated

Fig. 1. A screenshot of our simulated robot learning table tennis by
exploration.

to the robot (typically through kinesthetic teaching) and a
representation of the movement is learned from the recorded
data. One key issue is to find a proper representation for such
movement primitives. Promising approaches draw from the
theory of dynamical systems, giving rise to solutions such as
Stable Estimator of Dynamical Systems (SEDS), sequenced
Linear Dynamical Systems, Implicit Dynamical Systems [2]
and, most notably, Dynamic Movement Primitives (DMPs [3]).
This latter formulation, in particular, has proven to be a very
effective tool for imitation learning, and has been therefore
widely used in robotics and inspired many extensions to add
velocity goals [4] and allow uncertainty and way-points in the
execution [5]. After acquiring a set of primitives we can use
learning to: a) refine the shape of the learned primitive using
PoWER [6], or PI2 [7] b) find a task specific mapping from
perception to the goal for the primitive, which can be done
offline in batch using Gaussian Process Regression (GPR)
[8], [9] or by autonomous exploration using Cost-Regularized
Kernel Regression (CrKR) [10], [4].

To illustrate our methods, in this paper we consider the
task of tennis play learning by a robot with 6 degrees-of-
freedom (see Fig. 1). We represent the learning problem as a
map between the ball state (cartesian position and velocities)
when it passes at a certain distance of the robot, and the desired
hit time and angular position and velocity of the robot end-
effector (see Fig. 2). The task is to hit the ball and make it
bounce on the table.

Our approach is based on CrKR. CrKR is a method that
uses a heuristic cost measure to estimate the uncertainty of
each robot trial. The estimated uncertainty is used to add
variability to the exploration of the task space. If a trial
has been very successful the cost is low and next trial in
similar configurations will require small exploration. On the978-1-5090-6234-8/17/$31.00 c©2017 IEEE
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contrary, if the task was not successful, the cost is large
and more exploration is required. The algorithm requires a
matrix inversion with O(n3) computational complexity and
O(n2) space complexity with the number of trials n. This
severely limits the learning of complex tasks, restricting the
usefulness of the algorithm to tasks in low dimension spaces.
This limitation in the number of data points that can be
collected makes it extremely important to initialise CrKR with
very good (i.e. low cost) initial demonstrations and to choose
very carefully the kernel and its parameters, in order to quickly
converge to good solutions.

In order to make online learning tractable, we need to
approximate the matrix inversion operation. A possible strat-
egy based on splits in the learning process was explored by
Macedo et al. [11]. However, this approach appears sensitive to
the input dimensionality and we could not apply it successfully
to our table tennis task. Another strategy proposed by Nguyen
et al [12] consists in keeping a fixed size dictionary of data-
points. A new trial is only added to the regression when the
data-point achieves a higher independence score than all the
previously collected trials. Although this independence metric
can be calculated by an incremental update it is still compu-
tationally expensive, again limiting the number of collected
samples.
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Fig. 2. In order to generalize a primitive in a 6 dof table tennis robot we
need to find a mapping from the measured state of the ball (with Cartesian
position and velocity) to a desired position and velocity of the robot in joint
space and a desired hit time (R6→ R13)

II. REINFORCEMENT LEARNING OF MOTION PARAMETERS

In this section, we introduce some background information
and the mathematical notation used in the remainder of the
manuscript. We start with Gaussian Processes, a simple class
of models of functions suitable for probabilistic inference in
both regression and classification problems. Next, we intro-
duce CrKR, a kernel method for exploration learning of tasks.
Finally, we present our proposed approach for learning beyond
the point where the cubic time complexity with the number of
samples becomes a limitation.

A. Gaussian Processes

A Gaussian Process (GP) is by definition any distribution
over functions such that any finite set of function values

f (x1), f (x2), ... f (xN ) has a joint Gaussian distribution [13].
The GP is specified by its mean function

E[ f (x)] = µ(x) (1)

and by its covariance function or kernel:

Cov[ f (x), f (x′)] = k(x,x′). (2)

In practice, it is common to assume the mean function is zero
everywhere. The choice of the covariance function is of great
importance since it implicitly encodes assumptions about the
underlying function to be modeled.

Gaussian Process Regression (GPR) is the problem of
modeling a stochastic sampling process by a GP. Given n
training points (xi,yi)

n
i=1, a GPR models a latent function

f (x) that transforms the input x into a prediction y= f (x)+ε
where ε is Gaussian noise with zero mean and variance σ2(x),
i.e. ε ∼N (0,σ2(x)).

The prediction of a GPR is found by calculating the mean
and the variance at a new evaluation point x∗:

f̄ (x∗) = kT
∗ (K+σ2

n I)
−1y

σ2
f (x∗) = k(x∗,x∗)−kT

∗ (K+σ2
n I)

−1k∗
(3)

where K is the matrix where each entry corresponds to
the covariance kernel evaluated on the input training data
Ki, j = k(xi,x j), k∗ is a vector where each entry is the
covariance function evaluated between the input point x∗ and
the remaining training data. The variance of the input data is
σ2

n and y is the vector of the training outputs.
The kernel defines how the model generalizes to new data.

In this way, it provides a prior and specifies the kind of
structure that can be captured by the GP. The specification of
a kernel that represents the particular structure of the problem
being modeled is one of the main challenges in applying
GP for model learning. However, in practice, the squared
exponential (SE) kernel has become the de facto standard
when the structure of the function is unknown or hard to
specify. It is defined by only two parameters that are easy
to interpret. First, the lengthscale or bandwidth of the kernel l
determines the smoothness of the function and how far away
from the training data the GP can extrapolate. The output
variance σ2 determines the average distance of the function
away from its mean. Intuitively it acts as a scale factor.

kSE(x,x′) = σ2 exp(− (x− x′)2

2l2 ) (4)

For problems with D dimension, we can multiply many SE
kernels, each with a bandwidth adjusted to the corresponding
dimension d. This multiplication of kernels with different
bandwidths composes the SE-ARD kernel in eq. 5, illustrated
graphically in Fig. 3.

kSE−ARD(x,x
′) = σ2

f exp(−1
2

D

∑
d=1

(xd− x′d)
2

l2
d

) (5)
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Fig. 3. SE-ARD kernel formed by multiplying two SE kernels with a different
bandwidth.

B. Marginal Likelihood Maximization.

A very important feature of GPs is the ability to compute
the marginal likelihood of a test data set given the model
or evidence. Models can be compared using the marginal
likelihood, which allows automatically tuning the parameters
of a model and its fit to the data.

p(y|x,θ) = (2π)−
n
2 ×|K|− n

2

× exp{−1
2
(yTK−1y)}

(6)

We can write in log form and note that it is differentiable.

log p(y|x,θ) =−1
2
yTK−1

y y− 1
2

log |K|− n
2

log2π

∂
∂θ j

log p(y|x,θ) = 1
2
yTK−1 ∂K

∂θ j
K−1y− 1

2
tr(K−1 ∂K

∂θ j
)

=
1
2

tr((ααT −K−1)
∂K
θ j

)

where α=K−1y
(7)

The free parameters of a GPR are the hyper-parameters of
the kernel. For the SE kernel, these are the output variance σ2

and the bandwidth l. The usual practice to determine the best
parameters is to maximize the log marginal likelihood using
common optimization tools such as quasi-Newton methods or
take advantage of its differentiability (Eq. (7)) and use gradient
methods [14].

C. Cost-regularized Kernel Regression

Gaussian processes assume that the training points are
sampled from the underlying process with Gaussian noise.
However, some tasks are interactive in nature and must be
actively explored by the robot system. CrKR is a kernelized
version of the reward-weighted regression [10], that is suitable
for reinforcement learning (RL) of complex tasks with contin-
uous input and output spaces [10]. A common application of
CrKR is to learn a small set of continuous meta-parameters
that can generalize a motor primitive [10], [4].

Algorithm 1 Cost-regularized Kernel Regression algorithm

Preparation steps:
determine initial state s0, output γ0 and cost c0 of the

demonstration.
initialize the corresponding matrices S, Γ, C.
choose a kernel k, initialize K.
set the exploration/exploitation trade-off λ .

for all iterations j do
Determine the state s j specifying the situation.
Calculate the meta-parameters γ j by:

Determine the mean of each meta-parameter i:
γ̄i(s

j) = k(s j)T (K+λC)−1Γi,
Determine the variance:

σ2(s j) = k(s j,s j)−k(s j,S)T (K+λC)−1k(s j,S),
Draw the meta-parameters from a Gaussian distribution

γ j ∼N (0,σ2)
Execute the motor-primitive using the new meta-

parameters
Calculate the cost c j at the end pf the episode
Update the matrices S,Γ,C with the new sample

end for

CrKR has been successfully applied to many robot learning
tasks such as dart throwing, ball throwing, and table tennis
in many different robots, outperforming techniques like finite
difference gradient and reward-weighted regression [15].

The inference is performed by estimating a maximum a
posteriori (MAP) estimate under a zero mean Gaussian prior.
This is the common approach in discriminative supervised
learning methods like ridge regression, or the Gaussian Pro-
cesses method, for its analytical and computational tractability.
In this case, the inference expression is similar to a Gaussian
noise process with input-dependent (heteroscedastic) variance.
The major improvement, that allows autonomous exploration
by a robot is the replacement in eq. 3, of the term σ2I by λC
to make a cost weighted regression. The open parameter λ
expresses an exploration-exploitation trade-off that scales the
cost function. This is simply an adjustment to the predicted
uncertainty of each sample given by our cost function. Because
of its fundamental similarities, we can look to the approxi-
mate inference strategies employed with other discriminative
methods like GPR (eq. 3) and adapt to CrKR in an exploration
learning task. The CrKR algorithm and a graphical illustration
are provided in Algorithm 1 and Fig. 4, respectively.
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Fig. 4. CrKR after learning from an initial demonstration and performing five
exploration iterations. The pink region shows magnitude of the exploration
noise applied by CrKR for each region, the error bars show the cost of each
tryout.

D. Selection of the Cost Function

Great care must be taken in the choice of a cost function
appropriate to the task. Cost functions that represent some
notion of closeness to the target tend to perform better than
binary success/failure functions in robotic tasks. In the case of
CrKR, the cost function is employed as a heuristic prediction
of the uncertainty at each data-point and is used to guide
the exploration. Another consideration is the possibility of
including desirable properties such as low accelerations in
the computation of the cost. Fortunately for many tasks these
properties of the learned policy can be discovered by the
autonomous agent without needing to be explicitly included
in the cost function. A possible cost function that was shown
mimic some properties of the human reasoning [16], is the
saturated cost function in eq. 8.

c(x) = 1− exp(− 1
2a2

∥∥x−xtarget
∥∥2
) (8)

where a is a tuning parameter that regulates the interval
of distances where the function is most sensitive. This cost
function is locally quadratic but saturates for large deviations
from the desired target. It is also very easy to reason with and
was our choice for the table tennis task. For robot table tennis
we can set a2 = 6 cm, so that trials that miss the paddle will
have almost maximum cost, while successful data points lie
in the more sensitive range of the cost function.

III. ANMS-CRKR
In this section, we describe the main contribution of this

paper, the ANMS-CrKR algorithm. As seen in the previous

section the CrKR prediction step involves the inversion of a
square matrix (K +λC)−1 of order n where n is the number
of samples. The time complexity of most matrix inversion
algorithms is O(n3) and the space for storing the matrix is
O(n2). The high computational complexity becomes specially
relevant when dealing with on-line learning, and real-time
applications were the previous trial must be integrated quickly
in the algorithm to generate the next one.

A possible approach to circumvent the cubic complexity of
regression algorithms is to reduce the instance size by finding
a representative subset of the data points. Since in CrKR each
point has an associated cost we can formulate the problem as
finding the sparsest set1 of N low-cost points2. This is a similar
problem to the selection of key points in images for computer
vision applications. We decided to combine CrKR with ANMS
(Adaptive Non-Maximal Suppression) a filter commonly used
for spatial feature distribution [17], [18]. ANMS works by
sorting the entire data set according to the weights. Then,
starting from the lowest cost data point, all data points are
added in sequence by cost order. For each point, the distance
to the closest point already evaluated is saved and added to
a list. The N points with highest distances in this list are
selected for the regression. This promotes a good coverage
of the state-space. We provide a pseudo-code implementation
of the algorithm in listing 2.

Algorithm 2 Implementation of ANMS Filtering

Preparation steps:
Sort P by cost, let p1,p2,... denote the points in that

order.
Radius List = [(∞, p1)] //(radius,keypoint)

for all pi ∈ P, i 6= 1 do
ri = distance to nearest point already in Radius List.
Add (ri,pi) to Radius List

end for
Sort Radius List by radius, return first k entries in Radius
List.

This method allows retaining a larger number of training
samples from which a subset is used for the regression.
Another advantage is that the filter can use any distance
measure, allowing flexibility in the choice of the kernel for
the regression. In our online regression case since we want
to update our regression for a new trial, we can keep the
P list of points sorted by cost (O(n)). Although naively
ordering by radius takes O(n2), by using a euclidean distance
and approximate nearest neighbors we can reduce this to
O(n log(n)) [17], [19]. Getting the first k elements can be
done by partial sorting O(k log(n)). However since in our case
we do not need the selected data to be in a specific order
the problem can be reduced to partition-based-selection and
solved in O(k log(n)). As such the filter can be implemented

1sparsity is interpreted as the separation between datapoints
2low cost points are more important in guiding exploration to good regions

in the state space.
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Fig. 5. In this figure we can see how CrKR can continue to learn beyond a
fixed budget by selecting the data samples with an ANMS filter. The system is
learning an analytical simulation of the ball trajectory and the robot kinematics
of a table tennis task. The vertical line shows the trial in which the budget
of 250 samples was filled, beyond this line ANMS was used to select the
most representative of all collected samples for regression. Each training
epoch consists of 50 training samples, the results shown are the average,
the maximum and the minimum of 10 runs evaluated after each epoch.

with an overall complexity of O(n log(n)), allowing a much
larger amount of samples to be collected.

IV. EXPERIMENTAL SETUP AND SIMULATION

In order to test the algorithms described in this work, we
designed a robot table tennis experiment. In this experiment,
the goal is to hit a table tennis ball by means of a serial
manipulator with a paddle attached. The experiments were
done in a simulated environment implemented in Gazebo a
multi-robot simulator with dynamics simulation and advanced
3D graphics.

The trial is classified as successful if, after the hitting time
thit , the ball is traveling away from the robot and bounces in
the table. Only the successful trials were used as data points
to update the regression. The position of the ball and of the
paddle at time thit were used to compute the cost c j associated
with the trial according to the saturated cost function of Eq.
8. This sequence of steps during a trial can be seen in figure
6.

To learn the mapping between the state of the incoming
ball and the goal for our robotic manipulator we applied the
proposed ANMS-CrKR algorithm. In this case, the input to the
system is the measured state of the ball’s position and velocity
in cartesian 3D space when it passes at a fixed distance from
the robot. The output is the position and velocity of each
joint of the robotic manipulator at a desired hit time. This
goal is then passed to a motion primitive computed using the
Quadratic Programming (QP) method of [20] to generate an
appropriate trajectory. During the execution of the swing, a

game state tracker stores information to evaluate the cost of
the swing:
• The ball state at the goal time thit .
• The cartesian position of the paddle by computing the

forward kinematics with the measured state of the joints
at time thit .

• The state of the ball in the next bounce from ground or
table after time thit .
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
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(4) update CrKR [sj , γj , cj ]

Fig. 6. The sequence of steps used when learning the motion parameters by
trial and error. At a predetermined distance a snapshot of the ball state s j is
collected (1). The state is used to get a new prediction of the desired robot
state, γ j , by regression with CrKR over the demonstrations and previous
tryouts. The desired state is used to generate a trajectory Jtra j based on
a motion primitive. The Trajectory is then executed in the robot arm (2).
Analyzing the resulting play, we calculate a cost c j (3) that is used to update
the matrices of samples in CrKR (4).

The table acts as a ground plane that significantly limits the
configurations that the serial manipulator can achieve without
collision. To ensure that no collision occurs with the table
we sample the forward kinematics of the generated trajectory
using OpenRAVE [21]. The table was included in the robot
model so that any situation where the arm would collide with
the table is detected internally as a self-collision.

A. Results

The simulation was run starting from an initial set of five
demonstrations and a motion primitive. The system throws
the balls starting with position and velocity sampled from a
uniform distribution that was tuned to generate trajectories
lying mostly within the bounds of the robots reachability.
Regularly the learned policy is evaluated by running a fixed
set of 50 trials with the same probability distribution of the
training samples. The results obtained can be seen in Fig. 7.
We achieved a success rate of 78% according to the criteria
previously described. It should be noted that this rate is
dependent on the trajectory of the balls thrown to the robot,
some trajectories in the test set may be unreachable for the
serial manipulator so a 100% success rate is not possible.
The learned policy can be visualized by variating one of the
input state dimensions and plotting the resulting policy for the
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Fig. 7. The success rate by epoch while learning in the Gazebo simulator for
different λ . After each training epoch of 50 random samples, an evaluation
is performed on a fixed test set of 50 trials. A trial is considered successful
if the ball is hit and bounces the table while moving away from the robot.
The cost is calculated by the expression 8. The plots are an average over 5
different runs for each value of the CrKR exploration/exploitation trade-off
λ . The vertical line marks the point beyond which the samples start to be
chosen by ANMS for the regression.

joint positions in cartesian space by computing the forward
kinematics. Another important consideration is that due to
timings and errors in the physics of the simulation there is
some variability in our test set. The same policy executed in
the same test can result in a slightly different outcome.

V. CONCLUSIONS

In this work, expanding from the known methods used
for RL in this class of robotics problems, we proposed the
addition of a sparsification method based on ANMS filtering.
This sparsification method is capable of choosing online a
low cost and representative subset of the collected samples. By
using this selected subset for regression the robot can continue
learning past the number of samples beyond which the matrix
inversion computation becomes prohibitively expensive. We
test our method in a simulated robot, concluding that it can
learn past conventional CrKR, given the same computational
resources and without showing a significant degradation in the
learning efficiency. Future work will focus on making large
scale statistical tests to thoroughly characterize the ANMS-
CrKR methods, as well as compare with other approximate
kernelized regression methods.
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