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Surveillance
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1.1 Motivation and scope

• Increased interest in surveillance technologies 

• In the United Kingdom, there are between 4 million and 6 million CCTV 

surveillance [British Security Industry Association (BSIA)]

- one for every eleven people 

- each Londoner is caught on camera 300 times each day*
(   *http://www.ibtimes.co.uk/britain-cctv-camera-surveillance-watch-london-big-312382)



Security & Surveillance
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http://www.arabianbusiness.com/for-hamas-

murder-suspects-40450.html.

1.1 Motivation and scope

 Extensive research in the surveillance algorithms for automatic 

analysis of peoples identity/ behaviour.

7 July 2005 London bombings

https://en.wikipedia.org/wiki/7_July_2005_London_bombings

2013 bombing of the Boston 

marathon.

http://www.thejournal.ie/timeline-dzhokhar-

tsarnaev-boston-bombing-2106664-May2015/

 Terror attacks boost calls for more surveillance



• Identify subject at different locations and different timings

Person Re-identification (Re-ID)
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Challenges: 
 varying background

 illumination changes

 Inter-camera variations

 occlusion 

 view-point changes 

 appearance changes over long term

1.1 Motivation and scope

* HDA Person dataset: http://vislab.isr.ist.utl.pt/hda-dataset/ (IST-Lisboa)

http://vislab.isr.ist.utl.pt/hda-dataset/


• Change in appearance over long periods of time

- Which features are robust to long term?

Anthropometry              Human gait

• Change in camera or subject pose

- How to get pose invariance?

3D models

Long-term view-point invariant person Re-ID

1.1 Motivation and scope



Key contributions
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1.2 Contributions

• Pose-invariant database, by collecting walking sequences in 

different directions using KinectTM V.2 sensor

• Study of the influence of various features on Re-ID (individually 

and jointly) and impact of Feature Selection

• 'Context-aware ensemble fusion framework’ Re-ID system 

with view-points as 'contexts' 

‘’ features depend strongly on the view-points’’



• Kinect based Re-ID

Pose dependent datasets !!

• Context

Related works
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Biometrics for Re-ID

• Biometrics is the science of establishing the identity of an individual based on the physical,

chemical or behavioral attributes of the person. - Handbook of Biometrics

Gender/ 

ethnicity

Hair 

style/ color

Body

measurements Gait
Fingerprint Iris / Retina Face Hand

geometry

HARD BIOMETRICS SOFT BIOMETRICS

2.1 Anthropometric and Gait features
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Context-aware view invariant Re-ID
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A. Database
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• A new dataset with 20 people walking in

5 different directions acquired from

Kinect v.2 (300 samples), suitable for

pose-invariant Re-ID.



B. Feature extraction

Feature extraction

• the functional unit of gait 

• the period of contact with the floor of 

the same foot
Training data

Gait cycle

computation

Anthropometric 

Measurements

(μ statistics)

Gait

Measurements

(μ,SD statistics)



B. Feature extraction
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• 7 anthropometric features (mean over a 

gait cycle)

(i.e., the static physical features defining

the body measurements )

• 67 gait features (mean & standard 

deviation, over a gait cycle)
( i.e., dynamic features defining the kinematics in 

walking.)

Feature extraction

Training data

Gait cycle

computation

Anthropometric 

Measurements

(μ statistics)

Gait

Measurements

(μ,SD statistics)



Feature selection -SFS
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• Analyse the data in each context individually by leveraging a Feature

Selection (FS) scheme in order to retain only the most discriminative

and relevant features

• Sequential Forward Selection(SFS) algorithm



Context-aware view invariant Re-ID
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• Various Fusion-Feature selection schemes in order to combine anthropometric

and gait features

• The best among the group and thus is considered as the ‘de-facto’ in our context-

aware ensemble fusion framework, at the individual classifier bench.

FL- Feature level fusion; SL- Score level fusion

FS- Feature selection; NFS- No Feature Selection

Feature selection and Fusion  
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FL/NFSFL/NFS

SL/NFS

FL/FS

SL/FS



C. Context-aware ensemble fusion
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The direction of walking is estimated by 

analysing the direction of joint vector

ℎ =ℎ end - ℎ begin , where ℎ =< hx , hy , hz >

𝛳ℎ (degrees) = tan−1 (hz /hx) ∗ 180/π



C. Context-aware ensemble fusion
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Context-specific score level 

fusion

Context-specific score level fusion 

S as weighted sum of their scores:

S = η ∗ si +(1−η) ∗ sj , where 

η ∈ [0,1]

η is computed via linear 

interpolation of the two contexts 

i.e., η = |vj−vtest|/|vj−vi|.
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-Various fusion-FS schemes for performance assessment

A. Training the individual context-specific classifiers

22

Re-ID 

performances of 

individual as well as 

fused features

in frontal context



A. Training the individual context-specific 

classifiers
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• Feature selection (FS) improves Re-ID 

accuracy, compared to without FS 

(NFS).

• Score-level fusion works better than the 

feature level fusion in Re-ID.

• Overall performance of SL/FS is the 

best among the group and thus is 

considered as the ‘de-facto’ in our 

context-aware ensemble fusion

Score Level Fusion with Feature Selection (SL/FS)



B. Context-Specific Score Level Fusion
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Context-aware:

(i)  Using single context 

(binary weighted)

(ii)  Using two contexts 

(linear interpolated weights)

Context-unaware (baseline):

(i) ‘Pseudo baseline’ (local FS)

(ii) ‘Pure baseline’ (global FS)

(iii) equal weights (0.2 )



B. Context-Specific Score Level Fusion
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Fig: Results of classifier fusion showing our proposed context-aware classifier fusion against context-

unaware baseline case studies. In the former cases, context detector module is enabled whereas in

the latter cases, context-detector module is disabled. The experimental results showed that comparing

to the Context-unaware systems, context-aware systems performed significantly faster (up to 4.5

times) and accurate (up to 17 percentage point better).
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Top contributions

• A long-term Re-ID system leveraging anthropometric, gait and contexts.

• A novel context-aware ensemble fusion framework has been proposed 

towards long term Re-ID.

• Novel Kinect based Re-ID dataset with multiple view-points

Take home messages 

• Feature selection always helps!

• Score level fusion outperforms Feature level fusion

• Comparing to the Context-unaware systems, Context-aware systems performed 

significantly faster (up to 4.5 times) and accurate (up to 17 percentage point 

better).

Conclusions
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• Learning the contexts

• Multiple contexts (distance, people co-occurances etc.)

• Collecting more data in more random directions
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