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In this work we address the multiple person tracking problem with resource constraints, which plays a
fundamental role in the deployment of efficient mobile robots for real-time applications involved in Human
Robot Interaction. We pose the multiple target tracking as a selective attention problem in which the
perceptual agent tries to optimize the overall expected tracking accuracy. More specifically, we propose a
resource constrained Partially Observable Markov Decision Process (POMDP) formulation that allows for
real-time on-line planning. Using a transition model, we predict the true state from the current belief for a
finite-horizon, and take actions to maximize future expected belief-dependent rewards. These rewards are
based on the anticipated observation qualities, which are provided by an observation model that accounts
for detection errors due to the discrete nature of a state-of-the-art pedestrian detector. Finally, a Monte
Carlo Tree Search method is employed to solve the planning problem in real-time. The experiments show
that directing the attentional focci to relevant image sub-regions allows for large detection speed-ups and

improvements on tracking precision.

1. Introduction

Developing efficient adaptive sensing systems
that are capable of dealing with computational and
power limitations as well as timing requirements
is of the utmost importance in a wide range of
fields, including automatic surveillance (Sommer-
lade and Reid, 2010), sports analysis (Wang and
Parameswaran, 2004) and human-robot interaction
(HRI) (Mihaylova et al., 2002).

In multiple object tracking with resource con-
straints scenarios, the observer’s goal is to predict the
best regions in the visual field to attend, in the quest
to evaluate if they pertain to a given set of persons
of interest, and thus to prune the visual search space
by filtering out irrelevant image locations. Current
state-of-the art object detection algorithms are based
on exhaustive search, sliding window approaches,
which are typically inefficient and agnostic to top-
down temporal context.

In this work, we propose a probabilistic frame-
work which poses the multiple object tracking-by-
detection problem as an on-line, resource constrained
decision making, aimed at minimizing the com-

bined targets’ state uncertainty, while coping with
computational processing limitations (see Figure 1).
More specifically, we pose our decision framework
within the Partially Observable Markov Decision
Processes (POMDPs) domain in order to account for
non-deterministic dynamics and partially observable
states. The derived dynamic resource allocation de-
cision process combines prior knowledge about the
targets’ state dynamics with accumulated probabilis-
tic information provided from sequentially gathered
observations, in order to optimize multiple target
location estimation precision (i.e. minimize tracking
uncertainty). In the proposed formulation, actions are
taken from a low dimensional binary space. This
allows for finding decision policies in real-time using
on-line, tree-based, planning algorithms for finite
horizon POMDPs (Ross et al., 2008). Our framework
relies on object detections with associated confidence
measures, obtained from visual information, that are
used to drive the observer’s attentional focus during
multiple object tracking.

Our main contributions are the following. First,
we model the state-dependent uncertainty that arises
during detection due to the discrete nature of the
sliding window based detector. Then, we apply an



online Monte Carlo Tree Search method to solve the
planning problem in real-time. The computational
benefits of our methodology are demonstrated in a
multiple person tracking scenario, by combining it
with a state-of-the-art pedestrian detection algorithm
(Dollar et al., 2014). Moreover, we note that the
proposed decision making pipeline can be combined
with any general object detection algorithm. All the
methodologies have been implemented in C++ to
make them suitable for video surveillance or real-
time applications involving robotic platforms pro-
vided with vision.

The remainder of this paper is structured as
follows. In section II we overview some related work
available in the literature. In section III we describe
the various components involved in the proposed
adaptive tracking pipeline. In section IV we assess
the proposed methodology performance by evalu-
ating the balance between efficiency (low compu-
tational requirements) and effectiveness in multiple
object tracking task-execution. Finally, in section V
we wrap up with some conclusions and future work.

II. Background

Adaptive sensing is a trendy topic in many
areas including computer vision (Gedikli et al.,
2007), robotics (Spaan et al., 2015) and neuro-
science (Van Rooij, 2008). Like biological systems,
artificial systems are equipped with limited compu-
tational and energetic resources, and thus, modeling
and replicating the observed mechanisms of selective
attention in humans, is of primordial importance to
develop more efficient and robust strategies for visual
tasks.

Current state-of-the art object detectors are based
on expensive binary classifiers which typically op-
erate over the full image space, in a sliding win-
dow manner. When combined with fast bottom-
up saliency-based approaches that generate object
bounding box proposals, the overall detection pro-
cess becomes more efficient (Zitnick and Dollar,
2014), since regions that are unlikely to contain ob-
jects are discarded for further processing. However,
these approaches are agnostic to object dynamics,
and are solely based on low-level visual features.

Resource-constrained adaptive sensing, is within
a different line of research, and accounts for dy-
namical uncertain environments and noisy sensors
for sequential decision making. The temporal in-
tegration of continuously gathered noisy detections

is used to predict future environment states and
decide, in a top-down manner, where to allocate
the limited sensing resources, according to some
task-related goal. It has been shown that adaptive
sensing improves not only processing efficiency but
also estimation robustness when compared to non-
adaptive approaches (Malloy and Nowak, 2014).

Adaptive sensing problems can be formulated as
POMDPs (Ahmad and Yu, 2013)(Butko and Movel-
lan, 2010)(Chong et al., 2008) that, depending on
the way they compute the policies, belong to two
different paradigms: Offline methods compute full
policies before run time. Despite achieving remark-
able performance in visual search tasks, these often
require the evaluation of many possible situations,
via backward induction, and hence take a consid-
erable amount of time (e.g. hours). Online decision
approaches avoid the computational burden of com-
puting full policies for many situations, by departing
from the current belief state and simulating future
rewards for a finite planning horizon (Ross et al.,
2008).

Within the online POMDP domain, the work
closest to ours is the one in (Chong et al., 2008),
which proposed a formulation for general adaptive
sensing problems. The authors applied rollout tech-
niques which are guaranteed to improve upon a
provided base policy, that may be hard or impos-
sible to compute. Rollout techniques evaluate the
candidate actions, by running many Monte-Carlo
simulations and returning the action with the best
average outcome.

In this work we rely on a different, widely
known algorithm named Monte Carlo Tree Search
(MCTS) (Browne et al., 2012), which has recently
been given much attention by the Artificial Intelli-
gence community due to its outstanding performance
in the game Go (Gelly et al., 2012). MCTS combines
tree search with randomized rolllout simulations,
being ideal for decision making under uncertainty.
To our knowledge we are the first to apply an online
tree-based POMDP solver in a stochastic resource-
constrained multiple object tracking scenario.

III. Adaptive Sensing: Probabilistic
Multiple Person Tracking under
Resource Constraints

A POMDP for general active sensing can be de-
fined as a 6-element tuple (X, A, Y, T, O, R) where
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Fig. 1: The proposed resource-constrained multiple pedestrian tracking pipeline. Given a set of persons being tracked, our
decision making algorithm decides which sub-regions of the visual scene to attend. Then, a sliding window-based detector
is applied to the selected search regions, instead of the whole image. For each region a winning candidate is obtained via
maximum suppression and fed to the associated tracker with probabilistic measures queried from the observation model.

X, A and Y denote the set of the possible environ-
ment states, perceptual actions and observations, re-
spectively. State transitions are modeled as a Markov
process and represented by the probability distri-
bution function (pdf) T'(xs, xi—1) = plat|ai—1).
Observations are generated from states according to
the pdf O(z+, ar, yi) = p(ye|we, ar).

Under the resource-constrained adaptive sensing
domain, the goal of the planning agent is to devise
control strategies that generate perceptual actions
from belief states, such that some intrinsic cumu-
lative reward is maximized, while accounting for
perceptual limitations. In the rest of this section we
describe our resource-constrained POMDP formula-
tion for multiple pedestrian tracking scenarios.

Let us consider a set of targets indexed by L =
{1,..., K}, being tracked in a 2D image plane Z,
with state z¥ € X C R? given by

mk:,c
zf= "1 )

where 7%:¢ = (u,v) and x** represent the bounding
box centroid image coordinates and scale, respec-
tively. Moreover, let us assume a stationary Markov
chain p(z¥|z¥ ;) in order to model the object’s
state transition between consecutive frames. Simi-
larly to (Bewley et al., 2016) we assume sparsity-
in-space and independence among targets, and a
linear constant-velocity dynamics model, which is a
good approximation for targets that move with low
acceleration in 3D and are not too close to the image
plane. Finally, we assume that the targets’ states are

partially observable and statistically explained by the
observation model distribution p(y¥|z¥).

A. Recursive Bayesian Estimation

Object tracking can be achieved by means of recur-
sive Bayesian estimation, according to

def
bf :ep(l'ﬂyft)

=np(ys|xf )by )

where b¥ represents the belief posterior probability
over the target state =¥, given the set of all gathered
observations yt., taken up to time ¢, 7 is a normal-
izing factor and

b= [olablat Db e O

represents the belief after the prediction step. Fur-
thermore, we assume Gaussian state transition and
observation noises and hence tracking is optimally
performed using K independent Kalman filters. At
each time instant, each Kalman filter provides a
parametric posterior probability distribution function
(pdf) over the target state

by = N (&}, %)) (4)

jk,c
B = | ha 5)

t

where

is the estimated state and
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is the error covariance matrix. Note that here we
consider a diagonal covariance matrix and aggregate
the centroid components in order to ease the notation.

B. Observation Model

The observations provided by the object detector are
localized bounding boxes, obtained with a pedestrian
detection algorithm. More specifically, at each time
instant the agent collects a set of observations

Y, = {y{jk —1, K} )

each corresponding to a noisy projection of the &
target state.

Detection noise has several origins, the easiest to
model being the one originated by the discrete nature
of the detector. The noise affecting the center of a
bounding box Eghoe has two origins, both depending
on the scale of the bounding boxes: ¢, the error due
to the sliding window process and €, , the error due
to the uncertainty of the size of the bounding box.
The value of sliding window jumps Qs depends on
the scale of the detection:

s =5"Qs(0) ®)

where 7, is the number of pixels between two
consecutive sliding window positions at scale n and
s™ is the value of scale n, defined as:

st = 2% )

where N is the number of scales per octave. The
present implementation of the detector has N = 8.

The value of the jumps of the bounding box
center-bottom due to scale change, depend on the
scale. The number of pixels is given by Q.. and
Qscy, for the z and y coordinates, respectively. In
the worst case scenario, a jump from the actual scale
to the coarsest one, these values are given by:

ne=uwl (2% —2%)/2 (10)
n, =@ —2%)/2 (11)

where w” and h? are the width and the height of the
smallest bounding box (n = 0).

Assuming a Gaussian distribution for these quan-
tization errors, the statistics of €5 are given by

n 0 n ( 7}[)2 0 }
sl — 5 sl — 3 n (]2)
st |: 0 :| l |: 0 (Qsl)2
Regarding €,.,, we approximate the statistics of
these errors by the worst case which is given by

n 0 n o ( ?c:c)2 0
/’Lsc’|:0:|525c’\’|: O (n)Q:l (13)
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Since both sources of noise are independent but
not additive, our observation model considers the
largest one at each time. This yields the final image
observation error £™:

e” ~ N(0,2™) (14)
where
" = max(Xh, 37.) (15)

C. Dynamic Search Regions

Let us now consider different time-varying (dy-
namic) regions of interest (i.e. bounding boxes) to be
attended, each delimiting a target instance hypothesis

u = U u,’f where uf cX (16)
kek

Search regions are deterministically and analytically
determined from beliefs according to the following
mapping function

foaf, o — uf (17)

which is defined as follows
ul = {i“fc — acof’c,if’c + acaf’c] X (18)
[xf — gt B 4 asaf’s] (19)

where o, and o, are user selected parameters that
control the width of the confidence bounds and thus
the size of the search regions. This definition ac-
counts for the confidence level of the true target state
being within the search region. The user selected
parameters permit balancing the trade-off between
accuracy and allocation effort (larger vs smaller
regions).

Furthermore, we assume that each region has a
deterministic, time-varying binary activation state

A={d" cB,kec K} =BK (20)

where B = {0,1} with 0 and 1 meaning “not
processing” and “’processing”, respectively. Decision



making is therefore performed in a finite multi-
dimensional binary action space and involves select-
ing which sub regions of the image space to apply
the sliding window detector to perform measurement
update steps. The belief becomes dependent on ac-
tions as follows

B = 4%
‘ np(y|xf)bf

if af =0

21
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where 7 is a normalizing constant. For attended
regions, the predicted belief is approximated by the
expected expected observation uncertainty given by
the observation model, over a finite set of space
points corresponding to detection windows V¥ C X
in the search region k, according to

1"
bi(af) = ey p(yflaf by’ ifaf =1 (22)

i=1

where ¢ is a normalizing constant, |V*| is the
number of detection windows and bt = p(at[bh).
Each p(y¥|zi") is queried on-line from the learned
observation model. Assessing multiple z! € uf
instead of just z; should better approximate the error
distribution.

D. Resource constrained POMDP with
belief-dependent rewards

As previously noted the decision making involved
in resource constrained multiple target tracking sce-
narios can be formulated within the POMDP frame-
work. The perceptual agent tries to minimize track-
ing uncertainty by prioritizing its limited attentional
resources to promising image regions. The instanta-
neous reward function should thus reflect the action
contribution to maximizing the information regarding
the targets’ states. Similarly to (Araya et al., 2010)
let us define the instantaneous reward at time ¢ as
the negative entropy of the belief state, given by the
following expectation

r(b; (ay)) = / b log b} d, (23)

For Gaussian beliefs this reward becomes simply
given by

r(bf (ay)) ~ —log(|=F]) 24)

Inspired by the evidence of visual processing

capacity limitations in humans (Xu and Chun, 2009),

we formulate the proposed resource constrained in-
formation maximization as follows:

T K
maximize Rp=F Z o T(berT(aerr))
@ =1 k=1
K
. k
subject to Z aiyr < Kmax  Veequ,..1}
k=1
K
ko k
Zat+r|“t+r|§ SmaxAp  Vref1,.,1}
k=1

where T is the planning horizon, E [-] is the expecta-
tion operation, () is the reward function, v € ]0, 1]
is a discount factor, |u}, | is the area of the k search
region, K, is the maximum region-based activation
capacity, A, is the image pixel area and Sy, is the
relative maximum image area that the visual system
may process per time-instant. The first constraint
reflects short-term memory limitations and allows
reducing the action space (assuming Kp.x < K),
and thus the branching factor during planning. The
second is motivated by computational effort and
timing limitations that arise during visual processing
and contributes to prune infeasible planning tree
branches, by prioritizing resources to higher uncer-
tainty targets.

E. Monte Carlo Tree Search (MCTS)

The MCTS algorithm relies on Monte-Carlo simula-
tions to assess the nodes of a search tree in a best-
first order, by prioritizing the expansion of the most
promising nodes according to their expected reward.

In a nutshell, the algorithm runs Monte Carlo
simulations from the current belief state (i.e. input
root node), and progressively builds a tree of belief
states and outcomes. In the end, the most promising
action is returned. Each run comprises four phases
(see Fig. 2):

1)  Selection: In the selection step a sequence
of actions are chosen within the search
tree. Tree descending is performed from
the root until a leaf node is reached.
Action selection is typically carried out
using an algorithm named Upper Confi-
dence Bounds for Trees (UCT) (Kocsis
and Szepesvari, 2006), which elegantly bal-
ances the exploration-exploitation trade-off,
during action selection. On the one hand,
based on the current accumulated simulated
knowledge, the planning agent should select
actions that may lead to the best immediate
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Fig. 2: Monte Carlo Tree Search (image taken from (Browne et al., 2012)].

payoffs (exploitation). On the other hand,
the agent should select unexplored actions
since they may yield better long-term out-
comes;

2)  Expansion: an action that leads to an un-
visited node is selected and the resulting
expanded leaf node is appended to the tree;

3) Simulation: From the expanded node, ac-
tions are taken randomly in a Monte-Carlo
depth-first manner, until a predefined hori-
zon or a terminal state is reached. Simula-
tion depth (i.e. time horizon) is typically
fixed, to deal with real-time constraints.
Since sampling from a uniform distribution
over actions may be suboptimal, problem
specific knowledge should be incorporated
to give larger sampling probabilities to
more promising actions. In our specific
problem, we bias this sampling distribution
such that regions with higher entropy are
prioritized.

4)  Back-propagation: Finally, the simulation
rewards are back-propagated to the root
node. This includes updating the reward
rate stored at each node along the way.

Finally, runs are repeated until a computational bud-
get (i.e. a triggering timeout or a maximum number
of iterations) is reached, and the best action from the
root node is selected.

1) Upper Confidence Bounds for Trees (UCT)

The idea of using Upper Confidence Bounds (Auer
et al., 2002) on rewards to deal with the exploration

exploitation dilemma in the face of uncertainty,
has been widely applied to reinforcement learning
problems. In MCTS, Upper Confidence Bounds for
Trees (UCT) are typically employed in the selection
phase, while descending the tree. The upper con-
fidence bound accounts for the currently estimated
value of the action, and the estimated UCT variance,
according to

log n,,

UCT(a)=7r+c (25)

Ng
where 7 is the estimate for the value of the action
based on the simulated payoffs, n, is the number of
times the node has been visited, and n,, is the number
of times an action a has been tried from that node.
The constant c is a problem-dependent parameter that
balances the exploration-exploitation trade-off.

IV. Experiments

In order to evaluate the proposed resource-
constrained tracking approach we performed a set
of experiments on the TUD-Stadtmitte MOTChal-
lenge dataset (Leal-Taixé et al., 2015), which allows
to evaluate tracking performance with the CLEAR
MOT metrics and known ground truth (Bernardin
and Stiefelhagen, 2008). This dataset comprises a
video sequence of 179 images, acquired with a static
camera with 640 x 480 image resolution. An average
of 8 pedestrians are present in the visual field, during
the video. To quantitatively assess the performance
of our methodologies we focused our evaluation in
the time speed-up gains and in the multiple object



tracking precision (MOTP), which is the total error
in estimated position for matched object-hypothesis
pairs over all frames, averaged by the total number
of matches:

i di
Dot

where di € [0, 100] quantifies the amount of overlap
(in percentage) between the true object o; and its
associated hypothesis bounding boxes, and where ¢,
is the number of matches found for time ¢. The
MOTP shows the ability of the tracker to keep
consistent trajectories.

MOTP =

(26)

Our aim was to investigate the performance
of the proposed methodologies dependency on the
resource-constraints. We considered the following
activation capacities Kn.x € {1,2,3,4} and maxi-
mum processing image areas Spmax € [0.1,1.0]. Since
the MCTS method is randomized, we performed 100
trials for each combination of parameters. The region
size parameters where found empirically and were
set to o, = as = 1. At each time step, the MCTS
planning root node was set to the current tracking be-
lief, and the algorithm was allowed to run for 10ms.
Finally, the simulation step depth was set to 3 and
~ was set to 0.9. The association between detections
and trackers was performed with the Hungarian Al-
gorithm (Burkard et al., 2009) using the Mahalanobis
distance. The tracking process is bootstrapped in the
first frame, by applying the pedestrian detector to
the whole image and instantiating a tracker for each
detection. These trackers are kept during the entire
video sequence, and every non-assigned detection is
discarded, i.e., trackers are not further created.

The results presented in Figure 3 demonstrate that
planning future resource allocations in a constrained
setting, improves simultaneously detection times and
tracking precision, when compared with the baseline,
full-window detector.

As illustrated by the temporal gain plots (first
row of Figure 3), our method achieves detection
times around 12 times faster than the baseline de-
tector applied to the full-window (0.02 against 0.24
seconds, for Sy.x = 0.1), with comparable tracking
performance. Furthermore, the MOTP metric results
demonstrate that, on the one hand, constraining
the attention to regions with high probability of
pertaining a person, allows to improve detection
accuracy and to reduce the possibility of erroneous
detections in the targets’ vicinities, which may lead
to bad detection-tracker associations and hence de-
grade tracking precision. On the other hand, ignoring
regions that are unlikely to contain a person allows to

reduce the number of spurious wrong detections (i.e.
False positives) that may also contribute to tracking
performance degradation.

In conclusion, in the constrained setting the
allocation of more computational resources yields
better tracking precision, at the cost of increased
computational effort. Therefore, depending on the
application requirements, this trade-off can be easily
balanced by carefully selecting the Kp,x and Spax
resource-constraints.

V. Conclusions and Future Work

In this paper we have addressed the multiple
object tracking (MOT) problem with constrained
resources, which plays a fundamental role in the
deployment of efficient mobile robots for real-time
applications involved in HRI. We have framed the
multiple object tracking within the POMDP domain
and proposed a problem formulation that allows
for on-line, real-time, planning with a state-of-the-
art Monte Carlo Tree Search methodology. The
results presented in this work show that directing
the attentional focci to important image sub-regions
allows for large detection speed-ups improvements
on tracking precision.

The major limitation of our approach is still
its incapacity of dealing with non-sparse targets. In
the future, data association should also be consid-
ered during planning by integrating data associa-
tion methodologies such as joint probabilistic data-
association (JPDA) (Hamid Rezatofighi et al., 2015).
Another shortcoming of our methodology is its inca-
pacity of locating new pedestrians appearing on the
scene, in an efficient manner. However, this can be
easily overcome by considering proposals generated
by bottom-up saliency methods.

Finally, we note that the targets’ dynamics and
the observation distributions are extremely non-linear
and non-Gaussian. Therefore, a mixture of particle
filters (Okuma et al., 2004) would be more appro-
priate for our particular problem, and hence improve
tracking accuracy at the cost of some additional
computational effort.
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