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1.1 Motivation and scope |SQ ava Raboss | aca

* Increased interest in surveillance technologies
 In the United Kingdom, there are between 4 million and 6 million CCTV
surveillance [British Security Industry Association (BSIA)]
- one for every eleven people
- each Londoner is caught on camera 300 times each day*

( *http://www.ibtimes.co.uk/britain-cctv-camera-surveillance-watch-london-big-312382)
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Security & Surveillance

= Terror attacks boost calls for more surveillance

DUBAI ASSASSINATION: Hamas
commander Mahmoud Al Mabhouh was
killed in Dubai. (Getty Images

http://www.thejournal.ie/timeline-dzhokhar- http://www.arabianbusiness.com/for-hamas-
tsarnaev-boston-bombing-2106664-May2015/ https://en.wikipedia.org/wiki/7_July_2005_London_bombings murder-suspects-40450.html.

= Extensive research in the surveillance algorithms for automatic
analysis of peoples identity/ behaviour.
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Person Re-identification (Re-ID)

« ldentify subject at different locations and different timings

\§«
[
B

V

* HDA Person dataset: http://vislab.isr.ist.utl.pt/hda-dataset/ (IST-Lisboa)

Challenges:

varying background

illumination changes

Inter-camera variations

occlusion

view-point changes

appearance changes over long term
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Long-term view-point invariant person Re-ID

« Change in appearance over long periods of time
- Which features are robust to long term?

Anthropometry Human gait

« Change in camera or subject pose
- How to get pose invariance?

3D models
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Key contributions

Pose-invariant database, by collecting walking sequences in
different directions using Kinect™ V.2 sensor

Study of the influence of various features on Re-ID (individually
and jointly) and impact of Feature Selection

; 7
2009 ¢
‘Context-aware ensemble fusion framework’ Re-ID system

with view-points as ‘contexts’ (OW

" features depend strongly on the view-points”

<3
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Biometrics for Re-ID

* Biometrics is the science of establishing the identity of an individual based on the physical,
chemical or behavioral attributes of the person. - Handbook of Biometrics

HARD BIOMETRICS SOFT BIOMETRICS

Gender/

Fingerprint  Iris / Retina Face Hand
ethnicity style/ color | measurements

geometry

-een e e - -
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Context-aware view Invariant Re-1D

r— — — — 7 L
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A. Database ———

. A new dataset with 20 people walking in
5 different directions acquired from
Kinect v.2 (300 samples), suitable for
pose-invariant Re-ID.
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B. Feature extraction

Training data

:

Gait cycle
computation

U SN Y

Feature extraction
Anthropometric
Measurements

L (u stafistics) )
(- Gait )
Measurements
L (u,SD stafistics) )
_________________ /l

distance (in meters)

* the functional unit of gait
* the period of contact with the floor of
the same foot

L . L
Pose: 1 Pose: 2 Pose: 4 Pose: 1
I Right Stance I Right Swing I
I Left Swing I Left Stance I

Distance between foot
T
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B. Feature extraction

Anthropometric Gait features
features
Trqining dqi-q Height-(7) Hip angle(L&R)-(4) Hip position(L&R)(x& y)-(8)
Arm length-(7) Knee angle(L& R)-(4) Knee position(L&R)(x& y)-(8)
l Upper torso-(71) Foot distance-(2) Ankle position(L&R)(x& y)-(8)
Lower torso-(1) Knee distance-(2) Hand position(L&R)(x& y)-(8)
Gait cycle Upper-lower Hand distance-(2) Shoulder position(L&R)(x& y)-
. ratio-(1) (&)
computation Chestsize-(1) Elbow distance-(2) Stride-(7)
Hipsize-(1) Head position(x& y)-(4) | Stride length-(J)
l 7 Spine position(x& y)-(4) | Speed-(1)
o T T ———— ) ---~§
" Feature extraction Y
i Anthropometric h | . 7anth tric feat
! Measurements : anthropometric features (mean over a
E (b statistics) ) gait cycle)
i (" Gait AN (i.e., the static physical features defining
I Measurements | the body measurements )
v (uSDstatistics) )}
\ Vi .
Semmmmm e - * 67 gait features (mean & standard
deviation, over a gait cycle)
(i.e., dynamic features defining the kinematics in
walking.)
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Feature selection -SFS

- - Py
-

« Analyse the data in each context individually by leveraging a Feature
Selection (FS) scheme in order to retain only the most discriminative
and relevant features

« Sequential Forward Selection(SFS) algorithm

1. Start with the empty set Y,={T}

2. Select the next best feature x* = argmax[J(Y, + )]
3. Update Y, =Y +x*; k=k+1 xeYi

4. Goto?2
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Context-aware view Invariant Re-1D
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Feature selection and Fusion

. Various Fusion-Feature selection schemes in order to combine anthropometric
and gait features
. The best among the group and thus is considered as the ‘de-facto’ in our context-

aware ensemble fusion framework, at the individual classifier bench.

[Anthro- Re-ID [Anthro- Re-ID
pometric+Gait] > NN — olp pometric+Gait] NN » o/p
FL/NFS FL/FS
Anthro- Anthro-
pometric ' e pometric —' b \
Fusion|—~<:'D Fusion}—pc 1D
Gait f—p NN L7 olp Gait —.—- NN ol

SL/NFS SL/FS

FL- Feature level fusion; SL- Score level fusion
FS- Feature selection; NFS- No Feature Selection
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C. Context-aware ensemble fusion

r— — — /" — — "
Feature selection
bench for contexg I
Context1 (vy) B The direction of walking is estimated by

analysing the direction of joint vector

E - - Context2 (Vo) o - -
' h =h gng- R pegin » Where h =<h,, h,, h, >
Trainin :
data (X)g-------.----b Context3 (v3) = _ )
: Oh (degrees) = tan™* (h, /h,) = 180/
b | Context4 (v4)
- -| 3 Context5 (V5i
L
Test Context
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C. Context-aware ensemble fusion

» Individual ?61
Context-specific score level clhssifier bench
fusion

ﬁ C1
Context-specific score level fusion ?] 2 Context-
S as weighted sum of their scores: [l WA | | Re-ID o/p:

_ | classifier —p> -

S=n *s; +(1-n) *s,, where E e fusion | ] (Ranked list
n €[0,1] 1 54

% C4
n is computed via linear '
interpolation of the two contexts ?| c5 | J

L., N = Vi~ Viegl/[Vi—Vil- Lo

Context V
detector B, @&t

data (y)
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A. Training the individual context-specific classifiers

Re-ID
performances of

individual as well as

fused features
in frontal context

Re-identification Rate (%)

a0

80

70 rF

50

eo &/

— 3% — arm length

— ¥ — upper torso

— & — Upper-Lower ratio
—-%-— chest size

hip size

hip Angle

— # — elbow Distance
—+— spine Position
—— hand Paosition

i fuzion gait
=i fusion anthro+gait

e fusion anthropometric

a

10 12 14 16 18

20

Cumulative Rank score

-Various fusion-FS schemes for performance assessment

= Left lateral Left diagonal Frontal Right diagonal Right lateral
S 100 = i 0 100 _
o 2 ]
© 90 90 - 90 90 90
o
&5 80 80 [ &Y 80 80 ¢ 80
= e S|/NFS
[&] L
2 70 70 70 70 70 &— SLFS
S 60 60 60 60 | 60 FL/NFS
s 1t A= 0 1 A AN 1 Nmm—= FLFS
2 50 50 50 50 = 50 :
0 5 10 5 10 0 5 10 0 5 10 5 10
Cumulative Rank score
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A. Training the individual context-specific
classifiers

« Feature selection (FS) improves Re-ID

accuracy, compared to without FS
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CONTEXT-SPECIFIC FEATURES SELECTED VIA SL/FS SCHEME, DURING
THE TRAINING OF INDIVIDUAL CONTEXT CLASSIFIERS. ONLY 28
FEATURE SUBSET OUT OF WHOLE 74 FEATURES WERE SELECTED.

Fc‘aturc LI LI} F | R} RL Fc‘alurc LI] LD F | RI} RI]
(NFS). MMM
. upper v v lkneeY v |V i
* Score-level fusion works better than the | lover / A kﬂ;‘g | /
. . 1'3!0 rankie u
feature level fusion in Re-ID. sl I S M R e I
hipAngle v lhand¥ sp v
. knaeD'Esl.u_;D v rhandY , vV
« Overall performance of SL/FS is the abbil” | v 7] oy |
best among the group and thus is bty T | o o | 7] o || mbemavty 17
considered as the ‘de-facto’in our head¥sp d strdel ength 7 d
context-aware enser o —’-" . -~
Fusion—-e_
- __-__ w L olp
Score Level Fusion with Feature Selection (SL/FS)
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w LISBOA Computer and Robot Vision Lab :@@ 23




Institute for Systems
and Robotics | LISBOA

B. Context-Specific Score Level Fusion

Context-aware:

(i) Using single context e i
(binary weighted) e s
(i) Using two contexts el conenz :Fz* —3 Content
(linear interpolated weights) e | (e | - s |

ata (x : I 3

. Context4 (v4) I B : C4

Context-unaware (baseline) e 77}
(i) ‘Pseudo baseline’ (local F. - - T

(i) ‘Pure baseline’ (global FS) = ,<m> ________
(iii) equal weights (0.2)
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B. Context-Specific Score Level Fusion

Context-unaware Context-aware
No No All 1 2
context context contexts context contexts
(Pseudo (Pure (equal (binary (adaptive

baseline) baseline) weights) weights)  weights)
Anthropometric  25.33% 60.33% 45.67% 68.67% 68.00%
Gait Re-ID 26.67% 70.33% 53.33% 84.67% 85.67%
Overall Re-ID 74.33% 79.33% 71.33% 88.67% 88.33%
Processing time 25.7sec. 21.64sec. 25.92sec. | 5.59sec. 10.47sec.

Fig: Results of classifier fusion showing our proposed context-aware classifier fusion against context-
unaware baseline case studies. In the former cases, context detector module is enabled whereas in
the latter cases, context-detector module is disabled. The experimental results showed that comparing
to the Context-unaware systems, context-aware systems performed significantly faster (up to 4.5
times) and accurate (up to 17 percentage point better).
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Conclusions

Top contributions
* Along-term Re-ID system leveraging anthropometric, gait and contexts.

* A novel context-aware ensemble fusion framework has been proposed
towards long term Re-ID.

* Novel Kinect based Re-ID dataset with multiple view-points

Take home messages
* Feature selection always helps!
» Score level fusion outperforms Feature level fusion

« Comparing to the Context-unaware systems, Context-aware systems performed
significantly faster (up to 4.5 times) and accurate (up to 17 percentage point
better).

* Learning the contexts
* Multiple contexts (distance, people co-occurances etc.)
| * Collecting more data in more random directions
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Computer and Robot Vision Laboratory (VisLab)

http://vislab.isr.tecnico.ulisboa.pt/
anambiar@isr.tecnico.ulisboa.pt
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