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Abstract

Robots have the great potential of replacing or supporting humans at dan-

gerous and straining tasks. For this to be possible, robust real-world loco-

motion is a crucial robot skill. For example at challenging scenarios such

as disaster sites, robots have to be able to perceive, reason about and deal

with obstacles, surface irregularities, slipperiness, etc. On top of this, robots

might have to temporarily depend on batteries and as such energy expended

on locomotion must be minimized. As we will review in this thesis, humans

are known to be able to optimize locomotion energy, to prospectively plan

their gait in challenging situations (think rubble, ice, rock climbing) and to

greatly deal with perception uncertainty. Based on these observations, in

this thesis we assume that insights from human gait and perception studies

can inform planning and perception methods in robotics.

In particular, in this thesis we tackle the problem of obtaining low-

electrical-energy, collision-free and slippage-free locomotion plans for biped

humanoid robots. Our objective is to integrate not only collision but also

energy and friction into planning algorithms. We tackle the problem at both

planning and perception levels, using principles inspired by human gait and

perception studies such as energy minimization, approximate gait models,

uncertainty models, and hierarchical planning. Concretely, at the planning

level we Ąrst propose footstep and whole-body-motion planners for biped

humanoid robots which are applicable to Ćat, slanted and slippery terrain.

A high-level A* footstep planner uses state-transition-cost and cost-to-go

models based on simple principles and representations gathered from human

gait literature which lead to energy eicient and human-like motion. Then,

a lower-level whole-body planner uses the same cost functions and extra col-

lision constraints to further optimize locomotion plans. At the perception

level we propose algorithms for both geometry and friction estimation from

vision. At Ąrst, we compare the performance of humans to that of diferent

computer vision algorithms at the visual friction estimation task. We reach
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important conclusions for robot autonomy, robot teleoperation and human

perception of friction. Based on these results we develop an algorithm that

estimates friction from material classes using semantic segmentation on Deep

Neural Networks. We then estimate the uncertainty of friction predictions

and incorporate it into the planning problem itself for robust plan feasibil-

ity. Regarding geometry estimation we study uncertainty measures of stereo

matching and incorporate them into time-Ąltering methods for higher 3D

reconstruction accuracy. The complete system is integrated and tested both

in simulation and on the real robot WABIAN-2 using challenging scenarios

with obstacles, slopes, and surfaces of varying friction.
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Chapter 1

Introduction

1.1 Overview

Robots have been used in the industry for quite some time now, where they

excel at repetitive and controlled tasks such as assembly-line manufacturing,

sorting, warehouse transportation and others. Thanks to this maturity, there

is now a growing interest in applying robots to service tasks in more general

and unstructured environments as well.

Robots that can handle general environments would be useful for a num-

ber of applications:

a) Disaster response. Hazardous environments such as leaking nuclear

power plants, mines or Ąres pose important challenges to response in-

stitutions. In the case of Ąres and leaking nuclear power plants, recon-

naissance missions are needed to assess the damage or reduce risks for

human workers, but even simple locomotion on the Ąeld is already life-

threatening in itself. For example, the Great East Japan earthquake of

2011 lead to nuclear powerplant leaks, which made radiation levels too

dangerous for human recon missions [1] thus greatly delaying contain-

ment. Fire Ąghting also involves dangerous recon missions, and is one of

the most deadly jobs in the US [2]. General robot locomotion capabilities

are important here because such environments are usually cluttered with

obstacles and surfaces of varying properties and conditions. Throwable

teleoperated recon robots have been developed for Ąresquads, disaster

response teams or military to investigate a buildingŠs situation and risks

[3]. Robots are also used in bomb disposal situations by the military [4].



2 Introduction

In response to JapanŠs 2011 earthquake, several robots were sent to the

Fukushima powerplant to measure radiation levels and check the state of

the buildings and equipment [1]. Disaster response is currently a hot area

of research for robotics in the academia, motivated by recent government

funding, problem complexity and an interest in its societal value.

b) Other professional uses. Service robotics for professional use is a fast

growing market, with worldwide yearly sales in 2015 increasing by 25%

from 2014, to an estimated value of US$ 1.6 billion [5]. These include,

among others, automated vehicles in manufacturing and other environ-

ments, robots for defense, agriculture, professional cleaning, inspection

and maintenance.

c) Personal and domestic use. Examples of such applications include

housekeeping [6], lawn-mowing and entertainment[7]. Personal and do-

mestic robotsŠ sale value was already worth US$1.2 billion in 2015 [5].

For such robots to be successfully deployable worldwide in any home, any

backyard, or any event venue, however, they must be capable of dealing

with general environments of varied geometry and dynamics.

For most of these applications locomotion is a crucial skill. How to ei-

ciently get from one location to another, without damaging the environment

or the robot itself, is a necessary skill whether the robot is used for clean-

ing around an untidy house, navigating an agricultural Ąeld among hills

and plants and puddles, or rescuing a person from a disaster site. For these

robots to actually be adopted by institutions they should work in general en-

vironments: any disaster sight, any home, etc. This thesis is a step towards

such general robot locomotion capabilities. It introduces both perception and

locomotion planning algorithms that provide robots with algorithms for safe,

eicient and autonomous navigation of general environments. In particular

in this thesis we consider environments with obstacles, slopes and varying

surface friction.

The planning algorithms introduced here were designed for complex ar-

ticulated robots, in particular legged humanoid robots. Humanoids are non-

specialized robots which have an anthropomorphic body with arms, legs and

head, see Figure 1.1 for examples. We opt to study the planning problem

for such kind of robot in particular for two reasons. One is their complexity.

Humanoids are legged articulated robots with especially complex dynamics
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Fig. 1.1 Humanoid robots in urban environments.1

and constraints (e.g. contact, stability). This makes them a more general

platform to study the planning problem than, for example, mobile robots.

Since the algorithms introduced here have been thought with such complex

robots in mind, they will be applicable also to other equally complex legged

and articulated robots, as well as simpler mobile robots. Another important

reason is that anthropomorphic robots have applications in all previously

mentioned applications. They may even be preferred to less human-like

robots in personal and domestic applications as higher anthropomorphism

is often associated with higher familiarity and acceptability from users [8, 9],

with the caveat that they should not look ŞtooŤ human and thus eerie [10].

For both personal and professional applications, some roboticists also argue

that anthropomorphism is advantageous for locomotion and manipulation

in a human-inhabited world. The argument goes that since urban environ-

ments are made by humans and for humans, then human-sized humanoid

robots should have special ease at dealing with them: for example with

stairs, doorknobs, buttons, or any human-made tools which abound in ur-

ban and disaster response scenarios. By focusing on humanoid robotics, we

may thus be able to tackle all problems solvable by humans, exactly when

we cannot have humans do it.

The general planning problem is actually a hard problem. To exemplify

the diiculty of the problem, take a look at Figure 1.2. For the robot to reach

the example object for inspection and return in time for battery recharge, it

should plan how to get there while minimizing energy consumption but at

the same time avoiding slippage and other constraints. However, the ground

is not entirely Ćat and there is a large ice puddle between the robot and

1“150605-N-PO203-329”, By Office of Naval Research ( https://www.Ćickr.com/
photos/usnavyresearch/18529371672 ), CC BY 2.0.
“150606-N-PO203-565”, By Office of Naval Research ( https://www.Ćickr.com/
photos/usnavyresearch/18602668501 ), CC BY 2.0.

https://www.flickr.com/photos/usnavyresearch/18529371672
https://www.flickr.com/photos/usnavyresearch/18529371672
https://www.flickr.com/photos/usnavyresearch/18602668501
https://www.flickr.com/photos/usnavyresearch/18602668501
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Fig. 1.2 The locomotion problem.2

the target. Should the robot walk around the ice? That would take large

amount of energy because of the large distance. Should the robot cross the

ice? That seems dangerous, but at the same time the distance is shorter,

and crossing it very slowly could still be safe and spend less energy in the

long run. We will deal with such kind of complex planning problems in

Chapter 2. In addition to that, can a teleoperator faithfully estimate the

friction of the diferent surfaces? What about computer vision algorithms?

What is the uncertainty in the friction estimates obtained from visual input?

Such questions will be tackled in Chapter 3. And Ąnally, what about the

estimation of geometry from vision, how should the robot estimate it reliably

also taking into account the uncertainty in robot vision measurements? This

will be our work in Chapter 4.

Current approaches to solve the legged and humanoid robot locomotion

planning problem have strong shortcomings in several aspects:

a) Robot energy consumption: A common approach to plan motion

of complex articulated robots is to do it hierarchically: to solve lower-

2Image adapted from "Kosmostantsiya ice puddle", By Peretz Partensky, avail-
able via Wikimedia Commons ( https://commons.wikimedia.org/wiki/File:
Kosmostantsiya,_ice_puddle_(3992616316).jpg ), CC BY-SA 2.0.

https://commons.wikimedia.org/wiki/File:Kosmostantsiya,_ice_puddle_(3992616316).jpg
https://commons.wikimedia.org/wiki/File:Kosmostantsiya,_ice_puddle_(3992616316).jpg
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dimensional approximate versions of the problem before solving the Ąnal

problem. In humanoids this usually consists of planning footsteps before

the trajectory of the robotŠs joints. However, existing footstep planners

discard energy consumption (and actually friction as well), thus con-

straining or biasing the Ąnal trajectories to highly sub-optimal regions of

the space. If applied to our previous example in Figure 1.2, most cur-

rent planners would opt for the least-distance path - which crosses the

ice puddle - without knowing whether the trajectory is energy eicient

or even feasible. Footstep planners are usually developed independently

of full-body planners, optimizing diferent cost functions, and thus can-

not guarantee that the generated low-cost footstep plans will also lead to

low-cost full-body plans.

b) Physical properties of the environment: Current high-level plan-

ners such as footstep planners [11Ű14] discard physical properties of the

environment. This can lead to unintended slips, falls or overly conserva-

tive motion. Friction is a especially important physical property because

diverse surfaces with varying friction abound in the real world, from wood

to ceramic tiles, grass or ice, which may cause diiculties or huge energy

costs for robot locomotion if not considered. In addition to that, slipping

in humanoid robots can most easily lead to falling, which can be costly

or deadly (even though it is not as problematic in mobile robots).

c) Friction estimation: While some planning algorithms do consider en-

vironment friction at the lowest-level planning hierarchy [15Ű17], coei-

cients of friction are not actually estimated and in practice are set at some

constant value by the user or algorithm designer. This could of course

easily lead to large prediction errors and consequently sub-optimal sta-

bility and/or energy consumption. While friction prediction was outside

of the scope of those papers, there is in general a lack of knowledge about

how to go about friction prediction from a distance, for example using

vision sensors.

d) Perception uncertainty: Some of the most popular 3D-reconstruction

and mapping algorithms used in robot locomotion, such as occupancy

grids [18, 19], do not actually incorporate uncertainty of the underlying

sensors, particularly when using stereo vision. The few work that exists

related to friction estimation [20] also does not provide uncertainty esti-
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mates for its predictions. Such metrics of measurement uncertainty are

crucial both for integrating information and reducing error over time, as

well as to make locomotion robust to perception errors.

e) Heavy teleoperation: Current humanoid robot locomotion and ma-

nipulation skills are heavily teleoperated. For example, in the DARPA

robotics challenge of 2015, where multiple teams teleoperated robots to

do locomotion and manipulation tasks under communication faults, the

disadvantages of lack of automation were exactly one of the concerns of

most teams. Human teleoperation might not be possible at all times

due to communication problems [1], or might be too stressful for the

operators because of high responsibility and the overwhelming amount

of information to process. Teleoperators can also make judgement mis-

takes of distances, and humansŠ optimistic biases in decision making [21]

might lead to wrong decisions during locomotion planning. As another

example, in the Fukushima powerplant mission of 2011 [1] the teleoper-

ated robot eventually got stuck inside of the radioactive building because

of its tough geometry and reliance on power cables (power cables were

mandatory since wireless communication was not reliable and the design

was focused on teleoperation).

The algorithms and analyses in this thesis address these shortcomings.

They provide a way to achieve autonomous humanoid robot locomotion with

comprehensive considerations, both in terms of environment properties Ű

complex terrain geometry, obstacles, slippery surfaces - and robot constraints

as well, such as stability, collision, battery consumption. As we will see,

they do so thanks to a new friction-perception algorithm (Chapter 3) and

a tighter integration of planning levels (Chapter 2 and 5). Our planning

algorithms extend the amount of factors considered at high-level (footstep)

planning levels, leading to safer and more energy eicient motion. We will

also analyse the uncertainty in friction and geometry perception, in order to

improve both reliability in perception, and locomotion safety.

Before stating our problem and contributions more technically, let us

introduce related research in the Ąelds of robot locomotion and robot vision.
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1.2 Related research

1.2.1 Robot locomotion

Research on robot locomotion usually distinguishes between two levels of

locomotion control: motion planning and control. Motion planning is the

problem that we are concerned with in this thesis, and consists of deciding a

sequence of states the robot should go through in order for it to arrive at a

distant target. It usually involves reasoning about obstacles and high-level

waypoints on the way to the target. The reader should refer to [22, 23] for an

overview of motion planning algorithms. Control, on the other hand, deals

with monitoring and locally adjusting the state of the robot at each point

in time to guarantee that the plan (and possible extra constraints such as

local stability) is satisĄed.

The motion planning problem on humanoid robots is especially challeng-

ing since they are underactuated and move by establishing and breaking

contacts with the environment. So when a humanoid walks 20cm forward,

there are inĄnitely many trajectories for its joints that satisfy this motion

constraint (inĄnitely many posture sequences of the body), but at the same

time the feet should make contact with the environment, which limits the

postures to a narrow and complex constraint of feet in manifolds. Because of

this complexity of the search-space of humanoid robot locomotion, the prob-

lem has been approached with diferent methodologies that try to reduce the

complexity in one way or the other:

a) Contact before motion

In this hierarchical approach, contacts such as footholds or hand positions

are planned Ąrst while ignoring the complexity of the whole-body. Kinemat-

ics constraints such as joint angle limits are usually approximated by dis-

tances between contacts [13], and collision by approximate bounding boxes

of the whole body [14]. Diferent methods have been applied to generate

contact plans, such as graph search on a discretized state-space [11Ű13, 24Ű

26] or numerical optimization on environments represented as a set of planes

[14]. Such contact-before-motion methods are fast and allow for a simpler

subsequent problem of Ąnding full-body motion connecting the footholds.

That full-body motion can be planned using for example sampling methods
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[26] or numerical optimization [15] once again.

b) Motion before contact

Here the motion of the full-body or of a reference point such as the center-

of-mass (COM) is planned Ąrst without considering contact, and then the

motion is adapted or footholds searched in order to satisfy contact con-

straints. For example, [27] plans COM motion and then footholds and limb

motion that satisfy it. Depending on the implementation, planning with mo-

tion primitives [28] can also follow a motion before contact approach, since

full-body motions saved in a library are searched and composed until a path

to the goal is found even if they donŠt establish contact with the environment

at Ąrst. Then, contact constraints are considered and the motion is locally

adapted until contact and other constraints are fulĄlled.

c) Contact and motion

In this approach, popularized in the animation Ąeld [29], contact and full-

body motion are planned jointly by local adjustment of an initially unfea-

sible trajectory until contact is made and other constraints satisĄed. Used

techniques include numerical optimization with continuation [29] or linear

complementary problem formulations [30]. Such methods are prone to local

minima and thus still require another, simpliĄed, planner to initialize them

with close-to-feasible trajectories. They are also computationally heavy and

might require minutes to hours until convergence.

1.2.2 World representations and vision for

locomotion

Most of the aforementioned motion planning methods have been tested in

simulated environments where the geometry is known, usually modeled as

3D polygon meshes [26, 29]. Some of the humanoid planning research con-

ducted on real robots and real environments has also ignored the robot vision

problem by using motion capture systems placed across the whole environ-

ment that can sense it entirely with high-precision [24], even parts of the

environment not under the robotŠs Ąeld-of-view. In real environments out-

side the laboratory, however, only the robotŠs sensors are available to the
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robot, or at best a group of robotsŠ sensors, and so these measurements

should be used to reconstruct the environment geometry.

The study of 3D reconstruction includes the development of sensors and

algorithms for distance estimation, such as stereo vision with cameras, active

pattern projection with RGB and depth (RGBD) cameras, or rotating laser-

rangeĄnders. It also includes the accumulation of this information over time

with Ąltering methods such as Bayesian Ąlters [18, 31], and the active vision

problem of selecting where the robot should Şlook atŤ in order to improve

localization performance [32, 33], map completeness [34Ű37], or performance

of the navigation task [38Ű41].

Humanoid robots are most usually equipped with two cameras in the

head to mimic humanŠs stereo vision. Similarly to animalŠs stereoscopic vi-

sion, stereo in computer vision consists of matching pixels on one cameraŠs

image to pixels on the other. This is done by computing the photometric

diference between the two pixels, or a neighborhood of the two pixels, us-

ing cost functions such as sums of absolute diferences (SAD) of pixel color

intensities [42]. Distance of each pixel from the camera can then be recov-

ered from the parallax of the matched pixels. Refer to [43] for an overview

of diferent approaches to and methods used for the stereo vision problem.

Probabilistic metrics of stereo matching are also used in some of the litera-

ture, called stereo conĄdence measures [44, 45] Ű and we will discuss them

more deeply in Chapter 4. These try to model the probability distribution of

distance for each pixel, usually based on statistical models of the measured

pixel-matching cost functions.

Recent methods of simultaneous localization and mapping using monoc-

ular and stereo cameras have been particularly successful at reconstructing

the geometry of large environments such as whole neighborhoods or the

indoors of whole buildings [46, 47], as well as extremely Ąne-resolution re-

construction of whole rooms [48]. Recent progress has been made possible

partly by fast and large-scale computational power of GPUs, combined with

good methods for loop closure (recognizing previously seen locations in or-

der to detect and adjust errors in reconstructed maps). These technologies

have also been used in stereo-equipped humanoid robots such as Atlas [49]

for 3D reconstruction of the environment before locomotion planning [15].

In general, stereo vision [49, 50] and the (non human-inspired) laser

rangeĄnders [51] are popular sensors used for the reconstruction problem

in humanoids. Stereo visionŠs advantage is its speed (when computed on-
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board the sensor), but rotating laser rangeĄnders have been preferred due to

the larger Ąeld of view and lighting-independent performance. Their main

disadvantage is the long time that is required to acquire a complete scene,

since each measurement is only on a plane and so the robot should wait for

the laser to rotate 360 degrees before getting a snapshot of the environment.

The output of stereo, as well as laser or RGBD data, is point clouds Ű

which are not eicient representations for robot locomotion planning. Due

to the high computational cost of estimating collision between the robotŠs

parts and the environment, several methods have been developed to speed it

up using alternative environment representations such as height maps [52],

octree-organized grids [53], signed distance functions [54], ellipsoids [55],

convex decompositions [55, 56], planar segmentation [49, 52] and meshes

[57].

Probably since the motion planning problem is already hard enough when

only collision is considered, friction considerations have been mostly absent

from the humanoid and legged robot literature except for some simulation-

tested methods [26]. Most planning methods consider collision only, and

leave stability and friction constraints for the subsequent problem of control

through reĆexive [58] and optimization-based controllers [15, 16]. Friction

has been considered in planning more frequently in space applications using

rovers [20]. The friction-from-vision problem in this case consists of predict-

ing wheel slip (i.e. lack of locomotion progression). For example [20] uses

visual features to classify terrain classes and machine learning techniques to

prediction slip from these classes and rover pose.

1.2.3 Visual scene understanding

The problem of visual estimation of friction and other physical properties

is highly related to the problems of visual recognition studied in Şscene un-

derstandingŤ Ű which is concerned with classifying scenes and their diferent

regions and objects, inferring spatial relations, among others. For example,

friction is usually mostly associated with material in occupational accidents

research [59], as well as in engineering in general [60, 61]. Many computer

vision methods in scene understanding have been proposed for estimating

materials [62, 63], objects [64], places [65] and others. Most methods con-

sist of developing highly predictive visual features (e.g. color, texture [66],

neural representations [62Ű64]) and using machine learning techniques (e.g.
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SVMs, neural network back propagation) to learn a classiĄer from features

to material/object/place class. Recently, deep neural network architectures

have surged as the highest performing methods in most datasets, due to their

large number of parameters and fast parallelization schemes made possible

with GPUs.

1.2.4 Human-inspired algorithms

Another Ąeld of research with which this thesis is concerned is that of human-

inspired algorithms. One of the possible motivations for their use is the

following: when humans are better than machines at a certain task to be

automated by algorithms, then it makes sense to try to use similar principles

or processes to that shown by human behavior (or physiology) in order to

improve those algorithms. In the example of the games of Chess [67] and

Go [68], before computers surpassed human player performance much of

the eforts went into encoding human heuristics or automatically learning

from human games. Of course, the use of human-inspired algorithms does

not necessarily mean human-level performance to be the Ąnal goal. Using

the same example, the AlphaGo algorithm surpassed human performance

by using a clever combination of learning from human games using neural

networks, together with self-practice using reinforcement learning techniques

[68].

In computer vision, the use of deep neural networks for visual tasks has

been partly motivated by Ąndings of the organization of the human brainŠs

visual cortex [69]. Several well-performing visual features for mapping and

object recognition applications are also inspired by principles in human per-

ception [70, 71]. In numerical optimization, a large area of research is also

focused on improving optimization algorithms by using principles observed

in animals such as bees, Ćocks of birds and ants [72], some of which have

been shown to work similarly to decision making processes in the human

brain [73, 74]. These algorithms are among the best performing global op-

timization algorithms, together with other (evolution and natural selection-

inspired) genetic algorithms.

In robotics, human-inspired visual servo control has been used to simplify

the locomotion problem, for example in [75, 76]. In particular, [75] uses the

fact that the task of reaching for a visual target in the absence of obstacles

can be simpliĄed to a simple control of direction using eye-hand and head-
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walking-direction couplings which are studied in human reaching [77, 78]

and locomotion tasks [79, 80].

Particularly in humanoid robotics, as we focus on in this thesis, it makes

sense to consider human-inspired algorithms for vision and locomotion since

both the visual system and body morphology are similar to humansŠ. Hu-

mans excel at visual and locomotion tasks: they are known to optimize

locomotion energy [81Ű84], they plan their gait in challenging and varied

situations from simple Ćat locomotion to rock climbing.

Diferent principles of human gait have been applied to humanoid robot

planning. For example the regularities in simpler gait spaces of step lengths

and step widths [11], the use of heel-contact and toe-of phases of gait [85],

and the optimization of jerk [86] or energy [11].

1.3 Objectives and contributions

In a nutshell, the goal of this thesis is to try to answer the following question:

How can robots, in particular humanoids, autonomously navigate

general environments with slopes, obstacles and slippery surfaces

– in a way that considers energy consumption, friction, collision,

stability and uncertainty in measurements?

We are concerned with both planning and perception aspects of this

broad goal, and we organize it into several smaller objectives:

a) To develop algorithms for planning full-body locomotion trajectories that

consider world geometry and friction, as well as robot energy consump-

tion, slippage and stability;

b) To investigate the usefulness of applying principles and representations

of human gait into humanoid locomotion planners;

c) To develop algorithms for estimating friction and geometry from vision;

d) To understand humanŠs visual perception of friction and whether it is

reliable for teleoperation;

e) To integrate the algorithms into a single system and evaluate it in real-

world scenarios.
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The thesis has two important contributions to the robot motion planning

Ąeld of research. One of them is a new algorithm for footstep planning

that achieves low electrical energy consumption and low slippage risk by

using human-inspired gait models. The other is a robust and objective-

consistent hierarchical planning method which considers trajectory costs,

collision, stability, friction and friction measurement uncertainty.

To the research Ąeld of robot vision, the thesis also contributes with a

visual friction estimation algorithm which provides uncertainty estimates

for robust planning. It further introduces an innovative approach to friction

estimation of previously unseen materials using text mining; and a geometry

estimation algorithm which accumulates stereo and its uncertainty over time

for high precision and visual robustness. Finally, it provides some interesting

and important conclusions regarding the dangers of assigning the friction

perception task to a human teleoperator.

The innovative aspects of this thesis, from the point of view of con-

sidered environmental and robot factors in contact planning, can be seen

in the comparison of Table 1.1. The comparison ignores the context and

subtleties of each system, but it shows how this thesis 1) simultaneously

includes friction, speed and dynamic stability considerations at the contact

planning level whereas state-of-the-art planners do not; 2) actually predicts

surface friction from sensors whereas state-of-the-art systems do not. The

latter is due mainly to a strong research focus of the robotics community on

the planning and control sides rather than perception, as well as a reliance

on experimental validations in simulation where coeicients of friction are

known with certainty (i.e. robot perception is unnecessary).

1.4 Outline

The structure of the thesis is shown in Figure 1.3. It is organized as follows.

In Chapter 1, ŞIntroductionŤ, we introduce the background and motiva-

tion for this research, as well as nomenclature and related work.

In Chapter 2, ŞHumanoid locomotion planning considering world geom-

etry and frictionŤ, we start of by reviewing the human gait literature which

we Ąnd relevant to our planning problem. Concretely we show that human

gait is planned, and we identify planning variables and objectives. Based on

these insights we propose a new extended footstep planning algorithm and
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Table 1.1 Comparison between state-of-the-art contact planners and this
thesis

[13] [12] [26] [15] This
[14] thesis

Environment
considerations
in planner

Geometry ◦ ◦ ◦ ◦ ◦
Friction × × △ △ ◦
Other physical
properties

× × × × ×

Robot
considerations
in planner

Energy × ◦ × △ ◦
Speed × ◦ × △ ◦
Collision ◦ × ◦ ◦ ◦
Slippage × × △ △ ◦
Joint limits × ◦ △ △ ◦
Dynamic stability × × × △ ◦

Robot
perception

Geometry × × × ◦ ◦
Friction × × × × ◦

Note: △ indicates the factors are considered at the full-body motion planning
level (not footstep/contact planning).

evaluate it in diferent simulated scenarios. We also discuss certain aspects

in which the obtained robot motion is human like. We conclude with an

extension to full-body motion planning on the same objectives which makes

it tightly integrated with the footstep planner.

While the environments considered in Chapter 2 are assumed to be com-

pletely known by the planner, clearly the assumption does not apply on a

real robot. The following two chapters then focus on estimating environment

properties from sensors and characterizing their uncertainty. Both start from

images as input but they independently estimate friction (Chapter 3) and

geometry (Chapter 4). The two chapters are independent from each other

and can be read in any order. This is represented in the thesis Ćowchart of

Figure 1.3 as a parallel organization. In particular, in Chapter 3, ŞVisual

perception of frictionŤ, we analyze both human and computer vision perfor-

mance at the friction from vision task. Using especially designed datasets,

we start by asking the question of which visual features humans use to es-

timate friction and how useful their predictions are for robot teleoperation.

Based on the results we then propose an algorithm to estimate friction and

its uncertainty pixel-wise from images. In Chapter 4, ŞVisual perception of
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geometryŤ, we deal mostly with uncertainty modeling in stereo vision. We

benchmark diferent models of stereo matching conĄdence and propose a new

Şhistogram sensor modelŤ which leads to high reconstruction performance.

Finally we propose a method to integrate these models into a time-Ąltering

algorithm: occupancy grids.

Then, in Chapter 5, ŞVision-based hierarchical planning in the real worldŤ,

we show results of the fully integrated system in a real biped humanoid robot.

We describe the scenario we built on the laboratory with varying degrees of

friction; we discuss software architecture and implementation details used

for computational speed; and we show results of the robot navigating such

scenarios with visually estimated friction and geometry. After proving the

capabilities of the real system on challenging scenarios in the laboratory,

we further show simulation results in a collection of real outdoor scenarios

acquired with a 3D camera.

Finally, in Chapter 6, ŞConclusion and discussionŤ, we summarize the

achievements of this thesis, and discuss limitations, open questions and fu-

ture directions of research.
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Chapter 2

Humanoid locomotion planning

considering world geometry

and friction

2.1 Introduction

In Chapter 1 we discussed how humanoid robot locomotion planning is an

important problem with applications in disaster response and service. Cur-

rent planners excel at obstacle avoidance, but do not consider important

factors such as ground friction and energy consumption. These are espe-

cially important in outdoor environments where the robot will depend on

batteries and surface conditions might be challenging: slippery, inclined,

etc. While it is still not clear how planners should be formulated in order to

consider many of such factors, one of our claims in this chapter is that using

principles and representations in human gait literature can lead to natural

improvements of humanoid locomotion planners. We will also look at how

to alleviate the complexity of the full-body locomotion planning problem

when considering world geometry and friction.

Concretely, the objectives of this chapter are the following:

a) To show that principles and representations in human gait are applicable

to footstep planning of humanoids

b) To check whether human-inspired optimization principles in footstep

planning lead to practical energetic eiciency improvements in humanoids
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c) To check whether a human-inspired footstep planner leads to human-like

walking behavior

d) To propose a method to integrate footstep planning and full-body plan-

ning in order to consider world geometry and friction, as well as full-body

kinematics and stability.

To this end, in Section 2.2 we will give an overview of anticipatory human

gait literature and identify principles and representations useful to humanoid

locomotion in a variety of scenarios. Then in Section 2.4 we will propose a

footstep planning algorithm based on those principles and representations

which plans both footstep positions, orientations, timing and parameterized

COM motion. Finally in Section 2.5 we will propose a hierarchical planning

algorithm for full-body planning. Whenever appropriate, we will show how

the results obtained in our humanoid robot match observations in human

walking behavior.

2.2 Background

2.2.1 Humanoid footstep planning

Footstep planning algorithms are a computationally attractive solution to

the humanoid locomotion planning problem since they reduce the search

space from whole-body motion to footstep positions and orientations. Cur-

rent footstep planners excel at obstacle avoidance, but do not consider im-

portant factors such as ground friction and energy consumption. These are

especially important in outdoor environments where the robot will depend

on batteries and surface conditions might be challenging: slippery, inclined,

etc.

The footstep planning problem is closely related to the study of anticipa-

tory human gait adaptations. For example, representations of walking used

in human gait literature to describe anticipatory gait control are closely re-

lated to those used in high-level motion planning algorithms in robotics,

such as footstep planning, contact planning and other task-space planning

approaches. Both typically deal with observations in terms of a high-level

representation of walking such as modality, foot position, orientation, tim-

ing, limb stifness or center-of-mass (COM) height.
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For humanoids, the footstep and contact planning problems have been

tackled with search [11Ű13, 24, 25], sampling [26] and optimization [14, 87]

algorithms. Search-based planners such as A* [11, 12, 24] and its variants

[13, 25] have been used successfully to plan obstacle free paths in both static

and dynamic [24] scenarios. Recently, purely optimization-based planners

have also been proposed [14], which eliminate the sub-optimal discretization

problem inherent to search-based planners. Sampling-based [26] planners

allowing for multiple contacts (e.g. hands, knees) are useful for very complex

environments, although at a high computational cost, which can be slightly

ameliorated with a good selection and adaptation of motion primitives [28].

While the aforementioned planners focus on Ąnding collision-free paths, in

this thesis we go one step further: considering energy, collision and friction.

One important step in footstep planners is to estimate whether a given

stance or step is feasible or not. Some authors opt to approximate feasibility

by rough reachability of the feet [13], full inverse kinematics feasibility [26], or

smart collision checking [88]. In this chapter we use both rough reachability

intervals to discard obvious unfeasible poses, as in [13], but also learn a

model of feasibility from physics simulation: where feasibility is both static

and dynamic.

Research closely related to the method we introduce in this chapter in-

cludes [11], in which terrain and energy-related cost functions are used in

A* search to compute optimal cost plans. They sum a set of empirical hu-

man biomechanics-inspired models of energy cost that are polynomial func-

tions of step length, width and rotation. Also [12] uses a similar approach,

with quadratic cost functions on sequences of footstep positions. On the

other hand, in this thesis we consider also timing variables and surface fric-

tion. We do not assume polynomial relationships and instead use an of-the-

shelf machine learning algorithm to learn the relationship between variables

from data. And Ąnally we make claims concerning energy consumption and

human-like motion.

In this thesis we prevent slippage of the robot by planning, which com-

plements other feedback control approaches to friction-constrained biped

walking [58, 89, 90]. While feedback control can help reduce tangential-

to-normal force ratios locally, it may not be suicient in very low friction

surfaces. For example a robot with rubber soles would be subjected to less

than 0.15 kinetic friction when walking on ice. Slipping can be reduced

in such low friction Ćoors without changing gait, but not eliminated [89].
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Feedback control approaches usually consist of friction cone constraints in

inverse dynamics [17] or operational space control framework [90]. Design

parameters in the preview controller [91] can also be slightly tuned to reduce

the Required Coeicient of Friction (RCOF) for a Ąxed gait, and feedback

ZMP controllers manually adapted to account for friction [89]. Eforts have

also been put into reactive reĆex controllers that, without changing gait pa-

rameters, try to reduce slipping after it is detected (e.g. by waist or foot

acceleration reĆexes [58]). In this thesis we take the complementary high-

level approach, by optimizing energy and eliminating slippage as much as

possible by changes in gait. Such approach solves the known problem of

reactive controllers to not be able to avoid slipping on fast gait [58], and at

the same time leverages on human gait literature Ąndings supporting energy

and stability optimization at the footstep level, which is not just reactively

but also anticipatorily controlled.

Such a planning approach to the friction problem is closely related to

algorithms that try to decrease the risk of slipping even in low friction con-

ditions. For instance, [92] proposes a method for grasp synthesis prioritizing

low Şfriction sensitivityŤ, such as to prefer grasp conĄgurations that are

stable even for low COF. Similarly in the biped locomotion literature, [89]

changes parameters regulating center-of-mass motion such that the mini-

mum COF where the robot can walk without slipping is decreased.

2.2.2 Humanoid full-body motion planning

Several approaches exist to the friction-constrained motion planning problem

for legged robots. One approach is the non-hierarchical, full-scale trajectory

optimization formulation with implicit contact constraints of [29, 30]. While

technically elegant and showing promising results, these can still be compu-

tationally expensive for online planning. In order to make the problem

tractable, full-body motion can instead be planned after contact (or foot-

step) planning [14, 15, 26, 93], in what is called the contact before motion

approach which we already introduced in Section 1.2.

Whether contact constraints are given by a footstep planner or implicitly

deĄned in the full-body motion planning problem, numerical optimization

has recently proven to be an efective approach to the problem [15Ű17, 29, 30].

Such an approach deĄnes an optimization problem where variables are the

bodyŠs joint angles or torques at several waypoints or collocation points.



2.2 Background 21

Then, constraint functions are designed such as to respect joint angle limits,

actuation limits, contact constraints, and possibly even stability, full-body

or centroidal dynamics, and collision. Collision is usually represented as

penetration (signed-distance) constraints [57] and computed using libraries

for rigid body dynamics such as the Open Dynamics Engine [94] or Bullet

[95]. Friction constraints can also be added to these planning formulations,

as linear constraints on the contact forces.

2.2.3 Anticipatory gait control in humans

a) Human gait is planned

The claim that humans also plan gait, and footsteps in particular, is sup-

ported by several evidence in both children and adults. For example, chil-

dren walkers (average 14 months) switch walking modality from bipedal to

quadrupedal on a waterbed after visual inspection of its waviness or haptic

exploration [96]. Children also use haptic exploration on slopes to decide

whether to walk, crawl, slide down in sitting or backing positions or not

traverse them at all [97].

Across numerous studies of adult human walking there is also the ob-

servation of a Şcautious gaitŤ style used in uncertain environments [98Ű100]

or after sensory loss [101, 102]. For example [98Ű100] observed a speciĄc

cautious gait mode when there is awareness of a slippery surface, which

is then adapted to the speciĄc slipperiness condition found. Typically on

slippery surfaces, walking speed is decreased, the COM is centered over the

supporting limb and limb stifness is increased [98Ű100]. Even when there

is no knowledge of the degree of slipperiness, stride length [98, 99, 103],

foot contact angle [100, 103Ű105] and vertical heel contact velocity [104]

decrease, while knee Ćexion increases [100, 105]. According to [100], these

surface-approach changes are learned over prior slip experience and are ap-

plied to diferent conditions when surface properties are unknown. Further

knowledge of the coeicient of friction changes muscle activation and how

the foot interacts with the Ćoor. On slippery terrain, both these gait and

muscle activation patterns become characteristically diferent since the Ąrst

step on the surface, which indicates an anticipation strategy and not reac-

tive adaptation of normal gait. A cautious gait is also used in other uncer-

tain circumstances such as when vision is blurred by light scattering lenses
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[101]. Another interesting observation is that human walking trajectories

on steep slopes such as mountains or hills are not straight least-distance

paths but more energy-eicient curved paths uphill [106, 107]. Interestingly,

[108] showed that visual perception of slant changes from viewpoint (down-

hill looks steeper and is also more diicult), which suggests that climbing

gradients could be a result of perception of slant.

All these examples show how humans adapt high-level gait parameters

such as modality, footstep position and timing or COM trajectories by some

sort of motion planning based on visual or haptic perception of the environ-

ment.

Part of these observations have been obtained in robotics and animation

literature by optimization algorithms, for example lower step lengths and

lower COM [109] on slippery terrain. In [109] this was achieved by a low-

level joint controller.

b) Optimization variables and objectives

The optimal gait of humans, according to [106], is related to Ątness of the

species and is a function of several factors such as speed, acceleration, en-

durance, energy and stability. Human gait studies have shown that these

can be modeled by simple principles and using equally simple high-level

representations of gait. For example, step length and cadence have been

shown to have a linear relationship [110]. Also, simple empirical equations

of step length and step rate proposed by [81] lead to contours of energy

consumption per meter which match subject data from diferent studies. In

particular, the metabolic Şcost of transportŤ (energy per unit distance) is a

frequent optimization objective studied in human gait literature. Humans

have been shown to choose an average step length and frequency that mini-

mizes average energy cost per distance [81Ű84]. Minimization of vertical cost

of transport, mainly by regulation of COM height, also explains locomotion

patterns on steep slopes as shown by [107]. Studies usually model energy as

oxygen consumption [81], joint or muscular work [111] and body or COM

work [112]. Energy recovery [113] of the COM is also another considered

objective related to COM work.

The previously stated measurements have been shown to vary systemat-

ically with high-level gait parameterizations such as step length [97Ű99, 103,

114], step width [103], speed [98, 105, 114], COM height [98], knee Ćexion
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at heel strike [100], foot angle and velocity at heel strike [99, 103, 104, 115],

double support and swing times [105, 110, 115], and limb stifness [98]. The

same variables have also been shown to be used, whether directly or indi-

rectly, to regulate the Required Coeicient of Friction (RCOF): the ratio of

shear to normal ground reaction force (i.e. tangential to normal force) [98Ű

100]. The RCOF constraint should be kept below the groundŠs coeicient

of friction to avoid slips and consequent falls, but it is planned and not just

controlled reactively [98].

Travel time, acceleration and orientation error are also other functions

which can be optimized to predict COM trajectories in Ćat goal-directed

paths indoors [86].

2.3 Human-inspired models of energy and

slippage

2.3.1 Model definition

From the anticipatory gait control studies mentioned previously we selected

simple gait variables, as well as energy and slippage related functions, such

that:

i. They are easily applicable to current humanoid locomotion planning

algorithms, namely footstep planning;

ii. They predict walking behavior observations in diferent human gait lit-

erature for a variety of scenarios. In particular we focus on observations

on slippery environments, Ćat and slanted terrain.

a) Gait variables

Step length, width and height. As discussed in Section 2.2, both energy

and RCOF have been shown to vary systematically with these variables.

Also, their application to robot footstep planning is straight-forward since

these are simple distances between feet.

Double support time and leg swing time. As discussed, these vary sys-

tematically in adaptations to slippery terrain. Inclusion of these variables

into (extended) footstep planning should add Ćexibility to the planner in

order to lower gait accelerations. It may thus allow the robot to navigate
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more slippery terrain.

Knee flexion angles. These also vary systematically in adaptations to

slippery terrain [100]. Furthermore, they are related to COM height which

explains adaptations in steep slopes and slippery terrain. For robot locomo-

tion, planning COM trajectories is also crucial for stability and feasibility

considerations. In this thesis we parameterize the COM height trajectory

through inĆexion points of a knee angle trajectory spline.

b) Gait objectives

COM work as optimization objective. As discussed in Section 2.2, en-

ergy optimization and in particular COM work explains walking patterns

in both Ćat and sloped terrain [83, 107]. The advantage of this model for

robotics when compared to, for example, electrical energy or torque mini-

mization is basically its simplicity. Since only COM velocity and force pro-

Ąles are required to estimate COM work, it applies to both complex robot

models and simple single-mass robot models. There is also the motivation of

passive dynamic walkers [116] which optimize COM work by construction.

For humanoid robots, we can learn a COM work model in simulation as

a function of the previously stated gait variables. We compute total COM

mechanical work as:

ECOM =
∫ t1

t0

♣v.F♣dt, (2.1)

where v and F are the velocity and total force vectors at the COM, respec-

tively, and t0, t1 the beginning and ending time of a step (i.e. t1 − t0 =

∆tds + ∆tsw).

RCOF as a constraint. As discussed, RCOF has been shown to vary on

slippery terrain with the chosen variables.

RCOF [99] is deĄned as the maximum ratio of tangential-to-normal force

applied at the feet during a given step:

RCOF = max
t∈[t0;t1]

∣

∣

∣

∣

∣

FT(t)

FN(t)

∣

∣

∣

∣

∣

(2.2)

where FT is the tangential force and FN normal force at the feet. In this

thesis we assume a Coulomb friction model. Therefore, note that if RCOF is

lower than the actual coeicient of friction between feet and Ćoor, slippage

is theoretically prevented during that step. As with the energy model, we

can learn a RCOF model in simulation as a function of the previously stated
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gait variables.

We use function approximation to obtain each model as a function f̂ :

R
3+P → R where inputs are the variables mentioned previously (i.e. step

length, width, height and p) and outputs are the measurements ECOM and

RCOF. Obtaining a model implies generating many walking patterns with

diferent variable inputs, observing the energy and slippage results in physics

simulation, and using these as training points for function approximation.

2.3.2 Our experimental platform: the WABIAN-2

humanoid

In our experiments we use the humanoid robot WABIAN-2 [117], which we

show in Figure 2.1. WABIAN-2 is a human-size humanoid robot, 1.5 meters

tall, weighting 64kg and having 41 DOFs. Joints are driven by DC-motors

with high gear reduction ratios of around 200. Each motor is associated with

one relative encoder and one motor driver for position control. We simulate

the robot using the Open Dynamics Engine (ODE) for physics simulation

on the V-REP robot simulator [118].

Fig. 2.1 The humanoid robot WABIAN-2, used in our simulation
experiments. From left to right: real robot, simulated, DOF.



26 Humanoid locomotion planning considering world geometry and friction

2.3.3 Resulting energy and slippage models on

WABIAN-2

We trained the energy and slippage models by running physics simulations

which explore the space of steps (fj−1, fj, fj+1, pj) and collecting measure-

ments of ECOM and RCOF. Each simulation consists of a symmetric and

periodic gait of steps with constant step length, width, height and p. The

patterns also start and Ąnish with zero COM velocity and are stabilized

with the Pattern Generator described in [119]. Since the simulations con-

sist of symmetric periodic gait, step lengths (usually deĄned as the distance

between two consecutive feet at heel strike [100]) are the same as stance

lengths, and likewise for width and height.

We chose to use an InĄnite Mixture of Linear Experts (IMLE) [120] for

function approximation due to its high query speed and low number of ex-

perts, while still allowing for online learning if necessary. Error performance

is comparable to that of Gaussian Processes [120]. Models were trained

by uniform sampling of the input space and using the necessary number of

experts to obtain a standardized mean squared error (SMSE) lower than 0.1.

We used Open Dynamics Engine (ODE) for physics simulation on the

V-REP robot simulator [118], at a 4ms control cycle (ODE computation

time step 1ms, global ERP 0.8, all other parameters set to their default

values). The robotŠs joints are position controlled using the same gains

as the real robot (proportional gain between 0.7 and 0.8). We used the

Walking Pattern Generator described in [119] which stabilizes the walking

motion based on the robotŠs full dynamical model and works for varying

COM height motion. ZMP reference trajectories were placed at the center

of the stance foot during the swing phase and cubic-spline-interpolated to

the other foot during the double support phase. Full trajectories of the knees

were obtained by cubic spline interpolation between a minimum Ćexion angle

at impact φ0 and maximum Ćexion angle at stance φst and swing φsw, as

shown in Figure 2.2.

The limits of stance reachability were set according to the kinematic

chain of WABIAN-2 by manual inspection:

� ∆x ∈ [0; 0.38] meters, where x points forward,

� ∆y ∈ [0.17; 0.30] meters, where y points to the left (symmetric interval

if fj+1 is a right foot),
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Fig. 2.2 Knee trajectories used for the robot are interpolated with a cubic
spline between a minimum Ćexion angle φ0 at impact and maximum angles

at stance φst and swing φsw. Average and standard deviation of human
data is plotted in gray based on [121]. The robotŠs curve can be made close
to that of humans by adjusting double support time (moving φ0 to the left

in this example) and stance angle (φst up), however φsw cannot exactly
match human data (φ ≤ 45◦, pink region is unfeasible).

� ∆z ∈ [−0.15; 0.15] meters, where z points upward,

� ∆θ ∈ [0; 30] degrees, where θ runs counter-clockwise (symmetric inter-

val if fj+1 is a right foot).

The state transition (i.e. step) parameter vector was deĄned as p = (∆tds,

∆tsw, φ0, φst, φsw) ∈ R
5, and sampled within the intervals:

� ∆tds ∈ [0.09; 1.8]; ∆tsw ∈ [0.9; 1.8] seconds,

� φ0 ∈ [1; 21] degrees,

� φst ∈ [5; 45]; φsw ∈ [5; 45] degrees.

Due to the high dimensionality of the models, we had to obtain thou-

sands of training points from simulations. To reduce training time we trained

two separate versions of each model: one for level, one for inclined terrain.

We used all dimensions except ∆z on the level terrain version, and an ap-

proximate model on inclined terrain. In the latter, knee trajectories have a

narrow feasibility space (collisions, complex motion) and so we constrained

them such as to obtain a Ąxed foot-COM height trajectory. With this ap-

proximation, models were learned in around 2 days of simulation. In total
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we generated around 12, 600 diferent walking patterns. Each pattern is a

sequence of 6 symmetric steps of constant step length, width, height and p.

From these simulations we gathered measurements of ECOM and RCOF.

Figure 2.3 shows the ECOM model as a function of step length and height,

for two diferent slope friction values (µ = 0.2 and 0.4). The energy at each

steplength-stepheight combination also depends on the other parameters p,

and so the minimum ECOM across p is shown at each point. The gradient

of the energy is mainly dominated by the step height value, indicating high

energetic cost for slanted terrain. The maximum feasible slope angle for

each friction value can be seen by the absence of colored energy values, and

is approximately 18◦ for RCOF< 0.2 and 45◦ for RCOF< 0.4. The high

energetic cost of slanted terrain actually leads to a preference of shallow

walking slopes as we will show in Section 2.4.2.

Figure 2.4 shows the contours of ECOM for level walking. The Ągure

shows that most of the energy is spent in double support: the shorter ∆tds

the lower the energy. Leg swing time mostly does not inĆuence COM energy,

which reĆects the fact that the alignment of velocity and force are low when

compared to double support (motion on the sagittal plane is close to an

inverted pendulum).

We show the RCOF model in Figure 2.5. RCOF is mainly dependent

on the time spent in double support (contours are vertical in the right-most

∆tds, ∆tsw plot). The higher ∆tds is, the lower the RCOF. Also, the lower the

step length, the lower the RCOF. Our interpretation is that both increasing

∆tds and decreasing step length lead to lower COM accelerations during

double support and thus a more static gait, because of that tangential forces

are lower and so is RCOF. These observations match human data as we will

discuss in the next section.

2.3.4 Comparison with human observations

The optimization objectives and variables proposed in this chapter were

inspired by human gait literature. We now compare the results of our models

and planner with the observations in human gait mentioned in that section.

a) Horizontal cost of transport [81, 83]

The plots in Figure 2.4 showed energy consumption per step. A known

result from human biomechanics is, however, on the energetic cost per dis-
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Fig. 2.3 Minimum ECOM on slopes, as a function of step length and step
height. Measured in physics simulation.
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Fig. 2.4 Minimum ECOM on Ćat terrain, measured in physics simulation.
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Fig. 2.5 Minimum RCOF on Ćat terrain, measured in physics simulation.
RCOF is the maximum ratio of tangential-to-normal force over a step. It

indicates the minimum ground coeicient of friction µ where the robot can
walk without slipping.
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tance (i.e. cost of transport). The contours of human oxygen consumption

per meter in steplength-steprate space actually resemble an hyperbola [81].

An empirical formula explaining this data was estimated by Zarrugh et al.

[81], using which we computed the energy consumption of a human with

WABIAN-2Šs physical limits (maximum step length 0.35m, maximum step

rate 1.20). Figure 2.6 shows the humansŠ cost of transport prediction, as well

as WABIAN-2Šs actual cost of transport (i.e. minimum ECOM per distance).

The hyperbolic shape of the energy contours is similar to both humans and

robot. The energy minimum seems to be slightly shifted towards a higher

step rate in the robotŠs case, which we assume to be due to motor eiciency

once again, although it could also be related to a lower range of motion of

the knees in our robot (up to 45 instead of 60 degrees). The similar shape is

not surprising since it has also been reproduced by computer simulations of

a simple bipedal walking model [83] using COM work optimization during

toe-of.

b) Required Coefficient of Friction [98, 99, 103, 105]

Figure 2.5, which shows the robotŠs RCOF model, also matches observations

in human gait. The Ągure shows that the higher ∆tds is, the lower the RCOF.

And also the lower the step length, the lower the RCOF.

2.4 Footstep planning with human-inspired

models

2.4.1 The extended footstep planning algorithm

We now formulate the footstep planning problem using the human-inspired

models of the previous section. We consider the problem of Ąnding a se-

quence of N footsteps fj = (xj, yj, zj, θj) ∈ R
4, j = 1, ..., N , such that

energy is minimized and with feasibility and no-slippage as constraints. The

plan starts at a Ąxed initial stance s1 = (f1, f2) and Ąnishes at a Ąxed goal

stance sN−1 = (fN−1, fN). N is unknown; (xj, yj, zj) and θj are position and

yaw orientation of a foot in a global coordinate frame; for convenience fj is

a left foot if j is odd, right if j is even.

The energetic cost ECOM of transitioning from a stance sj−1 to sj depends

on both the stances and some extra parameters pj ∈ R
P . p represents state



2.4 Footstep planning with human-inspired models 33

0

0.1

0.2

0.3

0.4

0

0.5

1

1.5

0

200

400

600

steplength ∆x (m)steprate (∆t
ds

+∆t
sw

)
−1

  (s
−1

)

m
in

 E
C

O
M

/s
te

p
le

n
g
th

  
s
.t
. 
 Ψ

<
0

0

0.1

0.2

0.3

0.4

0

0.5

1

1.5

0

500

1000

steplength ∆x (m)
steprate (∆t

ds
+∆t

sw
)
−1

  (s
−1

)

H
u
m

a
n
 o

x
y
g
e
n
 c

o
n
s
u
m

p
ti
o
n
 p

e
r 

m
e
te

r

Fig. 2.6 Comparison of our robotŠs and humansŠ cost of transport. Top:
Our robotŠs minimum ECOM per distance travelled. Bottom: Oxygen
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transition parameters that might provide diferent ways for sj to be reached

from sj−1, such as step timing and COM motion. In this section we use

pj = (∆tds, ∆tsw, φ0, φst, φsw) ∈ R
5 which are double-support time (i.e. time

spent on sj−1), swing time (i.e. time spent with the swing leg in the air), and

minimum knee Ćexion, maximum stance knee Ćexion and maximum swing

knee Ćexion angles. Throughout the thesis we will also refer to a state (i.e.

stance) transition by a ŞstepŤ.

The general problem we are trying to solve in this section is

minimize
N,f3..fN−2,p2..pN−1

∑

j=2...N−1

ECOM(fj−1, fj, fj+1, pj)

subject to

RCOF(fj−1, fj, fj+1, pj) < min(µj−1, µj, µj+1)

Ψ(fj−1, fj, fj+1, pj) < 0

a < pj < b

(2.3)

where the function Ψ implements feasibility constraints on the stances and

steps due to kinematic, dynamic or controller limitations. In this section

we assume coeicient of friction µj is known for each fj, and a Coulomb

friction model so that RCOF is a tangential-to-normal force ratio. Bound

constraints on the step parameters are implemented with vectors a and b.

Similarly to the human-inspired RCOF model, the feasibility model is

learned in simulation. We deĄne it as Ψ ∈ ¶−1, 1♦ and use value 1 for un-

feasible points and −1 for feasible. To discard obvious unfeasible stances we

Ąrst use a footstep parameterization as in [13] to obtain a heuristic approxi-

mation of footstep reachability: in a stance sj, reachability is approximated

by a set of intervals for the variables (∆xj+1, ∆yj+1, ∆zj+1, ∆θj+1), which are

distances from the Ąrst footstep to the second, i.e., ∆xj+1 = xj+1 − xj, etc.

Stances outside these intervals are considered unfeasible with Ψ = 1. Steps

are also considered unfeasible if COM motion respecting the reference ZMP

trajectory cannot be found using our Walking Pattern Generator [119], joint

limits are reached or the robot falls during physics simulation. Similarly to

the energy and slippage models, we still Ąt a continuous mixture model even

though training points are discrete Ψ ∈ ¶−1, 1♦, leading to interpolation re-

gions between −1 and 1. While planning, we enforce a slightly conservative

feasibility constraint of Ψ < 0 to avoid uncertain regions far from feasibility

(Ψ = −1).
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We solve (2.3) by a hybrid discrete search and continuous optimization-

based planner. We Ąrst constrain the footstep (position) space to a point

cloud of traversable points (x, y, z) ∈ R
3 and a discrete set of orientations

in the global coordinate frame: θ ∈ ¶0◦, 360
D

◦
, ..., 360(D−1)

D

◦♦, where D is the

number of uniform footstep directions. Then we compute the optimal-cost

path from the initial to goal stance on this space using Anytime Repairing

A* (ARA*) [122]. ARA* requires a state transition cost function c(sj−1, sj),

and a heuristic cost-to-go function h(sj). It will Ąnd the optimal path to

the goal given enough computation time and an admissible h. If interrupted

anytime, then the algorithm still returns a sub-optimal path with provable

bounds. Please refer to [122] for further details.

In our case the state transition cost c(sj−1, sj) is the minimum-energy

transition between the two consecutive stances sj−1 = (fj−1, fj) and sj =

(fj, fj+1), given by:

c(sj−1, sj) = min
pj

ECOM(fj−1, fj, fj+1, pj)

subject to:

RCOF(fj−1, fj, fj+1, pj) < min(µj−1, µj, µj+1)

Ψ(fj−1, fj, fj+1, pj) < 0

a < pj < b

(2.4)

Hence, even though states in A* search are discretized stances, step param-

eters are computed from continuous optimization on the state transitions.

Regarding the heuristic h(sj), we set it equal to a lower bound on the cost

from sj to the goal which assumes no obstacles, optimal cost of transport

and inĄnite friction. This way h(sj) never overestimates the true cost to

the goal (i.e. is admissible), as required for A* optimality. We compute the

bound as the minimum horizontal cost of transport times distance:

h(sj) = dxy(sj, sN−1). min
fk,fk+1,pk

ECOM(fk−1, fk, fk+1, pk)

dxy(sk−1, sk)

subject to:

Ψ(fk−1, fk, fk+1, pk) < 0

a < pk < b

(2.5)
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where dxy(sj, sN−1) is the Euclidean distance on the horizontal plane from

stance sj to stance sN−1 (i.e. the distance between left feet and the right feet

summed). True costs to goal will actually be higher than (2.5) since optimal

step parameters might not be feasible for the whole distance and more costly

paths might be necessary due to kinematics constraints, obstacles, friction

or slope.

In practice, we pre-compute and store on a hash table the results of

equation (2.4) for a large number of footstep displacements and coeicients

of friction. Similarly, we only need to solve the optimization problem in (2.5)

once. Planning a path from an initial stance s1 to a goal stance sN−1 then

consists of a straightforward ARA* (or A*) search where each time a state

transition is considered we:

1. access a hash table to obtain the state transition cost (2.4)

2. compute the heuristic cost-to-go from the distance to goal and the

pre-computed cost-of-transport using (2.5).

2.4.2 Resulting paths and energy consumption

We will now use the described footstep planning algorithm together with the

human-inspired models of the previous section to plan footsteps in a variety

of scenarios with geometry and friction constraints. We will analyze the

walking paths generated by the described ECOM-optimal planner in practice,

as well as the pathsŠ expected electrical energy consumption. Our motivation

for estimating electrical energy consumption was not only due to its practical

value in robotics, but also because mechanical work in humans is related

to metabolic energy (i.e. oxygen consumption) [84, 107]. Since the real

WABIAN-2Šs joints are driven by DC-motors [123], we compute electrical

energy as

Eele =
∑

i

(
∫ t1

t0

♣τiωi♣dt +
∫ t1

t0

RiI
2
i dt

)

(2.6)

where i is an index of the motor, τ is motor torque and ω angular velocity.

I refers to current, which in simulation is computed as τ/(r.Kτ ), where r

is the motorŠs gear reduction ratio and Kτ the torque constant, taken from

the motorsŠ data sheets. RI2 are the power losses due to motor armature

resistance and we ignore mechanical losses such as joint friction. We will

compare the resulting electrical energy consumption obtained by our planner

with a set of baselines:
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i. minimum-travel-time planner,

ii. minimum-sum-of-torques planner,

iii. directly optimizing electrical energy consumption Eele as deĄned in (2.6).

The results for the baselines were obtained using exactly the same plan-

ner equations (2.4) (2.5) and implementation, the only diference being

that we replaced ECOM by (∆tds+∆tsw),
∫
∑

i τ 2
i dt, and Eele respectively.

a) Implementation details

As mentioned previously, we solved (2.4) for a large number of footstep dis-

placement and µ values; and stored the results on a hash table. In our

experiments this hash table had 18, 491 entries. To solve (2.4) this many

times took approximately 2 hours. When planning, we simply query the

table to obtain state transition costs and step parameters p from the transi-

tionsŠ footstep displacement and µ values. Query time is at the microsecond

level.

We implement point cloud discretization with PCL [124] using 5cm grid-

Ąltered point clouds. The search for successors of a stance is done by a range

search of points around the Ąxed foot. Also, the directions of footsteps were

discretized uniformly with D = 24.

We use the oicial implementation of ARA* [122] in the Search-Based

Planning Library (SBPL) [125]. The optimization problems (2.4) (2.5) are

Ąrst solved with the global optimization algorithm DIRECT [126], which is

then reĄned using the sequential quadratic programming algorithm SLSQP

[127]. Both optimization algorithms are implemented in the NLOpt library

[128]. The functions ECOM, RCOF and Ψ are each implemented as an inĄnite

mixture of linear experts (IMLE). During ARA* search we use pre-computed

versions of (2.4) for speed. However, after the Ąnal solution is obtained we

further reĄne the step parameters p by solving (2.4) using SLSQP, warm-

started by the values stored on the hash table.

b) Results

We conducted the experiments in three diferent scenarios which we will now

describe and analyze. Energy consumption results are reported in Table 2.1.

The Ąrst scenario (Figure 2.7) was as follows: the robot stands in a

ground with friction µground = 1.0 and has to walk to a target which is
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straight ahead, 3m away. Between the start and Ąnish points there is an

Şice patchŤ of very low friction µice. We conducted several planning ex-

periments with diferent µice ∈ ¶0.12, 0.06♦ and diferent widths of the ice

patch (¶0.5, 1♦m). Figure 2.7 shows that using our planner the robot walked

through the ice for µice = 0.12 (speciĄcally it walked 5% slower than the op-

timal speed with increased double support), but walked around the ice if

µice = 0.06. When we doubled the ice patch width but kept the low fric-

tion µice = 0.06, the planner found it more optimal to go through the ice

approximately twice as slow (with increased double support) than around a

great distance. In terms of expected electrical energy (Table 2.1), the paths

generated by our planner spent 2110 J, 2427 J and 3031 J respectively. We

also conducted experiments constraining the planner to take the alternative,

sub-optimal choice of avoiding the ice patch when it is optimal to cross it

and vice-versa. Such sub-optimal choices would lead to 14%, 19% and 10%

more electrical energy respectively. Thus, an increase in COM work (sub-

optimal plan) lead to an increase in electrical energy consumption. The

electrical energy obtained by our optimal planner was relatively close to the

real minimum of Eele. Optimizing electrical energy directly lead to 25%,

12% and 18% less consumption than optimizing COM work. On the other

hand, optimizing travel time (common objective function of footstep plan-

ners) would lead to drastic energy spending, increasing by 26%, 51% and

92%. Optimizing joint torques decreased energy spending slightly by 11%,

3% and 13%.

The second scenario (Figure 2.8) was as follows: there are two stairs at

equal distance to the robot (x = 1 meter away, y = ±0.50m), both ending

at the same Ąnal height (z = 0.50m). One of the stairs has 3 high steps

while the other has 6 lower steps. The goal of the robot is to reach a distant

centered position (x, y, z) = (3, 0, 0.5)m. The energy cost should be the

same if the stairs were identical. We show the obtained footstep plan in

Figure 2.8. The Ągure shows that the planner opts for the lower-but-many-

step stairs. The reason for this result is that on steep stairs, steps become too

costly for the distance traveled. Notice that the slope of the energetic cost

ECOM in Figure 2.3 is high in the direction of step height. We will further

analyze the cost of slanted locomotion in Section 2.4.3. In terms of expected

electrical energy (Table 2.1), our plannerŠs path was 13% away from the true

minimum of Eele. The sub-optimal choice of taking the few-but-high stairs

would increase consumption by 9%, and optimizing travel time would also
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µice = 0.12

µice = 0.06

µice = 0.06

Fig. 2.7 Optimal plans obtained by our planner in the Şground and
ice-patchŤ scenario. The top row shows the footstep plan and point cloud
(red has friction µice, blue µground = 1). Left: robot crosses a narrow ice

patch (µice = 0.12). Middle: robot walks around the patch if its slipperiness
is increased (µice = 0.06). Right: robot walks slowly through the same ice

patch in case the ice is wider (energy spent avoiding it would be too high).
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increase consumption by 40%. Optimizing joint torques lead to basically the

same performance as ECOM (0.5% more energy).

The Ąnal scenario was as follows: the robot has to climb a slope to a tar-

get which is straight ahead, 2.5m away measured on a straight line connect-

ing the start and target points. The slope has an angle of α ∈ ¶10, 20, 25♦
degrees. We show the planner and simulation results in Figure 2.8. The op-

timal path for the two shallowest slopes was in a straight line to the target,

but for α = 25◦ the optimal path was curved and at a slightly lower inclina-

tion. These results match observations in human mountain paths as we will

discuss in Section 2.4.3. In terms of expected electrical energy (Table 2.1),

our plannerŠs path for the 25 degree slope is only 5% away from the true

minimum of Eele. The sub-optimal choice of taking a straight path to the

target, instead of curved, would increase consumption by 1%. Optimizing

travel time would increase consumption drastically by 97%. Obtaining a

path by optimizing joint torques revealed to be unfeasible for our plannerŠs

time limit (which was 10 minutes), while an optimal plan was returned for

ECOM in 10 seconds. By analyzing our model and planner data our conclu-

sion is that the sum-of-torques function has high variance due to noise in

simulated joint torque measurements, and its optimization is prone to get

stuck in local optima. The electrical energy minimizing planner also includes

a joint torques term and correspondingly also took longer to solve the path

to optimality (177 seconds) than when using COM work.

For all scenarios our ECOM-optimal planner found a Ąrst sub-optimal

path within 1 second and the optimal path within 1 minute. The computa-

tional speed improvement obtained by using pre-computed energy costs for

diferent step-friction combinations was of around one order of magnitude

for both the initial and optimal paths. The ODE-simulated robot success-

fully walked without falling in all situations, even at high slipperiness and

slope levels.

From the optimal-vs-suboptimal experiments our results indicate that

ECOM correlates well with Eele. Still it was less susceptible to local minima

and long planning times than Eele or torque-minimization. These three

quantities (ECOM, Eele, sum-of-torques) are all actually related with each

other: Pearson correlation on data used for energy model training was r =

0.78 between joint torques and Eele, r = 0.54 between joint torques and

ECOM, r = 0.58 between ECOM and Eele, and r = 0.64 between ECOM and

joint mechanical work. Practically for our setup the human-inspired ECOM
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Stairs

Slope α = 10◦

Slope α = 20◦

Slope α = 25◦

Fig. 2.8 Optimal plans obtained by our planner in the ŞStairsŤ and ŞSlopeŤ
scenarios. On steep stairs and slopes, it is more energy optimal to walk a

longer inclined distance but at a lower angle.
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seems to be the best objective function choice as a compromise between

energy consumption and computation time. Better optimization techniques

could probably make direct optimization of Eele more interesting, but in any

case our proposed planner can be applied to both functions.

2.4.3 Comparison with human observations

The optimization objectives and variables proposed in this section were in-

spired by human gait literature, as described in Section 2.3. We now compare

the results of our models and planner with the observations in human gait.

a) Gradient of mountain paths [106, 107]

As we showed in model and planning results in Figure 2.3 and 2.8, high

ECOM of slanted terrain leads to a preference of our planner towards shal-

lower slopes. In our example scenarios, the robot preferred low-step stairs,

and planned a curved 20 degree path on a steep 25 degree slope. Likewise in

humans, mountain paths are predicted by oxygen consumption experiments

on slopes [106, 107]. According to [107], humans prefer to climb steep moun-

tains at a maximum inclination of approximately 14 degrees, and in order to

do that they climb not straight to the mountain peak but in a curved pat-

tern. Mountain path observations are also partly reproduced by assuming

minimization of COM mechanical work [107] which is our objective function

in this section. In Figure 2.9 we plot the chosen climbing angle versus the

straight-line slope angle both for humans and our robot. The curve corre-

sponding to humans was obtained by the data in [107]. The curveŠs shape is

the same for humans and our robot: straight-line path until a certain angle,

constant lower climbing angle after that. The angle at which this transition

occurs is however diferent (approximately 14◦ for humans, 20 for the robot).

We believe this to be due to diferences in motor eiciency since WABIAN-2Šs

weight, dimensions and joint positions are inspired by humans. We calcu-

lated the extra (constant) energy consumption of humans that would lead

to the same plot as our robotŠs, and found it to be 0.5cal/kg/m. This curve

is also shown in Figure 2.9.
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Table 2.1 Estimated electrical energy consumption of our planner using diferent objective functions

Scenario ECOM (ours) Suboptimal ECOM Travel time Sum-of-torques Eele (ideal energy consumption)
Narrow ice µ = 0.12 2110 J +14% +26% -11% -25%
Narrow ice µ = 0.06 2427 J +19% +51% -3% -12%
Wide ice µ = 0.06 3031 J +10% +92% -13% -18%

Stairs µ = 1 4116 J +9% +40% +0.5% -13%
Slope µ = 1, α = 25◦ 4908 J +1% +97% (failed) -5%

*Note: Reported energy is the estimated electrical energy consumption (2.6). Percentage values represent additional energy as a
percentage of ECOM (i.e. (E ′ − ECOM)/ECOM). ŞSuboptimal ECOMŤ: refers to a plan that takes a sub-optimal navigation option
(i.e. around the ice instead of through; through instead of around; using the few-but-high-step stairs; walking straight on a 25◦

slope instead of in a curve) although still optimizing ECOM given that constraint.
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Fig. 2.9 Optimal path inclination angle αpath as a function of the slope
angle α. If αpath < α then the path is curved at shallower inclination and

longer total distance.

b) Required Coefficient of Friction [98, 99, 103, 105]

According to [99] humans reduce RCOF (the shear-to-normal force ratio)

when walking on slippery terrain, which in our planner we assume to be

a walking constraint such that RCOF< µ. Figure 2.5 shows an increase

of RCOF for an increase in double support, which means that to be able

to walk on more slippery terrain (lower RCOF) the robot should opt for a

conservative gait that is more static, with lower tangential speeds and accel-

erations. Also in humans a ŞcautiousŤ, more static, gait has been observed

in humans walking on slippery terrain [98Ű100], as referred in Section 2.2.3.

On the other hand [105] speciĄcally observed an increase in double support

time when walking on slippery terrain. Regarding step length, [98, 99, 103]

also observed that this variable is lower when humans walk on slippery ter-

rain. Reduction of step length is actually an anticipation strategy used just

before stepping on slippery terrain [98, 99, 103], just as in our robotŠs case it

is planned by assuming a constraint on RCOF [99]. While our planner uses

a hard RCOF constraint, the decision was mainly motivated for practical

and conservative reasons: a hard constraint lowers the risk of falling by the-

oretically avoiding slippage completely and thus not having to rely heavily

on reactive slippage control. Humans, on the other hand, could possibly use

RCOF or a related metric as a soft constraint, although we are not aware of

any investigation on these lines.
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2.4.4 Simulated versus real robot

We ran a small subset of experiments on the real robot to compare real

electrical energy E∗
ele to the simulated Eele model. Figure 2.12 shows the

simulated optimal ECOM per step-length and Eele per step-length, for several

step-length values while varying all other step parameters. We also show

the real measured E∗
ele per step-length in the same Ągure for comparison.

To obtain E∗
ele we made the robot walk in the laboratory for a total of 18

steps for each step-length value (using the energy-optimal step parameters

obtained from simulated models). We used motor current measurements

given by the motor drivers, and computed torques from current. Each point

in the graph is the average energy over the 18 steps. The standard deviation

of the measurements is also shown in the same Ągure. The minimum energy

per distance is obtained at the same step-length of 0.15m for all models (i.e.

0.30m stride length). The standard deviation of the energy measurements on

the real robot is low, especially at the optimum, which we believe to be due to

higher stability as well. The Ągure also shows that COM mechanical energy

ECOM overestimates energy consumption after the minimum, and that this

overestimation is lower in case a more complex model is used (i.e. joint work

plus a τ 2 term). Figure 2.10 shows one of the real robot experiments taken

at optimal step-length.

To observe the impact of mechanical energy and heat losses in E∗
ele, we

also show in Figure 2.11 the total electrical power across a 6-step experiment.

We decompose power into joint mechanical power (Ąrst term of equation 2.6)

and power losses (second term of equation 2.6). Mechanical power dominates

power consumption over heat losses of the DC motors, and closely follows

the total energy of the system. This agrees with the other results, in that

optimizing mechanical work might be suicient for good energy consumption

of the robot.

2.5 Hierarchical full-body planning

2.5.1 Hierarchical planning architecture

We will now build on the Şextended footstep planningŤ algorithm of the

previous section to plan full-body motion using a contact before motion ap-

proach.
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Fig. 2.10 Real robot walking with ECOM-optimal parameters (red dot in
Figure 2.12).
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Fig. 2.11 Real total electrical power measured over a 6-step trial.
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Fig. 2.12 Simulated versus real energy consumption. Mechanical energy
ECOM (left), simulated electrical energy Eele (middle) and measured
electrical energy E∗

ele (right). The real energy curve was obtained by
averaging over 18 steps for each step-length and standard deviation is also

shown.
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Fig. 2.13 Our hierarchical planning architecture, which uses trajectory
optimization to minimize a cost function fcost, as well as oracle costs to
plan footstep placement and timing that will have low predicted fcost.

When a planning problem is organized in such a hierarchy, it is impor-

tant to enforce consistency between the functions optimized at each level, in

order to avoid very suboptimal results. For example, if ECOM is optimized at

the footstep level, then the subsequent full-body trajectory optimizer should

arguably optimize ECOM with body motion as well. If the energy function

optimized at the footstep planning level correctly predicts the energy ob-

tained by the full-body planner, then footsteps will be full-body-optimal. In

the context of hierarchical planning, it then makes sense to call the energy

and slippage models used in the footstep planner by ŞoraclesŤ - black boxes

which predict the output of a full-body trajectory optimizer.

See Figure 2.13 for a visual representation of the architecture we propose.

A footstep planner Ąrst searches a stance graph using transition costs pro-

vided by an oracle. The stances are then used as constraints in a full-body

trajectory optimizer that considers full-body trajectory costs, collisions, joint

limits and static stability. The obtained trajectory is Ąnally interpolated and

locally adapted for dynamic stability using a ZMP-based method. The ora-

cle basically takes each stance transition and predicts the costs obtained at

the end of the whole planning pipeline. This leads to footstep plans which

optimize the same criteria as the full-body planner. The trajectory costs

could be ECOM, as used in the previous section, or any other reasonable

function. In this section we will use squared static torques, despite their

slightly lower energetic performance, mainly since they are easily integrated

into trajectory optimization.
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a) Extended footstep planning with an oracle

When considering full-body trajectory optimization it makes sense to slightly

generalize the deĄnition of a stance s as a set of contacts with the environ-

ment. A contact is a tuple (link, position, rotation), and a neighbor stance s′

either adds or removes a contact with respect to s. Since we are still dealing

only with biped walking in this thesis, stances will transition from double-

support to left-foot-contact, to double-support, to right-foot-contact, back

to double-support, etc. The advantage of this representation instead of using

double-support stances only is that the swept-volume between consecutive

stances can be used by the optimizer to guide a swing leg out of collision.

Such an approach is also used by other works focusing on collision detection

[88]. Furthermore, on top of the stance feasibility constraints Ψ, for collision

safety we will now also compute foot-foot and COM-environment collision

checking using bounding boxes for the feet and trunk.

The state transition and heuristic equations (2.4) (2.5) are similar, except

we now switch the notation to stances and their neighbors. We deĄne them

as

c(s, s′) =min
p

f̂cost(s, s′, p)

subject to

f̂RCOF(s, s′, p) < µ

Ψ(s, s′, p) < 0

a < p < b,

(2.7)

h(s) =dxy(s, sgoal).min
s,s′,p

f̂cost(s, s′, p)

dxy(s, s′)
. (2.8)

The functions f̂cost and f̂RCOF serve the same purpose as the learned models

of the previous section, but are now given not by physics simulations but

by an oracle which predicts the value of fcost and fRCOF obtained at the

end of the whole planning pipeline. We implement f̂cost and f̂RCOF as hash

tables. The tables are Ąlled oline, by feeding the whole planning pipeline

(i.e. trajectory optimization, interpolation, dynamic stabilization) with uni-

formly distributed samples of (s, s′, p) as shown in Figure 2.13. The discrete

optimization problems in (2.7), (2.8) are then solved for a large number of
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discretized stances and coeicient of friction values, and Ąnally stored in new

hash tables for fast access to costs and heuristics during search.

b) Full-body trajectory optimization

The full-body trajectory optimizer takes a footstep plan with N stances and

produces a full-body trajectory, parameterized by T discrete-time waypoints.

Waypoints are full-body robot conĄgurations qt ∈ R
D, t = 1, ..., T , where

D is the number of degrees-of-freedom consisting of the jointsŠ angle values

and the pose of the robot base. Each stance is associated with 2 full-body

postures (at start and midstance) and so T = 2N . For convenience we use

st to refer to the stance associated to qt.

Our optimizer solves the problem

minimize
q1,...,qT

fcost(q1, ..., qT ) + αfcollision(q1, ..., qT ) (2.9a)

subject to

fstance(qt, st) = 0 ∀t∈1,...,T (2.9b)

fxy(qt) ∈ Pt ∀t∈1,...,T (2.9c)

froll(qt) = 0 ∀t∈1,...,T (2.9d)

Atqt ≤ bt ∀t∈1,...,T , (2.9e)

where q1, ..., qT are the optimization variables, α is a penalty constant and:

� The function fcost computes the sum of the squared static torques of

all joints at all waypoints. In the static condition joint torques only

compensate for gravity, and so fcost is given by

fcost(q1, ..., qT ) =
∑T

t=1
τ(qt)

⊤τ(qt), (2.10)

τ(qt) =
∑L

i=1
Ji(qt)

⊤Fgi
, (2.11)

where τ(qt) is the vector of joint torques at conĄguration qt, L is the

number of links of the robot, Ji(q) = ∂xi

∂q
is the COM position Jacobian

of link i, and Fgi
= mi



0 0 9.8
)⊤

is the force of gravity applied at

link i. The function is implemented in the trajopt library [57], which

we use in our setup.

� The function fcollision is a collision cost as proposed by [57] and imple-

mented in trajopt. It is the sum of a discrete collision cost computed



2.5 Hierarchical full-body planning 51

by the signed distance between each link and all other geometries, and

a continuous collision cost computed by the signed distance between

the swept volume of each link with the environment.

� The function fstance(qt, st) computes the pose error of all links in con-

tact as a 6C-dimensional vector where C is the number of active con-

tacts in st. This is computed as the translation and axis-angle error

between the target link pose (given by st) and the current link pose

(given by qt).

� The function fxy(qt) computes the (x,y) coordinates of the COM, and

Pt is the support polygon of st. The constraint thus enforces approx-

imate static stability. The support polygon of st is computed by the

convex hull of the horizontal projection of links in contact and does

not include contacts removed in st+1.

� The function froll(qt) computes the rotation around the X axis for the

waist link, with respect to the global reference frame. This constraint

is necessary as Şzero rollŤ is an assumption of the subsequent dynamic

stabilization method.

� At, bt enforce joint angle and velocity limits.

We solve problem (2.9) using the Sequential Quadratic Programming

method of [57] as implemented in the trajopt library1.

c) Interpolation and stabilization

To obtain a densely-sampled trajectory for execution on the robot, we inter-

polate trajectory waypoints using hermite cubic splines with derivatives set

to zero for smooth contact transitions. The time between two consecutive

waypoints qt is given by the oracle (equation Equation (2.7)).

Since the obtained trajectory is not dynamically stable, we then apply

an FFT-based ZMP trajectory compensation scheme [119]. The method

considers the rigid-body dynamics of the full body and locally adapts COM

motion on the horizontal plane using analytic inverse kinematics to itera-

tively reduce the error between the real and reference ZMP trajectory. We

set the reference ZMP trajectory to the interpolated fxy(qt), which were

1URL: http://rll.berkeley.edu/trajopt



52 Humanoid locomotion planning considering world geometry and friction

used in the optimization problem (2.9) and are inside the support polygon

at each waypoint. Furthermore, our implementation of the analytic inverse

kinematics of the robot WABIAN-2 assumes zero roll angle of the waist link

with respect to the world reference frame. We include this constraint in the

optimization problem (2.9) for consistency.

2.5.2 Results

In the following experiment we gave the planner the task of computing a full-

body trajectory from an initial stance in double-support to a goal stance 1.5

meters ahead. In the middle of the trajectory we placed a high obstacle

which would lead to collision if a full-body planner was not used. See 2.14

for the results. Trajectory optimization parameters are the collision penalty

weight α of equation (2.9), which we set to 50, and the distance at which the

collision penalty starts being applied (for all links except those in contact),

which we set to 2.5cm. The collision penalty distance for the head link was

set to a higher value of 10cm for clearly visible safety in the Ągures.

Collision checking during footstep planning is made with a slightly shrunk

bounding box: 20cm lower than if the robot were fully stretched. This is so

that plans are found according to the maximum capabilities of the robot (i.e.

assuming it can bend down to 20cm). Thanks to this, in this experiment a

footstep plan was found on a straight line to the target and the full-body

motion automatically bent the trunk and knees in order to avoid collision

between the head and the obstacle.

We can further complicate the environment with obstacles that force a

footstep detour. See Figure 2.15 for an example. In this case, we placed

an extra small obstacle in the middle of the course but close to the ground

to force the footstep planner around it. In this environment, the footstep

planner obtains a sequence of footsteps free of bounding-box-collision which

goes around the low obstacle through the left. Then, the full-body planner

obtains a trajectory that respects those footsteps. Once again, the high ob-

stacle forces the robot to bend down to avoid head collision. At all stages, en-

ergy is minimized and therefore in both experiments (Figures 2.14 and 2.15)

paths are short - and knee-stretched when that does not lead to collision.
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1 2 3

4 5 6

7 8 9

Fig. 2.14 Hierarchical locomotion planning with a high obstacle: walking
sequence (1-9), footstep plan, and collision bounding boxes.



54 Humanoid locomotion planning considering world geometry and friction

1 2 3

4 5 6

7 8 9

Fig. 2.15 Hierarchical locomotion planning with high and low obstacles:
walking sequence (1-9), footstep plan, and collision bounding boxes.
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2.6 Discussion

We will organize the discussion of this chapter according to the objectives

we set in the beginning.

2.6.1 Applicability of human gait principles

We showed that representations of walking used in human gait literature are

tightly related to the footstep planning problem. Furthermore, we showed

that energy and RCOF of both human and humanoid walking vary system-

atically with these representations.

Importantly this chapter shows that planning time variables along with

footstep placement, as humans do, is crucial when including ground friction

in the problem. The required coeicient of friction (RCOF) for a slip to occur

decreases with the decrease of step length and with the increase of double

support time, thus allowing the robot to walk on very slippery surfaces by

adjusting these variables (as happens with humans [98, 99, 103, 105]). This

contrasts to the common practice in humanoid robotics to use constant step

times, so investigating human gait here clearly brought some innovations to

footstep planning.

It is worthy of note that the models we obtained might difer from the

ones obtained with diferent robots or using diferent controllers. The ex-

tended footstep planning approach is still general, and all that is required

to apply it is to learn the ECOM, RCOF, Ψ models in simulation with the

desired robot and controller.

2.6.2 Energetic advantages of human-inspired models

We showed that COM work is related to electrical energy consumption.

According to DC-motor-based electrical power consumption estimates from

simulation data, planned paths had close to optimal electrical consumption,

and higher COM work lead to higher electrical energy. Our experiments also

showed that, at least for our robot and stretched-knees walking controller,

minimizing COM work at the footstep planning level leads to low energy

consumption on the real robot as well. These observations and the simplicity

of the model suggest COM work to be an efective objective function for

planning of robot locomotion.
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On the other hand, torque minimization also leads to low predicted elec-

trical energy consumption and might be more easily integrated in full-body

motion planners, depending on their implementation. While physics sim-

ulation of joint torques is noisy and can lead to instabilities on extended

footstep planning, that was not the case for our hierarchical motion planner

since it does not rely on physics simulation.

2.6.3 Human-like walking behavior

As we showed in this chapter, footstep planning with human-inspired vari-

ables and models of energy and slippage leads to human-gait-predicted be-

havior. In particular, in our experiments we replicate the following observa-

tions of human gait:

a) Energy contours are hyperbolic in step length-rate [81, 83],

b) RCOF is reduced on slippery terrain [99],

c) Step length is reduced on slippery terrain [98, 99, 103],

d) Double support time is increased on slippery terrain [105],

e) There is an optimal climbing angle for steep slopes [106, 107]. In other

words long steep trajectories will be curved.

2.6.4 Hierarchical motion planning

Our hierarchical planning architecture combines footstep with full-body mo-

tion planning, in a way that can deal not only with slippery and slanted ter-

rain, but also complex obstacle placement. Collision-checking is done with

a slightly shrunk bounding-box at the footstep planning level, followed by

full-body-mesh collision-checking at the joint level. One important detail is

that the bounding-box approximation should be chosen such as to approx-

imate the minimum feasible volume occupied by the robot on that stance,

in order not to avoid narrow passages. At the same time, too low of a vol-

ume might be a bad approximation and so lead to impossible constraints

for the full-body optimizer to solve. Care should be taken to assure that

bounding-box dimensions are appropriate.

Our footstep plannerŠs computation times were comparable to other

state-of-the-art planners even though we plan extra step parameters and
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consider energy and friction. Importantly, we compute parameters other

than footstep placement from state transitions, which reduces the A* search

space and increases search speed. Pre-computing energetic cost for many

combinations of footstep placement and µ also allowed for faster search than

if (2.4) were to be solved explicitly for each state expansion. Instead we solve

it only for the Ąnal obtained path, reducing computation speed by one order

of magnitude.

Full-body trajectory representation is an important aspect of the algo-

rithm that can be improved. Full-body motion in this paper was interpolated

after trajectory optimization at waypoints. While we did this for implemen-

tation simplicity, one possible direction of improvement could be to use the

spline representation directly in the optimization problem, using constraints

at collocation points. In addition to that, dynamics could also be added to

the trajectory optimization problem for more versatile motion.

2.7 Summary

In this chapter we showed that footstep planning for humanoid robots, by us-

ing simple principles (i.e. COM work, RCOF) and gait representations (i.e.

step length, width, height, double support time, swing time and knee Ćexion)

from human gait literature, leads to both human-like walking behavior and

low electrical power consumption. Importantly, we showed through several

simulation experiments that the footstep planner we proposed here is well

suited for challenging outdoor scenarios since it accounts for ground friction

and energy consumption. We also proposed an architecture for hierarchical

planning which is objective-consistent and considers trajectory costs, colli-

sion, stability and friction. Using this hierarchical planner the (simulated)

robot could navigate also in environments with complex obstacle geometry,

where a combination of footstep planning and full-body motion is necessary

to avoid collision (e.g. going around a low obstacle while bending down not

to collide with another high obstacle).

The algorithms introduced in this chapter thus work for varied terrain:

Ćat, inclined, with obstacles and slippery. As we stressed in Chapter 1, they

are relevant since not only obstacles but also diferent terrain types abound

in the real world, and locomotion choices should take them into account -

whether for safety or energetic considerations.
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The planners proposed here rely on the assumption that world geometry

and coeicient of friction are known. This is of course a strong assump-

tion, especially because it is not obvious whether friction estimation is even

possible before contact - and how high its uncertainty is. Answering these

questions is going to be the purpose of our next chapter.



Chapter 3

Visual perception of friction

3.1 Introduction

We now turn into the problem of predicting friction properties of surfaces

from visual input. This is an important problem in model-based motion

planning methods such as the ones we described in the previous chapter:

without good estimates of friction the robot may slip, which in turn may

cause challenges to controllers and lead to a fall. So the crucial question

is how well can algorithms predict friction of a surface from visual sensors

before contact. In addition to that, it is important that algorithms provide

estimates of the uncertainty of predictions, so that this information can

be used by the planning algorithms for robustness. And Ąnally, human

performance at the task can provide useful information for our purpose,

such as suggesting possible visual features to encode into algorithms, or to

understand whether humans can accurately predict friction at all - whether

they should teleoperate robots in slippery terrain or not.

The objectives of this chapter are the following:

a) To understand what kind of visual and semantic features best predict

human judgements of friction (Section 3.3)

b) To quantify the performance of humans at predicting friction for a robot

foot (Section 3.4)

c) To quantify the performance of algorithms at predicting friction for a

robot foot (Section 3.4)
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d) To propose methods that can quickly and densely compute friction from

images, as well as integrate and provide estimates of uncertainty (Sec-

tion 3.5).

3.2 Background

3.2.1 Friction perception in robots

The friction estimation literature in robotics has been mostly focused on

its measurement during contact. Examples include COF estimation using

specially-designed sensors [129], and material classiĄcation through dynamic

friction model Ątting while stroking surfaces with a robotic Ąnger [130]. On

the legged robot locomotion literature, there is an interest in identifying

slips when they occur [131Ű133], in order to trigger changes in controllers

[131] or activate reĆexes [58]. For example, [131] estimated slipping force

by comparing predicted ground reaction forces and those measured with a

force sensor on the foot. On the other hand, [132] uses Kalman Ąltering of

IMU measurements to detect slippage, and [133] applies a similar approach

to a quadruped robot which considers active contact information as well.

Planning algorithms can prioritize low Şfriction sensitivityŤ and prefer

robot conĄgurations that are stable even for low COF [89, 92]. But even then

it is important to have an estimate of the actual friction and its uncertainty.

Otherwise, planned motions may be too conservative and suboptimal, or too

aggressive considering reĆex controllersŠ robustness. One option to tackle

this problem is through learning from experience. Notably, [20] uses visual

terrain classiĄcation and slope to estimate friction on a rover. The authors

train their models on image sequence datasets of rover navigation.

Terrain classiĄcation approaches such as [20] are limited by the size of the

datasets: for example if the dataset does not contain ŞiceŤ then the algorithm

will not be able to accurately predict friction for this class. However, as we

will show in this chapter, it is possible to use other sources of knowledge

such as text on the internet to help predict friction for classes not present

on the dataset. Such an approach to the small-dataset problem is similar to

the method used for afordance estimation in [134]. Afordance estimation

is the task of automatically classifying which actions can be applied to dif-

ferent objects, which the authors compute using distances between vector

representations of words.



3.3 Friction from vision in humans 61

Fig. 3.1 The OSA+F dataset (8 materials, 96 images), one example per
material category. carpet/rug, concrete, fabric/cloth, granite/marble,

metal, stone, tile and wood.

3.2.2 Friction perception in humans

Human performance at the friction from vision task has the potential to

inform the robotics and computer vision communities of which features to

use for prediction. Humans are known to use visual cues to estimate fric-

tion, related to surface texture [135], shine [136] and detection of materials

or contaminants (e.g. water) [137]. Furthermore, in the human gait litera-

ture there is evidence that humans use accumulated previous experience to

predict friction and adapt walking style before touching slippery ground, as

we discussed in Section 2.2.3.

Still, humans make friction judgement mistakes that lead to slipping for

example due to over-reliance on gloss or other lighting-related visual features

[136], and they are known to have diiculties in estimating coeicient of

friction values [135]. Therefore it is still not clear how well humans estimate

friction from vision.

3.3 Friction from vision in humans

3.3.1 Dataset

For the purpose of better understanding (and predicting) human perception

of surface friction during locomotion, we created the OSA+F dataset. We
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started from the open and crowd-sourced OpenSurfaces dataset [138], along

with the texture attribute annotations of [63], referred to as OSA (Open-

Surfaces plus texture Attributes). The reason that took us to start from

the OSA dataset is the large amount of data available: real-world scenes an-

notated with object, material, texture, scene and illumination judgements.

Each image is annotated with segments drawn by the subjects and each

segment is attributed an object name, material class (1 out of 22) and the

applicability of texture classes (boolean vector of size 11, e.g. whether the

segmentŠs texture is chequered or not, marbled or not, etc). Albedo and re-

Ćectance judgements also exist for most segments. We considered the data

available with the OSA dataset most suitable for the friction estimation task

since human judgements of friction are usually associated with gloss [136],

material and texture [135].

We selected a high-quality, class-balanced subset of the OSA dataset

appropriate for our task. First, for high-quality annotations, we discarded

segments with negative judgement scores. Since our goal is to obtain a

dataset for friction estimation of locomotion surfaces, we only considered

segments corresponding to traversable planar surfaces. Traversability was

manually annotated by the authors. From the high-quality traversable seg-

ments we selected 96 segments for the OSA+F dataset. These were obtained

by solving a mixed-integer linear program maximizing total segment area,

subject to the constraints:

i. each material has exactly 12 occurrences in the dataset,

ii. each texture has at least 10 occurrences in the dataset,

iii. each image has only one segment in the dataset (to prevent similar

segments from the same image).

The resulting OSA+F dataset consists of 96 segments, from 96 images,

and 8 material classes with 12 occurrences each. We show one example

image for each material class in Figure 3.1.

We collected human judgements of friction for each image segment through

an online survey with random image order, one image per page, prepared

using the Limesurvey software [139]. Subjects were 14 graduate students

from the mechanical engineering department with normal or corrected-to-

normal visual acuity. Each image segment was judged by the subjects using

a slipperiness Likert scale of 1 to 6 (i.e. 1 least slippery, 6 most slippery).
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Fig. 3.2 Example image from the OSA+F dataset overlaid with a red
square indicating the area of interest.

We opted for this scale after preliminary experiments showing larger scales

to be diicult to judge, ŞslipperinessŤ to be easier to rate than ŞfrictionŤ,

and because the same scale is used on diferent material judgement exper-

iments in the human vision literature [140]. The explanation of the scale

was present in all pages. The questions were framed as how slippery the

subjects expected the surfaces to be in case they were walking on them with

their normal shoes. As a post-processing stage we normalized judgements

to a friction scale instead of slipperiness (i.e. y = 1− ylikert

6
, thus 0 is lowest

friction, 5
6

highest). On the survey, segments were indicated by a red square

overlaid on the image, computed as the largest-area square inside the OSA

segment. See Figure 3.2 for an example.

3.3.2 Considered features

To understand which features human judgements of friction best correlate

with, we use the annotations provided by the dataset as well as other features

based on image statistics.
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Fig. 3.3 Example of an intrinsic image decomposition. From left to right:
original image, reĆectance image, and shading image.

a) Semantic classes

Since the OSA+F dataset provides high-level semantic classes associated

with each surface (and therefore each slipperiness estimate), we can use

these semantic classes for friction prediction.

Given an input image of material m, we predict friction to be the mean

over the training set y on images of the same material:

fMatMean(m) =
1

♣M ♣
∑

k∈M

yk, (3.1)

where M is the set of images labeled with material m. When the input

image material m is not present on the training set, we use an average

friction prior fMatMean(m) = ȳ. We apply the same logic for texture and

scene label features fTexMean, fSceMean.

b) Gloss

Higher gloss surfaces are usually judged by humans (sometimes mistakenly

[136]) as more slippery. Inspired by this observation, we use shading as a

feature for friction prediction. Intuitively, we can make an algorithm that

analyzes the shading of the scene and classiĄes a surface as more slippery if

it has glossy specular reĆections, and less slippery if it is more matte.

In computer vision terms, shading can be estimated by an intrinsic image

decompostion algorithm. These algorithms decompose an original image I

into two layers: a shading layer S (irradiance, illumination) and reĆectance

layer R (albedo, the surfaceŠs color). The layers are estimated such that I =

R ·S. See Figure 3.3 for an example decomposition. Several algorithms exist

to estimate this decomposition, such as Retinex [141] or other more complex

examples [142]. In this paper we use the Retinex algorithm (implementation
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in [143]) due to its order of magnitude faster computation time while still

achieving high performance [142]. Given an input image, we run Retinex to

obtain its shading image and compute the histogram of shading values over

the region of interest to estimate friction in that region.

We use the the maximum and standard deviation of shading as features:

fShadMax = max
(i,j)∈C

(Si,j), (3.2)

fShadStd =

√

√

√

√

1

N

∑

(i,j)∈C

(Si,j − S̄)2, (3.3)

where i, j are indices of the the shading image inside the region of interest C,

N is the number of pixels in that region and S̄ the regionŠs mean shading.

During training, we Ąt the features to training data using ordinary least

squares (OLS) linear regression.

c) Roughness

Humans also use visual estimations of surface roughness to predict friction

[135]. Intuitively, frequent variations in image intensity can be used to pre-

dict high surface roughness, which is generally associated with high friction.

We compute the magnitude of the image gradient with a Sobel Ąlter and use

the average magnitude of the response as a feature:

fGradMu =
1

N

∑

(i,j)∈C

∥∇Ii,j∥, (3.4)

where i, j are indices of the image inside the region of interest C and N

the number of pixels in that region. During training, we Ąt the features to

training data using OLS linear regression.

3.3.3 Results: predicting human judgements

We now analyze the data collected and friction prediction results. We use

two metrics for algorithm evaluation:

i. Root Mean Squared Error (RMSE) between real and predicted friction

values on the test set. Results reported are 2-, 5- and 10-fold cross

validation values of the RMSE (i.e. average RMSE over the 2, 5 and 10
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test sets respectively). All dataset splits are provided together with the

datasets.

ii. Pearson correlation signiĄcance (p < 0.05 or p < 0.01) between real and

predicted friction values on the whole dataset. We use this metric to

estimate how chance could be responsible for the correlation between

algorithmsŠ predictions and real friction. Due to the relatively small

size of the datasets, we choose to report p values on the whole dataset

instead of the test sets.

We computed the average and standard deviation of friction judgements

for each material, texture and scene. Figure 3.4 shows the results. Quali-

tatively, friction variability within materials is smaller than within texture

label or scene context. According to a 2-way ANOVA, several relationships

between materials are statistically signiĄcant: carpetŠs friction estimates are

higher than all other classes; and concrete, fabric, metal and stone are all

higher than granite, tile or wood. In the case of textures, the only signiĄ-

cant diference is between the labels grid and paisley. Scenes are also poorly

informative in this dataset: the only signiĄcant diference is between bed-

room and foyer. These results indicate material to be a better candidate for

prediction of human judgements of friction.

One recurrent observation in human perception literature is the reliance

of humans on gloss to estimate friction [136]. We test this hypothesis on the

dataset by computing the Spearman correlation between friction judgements

and gloss/shine estimates as given by the original OpenSurfaces dataset.

The Spearman correlation coeicient is r = −0.344 (p < 0.01), which indi-

cates a signiĄcant relationship between the two. However, when computing

the correlation independently for each material class, we found that gloss

only correlates signiĄcantly with friction judgements for the material gran-

ite/marble r = −0.781 (p < 0.01).

Figure 3.5 shows 8 images of the dataset sorted from highest to lowest

mean human friction judgement. For each image we also show data used

for image-based features: the gradient image, the shading image and the

histogram of values in the shading image. Interestingly, we note that Ćoors

with strongly specular reĆexions (i.e. higher gloss) are considered the most

slippery of the whole dataset, which can be observed in the shading image

by larger mean and maximum shading values. The Ągure also shows that

simple single features such as gradient or gloss are insuicient to predict
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Fig. 3.4 Average and standard deviation of friction judgements for each
material, texture and scene label on the OSA+F dataset.
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Fig. 3.5 Eight images from OSA+F sorted from highest to lowest average
friction judgements. From top to bottom: original image, gradient image,

shading image, histogram of shading image.

human judgements of friction. For example, the surface with most perceived

friction (a carpet) is according to our simple Şmaximum shadingŤ feature

very slippery due to what looks like a glow in the surface.

Next, we used the mentioned features to predict y: the average human

friction judgement for each image. In Table 3.1 we show the prediction

errors. We show both 10-, 5- and 2-fold cross validated RMSE values, the

algorithmsŠ rank according to the average of the previous three values, and

signiĄcance of Pearson correlation. We use the following two baselines for

better comparison and interpretation of the results:

i. ŞConstant frictionŤ baseline: the mean of y over the training set is used

as the prediction;

ii. ŞSingle subjectŤ baseline: we use a single subjectŠs friction estimates

as the prediction. We do this for each subject as a predictor and then

average the results over all subjects. The objective is to measure per-

formance of a single human in accomplishing the same task as the algo-

rithms (i.e. estimate the average personŠs friction judgement).

The single subject baseline achieved 0.104 RMSE on 5-fold cross vali-

dated results, which was slightly lower than the constant friction baseline

(0.137) but indicates high variability among subjects. In fact, inter-subject

variability is high (σ =0.166, or 41% of the mean). The best performing

algorithms were MatMean and WordMM, which scored 0.083 RMSE. This
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Table 3.1 OSA+F: predicting mean human data

Features RMSECV10 RMSECV5 RMSECV2 p AvgRank

Const 0.137 0.137 0.140 2
SingleSubj 0.103 0.104 0.104 * 1

HumanGloss 0.131 0.129 0.132 * 5
GradMu 0.137 0.138 0.142 8
ShadStd 0.125 0.125 0.129 * 3
ShadMax 0.128 0.128 0.131 * 4
TexMean 0.136 0.137 0.140 * 6
SceMean 0.142 0.134 0.158 * 7
MatMean 0.081 0.083 0.086 * 1

Note: p < 0.05 is marked with *, p < 0.01 with **. TexMean, SceMean and
MatMean use ground-truth semantic labels (i.e. of texture, scene, material).

result matches the previously stated observation that in this dataset material

is highly discriminatory.

Interestingly, human judgements of gloss as provided by the original

OpenSurfaces dataset scored 0.129 RMSE. The simple statistics of shad-

ing images we developed, ShadStd and ShadMax, had a similar but slightly

lower error (0.125 and 0.128). All other features either performed at constant

baseline level or did not have signiĄcant correlation with the mean human

judgements. In general, features had similar performance at the diferent

cross validation ratios.

3.4 Friction from vision for robot

locomotion

3.4.1 Dataset

We now focus on quantifying the performance of diferent features, as well

as human teleoperator judgements, at the task of predicting coeicient of

friction from images for robot locomotion. Importantly, the coeicient of

friction depends on properties of both surfaces in contact, and thus the

main objective of building this dataset is not to train predictors applicable

to all robots, but to quantify humansŠ and algorithmsŠ performance at the

task. Our assumption is that the conclusions taken from our robot footŠs
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Fig. 3.6 The GTF dataset (14 materials, 43 images), one example per
material category. asphalt, brick, carpet/rug, cobble, concrete, dirt,
granite/marble, leaves, linoleum, metal, mud, stone, tile and wood.
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Fig. 3.7 Left: example image from the GTF dataset overlaid with a red
square indicating where the coeicient of friction was measured. Right:

sole of the humanoid robot foot used for the coeicient of friction
experiments, GTF dataset.

data may generalize to diferent robot feet as well.

The dataset consists of 43 mostly outdoors images. These are annotated

with material class, ground-truth coeicient of friction measured on a hu-

manoid robot foot, and human judgements of friction similar to those in

OSA+F. We show the human-sized humanoid robot foot we used in Fig-

ure 3.7. The foot is rigid and its sole is covered with a high-stifness soft

material for shock absorption and an anti-slippage sheet. Locations of the

dataset images were chosen such as to cover the same material classes as

in OSA+F, as well as extra ŞdirtŤ, ŞmudŤ and ŞleavesŤ classes which are

common outdoors. At each location, we Ąrst measured the maximum fric-

tion force by pulling the foot with a spring-scale until it started moving for

around 10 trials. We recorded the static coeicient of friction value as the

average of the trials divided by the footŠs weight. The standard deviation

of COF measurements over trials was on average σ = 0.047. The foot was

loaded with a 1.5Kg mass and surfaces were checked to be horizontal with

a spirit level device. After measuring the coeicient of friction, we removed

the foot from the locomotion surface and took pictures of the surface and

surroundings using a consumer level camera, along with an annotation of the

image location where friction was measured. See Figure 3.7 for an example

picture.

Human judgements of friction were collected as well, using the same pro-

cedure as in OSA+F. However, all subjects were given the actual robot foot
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to look at, feel and experiment on their tables before taking the survey (all

subjectsŠ tables were of the same material). The questions were framed as

how slippery the subjects expected the surfaces to be in case they were walk-

ing on them while wearing the robotŠs feet as shoes. The subjects responding

to this survey were 12 of those who also participated in the OSA+F survey.

The dataset contains images of asphalt (3), brick (3), carpet/rug (5), cob-

ble (1), concrete (3), dirt (4), granite/marble (3), leaves (1), linoleum (2),

metal (8), mud (1), stone (1), tile (6) and wood (2). We show one example

image for each class in Figure 3.6. Unlike the OSA+F dataset, GTF is not

class-balanced. Some material classes are under-sampled, which creates dif-

Ąculties in training-based algorithms using material class as a feature. We

will now propose a solution to deal with such diiculties: friction prediction

without training examples using material class prediction and text mining.

3.4.2 Semantic features and text mining

When predicting friction from a surface of a semantic class which has not

been observed before, one can assume a rough prior such as the one we pro-

posed in the previous section: average friction over the training set. However

such a method will unnecessarily make very wrong predictions. For example,

if an image-based classiĄer predicts a surface to be of the material ŞasphaltŤ

but the friction training set consists only of COF measurements for Şcon-

creteŤ and ŞiceŤ, the average of the two COF is probably much lower than

that of asphalt even though it is intuitively more similar to concrete. We

argue that to solve this problem we can use text mining.

Text mining methods such as LSA [144] or word embeddings [145, 146]

have been used to obtain afordance relations [134] and various other seman-

tic relations [145]. In the case of this paper we are interested in material-

material relations such as Şasphalt is similar to concreteŤ, and material-

slipperiness relations such as Şasphalt co-occurs with the word slippery of-

tenŤ. We explore both these kinds of relations in this paper through the use

of word embeddings.

Word embedding algorithms, such as Word2vec [145] or GloVe [146],

embed words into semantic vectors. Each word is represented by a vector of

usually 50 to 1000 dimensions, and the cosine similarity between words

ci,j =
wi · wj

∥wi∥∥wj∥
, (3.5)
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is proportional to their co-occurrence in the training set. Here wi is the

vector representing word i. Using the previous example, we can thus es-

timate the co-occurrence of ŞasphaltŤ with ŞconcreteŤ, or even ŞasphaltŤ

with ŞslipperyŤ by simple internal products to estimate how similar the

two materials are, or how slippery asphalt is. For the results in this thesis

we trained Word2vec and GloVe models on the complete Wikipedia arti-

cle dump of 20080103. We chose algorithm parameters by varying them

within the ranges recommended in the respective publications, such as to

optimize model performance on the semantic tasks described in [146]. Final

parameters common to both algorithms were: vector dimension 400 and win-

dow size 10. Word2vec-only parameters were: CBOW architecture, negative

sampling 10, frequent word sub-sampling 10−5.

After word embeddings are trained, we use semantic similarity queries

to estimate friction of an input material. Since the word embeddings exist

for all words on the text corpus, we can theoretically estimate friction for

thousands of classes. We propose two algorithms for estimating friction

using word embeddings.

a) Material-Material similarity

For materials present in the training set this method is the same as the

semantic-class method described in Section 3.3.2. However, when the input

image material m is not present on the training set, we use the friction of

the Şmost similar materialŤ m̂ in the training set:

fWordMM(m) =
ȳ + fMatMean(m̂)

2
. (3.6)

m̂ = arg max
j

cm,j, (3.7)

We average fMatMean(m̂) with the friction prior ȳ in order to attenuate errors

due to possible wrong material associations.

b) Material-Slipperiness similarity

In this method we estimate friction by word-similarity between the queried

material name and a list L of slipperiness-related words1. The intuition

1The full list of slipperiness-related words we use is: slipped, slipping, skid, slue, slew,
slide, skidded, slued, slided, skidding, slueing, sliding, lubricious, nonstick, slick, slimed,
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behind this approach is that the more often a material co-occurs with words

such as ŞslipŤ, ŞslippedŤ, ŞslipperyŤ in text then the more likely it is to be

slippery for the average contact material. The advantage of the method is

that no friction measurements have to be made in order to rank materials

by predicted friction, which might be suicient for some robotic applications

(e.g. always plan paths through least slippery options). In this paper we

still linearly Ąt the function to training data, just like with the rest of the

features. The feature we propose is the maximum similarity between an

input material m and the slipperiness words in list L:

fWordMS(m) = max
j∈L

cm,j. (3.8)

3.4.3 Results: predicting COF

We did the same analysis as in the OSA+F dataset with GTF data, now

targeted at robot locomotion. Figure 3.8 shows the average and standard

deviation of friction judgements and real COF for each material. According

to a 2-way ANOVA, linoleum had signiĄcantly higher friction than all other

materials except mud and stone. Wood, asphalt and mud were signiĄcantly

larger than dirt and leaves. Interestingly, the high COF of mud was not

predicted by most human judgements, because contrary to some subjectsŠ

intuition mud was sticky rather than slippery. Finally, carpet COF is only

signiĄcantly higher than dirt.

We also show 8 images of the dataset sorted from lowest to highest COF

in Figure 3.9. We can see how this dataset is more challenging than OSA+F.

Surfaces with least friction now include both leaf-covered and wet concrete.

The intrinsic image decomposition does not detect specular reĆections on

the wet case, leaves lead to what could naively look like a surface of high

roughness (when in fact leaves can slide easily), glossy wood is actually

not slippery for the robot foot because of its anti-slippage sheet, etc. Such

examples indicate once again that material classiĄcation might be the safest

option to friction estimation, although detection of surface ŞcontaminationŤ

is crucial as well (e.g. of water, oil, leaves, grain, dust). In fact, one main

observation we made during the collection of this dataset was that since

the foot is Ćat, smooth and rigid, its COF is the lowest on contaminated

slimy, slithering, slithery. They were obtained by searching and conjugating words related
to the word slip on WordNet [147].
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Fig. 3.8 Average and standard deviation of COF for each material on the
GTF dataset.
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Fig. 3.9 Eight images from GTF sorted from lowest to highest COF. From
top to bottom: original image, gradient image, shading image, histogram of

shading image.

surfaces: clean marble had high friction, dusty was low; small 1mm2 stones,

leaves, or water drastically reduced the COF.

Next, we used the visual, rough semantic, and text-mined semantic fea-

tures to predict y: the real COF. In Table 3.2 we show the algorithm eval-

uation results. The results shown in this table were obtained assuming

ground-truth material is known. We use the following three baselines for

better comparison and interpretation of the results:

i. ŞConstant frictionŤ, as in the previous section,

ii. ŞSingle subjectŤ, as in the previous section. Note that Features are

human judgements of friction, while the target function y is the real

COF. The motivation for evaluating this metric is to Ąnd out whether

an average inexperienced robot operator, even if familiarized with the

robotŠs foot, can predict or not the friction coeicient between the robot

and ground. This has of course strong implications for the design of

control architectures and interfaces for remotely controlled robots.

iii. ŞMean SubjectŤ, the average of the subjectsŠ friction judgements. There-

fore, we measure how much a group of inexperienced robot operators,

instead of a single operator, can help predict COF. The motivation is

to compare this metric with the single subject metric, thus helping to

understand whether an increase in robot operators (e.g. crowd-sourced
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Table 3.2 GTF: predicting COF

Features RMSECV10 RMSECV5 RMSECV2 p AvgRank

Const 0.188 0.194 0.182 3
SingleSubj 0.176 0.187 0.189 2
MeanSubj 0.174 0.186 0.187 1

GradMu 0.172 0.180 0.176 5
ShadStd 0.177 0.191 0.196 6
ShadMax 0.171 0.187 0.182 ** 4
MatMean 0.130 0.137 0.134 * 1
WordMM 0.127 0.135 0.141 * 2
WordMS 0.155 0.170 0.180 ** 3

Note: p < 0.05 is marked with *, p < 0.01 with **.

operators) may increase prediction performance.

The constant friction baseline in this dataset achieves 0.194 RMSE on

5-fold cross validate results. Perhaps surprisingly, single subject judgements

of friction achieve performance roughly equal to constant baseline, meaning

they are poorly predictive of real COF in this dataset. Also, using multiple

subjects (MeanSubj) did not improve performance considerably when com-

pared to the average result obtained with a single subject. Image features

(GradMu, ShadStd, ShadMax) were roughly as predictive as human judge-

ments, actually up to 6 % better. However, the image featuresŠ correlation

with real COF was only signiĄcant for ShadMax, which was also a good

predictor in the human data of the OSA+F dataset.

Once again material classiĄcation, MatMean, was the highest scoring

method, achieving 0.137 RMSE on 5-fold cross validation. WordMS further

improves performance by around 2% since it deals with classes unseen on the

training set. Interestingly, our material-slipperiness word similarity method

WordMS achieved higher (and statistically signiĄcant) performance when

compared to both human judgements and image features. Results shown

in Table 3.2 for WordMM and WordMS were obtained using the Word2vec

algorithm for word vector training. We also evaluated performance on a

diferent word embedding algorithm, GloVe [146], which is together with

Word2vec currently one of the best performing on semantic tasks [148]. On

average, the RMSE on GloVe-trained vectors was 3% higher.
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3.4.4 Text mining to predict human judgements?

When considering a large number of materials, the method based on word

embeddings that we propose can also predict human judgements of friction.

To prove this we conducted one further experiment where we asked 19 new

subjects to rank a list of 19 diferent materials2 from most to least slippery.

The question included only the names of the materials and no supporting

images. We computed the average ranking of materials over the subjects

and compared this average with the word similarity score given by WordMS

(3.8). The Spearman correlation between the human rankings and fWordMS

was a low but signiĄcant r = 0.4607 (p < 0.05). Word embeddings trained

on Wikipedia thus seem to encode some knowledge of human judgements of

friction, even though at a low correlation level. The same procedure applied

to the class-averaged friction values of the OSA+F dataset, perhaps due

to the low number of materials which was 8, does not lead to a signiĄcant

correlation between word embeddings and human judgements of friction.

3.5 Fast, dense, large-scale friction from

vision

In the previous sections we quantiĄed the error of diferent visual features

and the (best-case) error of semantic classes at predicting friction for robot

locomotion. Best-case because semantic classes were provided as ground-

truth and presumably uncorrupted by noise. While material class was one of

the most predictive features, its estimation from vision is a diicult problem

in itself. Also, we did not yet formally provide a way to predict friction

densely (i.e. for each image pixel), to estimate the uncertainty of predictions

and to do all of this quickly for a robot application in practice. This will be

the objective of this section.

The basic idea will be to do pixel-wise material classiĄcation from images

with a fast algorithm based on convolutional neural networks and then esti-

mate friction from materials. Assuming the distribution of friction for each

2The complete list was: asphalt, brick, cardboard, carpet/rug, ceramic tile, concrete,
fabric/cloth, glass, grass, ice, leather, linoleum, marble/granite, metal, mud, plastic,
puddle on asphalt, stone, wood. The subjects were told that with the exception of ice,
mud and puddle all materials were dry. Like the original OSA+F task, we also told the
subjects to make their judgements assuming they are walking with their normal shoes.
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material is known (or learned through robot locomotion experience), then

the uncertainty in material friction can be used together with material clas-

siĄcation uncertainty to give a Ąnal estimate of friction uncertainty. Such

probability distributions of material friction can be obtained by measuring

COF directly on the robot foot in many diferent surfaces and materials on

an initial stage (before making the robot walk). Although that is our ap-

proach in this thesis, they could alternatively be estimated by automated

learning during robot locomotion, or a combination of both.

3.5.1 Material CNNs with friction distributions

We propose to estimate friction densely from visual input by classifying

surface material at each image pixel and assuming known (or learned) prob-

ability distributions of friction for each material. For convenience we will

use the term Şfriction of a materialŤ to refer to the coeicient of friction

between the robot foot sole and a second surface of a given material.

We consider a pixel-wise labelling algorithm that, given an input im-

age I with n pixels, provides a probability distribution P (X♣θ, I), where

X = ¶x1, ..., xn♦ are the pixel labels and θ are internal parameters of the

algorithm. Each pixel can take one of m possible labels, such that xk ∈
L = ¶l1, ..., lm♦. Furthermore, let each label be a material associated with

a probability distribution function (p.d.f.) of a coeicient of friction p(µ♣li).
Then the conditional p.d.f. of µ(k) (the coeicient of friction at pixel k) is

p(µ(k)♣θ, I) =
m
∑

i=1

p(µ♣li)P (xk = li♣θ, I). (3.9)

For the results we will show in here, we estimated the friction distri-

butions p(µ♣li) experimentally, by measuring maximum friction force of the

robot foot on several surfaces for each material. We will describe the proce-

dure in more detail in the next section.

We use a deep convolutional neural network (CNN) to obtain pixel-wise

material predictions P (xk = li♣θ, I). In particular we use the encoder-

decoder architecture of [149], which achieves good results in image segmenta-

tion applications and is characterized by a low number of parameters. Its low

number of parameters leads to fast inference, which is crucial for robotics.

The architecture consists of an encoder network of 13 convolutional layers

as in VGG16 [150], followed by a decoder network of 13 layers and a Ąnal
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softmax layer. The output of the last layer of the network (a softmax clas-

siĄer) is at each pixel a vector of probabilities for each class, that is, the

probabilities P (xk = li♣θ, I) used in equation (3.9).

3.5.2 Results

a) Material recognition

To train the CNN we Ąrst collected 7,791 annotated images from publicly

available semantic-segmentation datasets: 5,216 from the VOC2010 Context

dataset [151] and 2,575 from the OpenSurfaces dataset [138]. We selected

all images in the datasets with at least one of the following labels: asphalt,

concrete, road, grass, rock, sand, sky, snow, water, carpet, rug, mat, ceramic,

tile, cloth, fabric, marble, metal, paper, tissue, cardboard, wood. Due to

similarity between some classes at the image and semantic level we joined

the labels (asphalt, concrete, road), (carpet, rug, mat), (ceramic, tile), (cloth,

fabric) and (paper, tissue, cardboard). The total number of considered classes

in the output CNN layer was 14. Sky was only included to avoid classifying

it as any of the other materials on outdoor pictures.

We used stochastic gradient descent with 0.1 learning rate and 0.9 mo-

mentum as in the original SegNet publication [149], and trained the network

on an Amazon Elastic Cloud node with a 4GB NVIDIA GPU. We ran a

total of 90,000 iterations with a mini-batch size of 5 (maximum allowed by

the GPU). Training was done on 60% of the images, while the other 40%

were used as the test set.

We obtained a global classiĄcation accuracy of 0.7929 and class-average

accuracy of 0.4776 on the test set. See Figure 3.10 for examples of the

(highest probability) material predictions given by the CNN on the test

set. The global accuracy is comparable to state-of-the-art performance in

semantic segmentation (e.g. [62, 149]), and the class-average accuracy is

slightly below state-of-the-art (which is around 0.60 [149]). We believe one

important way to improve classiĄcation accuracy is to improve the dataset

itself since, for instance, there is moderate visual similarity between some

of the materials such as marble and ceramic, and some materials are lowly

sampled (e.g. the lowest sampled materials are snow and sand, present in

173 and 46 images respectively).

The material segmentation results in Figure 3.10 show an overall good
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Friction images are quantiles Q1−0.95 of equation (3.9). Darker shades of gray
correspond to higher friction, such that white is µ = 0 and black µ = 1.

Fig. 3.10 Example material and friction predictions from the test set
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Friction images are quantiles Q1−0.95 of equation (3.9). Darker shades of gray
correspond to higher friction, such that white is µ = 0 and black µ = 1.

Fig. 3.10 Example material and friction predictions from the test set
(continued)
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accuracy of the CNN, particularly on wood, grass and sky labels. The Ągure

also shows typical misclassiĄcations such as white walls recognized as sky or

metal (picture 6), hard snow as rock (picture 7), and some overlap between

asphalt/road, ceramic and marble. These are arguably understandable since

material labels themselves semantically overlap. However, our approach to

the visual friction estimation problem is such that if there is uncertainty in

the material label, then this uncertainty can be used to weight the friction

of the surface through material and friction probability distributions.

b) Friction estimation

We empirically measured the coeicient of friction associated with each ma-

terial label using a force gauge and the robot foot loaded with a 1.5kg mass.

The foot is rigid and its sole is covered with a high stifness soft material for

shock absorption and an anti-slippage sheet. We checked whether surfaces

were horizontal with a level, then placed the foot and measured maximum

friction force values with the force gauge. See Figure 3.11 for an illustration

of the procedure. We took 5 friction measurements on each surface, and

used at least 3 surfaces of each material. We Ątted a normal distribution to

the measurements, obtaining separate parameters µi and σ2
i for each mate-

rial, where µi is the mean friction of material i, and σ2
i the variance. The

materials sand, snow, water, cloth, paper were an exception, and since our

robot is currently not capable of walking on them (i.e. fall or damage risk

is too high) we directly set them to µi = 0, σ2
i = 0. We similarly set skyŠs

friction to zero as well. See Table 3.3 for the parameters of the friction p.d.f.

of each material.

In Figure 3.10 we show the test-setŠs highest probability material pre-

dictions along with the (1 − η)-quantile of the coeicient of friction. This

quantile is the value of the variable µ at which (1− η)th of the cumulative

distribution function is contained, or in other words, a lower bound of fric-

tion. We set a typical value of η =0.95, meaning friction will be higher than

the displayed values with probability 0.95. The friction images are darker

where friction is higher (µ = 1 would be black). Note that ceramic-like sur-

faces have high predicted friction (pictures 1, 5, 6); beds and jackets have

very low friction (pictures 3, 4, 14); grass patches have lower friction than

roads (pictures 2, 9, 11, 12, 13); and that water is mostly white - zero friction

- (pictures 10, 12).
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Fig. 3.11 Coeicient of friction measurement. We estimate the COF of a
material by several measurements of the maximum friction force on the

robot foot, loaded with a 1.5kg mass.

Table 3.3 Normal distribution parameters of each materialŠs coeicient of
friction, measured manually on the robot foot

Material µi σi

Asphalt 0.74 0.12
Grass 0.53 0.10
Rock 0.80 0.08

Carpet 0.82 0.02
Ceramic 0.97 0.05
Marble 0.83 0.15
Metal 0.80 0.15
Wood 0.88 0.12

Sand, Sky, Snow, Water, Cloth, Paper* 0 0

Note: materials marked with a * are assumed to be untraversable by our
robot and so set to zero without measurements.
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The Ągure also shows the advantage of using the whole probability dis-

tribution of materials (instead of using the highest probability material) to

estimate friction. For example in picture 14, the jacket on the ground is

classiĄed as cloth and rock depending on the region, but friction is low on

most of the objectŠs area since the cloth label still has high probability.

3.6 Discussion

We will organize the discussion of this chapter according to the objectives

we set in the beginning.

3.6.1 Features used by humans

We replicated recent results in the human perception literature, correlat-

ing human judgements of friction and surface gloss/shine [136]. However,

we found that this correlation was only signiĄcant for the marble mate-

rial (but not, for example, for tiles). We hypothesize that humans rely on

illumination-based features only for certain materials for which it might be

predictive. The dataset we designed for this purpose, OSA+F, will hopefully

prove useful to the human perception community.

3.6.2 Human performance for teleoperation

Human judgements have low predictive power of COF in the GTF dataset,

meaning it might be a wrong choice to trust slipperiness judgement to in-

experienced robot operators even if they are familiarized with the robotŠs

foot. We can also imagine a robot operation setup where several perception

decisions are crowd-sourced over a group of operators. However, even us-

ing the mean of 12 subjects as a predictor leads to lower performance than

image-based statistics. Constant-friction baselines might actually be safer

than human guesses according to 2-fold cross validated results. The ob-

servation matches recent Ąndings in the human literature [135] where COF

was diicult to estimate for humans. Our proposed image-based feature re-

lated to gloss, the maximum image shading, obtained better, signiĄcantly

correlated, performance than humans. While friction prediction based on

material class was the best performing method, the material classiĄcation

task is still challenging for state-of-the-art computer vision algorithms (70%
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accuracy [62, 63]). Thus, one way a robot teleoperator could assist the

procedure could actually be by material labeling.

3.6.3 Algorithmic performance

Material was the most predictive feature for both COF (0.130 RMSE) and

human judgements of friction. Image features based on intrinsic shading

images performed worse (0.171 RMSE) but slightly better than baseline.

Both in this paper and others relying on material classiĄcation for predicting

friction (e.g. [20]), problems may arise when new materials are traversed.

Thus, we proposed methods based on text mining for friction estimation of

previously unseen material classes. Matching new materials to trained ones

by material-material similarity improved performance by 2%. Estimating

friction of a material by the co-occurrence of the material with slipperiness-

related words in text was better (0.155 RMSE) than image-based statistics

and human subjects at COF-prediction.

We showed that algorithms based on text mining may compensate for

lack of robot experience in novel scenarios. These are also likely to improve

their performance as Natural Language Processing algorithms improve. An

interesting open problem is to Ąnd ways to adapt the methods based on

text mining we proposed here. One important improvement would be to

estimate friction between two speciĄc materials. As proposed here, WordMS

estimates friction from co-occurrences between material and slipperiness-

related words. Therefore, it obtains not an estimate of friction between

two speciĄc materials, but an average estimate of friction of the reference

material with all materials which co-occur with it in text.

3.6.4 Fast, dense friction and its uncertainty

We empirically showed that friction estimates in our CNN-based algorithm

are more consistent with object/material borders than the highest-probability

material label segmentation, which shows a good integration of segmenta-

tion uncertainty into friction estimation. We also showed that the algorithms

work for varied terrain.

In this thesis we opted to decouple the problem into material segmenta-

tion and per-material friction distributions. Even though we obtained the

material friction distributions manually, these could also be learned over time
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with locomotion experience. Alternatively, friction could also be learned

from images directly by end-to-end training, for example by initialization of

a CNN with the parameters obtained with our architecture.

Problems might occur when a material the robot cannot walk on, such as

water in our case, is mistakenly given very high conĄdence - very low friction

could lead to the subsequent planning algorithms not Ąnding a feasible path

to the goal. Our view is that the solution could be semi-supervision where

a teleoperator can correct a segmented regionŠs material label. A related

problem is that of using the normal distribution to model coeicients of fric-

tion. The normalŠs long tail extends to negative values, which contradicts

the deĄnition of coeicient of friction. That fact also leads to lower (i.e.

more conservative) friction quantiles than if a bound-respecting distribution

was used. This further reinforces the problem of path feasibility when un-

traversable materials are mistakenly given high conĄdence. To alleviate this

problem, diferent distributions could be experimented with - in particular

the generalized extreme value distribution has been shown to more faithfully

model measurements of coeicient of friction [152].

For the context of this paper all surfaces were dry. Wet surfaces could

also be included, although from our experience they should be treated as

separate material labels (e.g. Şdry metalŤ and Şwet metalŤ) so that the

distribution µ♣li does not become bimodal. Thus, one important detail in

this work is the notion of material, which should be taken in a broad sense,

as a visually distinguishable terrain class.

Compared to [20], we estimate the coeicients of friction instead of slip,

thus decoupling the problem from the physical robot. Importantly, our

approach allows for sharing material friction data among diferent robots as

long as they have similar foot soles.

While building new, larger, completely robot-acquired datasets would

be advantageous for the Ąeld and allow the application of methods based

on deep neural networks [62, 63], several challenges still lie ahead since au-

tonomous locomotion in varied terrain by complex robots is still an open

problem.
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3.7 Summary

In this chapter we showed that human judgements of friction correlate with

surface material and (for some materials) with gloss. We showed that they

are not good (i.e. rough baseline level) at the task of predicting COF of

a robot foot and thus such judgements should probably not be relied upon

during teleoperation. On the other hand, we measured the error of friction

predictions given by algorithms, which was relatively low for material-class

features. We then proposed a fast algorithm to estimate friction and its

uncertainty densely for each pixel of an image using material CNNs and

material friction distributions. We empirically showed that the algorithm

works for varied terrain.



Chapter 4

Visual perception of geometry

4.1 Introduction

We have seen how to plan humanoid robot locomotion in a perfect world

with known surface friction and geometry (Chapter 2), and then how friction

and its uncertainty can be estimated from vision in the real world (Chapter

3). We now need to turn to the problem of estimating world geometry and

its uncertainty from vision in the real world too.

As we discussed in Chapter 1, there are several ways to represent ge-

ometry - from grids to meshes and others - and several sensors available to

measure 3D geometry. Of particular interest to us here are stereo vision

sensors, i.e. camera pairs, since we are concerned with humanoid robots.

However, uncertainty of stereo matching, which is the method used to re-

cover 3D geometry from image pairs, is still not well understood. Functions

used to model stereo matching uncertainty are usually called Şstereo con-

Ądence measuresŤ and we will introduce and compare them. In addition

to that, common world map representations used for fast collision checking

such as occupancy grids, which we will focus on here, do not integrate this

uncertainty into their algorithms even though there could be advantages in

terms of reconstruction performance or robustness.

With these issues in mind, the objectives of this chapter are the following:

a) Compare the performance of diferent stereo conĄdence measures at the

task of estimating stereo matching uncertainty (Section 4.3)

b) Improve their performance through parameter estimation techniques and

a new non-parametric function (Section 4.3)



90 Visual perception of geometry

c) Integrate stereo conĄdence measure into occupancy grids to improve 3D

reconstruction performance over time (Section 4.4).

4.2 Background

4.2.1 Stereo vision

In stereo vision, 3D information (i.e. object positions in the world) is ex-

tracted from 2D measurements (i.e. images from two cameras) by a process

called stereo matching. For each pixel on one image, a line on the other

image is scanned for the matching pixel. Each pixel along this line then

corresponds to a 3D point in the world. Cost functions are used to assign a

conĄdence to each match hypothesis and this vector of costs along one line

is usually called the cost-curve. When the highest conĄdence match is cho-

sen for each pixel to obtain 3D points, we say we used a ŞWinner-take-allŤ

(WTA) matching approach. The result of such procedure is usually repre-

sented as a Şdisparity imageŤ, a 2D image where the value of each pixel is

the distance in pixels to the matched pixel on the second image; or it could

be represented as a Şdepth imageŤ, a 2D image where the value at each pixel

is the depth - i.e. the distance in meters from the camera to that point in

the world.

4.2.2 Stereo confidence measures

The functions used to compute Şcost-curvesŤ, usually called stereo conĄ-

dences measures, are responsible to model the conĄdence or uncertainty

associated with a pixel match. It is clear from the stereo procedure it-

self that these are of crucial importance for 3D reconstruction performance.

These functions are of high interest not only for WTA methods but also for

global [153Ű155], fusion [48, 156, 157] and progressive stereo methods [158]

which also use costs at several matching hypotheses before making a depth

estimate.

Traditionally, uncertainty of stereo matches has been modeled by cost-

functions of pixel neighborhoods, also called windows. The cost function

computes the cost of matching a pair of pixels between images and assump-

tions regard to noise distributions, continuity and local smoothness. Com-

mon cost functions include Sum of Squared Diferences (SSD), Sum of Ab-
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solute Diferences (SAD) and diferent variants of Correlation. Other more

elaborate cost functions have been proposed, some of which can be imple-

mented as a Ąlter to the images followed by one of the previously mentioned

costs [42]. For a thorough comparison of cost functions refer to [42].

Based on these cost functions several models of stereo uncertainty, or con-

Ądence measures, have been proposed since the late 1980s. Some of them

assume a winner-take-all approach, reĄning a disparity estimate around the

least cost disparity, others take all costs into consideration. Models tar-

geting WTA stereo are usually only deĄned at the highest-conĄdence (i.e.

lowest-cost) match and do not provide conĄdence measures on the rest of the

disparity range. Examples include left-right consistency checks, uniqueness

or curvature tests (how much the highest-conĄdence is higher than others),

texture thresholds, among others. Some of these WTA conĄdence measures

were recently reviewed in [44, 45]. Other conĄdence measures include statis-

tical models that compute a variance of the disparity estimate. Some models

do so by polynomial Ątting [159], others by modeling disparity and texture

Ćuctuation inside windows [160], or even by directly computing the variance

of WTA disparity between diferent window sizes [161].

Global methods, however, usually require a likelihood function over dis-

parity to be propagated in order to obtain a Ąnal 3D reconstruction. This

asks for conĄdence measures that are deĄned along the whole disparity range

and that model the conĄdence on each stereo match hypothesis in a reliable

way. SpeciĄcally, it is not only important that the highest-conĄdence dis-

parity is of high accuracy but also that when this estimate is wrong, a high

conĄdence is still attributed to the true disparity. Figure 4.1 shows an ex-

ample of a good conĄdence function, or conĄdence measure, in these terms.

A few stereo conĄdence measures have been proposed that are deĄned at all

disparities within the disparity range, although they are only evaluated at

WTA disparity in recent benchmarks [44]. For example, in [162], Matthies

and Okutomi assume normally distributed image noise and model the prob-

ability of the measured pixel diferences inside a window according to that

model. Sun et. al use a pixel-wise likelihood function [153] in a global stereo

method, propagating these likelihoods to neighboring pixels in a Markov

Random Field formulation of stereo. The cost function used was the pixel

dissimilarity function proposed by BirchĄeld and Tomasi in [163], chosen

for its invariance to image sampling. Also, Mordohai recently proposed

the SAMM measure [164] which computes a conĄdence for each disparity
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Fig. 4.1 Stereo matching conĄdence. Top: Matching a pixel in one image
to pixels at diferent disparities in another image. Middle: Cost for each
disparity. Bottom: ConĄdence measure computed from the cost values.

Dashed line indicates true disparity. Even if the minimum cost is wrong,
true disparity should still be attributed some conĄdence.

based on the correlation between the left-right stereo cost curve and the

self-matching (i.e. left-left) cost curve. No explicit probability distribution

assumptions are made. Although promising, the function scores poorly for

large support windows when used with SAD costs [164]. Merrell et. al [156]

assumes costs to be normally distributed with the mean parameter equal to

the best cost value. It is also evaluated in [44].

Researchers have recently benchmarked several of these stereo conĄdence

measures [44, 45, 165, 166]. Such benchmarks typically compare diferent

methods for detection of correspondence errors [45, 165]; or evaluate whether

stereo conĄdence measures can accurately rank matches on a WTA scenario

[44, 45]. The latter make use of Receiver Operating Characteristic (ROC)

curves for the evaluation, which have been frequently used in the stereo com-

munity [164, 167]. ROC curves are obtained by plotting the error-rate of a

WTA strategy from the highest conĄdence matches, for diferent conĄdence

thresholds. Using ROCs as the comparison criterion, a notable contribution

to the state of the art of stereo conĄdence measures was made by Hu et.

al [44]. In that article the authors analyze 17 diferent conĄdence functions

both in terms of detection of correct WTA matches, occlusions and perfor-

mance on discontinuities. Nevertheless, the inĆuence of parameter choice on

the performance of parametric functions was not discussed. In this chapter
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we will study this problem and show that parameter choice drastically inĆu-

ences performance both in WTA stereo and global methods. Finally, these

recent benchmarks were conducted mostly for conĄdence measures deĄned

only at WTA disparity. Even when measures were well deĄned across the

whole disparity range, evaluation was only made on WTA disparity. Such

evaluations are hence useful for WTA methods but less so for global methods

which integrate the information at all disparities, such as those targeted in

this thesis. They leave out possible global and semi-global stereo approaches

using multiple disparity hypotheses [153Ű155, 157, 167, 168].

4.2.3 Issues with common stereo reconstruction

methods

Although WTA approaches to stereo are frequently preferred due to their

higher computational speed, they are more susceptible to problems with

occlusions, discontinuities, noise and lack of texture. Such problems can

be avoided by discarding matches that could have happened by chance (a

contrario models [169]), or that are ambiguous given the conĄdence mea-

sure (e.g. conĄdently stable matching [170], training of conĄdence thresh-

olds from ground-truth [171]). However, these methods come at the cost of

lower density. Global methods, by considering the whole disparity range and

certain geometry assumptions, have the potential to better overcome such

problems. Popular examples of these methods include dynamic program-

ming [167], optimization methods using Markov network representations of

stereo matching [153Ű155], among others.

Occupancy grids [172] provide an excellent tool for world mapping from

sensor measurements, which is particularly useful for robot navigation and

motion planning as we focus on in this thesis. Through this framework, a

world map is built given sensor measurements, sensor position in the world

and a sensor model. The map is deĄned as a grid of cells which can be

in an occupied or free state. This is done with a probabilistic approach,

accounting for uncertainty in the sensors. The framework is useful in order to

accumulate information obtained from stereo cameras over time, as the robot

Şlooks aroundŤ or navigates the environment. The concept was initially

proposed for use with sonar sensors [172, 173] and later on also applied to

stereo vision [174Ű178]. However, such attempts to integrate stereo into

occupancy grids have opted to update cells based on the least-cost match at
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each pixel (i.e. WTA approach) and then using the same sensor models as

the ones used for sonar.

The existence of a conĄdence measure for each distance means more

information is available than just a pixel-wise distance. As we will show

later in Section 4.4, occupancy grid algorithms using stereo sensors can also

improve performance by integrating conĄdence measures at all disparities

instead of WTA disparity alone.

4.3 Improving stereo confidence measures

4.3.1 Considered parametric measures

We consider two images I1(x, y) and I2(x, y) coming from the same under-

lying image I(x, y), displaced along the x axis with added Gaussian noise.

Therefore,

I2(x, y)− I1(x + d(x, y), y) = N (0, σ2
i ) (4.1)

where N (0, σ2
i ) represents Gaussian white noise with variance equal to the

sum of noise variances of each image σ2
i = σ2

1+σ2
2. Here d(x, y) ∈ ¶0, 1, ..., D−

1♦ represents the disparity at each pixel. We deĄne also a window with

M ×N pixels where (x, y) is the anchor pixel in the center of the window.

Diferent conĄdence measures model stereo matches diferently. For ex-

ample, one can model the probability of a disparity value d(x, y) conditioned

on a cost function of the pixels inside a window, but another option is to

condition disparity on the whole set of pixel diferences inside that window.

We then deĄne for each pixel (x, y) a matrix of measurements E ∈ R
S×D,

where the D columns are disparity hypotheses and the rows are measure-

ments used for the stereo conĄdence model (e.g. S = 1 for a single cost

value per disparity, or S = MN pixel diferences per disparity). We will

use the notation E:,d to represent all rows taken at disparity d. We will also

refer to the disparity with minimum cost by dmincost. Finally, in this work

we assume independence of measurements at diferent disparities such that

p(E) =
∏

d

p(E:,d). (4.2)

In this thesis we will deal with a special class of stereo conĄdence mea-
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sures deĄned along the whole disparity range such that

C(d) =
p(E:,d ♣ d)

∑

d′

p(E:,d′ ♣ d′)
(4.3)

is the conĄdence of assigning disparity d to a certain pixel, and p(E:,d ♣ d)

is the probability density of measurements assuming d is the true disparity.

Such formulation is used implicitly in other benchmarks [44] and will also

be convenient for the integration into probabilistic frameworks described in

Section 4.4.

We will evaluate and compare diferent conĄdence measures with two

diferent stereo cost functions:

i. Sum of Squared Diferences (SSD)

ii. Sum of Absolute Diferences (SAD) using BirchĄeld and TomasiŠs pixel

dissimilarity function [163], which we will call BTSAD.

These are widely used cost functions, adopted by recent computer vision

libraries [179] for local and global stereo methods. The implementations

used in this work were those found in OpenCV [179], which also apply a

9x9 Sobel Ąlter as a preĄlter to the images. Sobel preĄltering is a common

procedure seen in other stereo methods as well (e.g. [180]).

a) Matthies’ model

Matthies and Okutomi [162] propose a probabilistic model of stereo that as-

sumes pixel diferences inside a window to be i.i.d. and zero-mean Gaussian

distributed. The joint probability of all pixel diferences is given by

p(E:,d ♣ d)
i.i.d.
=

∏

s

p(Es,d ♣ d) ∝ exp



− 1

2σ2
Mat

∑

s

E2
s,d



, (4.4)

where E ∈ R
S×D with S = MN . Each element Es,d holds one of the

MN pixel diferences inside a window at disparity d. Note that the joint

distribution is related to a SSD (
∑

s E2
s,d). Similarly to recent literature

[44], we normalize the SSD by the number of window pixels1 by setting

σ2
Mat = MNσ2

i .

1Note that the original model [162] sets σ2

Mat
= σ2

i
. While the normalization by MN

was not used in that publication, we still refer to the model as used in this thesis as
“Matthies’ model” for acknowledgment.
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To obtain a similar model for a SAD cost function we can assume the

i.i.d. pixel diferences to follow a zero-mean Laplace distribution. The joint

distribution is then given by

p(E:,d ♣ d)
i.i.d.
=

∏

s

p(Es,d ♣ d) ∝ exp



− 1

bMat

∑

s

♣Es,d♣


. (4.5)

In this case the joint distribution is related to a SAD (
∑

s ♣Es,d♣). Likewise

the SSD case and since it lead us to better performance, we set bMat =

MNbi where bi is the parameter of the zero-mean Laplacian of single pixel

diferences.

b) Merrell’s model

Merrel et. al [156] assume costs themselves to be normally distributed. The

mean is set to the minimum cost of the corresponding pixel and variance is

a parameter σ2
Mer. ConĄdence is in this case deĄned by

p(E1,d ♣ d) ∝ exp



−(E1,d − E1,d_mincost)2

2σ2
Mer



, (4.6)

where E ∈ R
1×D and each element E1,d is a window cost value, e.g. E1,d =

SSD or BTSAD.

c) The exponential distribution

The exponential model [153Ű155] assumes costs to be exponentially dis-

tributed and is given by

p(E1,d ♣ d) ∝ exp



−E1,d

µ



, (4.7)

where E ∈ R
1×D and each element E1,d is a window cost value, e.g. E1,d =

SSD or BTSAD. Note that this modelŠs expression is similar to MatthiesŠ.

However, while the exponential model is a pdf of the cost values, MatthiesŠ

is a joint pdf of all window pixel diferences.

Note also that in other literature µ is often omitted from the equations,

thus µ = 1 is often assumed. The underlying problem of that assumption

is that, for µ << E1,d equation (4.7) will approximate min(E1,d) and thus

p(E1,d_mincost ♣ dmincost) = 1 will hold for all dmincost. Such choice of parame-

ter could hence lead to low performance of the conĄdence measure.
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4.3.2 Parameter estimation

The parametric conĄdence measures introduced so far depend on the esti-

mation of a probability distributionŠs parameter (σ2
Mat, σ2

Mer, µ). In this

section we propose to estimate the parameters in a systematic way without

ground-truth data, from each stereo pair being matched: through maximum

likelihood (ML) estimation of the distributionŠs parameters computed di-

rectly from cost values. The method does not require ground-truth data but

assumes cost functions provide relatively low error-rates (low number of bad

pixels). To achieve this, in our study we compute ML parameters from costs

at all image pixels where left-right disparity consistency is verified.

In a nutshell, we:

1. Compute cost values at all pixels and disparities;

2. Compute dmincost and perform a left-right disparity consistency check;

3. For all (x,y) with consistent disparities we compute the mean and

variance of the costs at dmincost;

4. Compute model parameters from those means or variances.

a) Matthies’ model

MatthiesŠ model for the SSD cost function assumes pixel diferences to be

zero-mean Gaussian. The GaussianŠs parameter σ2
i can be computed by

maximum likelihood from the variance of the data. For convenience we

estimate this variance from the SSD cost values instead of the individual

pixel diferences. We do this by the following heuristic2, which we found

best performing:

σ̂2
i =

√

V arx,y(SSD(x, y, dmincost(x, y)))

MN
√

2
. (4.8)

2Note that from the moments of the normal distribution we know that a variable
X2 has variance 2σ4 for X = N (0, σ2). We compute the variance of an SSD by

V ar(
∑

MN

s=1
E2

s
) = 2σ4

i
MN(1 + ρ(MN − 1)), where ρ is the average correlation between

the squared pixel differences E2

s
. Our heuristic assumes ρ = 1. While the original i.i.d.

assumption of the model [162] would lead to ρ = 0, assuming ρ = 1 lead us to bet-
ter performance results. Finally, note that another option for estimating σ2

i
would be

σ2

i
= Mean(

∑

MN

s=1
E2

s
)/(2MN), which would make the estimated model’s expression

equal to that of the exponential.
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As mentioned in Section 4.3.1 we set σ̂2
Mat = MNσ̂2

i , which is efectively

eliminating the MN normalization in (4.8).

On a SAD (or BTSAD) cost function, we assume pixel diferences are

zero-mean Laplace-distributed, for which the maximum likelihood parameter

is the mean of the absolute value of the data. As done in the SSD case, we

compute this estimate from the cost values themselves:

b̂i =
Meanx,y(BTSAD(x, y, dmincost(x, y))))

MN
, (4.9)

and we set b̂Mat = MNb̂i. Please note that using this normalization makes

b̂Mat equal to the costsŠ mean, leading to the same model expression and

parameter as the exponential model (see (4.7) (4.11)). In this thesis, results

obtained by maximum likelihood will then be the same for BTSAD MatthiesŠ

and the BTSAD exponential models.

b) Merrell’s model

MerrellŠs model is a Gaussian distribution of costs with mean E1,d_mincost.

The maximum likelihood parameter is estimated from the variance of the

data,

σ̂2
Mer = V arx,y(E1,d_mincost(x, y)), (4.10)

where E1,d_mincost is an SSD or BTSAD.

c) The exponential distribution

Given an exponential distribution of costs, the maximum likelihood estimate

of the distributionŠs parameter µ is given by

µ̂ = Meanx,y(E1,d_mincost(x, y)), (4.11)

where E1,d_mincost is an SSD or BTSAD.

4.3.3 Histogram Sensor Model

We Ąnally propose our new conĄdence measure - the HSM - which consists

of a histogram trained with costs at true disparity. ConĄdence is modeled

from the cost values and as such E ∈ R
1×D. In Figure 4.2, we show these his-

tograms for SSD and BTSAD costs with diferent window sizes, taken from
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true disparity d of all images in the 2003 and 2006 Middlebury datasets. We

populated the histograms with costs measured at all un-occluded pixels of

all images, while true disparity was retrieved from the ground-truth dispar-

ity maps provided by the datasets. The dimension of bins was chosen at

3.5σh/N1/3 according to ScottŠs normal reference rule [181], where σh rep-

resents the standard deviation of the costs and N the number of samples.

Stereo conĄdence is in this case deĄned as

p(E1,d ♣ d) ∝ hist(E1,d), (4.12)

where E1,d is a window cost value, e.g. E1,d = SSD or BTSAD, and hist(E1,d)

refers to the frequency of the histogram bin associated with E1,d.

4.3.4 Results

In this section we make use of stereo datasets and their ground-truth data to

evaluate and compare the introduced stereo conĄdence measures. We base

our comparison on two criteria:

i. Performance on a WTA strategy (selecting maximum conĄdence dispar-

ity at each pixel). For easy comparison with other literature, we make

use of ROC curves [44, 164, 167]. These curves are obtained by plotting

the error-rate of a WTA strategy from the highest conĄdence matches,

for diferent conĄdence thresholds. The area under this curve, AUC, is

used to measure the quality of the function as a conĄdence measure.

Concretely, whether correct matches are given higher conĄdence than

incorrect ones. Lower values of AUC mean better performance.

ii. We consider the cases where WTA disparity is diferent from true dis-

parity by more than one pixel (we will call these Şbad pixelsŤ). We

compute, at all bad pixels, the sum of the conĄdence attributed to a

neighborhood around ground-truth disparity d∗ given by the dataset:

C(d ∈ GT )badpx =
∑

d∈GT C(d). Here GT represents the interval [d∗ −
1; d∗ + 1]. A single performance indicator for each image is then given

by the average of C(d ∈ GT )badpx over all bad pixels. Higher values of

C(d ∈ GT )badpx indicate higher probability given to true disparity and,

as we will argue, better performance of some global algorithms.
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Fig. 4.2 Distribution of costs at true disparity (E1,d∗) for SSD (left) and
BTSAD (right) cost functions on a 5x5, 9x9 and 13x13 window. Horizontal

axis represents the values of E1,d∗ .
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We evaluated all models in two sets of data:

i. Indoors set: 23 stereo pairs (all pairs from Middlebury 2003 and 2006

[182Ű184])

ii. Outdoors set: 10 stereo pairs (KITTI stereo dataset [185], Ąrst 10 im-

ages).

For each set, the AUC and C(d ∈ GT )badpx results are averaged from

all its stereo pairs and occluded pixels are excluded. The images were used

in gray-scale. As cost functions we used SSD, and SAD with BT pixel

diferences (BTSAD) on window sizes 5x5, 9x9 and 13x13, after preĄltering

the images with a Sobel 9x9 Ąlter (OpenCV implementation [179]). This

preĄlter is adopted in several stereo methods (e.g. [179, 180]) and we also

found both AUC and C(d ∈ GT )badpx performance to improve signiĄcantly

with preĄltering for all models.

a) Parameter estimation

For the parametric functions introduced in Section 4.3.1, we evaluated the

inĆuence of parameter choice on the two mentioned performance criteria (i.e.

AUC and C(d ∈ GT )badpx). In Figure 4.3 and 4.4 we show the performance

curves obtained for diferent window sizes, cost functions and conĄdence

measures. Results are shown for four of the indoors stereo pairs. Other

stereo pairs have similar curves, although we do not display all to keep Ąg-

ures understandable. The results show that performance of the conĄdence

measures, with respect to parameter choice, has one clear maximum followed

by a slow exponential decay of performance. However, a performance ŞclifŤ

exists as the parameter tends to zero (i.e. is under-estimated). One impor-

tant observation is that µ = 1 or µ = MN , common parameter choices for

the exponential model [44], could easily fall into the Şperformance clifŤ by

underestimating noise, thus drastically reducing performance. We believe

this to be the reason why that model scores poorly in recent benchmarks

[44] (it is there called Negative Entropy Measure). Furthermore, we argue

that measuring parameter sensitivity through an analysis such as the one

in Figure 4.3 and 4.4 or similar, should be used in future benchmarks and

conĄdence measure proposals for more complete evaluations.

Another interesting observation is that these parameter performance

curves have some inter-image variability. For each combination of cost func-
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Fig. 4.3 The parametric modelsŠ clif-maximum-and-tail of performance
(C(d ∈ GT )badpx). Results with the diferent cost functions and window
sizes are shown. Note how the curves and optimal parameters vary both
between images and cost functions. Figures for MatthiesŠ model are not

shown since they can be obtained by linearly rescaling the horizontal axis
of the exponential modelŠs Ągures (see equations (4.4), (4.5) and (4.7)).
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Fig. 4.4 The parametric modelsŠ clif-maximum-and-tail of performance
(AUC). Results with the diferent cost functions and window sizes are

shown. Note how the curves and optimal parameters vary both between
images and cost functions. Figures for MatthiesŠ model are not shown since

they can be obtained by linearly rescaling the horizontal axis of the
exponential modelŠs Ągures (see equations (4.4), (4.5) and (4.7)).
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Fig. 4.5 Performance of models with parameter values changes with
preĄltering conditions. Results obtained from the Cones image of the

indoors set.

tion and window size, we computed the standard-deviation of the optimal

parameter values across the 23 images of the indoors set. The average stan-

dard deviation of parameters was 131% when optimizing AUC and 84%

when optimizing C(d ∈ GT )badpx. On the other hand, optimal parameters

also highly depend on the chosen cost function: for a Ąxed image the average

standard-deviation across all combinations of cost function and window size

was 352% in the AUC case and 338% in the C(d ∈ GT )badpx case. Even the

fact that a preĄlter is applied to the images, in our case the commonly used

Sobel Ąlter [179, 180], leads to an average displacement of the parameter

with optimal AUC by 60% or optimal C(d ∈ GT )badpx by 167%. Figure 4.5

shows such a comparison, taken from the Cones image in the indoors set.

Still, note that the AUC curves are relatively Ćat after the performance clif

and so optimal parameter variabilty does not pose a problem as long as

parameters are not strongly under or overestimated.

Such performance variability between image conditions and between cost

function options has strong implications for researchers working on stereo.

During the design stage of a stereo algorithm, such as the experimentation

with diferent cost deĄnitions, preĄltering options and diferent datasets, the

optimal value of the conĄdence measureŠs parameter should be recomputed

each time. In Hu et. alŠs important contribution to conĄdence measure

benchmarking [44], the authors compute an optimal parameter value for

each measure on a subset of the images in the dataset: which requires re-

computing all conĄdences and a performance value (e.g. AUC) for each

parameter sample during an optimization process. The parameters were
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there selected such that they lead on average to high performance within

a subset of the dataset images, although the procedure is not described

in detail. Besides the fact that averaging solves inter-image variability sub-

optimally, such methodology (of optimal parameter estimation from datasets

with ground-truth) could be a bothersome process when designing a stereo

algorithm and considering a large number of cost function or preĄltering op-

tions. Automatic, fast estimation of stereo conĄdence parameters for a given

image and cost function design, for example through maximum likelihood

as proposed in this thesis, is then of high importance.

Optimal parameters for the conĄdence measures can only be computed

when ground-truth disparity is available. Practically, on unknown stereo

pairs, stereo methods have to either assume certain Ąxed parameter values

(as discussed previously), or automatically estimate them from each image

without ground-truth data. In this section we evaluate two diferent param-

eter estimation strategies for the parametric models:

i. Fixed parameters, computed using a slow oline optimization procedure

on training datasets where ground-truth is available. Methodology used

was similar to [44]: we estimated parameters by averaging the optimal

parameters across train set images. For each image in the indoors set

we Ąrst computed densely sampled parameter-performance curves such

as the ones shown in Figure 4.3 and 4.4, and then averaged the curvesŠ

optima across all images. We will call these Şaverage best performingŤ

(ABP) parameters.

ii. Per-stereo-pair, maximum likelihood (ML) parameter estimation as pro-

posed in this thesis, which does not require any ground-truth data. We

will call these ŞMLŤ parameters.

Table 4.1 shows the ABP parameters that we used in this section, com-

puted from the indoors set. Since these can be chosen to optimize either

AUC or C(d ∈ GT )badpx, we display both in the table. As we already ob-

served, ABP parameters optimizing AUC (column ŞminAUCŤ) have more

variability than those optimizing C(d ∈ GT )badpx (column ŞmaxCŤ). This

suggests that a strategy of oline selection of parameters by averaging on a

training set could be more reliable if the criterion being optimized is C.

We then computed the AUC and C(d ∈ GT )badpx metrics for each model

using ML and ABP parameters. Table 4.2 shows the average and standard
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Table 4.1 Average best performing parameters computed from the indoors
set (total 23 images)

Cost Model minAUC param maxC param

SSD 5x5 Mat 2.95 · 102 ± 151% 5.99 · 102 ± 92%
SSD 9x9 Mat 1.91 · 103 ± 126% 2.36 · 103 ± 47%

SSD 13x13 Mat 4.17 · 103 ± 117% 4.83 · 103 ± 42%
SSD 5x5 Mer 2.59 · 106 ± 197% 3.49 · 106 ± 103%
SSD 9x9 Mer 5.49 · 107 ± 146% 3.92 · 107 ± 65%

SSD 13x13 Mer 2.82 · 108 ± 147% 1.55 · 108 ± 59%
SSD 5x5 Exp 5.94 · 102 ± 150% 1.20 · 103 ± 93%
SSD 9x9 Exp 3.67 · 103 ± 130% 3.15 · 103 ± 98%

SSD 13x13 Exp 8.27 · 103 ± 118% 8.70 · 103 ± 56%
BTSAD 5x5 Mat 1.18 · 101 ± 106% 1.18 · 101 ± 88%
BTSAD 9x9 Mat 5.64 · 101 ± 110% 4.24 · 101 ± 94%

BTSAD 13x13 Mat 1.12 · 102 ± 105% 1.40 · 102 ± 67%
BTSAD 5x5 Mer 1.88 · 103 ± 173% 1.25 · 103 ± 126%
BTSAD 9x9 Mer 3.89 · 104 ± 130% 1.94 · 104 ± 124%

BTSAD 13x13 Mer 1.81 · 105 ± 132% 1.91 · 105 ± 101%
BTSAD 5x5 Exp 2.37 · 101 ± 106% 2.37 · 101 ± 88%
BTSAD 9x9 Exp 1.13 · 102 ± 110% 8.49 · 101 ± 94%

BTSAD 13x13 Exp 2.24 · 102 ± 105% 2.81 · 102 ± 67%
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deviation of the distances between the obtained and the optimal perfor-

mance taken from all 23 images of the indoors set. The table compares

two situations: a typical scenario where ground-truth (GT) is not avail-

able on the image set, and another when it is available. In the ŞNo GTŤ

scenario, ABP parameters are computed from a diferent set (same images

but without the use of image preĄltering with a Sobel preĄlter). It is no-

ticeable how in both situations ML parameters lead to values of AUC and

C(d ∈ GT )badpx which are similar but slightly closer to the optimal value

than ABP. This was expected from the high variability of optimal parame-

ters, thus again stressing the importance of ML estimation or the use of

parameter-insensitive conĄdence measures. The table also shows results

obtained with the ML method ran on GT disparity instead of WTA (see

columns ML-GT). It performed similarly to the no-ground-truth version

and better than ABP on average. Importantly, these results mean that the

tedious process of obtaining datasets with ground-truth for model training

is unnecessary. Model parameters can be computed using our proposed ML

strategy, without ground-truth data. Naturally, ABP had slightly higher

performance when trained with GT than in the ŞNo GTŤ condition.

To exemplify the better results of ML seen in Table 4.2, we also compare

the shape of C(d) at a given pixel of MiddleburyŠs Teddy image which favors

the ML method. In this example, shown in Figure 4.6, MerrellŠs model with

ABP parameters behaves in a uni-modal way (i.e. single maximum), which

exempliĄes the efect of the Şperformance-clifŤ. We remind that as σ tends

to 0, a normalized exp(−x
σ
) becomes an approximation to min(x), thus

leading to a conĄdence of 1 on the best match and 0 otherwise. The model

using ML parameters has two maxima: one on WTA disparity and another

on ground-truth.

b) Benchmark of winner-take-all confidence

We evaluated each modelsŠ performance, including the HSMŠs, in the indoors

and outdoors set using the two parameter selection strategies already dis-

cussed. In this section we focus on the AUC criterion. We remind that AUC

measures whether higher conĄdence WTA assignments are more likely to be

correct assignments or not. The modelsŠ AUC, averaged across all images

in each dataset, is shown in Table 4.3. Each modelŠs performance is shown

with ML and ABP parameters. In case of the HSM, we also compare two
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Table 4.2 On average, how close to optimal performance do models get?

Distance to minAUC Distance to maxC
No GT available GT available No GT available GT available

Model ML ABP-DS ML-GT ABP ML ABP-DS ML-GT ABP
Mat SSD 0.08 ± 0.07 0.12 ± 0.22 0.11 ± 0.09 0.11 ± 0.13 0.11 ± 0.14 0.19 ± 0.15 0.19 ± 0.16 0.11 ± 0.12

Mat BTSAD 0.10 ± 0.22 0.14 ± 0.29 0.08 ± 0.17 0.11 ± 0.14 0.11 ± 0.09 0.14 ± 0.10 0.09 ± 0.08 0.11 ± 0.11
Mer SSD 0.06 ± 0.05 0.12 ± 0.22 0.06 ± 0.06 0.09 ± 0.08 0.04 ± 0.05 0.10 ± 0.09 0.07 ± 0.09 0.07 ± 0.10

Mer BTSAD 0.13 ± 0.27 0.15 ± 0.29 0.09 ± 0.18 0.11 ± 0.10 0.10 ± 0.08 0.13 ± 0.08 0.09 ± 0.08 0.14 ± 0.17
Exp SSD 0.06 ± 0.05 0.12 ± 0.22 0.08 ± 0.06 0.11 ± 0.13 0.12 ± 0.13 0.19 ± 0.15 0.15 ± 0.15 0.11 ± 0.12

Exp BTSAD 0.10 ± 0.22 0.14 ± 0.29 0.08 ± 0.17 0.11 ± 0.14 0.11 ± 0.09 0.14 ± 0.10 0.09 ± 0.08 0.11 ± 0.11

Note: Distances computed as ♣AUCMethod(img)−minAUC(img)♣/minAUC(img) and ♣CMethod(img)−maxC(img)♣/maxC(img)
averaged over all indoors images. ABP are average best performing parameters trained on the same image set given GT disparity;
ABP-DS are average best performing parameters trained on a diferent set - same images diferent Ąltering conditions; ML
parameters computed for each image given WTA disparity; ML-GT parameters computed using the same method on ground-
truth disparity.
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Table 4.3 Performance in AUC for all models and window cost functions, averaged over a test set

Test set: indoors (ABP/AGT is trained on the same set and requires GT disparity)
Optimal AUC Mat Mer Exp HSM

Cost (parametric) ABP ML ABP ML ABP ML AGT ML

SSD 5x5 0.083 0.087 0.088 0.091 0.087 0.087 0.086 0.088 0.106
SSD 9x9 0.058 0.063 0.063 0.065 0.063 0.063 0.062 0.062 0.085

SSD 13x13 0.056 0.060 0.061 0.062 0.060 0.060 0.060 0.060 0.084
BTSAD 5x5 0.066 0.069 0.067 0.070 0.068 0.069 0.067 0.058 0.065
BTSAD 9x9 0.051 0.055 0.054 0.056 0.054 0.055 0.054 0.045 0.058

BTSAD 13x13 0.050 0.054 0.053 0.056 0.053 0.054 0.053 0.046 0.064
Test set: outdoors (ABP/AGT is trained on a diferent set - indoors)

Optimal AUC Mat Mer Exp HSM
Cost (parametric) ABP-DS ML ABP-DS ML ABP-DS ML AGT-DS ML

SSD 5x5 0.223 0.230 0.233 0.233 0.229 0.230 0.232 0.225 0.256
SSD 9x9 0.175 0.180 0.184 0.183 0.181 0.180 0.183 0.176 0.230

SSD 13x13 0.202 0.205 0.207 0.206 0.206 0.205 0.207 0.200 0.273
BTSAD 5x5 0.147 0.152 0.153 0.155 0.152 0.152 0.153 0.153 0.157
BTSAD 9x9 0.117 0.121 0.123 0.124 0.121 0.121 0.123 0.122 0.136

BTSAD 13x13 0.145 0.148 0.149 0.149 0.148 0.148 0.149 0.145 0.168

Note: lower AUC is better. ABP are average best performing parameters computed from the indoors set using ground-truth; AGT
are average ground-truth histograms as proposed in Section 4.3.3 i.e. HSMs trained on the whole indoors set using ground-truth;
ML parameters are estimated for each image from WTA disparity, without ground-truth. Optimal AUC values are shown for
comparison and were computed by a slow oline optimization procedure given ground-truth (minimum AUC across all parametric
models and whole parameter space).
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Table 4.4 Performance in C(d ∈ GT )badpx for all models and window cost functions, averaged over a test set

Test set: indoors (ABP/AGT is trained on the same set and requires GT disparity)
Optimal C Mat Mer Exp HSM

Cost (parametric) ABP ML ABP ML ABP ML AGT ML

SSD 5x5 0.108 0.083 0.090 0.097 0.097 0.083 0.090 0.077 0.083
SSD 9x9 0.091 0.076 0.072 0.084 0.086 0.076 0.074 0.061 0.066

SSD 13x13 0.101 0.086 0.073 0.093 0.094 0.086 0.073 0.060 0.072
BTSAD 5x5 0.109 0.087 0.086 0.088 0.095 0.087 0.086 0.076 0.094
BTSAD 9x9 0.099 0.084 0.083 0.090 0.090 0.084 0.083 0.067 0.085

BTSAD 13x13 0.112 0.095 0.094 0.104 0.103 0.095 0.094 0.070 0.088
Test set: outdoors (ABP/AGT is trained on a diferent set - indoors)

Optimal C Mat Mer Exp HSM
Cost (parametric) ABP-DS ML ABP-DS ML ABP-DS ML AGT-DS ML

SSD 5x5 0.065 0.053 0.049 0.052 0.062 0.053 0.050 0.031 0.043
SSD 9x9 0.059 0.047 0.036 0.045 0.051 0.047 0.036 0.025 0.028

SSD 13x13 0.046 0.037 0.029 0.036 0.039 0.037 0.029 0.022 0.020
BTSAD 5x5 0.084 0.063 0.060 0.055 0.072 0.063 0.060 0.040 0.061
BTSAD 9x9 0.079 0.055 0.045 0.048 0.061 0.055 0.045 0.030 0.050

BTSAD 13x13 0.069 0.048 0.039 0.043 0.051 0.048 0.039 0.027 0.040

Note: higher C is better. ABP are average best performing parameters computed from the indoors set using ground-truth; AGT
are average ground-truth histograms as proposed in Section 4.3.3 i.e. HSMs trained on the whole indoors set using ground-
truth; ML parameters are estimated for each image from WTA disparity, without ground-truth. Optimal C values are shown for
comparison and were computed by a slow oline optimization procedure given ground-truth (maximum C across all parametric
models and whole parameter space).
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Fig. 4.6 ConĄdence C(d) using MerrellŠs model with ABP and ML
parameters. Dashed red line indicates true disparity d∗ as indicated by the

dataset. Results taken from pixel (364,150) of the Teddy image, as an
example of MLŠs better performance seen in Table 4.2. ML does not

require ground-truth and leads here to higher C(d∗).

versions of the model, roughly corresponding to ML and ABP. The Ąrst ver-

sion is a no-ground-truth single-stereo-pair model to which we will call ŞML

HSMŤ. This histogram is trained from WTA disparity costs where left-right

disparity is consistent, for each stereo pair. The second is the ground-truth-

trained model as described in Section 4.3.3, computed from the costs at true

disparity of all stereo pairs in the indoors set. We refer to it as Şaverage

ground-truthŤ (AGT) HSM.

Table 4.3 also shows the optimal AUC across parametric models, for each

cost function. These values were obtained by a slow oline optimization

procedure given ground-truth data, searching the minimum AUC across all

parametric models and whole parameter space for each image. Values shown

in the table are the average over all test setŠs images.

Arguably the most noticeable result is that the AGT HSM model ranks

1st in most conditions, both indoors (where it is trained) and outdoors. This

indicates the HSM model to be a good choice when training on a dataset

with ground-truth is acceptable. Expectedly, a histogram can better model

the real distribution of costs than the parametric models here compared -

we remind that distributions in Figure 4.2 are not purely exponential or

Gaussian. This can also be seen clearly in the table results (indoors set,

BTSAD cost function) where the HSM performs better than the parametric

modelsŠ maximum possible performance (minAUC column). On the other
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hand, the ML version of the HSM had poor performance, meaning the data

available on a single stereo-pair may be insuicient to train the HSM for

good AUC.

It is interesting to note, however, that cost function choice is crucial: note

how it had higher impact on the AUC than model choice itself. We argue

that the reason for this is that the models presented here are well estimated,

rendering their Ąt to the real distribution, and performance, very similar to

each other. Note again in Table 4.2 and 4.3 that obtained AUCs are very

close to their optimal values, both in the indoors and outdoors set. Since

optimal AUC depends on the error rate achieved by each cost function, as

shown in [44], then as long as close-to-optimal AUCs are obtained on each

model, performance will depend mainly on the cost function. The HSM

seems to achieve AUC values that are closer to the optimal for each cost

function.

Importantly as well, the results show once more that the usage of the

datasets with ground-truth to train parametric models is (not only tedious

but also) unnecessary, and our proposed ML strategy for parametric models

leads consistently to high performance without the need for GT.

c) Benchmark on winner-take-all failure

We now present all modelsŠ performance regarding C(d ∈ GT )badpx: the

conĄdence given to true disparity when WTA fails. We compare the diferent

models using this criterion in Table 4.4.

There is a diferent ranking of models in terms of AUC and C, which

suggests that the appropriate choice of model for stereo applications strongly

depends on which criterion is to be optimized. However MerrellŠs model,

which had already scored high in the AUC criterion, performed highest in

the C criterion using ML estimation (i.e. without the need for training with

ground-truth datasets). Such consistency and convenience of ML-estimated

MerrellŠs model makes it a good candidate model for stereo applications.

Regarding the HSM model, its AGT (ground-truth-trained) version per-

formed quite low. Its ML (no-ground-truth) version performed higher, even

though it was poor on AUC (Table 4.3). In the next section we will see how

this balance between AUC and C is actually reĆected on high performance

of both versions of the HSM in practice.
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4.4 Integrating stereo over time

4.4.1 Cost-curve occupancy grids

a) Definition

Consider a grid of cells which can be in one of two states: occupied O or free

O. The objective of an occupancy grid algorithm is to compute or update

the probabilities p(Oi♣z0...t, x0...t) for each cell i ∈ 1, 2, ..., C, at each time

instant t, given measurements z0...t and sensor locations x0...t until time t.

This is implemented as a Bayes Ąlter at each cell, which updates occupancy

probabilities every time a new measurement is taken [31].

In this section we propose a new Cost-Curve Occupancy Grid method to

compute occupancy at each cell from stereo cost measurements at the whole

disparity range. The method computes occupancy of cell i as

P (Oi♣E) = P (Oi♣Vi, E)P (Vi♣E)+

P (Oi♣V i, E)(1− P (Vi♣E)),
(4.13)

where the event Vi = Oi−1, ..., O2, O1 represents visibility of cell i. For the

sake of readability and compactness, the equations shown here are for a one-

dimensional grid aligned with the sensor - correspondent to the intersection

of a camera ray with the three-dimensional grid. Also, the order of cells is

reversed from that of pixel disparity: for example i = 1 is the closest cell to

the camera, equivalent to d = D − i = D − 1.

The probability P (Vi♣E) can be computed by recursively applying the

deĄnition of conditional probability,

P (Vi♣E) = P (Vi−1Oi−1♣E)

= P (Oi−1♣Vi−1, E)P (Vi−1♣E)

= ... =
∏

j=1...i−1

P (Oj♣Vj, E).

(4.14)

On the other hand, P (Oi♣Vi, E) is given by

P (Oi♣Vi, E) =
p(E♣Oi, Vi)P (Oi, Vi)

P (Vi♣E)p(E)
, (4.15)

where P (OiVi) is a prior on world geometry.
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The denominator of (4.15) can also be computed recursively as

P (Vi♣E)p(E) =

= P (Oi, Vi♣E)p(E) + P (Oi, Vi♣E)p(E)

= p(E♣Oi, Vi)P (Oi, Vi) + P (Vi+1♣E)p(E)

= ... =
∑

j=i...C

p(E♣Oj, Vj)P (Oj, Vj),

(4.16)

where we assume that P (VC+1♣E) = 0, as we will explain next.

The method makes the following assumptions:

� A target surface exists for any 1D grid, or in other words, there exists

at least one occupied cell. Thus P (VC+1) = 0 and P (VC+1♣E) = 0;

� The target is equally probable to be at any of the cells along the 1D

grid. Thus P (Oi, Vi) = 1/C ∀i;

� Measurements E can give no information about occupancy on invisible

cells V i. Thus P (Oi♣V i, E) = P (Oi♣V i), which corresponds to a prior

on world geometry. In our work we model this prior as a constant 0.5

for all i, so that occupied and free cells are equally probable. Thus

P (Oi♣Vi) = 0.5 ∀i;

� Measurements are independent between disparities (see (4.2)).

� p(E:,d) is uniform.

� Occupancy or visibility on a cell i gives no information on match mea-

surements taken on other cells. Thus p(E:,D−k♣Oi, Vi) = p(E:,D−k) ∀k ̸=i;

From (4.15), (4.16) and the second assumption follows that

P (Oi♣Vi, E) =
p(E:,D−i♣Oi, Vi)
∑

j=i...C
p(E:,D−j♣Oj, Vj)

. (4.17)

Note that (4.17) is similar to our deĄnition of stereo match conĄdence (4.3)

if disparity is seen as a position (i.e. cell) which is both occupied and visible.

b) Traditional occupancy grids as a special case

In traditional occupancy grids, a single metric distance to a target is directly

or indirectly measured [18]. Since no other information is available, the
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real distance to the target is modeled as a normal distribution around the

measured distance. Uncertainty on the measurement is modeled using the

distributionŠs variance. Such range sensors can be seen as a special case

of cost-curve sensors, but where a single cost is measured. If a target is

measured to be at cell k, then in our formulation Ek is minimum and Ei∀i̸=k

are equal and maximum. In traditional range-measurement occupancy grids

we then have p(E♣Oi, Vi) ∝ exp
(

− (i−k)2

2σ2
range

)

, to which all equations we just

deĄned apply. As we discussed in the Background section, such models in

computer vision are referred to as Şwinner-take-allŤ (WTA) models - where

the distance with minimum cost is selected and the rest of the cost-curve

discarded.

4.4.2 Results in visually repetitive environments

A straight-forward application of the cost-curve occupancy grid formula-

tion is a scene with vertical repetitive characteristics. The Peak Ratio (i.e.

second-best cost over best cost) of the cost curves will be low, therefore

leading to either false positives or holes in the reconstruction depending on

whether the Peak Ratio is thresholded or not in a WTA approach. On the

other hand, a whole-cost-curve approach is expected to keep the occupancy

probability at repetitions high enough, and eliminate false-positives with

time, as the viewing angle changes.

To empirically conĄrm this hypothesis we simulated a simple environ-

ment with thin vertical bars, camera moving around them. Figure 4.7 shows

the resulting reconstruction of the scenario after 20 frames of camera motion

using the cost-curve occupancy grid with Merrel costs and ML-estimated pa-

rameters. Blue regions indicate occupied cells, which should form parallel

bars. On the Ągure, cells are drawn on top of the point cloud obtained from

least-cost stereo matches.

Figure 4.8 shows the results after the same number of frames from

the winner-take-all approach using three diferent stereo Ąltering thresholds

(Peak Ratio). High conĄdence restrictions lead to holes in the reconstruc-

tions. Less Ąltering however leads to more errors and intensive post-Ąltering

is needed. We did not Ąnd a threshold leading to a reconstruction with no

holes and no outliers. The image in the center reveals that there are still

holes in the reconstruction when outliers start appearing on a traditional

winner-take-all approach.
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Fig. 4.7 Virtual repetitive scenario and cost-curve occupancy grid result.
Left: virtual scenario with vertical bars to induce similar cost minima.

Right: resulting occupancy grid using the cost-curve approach. Occupied
cells are marked with blue. Result should be 7 parallel bars.

Fig. 4.8 Resulting occupancy grid computed in a traditional
winner-take-all approach when using three diferent Ąltering thresholds

(Peak Ratio). Left: 1.4. Center: 1.5. Right: 1.6. Occupied cells are
marked with blue. The result should be 7 parallel bars.
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Cost-curve occupancy grids with automatically estimated parameters

achieved full reconstruction without outliers and did not require manual

calibration.

4.4.3 Reconstruction results in the real world

We now evaluate the cost-curve occupancy grid method using the stereo

conĄdence measures compared previously. In this section we will describe the

setup and results, as well as discuss the relation between grid performance

and the AUC and C criteria results.

Our grid method assumes static scenes and so the experimental evalua-

tion was also conducted on a dataset with no moving objects: the KITTI

residential area dataset Ş2011_09_26_drive_0079Ť [185]. The dataset con-

tains 100 synchronized stereo pairs, laser rangeĄnder measurements and lo-

calization data taken from a moving car, while no moving people or moving

cars can be seen. An image of this dataset is shown in Figure 4.9.

In order to obtain a ground-truth grid, a simple grid algorithm for

range data was implemented and run on all frames using the available laser

rangeĄnder data: cells that were occupied with point data in more than a

single frame were considered occupied and the rest as free. The localization

data, given by the dataset, was assumed to be correct. Cell size used was

20cm x 20cm x 20cm and the resulting grid 60m x 12m x 3m. Generated

ground-truth is shown in Figure 4.9.

To quantitatively evaluate performance of the occupancy grid method we

take two measures: ŞprecisionŤ and ŞrecallŤ. Precision measures the fraction

of cells classiĄed as occupied which are correct. It is deĄned as tp
tp+fp

, where

tp (true positives) refers to the number of cells correctly classiĄed as occupied

(i.e. occupancy P > 0.5) and fp (false positives) refers to the number of cells

incorrectly classiĄed as occupied. Recall measures the fraction of occupied

cells correctly classiĄed. It is deĄned as tp
n

, where n refers to the total number

of occupied cells on ground-truth data.

a) Precision, recall, AUC and confidence on ground-truth

We computed reconstruction performance with all models, including the

HSM, using both ABP/AGT and ML parameter estimation. Results are

shown in Figure 4.10. For the ABP parameters of parametric models, we

ran the experiment with both maxC and minAUC parameters (see Table
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Fig. 4.9 The KITTI residential area dataset [185] used for occupancy grid
evaluation. Green regions on the bottom image represent ground-truth
occupied cells. Blue points represent laser data at one of the frames.
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4.1). Their curves are similar, though, and so we include only one of them

(minAUC) in Figure 4.10. Each dot in the Ągure represents one instant

of time of the image sequence (i.e. frame) and hence an update of the

occupancy grid. The Ąrst frames are marked with Şt=0Ť. Frames used were:

0, 5, 10, etc, in multiples of 5.

The curves in Figure 4.10 show how the occupancy grid algorithm leads to

increasingly higher recall and precision rates as new frames are processed.

Precision rates of around 0.9 and recall 0.5 are achieved by most models

by the end of the experiment. Another observation is that precision in-

creases slightly with window size, which is consistent with the results in

Section 4.3.4.

Importantly, the HSM and Merrell models lead to the highest Ąnal pre-

cision results across most cost function and window size combinations, with

the exception of BTSAD 5x5. The ML-estimated exponential had slightly

higher precision in that case, however at the cost of low recall. Also note

that the HSM modelŠs curve is above other curves during most of the image

sequence, showing highest precision, although this distance decreases as the

number of used images increases. Models with ML and ABP parameters

perform similarly for each model-cost combination, with the exception of

MatthiesŠ and the exponential models where ML leads to higher precision

but lower recall. These results are consistent with Tables 4.3 and 4.4: HSM

and Merrell were best performing in either the AUC or C criterion, also ML

Exp and Mat had lower C score than their ABP versions, corresponding to

the lower recall in the grid application. Overall, higher C criterion is related

to higher Ąnal grid recall (correlation r = 0.29), but not related to preci-

sion in our method. Lower AUC is also related to higher Ąnal grid recall

(correlation r = −0.35) and higher Ąnal precision (correlation r = −0.48).

An interesting observation is how the ML HSM lead mostly to the same

performance as AGT HSM, even though AUC in the ML case was poor.

As we discussed in Section 4.3.4, the fact that an ML HSM is computed

from a single stereo pair could lead to a sparsely populated histogram: thus

leading to a poor AUC because the conĄdence function is not continuous

(and ranking of pixels as a function of error rates will also not be continuous).

However, the ML histogram is trained from costs at WTA disparity where

left-right disparity is consistent. Thus the reason for the ML modelŠs poor

AUC could be its bad conditioning near cost values where errors are common

(and thus left-right consistency is often not met), even though conditioning
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Fig. 4.10 Comparison of the performance of all models along time when
used with the occupancy grid algorithm. Each point represents a diferent
instant of time, while the Ąrst frame of the image sequence is marked with

t=0. ŞMat ABPŤ overlaps perfectly with ŞExp ABPŤ on both cost
functions, and ŞMat MLŤ overlaps perfectly with ŞExp MLŤ for the

BTSAD cost function.
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is good around common cost values of true disparity. This would explain the

still high C(d ∈ GT )badpx result of the model (see Section 4.3.4, Table 4.4),

as well as its good performance in the occupancy grid application. Such

observations again stress the need for criteria other than AUC for stereo

conĄdence model evaluation, depending on the application.

Finally, in Figure 4.11 we show the reconstruction of ML HSM and Mer-

rellŠs models (using BTSAD 13x13). The HSMŠs higher recall can be seen

quite clearly (e.g. the car and tree are better reconstructed), although the

number of false positives is also slightly higher (since recall is higher and

precision rate is not 1).

b) Robustness to noise

We also analyzed the inĆuence of image noise in the performance of the

occupancy grids, by adding diferent levels of Gaussian noise to the image

sequence. Taking into consideration the original noise estimate of σ2 = 13,

the resulting pixel intensity noise variance levels tested were σ2 = 13, 14,

15, 18, 25, 43, 83, 177 and 397, where pixel intensity is in the range [0; 255].

We run the algorithm with a WTA grid and with a ML-estimated Mer-

rell model. The performance of the occupancy grids quickly deteriorates in

both cases. SpeciĄcally, grid precision is a function of the power of noise

precision(σ2) = a ∗ (σ2)b + c, (SSE ∈ [0.0003; 0.004]). However, cost-curve

occupancy grids were more robust to noise than WTA - allowing for higher

noise variances to obtain the same grid precision. In Table 4.5 we show the

maximum allowed image noise for diferent values of minimum precision.

4.5 Discussion

We will organize the discussion of this chapter according to the objectives

we set in the beginning.

4.5.1 Stereo confidence measures

Performance of parametric stereo conĄdence measures varies drastically with

parameter choice, concretely showing a clif-maximum-and-tail of perfor-

mance with parameters. This observation forces stereo algorithm designers

and users in robotics to consider doing parameter estimation before apply-

ing the algorithm to stereo reconstruction. The reason for performance drop
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Fig. 4.11 Reconstruction results obtained using a BTSAD 13x13 cost
function with the two top models. Top: MerrellŠs model. Bottom: HSM.

Green squares represent true-positives (i.e. cells correctly classiĄed as
occupied), brown squares represent false-positives (i.e. cells incorrectly

classiĄed as occupied).
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Table 4.5 Maximum acceptable image noise variance σ2 for desired grid
precision

Mer WTA

Min. precision 0.65 − −
SSD 5x5 Min. precision 0.75 − −

Min. precision 0.85 − −
Min. precision 0.65 83 15

SSD 9x9 Min. precision 0.75 43 −
Min. precision 0.85 − −
Min. precision 0.65 177 83

SSD 13x13 Min. precision 0.75 83 14
Min. precision 0.85 43 −

when parameters are under-estimated is clear: since the analyzed conĄdence

functions are normalized exponentials of costs, they tend to a min function

as the cost normalizer tends to zero (is under-estimated) - leading to a sin-

gle conĄdence maximum equal to 1. As a general rule, we showed that

over-shooting of parameters is safer than under-shooting.

We hope to have made clear that more research into methods for online

(no ground-truth) estimation of model parameters has the potential for high

impact on stereo and its applications - such as robot locomotion. Other

approaches to training the HSM without ground-truth may also be worth

investigating, as is the combination of diferent conĄdence measures [186].

4.5.2 Improving their performance

Our results indicate that it is possible in certain applications to train param-

eters of the parametric stereo conĄdence models from of-the-shelf datasets

with ground-truth disparity (i.e. using average best performing parameters,

ABP). However, care should be taken such as to re-train the parameters

every time costs, preĄlters or dataset conditions are changed.

We proposed a systematic parameter estimation method for paramet-

ric models using maximum likelihood (ML), eliminating the need for any

ground-truth or oline training. Our results indicated that these param-

eters lead to performance in stereo which is similar but slightly closer to

the optimum when compared to ABP parameters - which require training

datasets with ground-truth. At the same time, the proposed method is triv-
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ial to implement and computationally inexpensive. ML should allow for

better compensation of environment changes and be more practical when

diferent cost or preĄltering options are applied during the design stage of

algorithms.

The HSM was the best performing model in terms of AUC and occupancy

grid precision when trained on of-the-shelf datasets with ground-truth. As

seen by the shape of the HSM (Figure 4.2), the distribution of costs at

true disparity is not well approximated by a distribution of the exponential-

family. We believe this to be a good sign for a push in stereo research

towards non-parametric conĄdence models. For applications where AUC

is an important criterion, our results show however that the HSM should

not be trained on WTA disparity with few data. MerrellŠs model with ML

parameters is a good choice when ground-truth datasets are not available

for training, since it scores high in terms of AUC, C(d ∈ GT )badpx and grid

performance.

One important conclusion of this chapter is that one way to improve

performance of 3D reconstruction algorithms for stereo, is to look at non-

parametric models of stereo conĄdence, or models with low parameter sen-

sitivity.

4.5.3 Uncertainty-aware stereo reconstruction

We showed that integrating the uncertainty of stereo matching into occu-

pancy grids, through stereo conĄdence measures, leads to better reconstruc-

tion performance. Namely, from a simulation experiment we concluded that

the proposed approach better deals with visually repetitive (thus high uncer-

tainty) patterns. Whole-cost-curve integration brings more evidence to the

right matches, eventually leading to better reconstruction: without pre or

post discarding of any matches. The method, combined with automatically

estimated model parameters, leads also to higher robustness to noise.

In terms of stereo conĄdence measures, the HSM and MerrellŠs model

performed best in terms of grid precision. The HSM actually achieved higher

precision earlier on (i.e. using a fewer number of stereo pairs). On the other

hand, the exponential and MatthiesŠ models with ABP parameters lead to

overall high recall rates but lower precision.

The AUC criterion is usually used to evaluate the quality of stereo con-

Ądence measures in benchmarking literature. However, this criterion is less
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informative than desirable when used to choose the best model for a global

method integrating conĄdence measures, such as our Cost-Curve Occupancy

Grid. We proposed another criterion, C(d ∈ GT )badpx, which is related to

the recall of the grid and ML HSMŠs performance. Training of parameters

by optimizing C(d ∈ GT )badpx is also subject to lower inter-image variance

than AUC.

4.6 Summary

In this chapter we explored areas of computer vision closely related to the

robot locomotion problem: stereo vision, and also mapping through oc-

cupancy grids. We Ąrst tried to Ąnd which functions best model stereo

matching uncertainty. We evaluated several existing models of conĄdence

which are deĄned at the whole disparity range, and we introduced a way

to improve their performance through automatic parameter estimation. We

proposed a new stereo conĄdence measure, the Histogram Sensor Model

(HSM), which better models stereo matching uncertainty and improves re-

construction performance in several criteria. Then we applied these stereo

conĄdence measures to occupancy grids, a 3D reconstruction method which

estimates world geometry from sequences of stereo pairs - as an agent looks

around or navigates the environment. This world representation is char-

acterized by fast access for collision checking and robot motion planning

algorithms such as the ones we are interested in here. The key feature of

the method we introduced is that occupancy is computed not from the least-

cost estimate of distance given by stereo, but from the likelihoods of all costs

along the cost-curve. Such an approach has higher performance robustness

to environment texture and also image noise.





Chapter 5

Vision-based hierarchical

planning in the real world

5.1 Introduction

We have until now discussed how to plan humanoid locomotion accounting

for world friction and geometry, how to estimate friction from vision and

how to estimate geometry from vision. We now turn into a more practical

problem of how to integrate all these components into a single architecture,

and implementing it on real locomotion scenarios.

With the tools we have described so far, we can estimate world geome-

try fairly accurately. Recent stereo sensors, such as the Carnegie Robotics

Multisense-SL which we use in our real-robot experiments, have around 3mm

error at a distance of one meter, and 3cm at a distance of 10 meters. With

additional time Ąltering using occupancy grids such as we proposed in Chap-

ter 4, error could become even lower. Such small errors can arguably be dealt

with at the feedback control level of robots, and would hardly have any inĆu-

ence on planned trajectories even if they were taken into account. However,

the same cannot be said about the coeicient of friction. As we saw in Chap-

ter 3, errors are expected to have a standard deviation of 0.13, which is a

huge diference in terms of locomotion requirements. As we can see from

Figure 2.5, in Chapter 2, a change of 0.13 in coeicient of friction could

require a twice lower speed. It is then of utmost importance to include this

uncertainty into the planning algorithm we presented in order to produce

robust plans.
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In addition to robustifying our algorithms from Chapter 2, it is also

important to evaluate the performance of the whole architecture on a variety

of scenarios. These two points will be the focus of this chapter. Concretely,

our objectives are:

a) To integrate the uncertainty of friction from vision into our planning

algorithm for robust trajectories (Section 5.2)

b) To evaluate the whole system (planning and perception) on a variety of

scenarios (Sections 5.2.3 and 5.2.4).

5.2 Perception-planning architecture

5.2.1 Robust planning using chance constraints

In Chapter 2 we introduced an extended footstep planning algorithm which

considers surface friction by using it as a constraint when computing mini-

mum state transition costs. The algorithm assumed the coeicients of fric-

tion were known, so some slight changes are necessary before applying the

algorithm to a real robot.

We remind that the only point at which the algorithm depends on fric-

tion is the state transition cost c(s, s′) used during the tree-based search of

stances. This was given by equation (2.7), which was:

c(s, s′) =min
p

f̂cost(s, s′, p)

subject to

Ψ(s, s′, p) < 0

f̂RCOF(s, s′, p) < µ

a < p < b.

Assuming that the functions f̂cost and f̂RCOF are deterministic and the

noise in the system is only in the measurement variable µ, it is easy to con-

vert this optimization problem to a robust one without increasing problem

complexity by using chance constraints [187]. First, we rewrite the state
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transition cost function as

c(s, s′) =min
p

f̂cost(s, s′, p)

subject to

Ψ(s, s′, p) < 0

P (f̂RCOF(s, s′, p) < µ(c)) ≥ η

c = 1, ..., C,

(5.1)

where c is an index of the contacts of s and s′, while µ(c) is the friction at

these contacts. This way, we enforce that the Coulomb friction inequality

holds with at least probability η. The constraints can also be rewritten using

the cumulative distribution function p(µ(c)♣θ, I) (equation (3.9)), which we

denote by Fµ(c)♣θ,I ,

Fµ(c)♣θ,I(f̂RCOF(s, s′, p)) ≤ 1− η. (5.2)

Since each µ(c) is one-dimensional then F can be inverted and the constraints

rewritten in deterministic form

f̂RCOF(s, s′, p) ≤ Q
(c)
1−η, (5.3)

where Q
(c)
1−η is the (1− η)-quantile of Fµ(c)♣θ,I .

In practice we compute the quantiles at all image pixels inside the friction

perception algorithm, and so the friction-annotated point cloud is actually

a friction-quantile-annotated point cloud. Therefore, obtaining the friction

quantile for a certain contact c of a stance during search simply involves

accessing its value in memory.

We eiciently obtain the friction quantiles at all pixels k = 1, ..., n, by

querying the c.d.f.s at certain friction values µ until we (approximately) Ąnd

µ : Fµ(k)=µ♣θ,I = 1− η. Let us deĄne

F(µ) =











Fµ(1)=µ♣θ,I
...

Fµ(n)=µ♣θ,I











, (5.4)
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Wθ,I =











P (x1 = l1♣θ, I) . . . P (x1 = lm♣θ, I)
...

. . .
...

P (xn = l1♣θ, I) . . . P (xn = lm♣θ, I)











, (5.5)

Fprior(µ) =











F (µ♣l1)
...

F (µ♣lm)











, (5.6)

so that querying the c.d.f.s at all pixels corresponds to the matrix operation:

F(µ) = Wθ,I · Fprior(µ). (5.7)

Then, we can estimate the quantiles through uniform search, according to the

simple Algorithm 1. We use PythonŠs NumPy library [188] for an eicient

implementation of matrix operations. Using high accuracy requirements

(∆µ = 0.02), the algorithm takes a couple hundred milliseconds to complete.

Algorithm 1 Estimating friction quantile images through search

1: procedure QuantileSearch(η, ∆µ) ◃ ∆µ is the error tolerance
2: µ← 0
3: finished ← false
4: while not finished do
5: F(µ)←Wθ,I · Fprior(µ)
6: mask ← F(µ) ≤ 1− η
7: Q[mask]← µ ◃ Update quantiles
8: µ← µ + ∆µ
9: finished ← mask= 0 ◃ Did we compute all quantiles?

10: return Q

An alternative to the search algorithm is to approximate the Gaussian

mixture distribution by a single Gaussian distribution. In that case, at each

pixel only the mean and variance of the distribution need to be computed,

which in our experiments was an order of magnitude faster than Algorithm 1.

However, the loss in terms of accuracy is high (RMSE=0.1), and it might be

preferable to simply increase the error tolerance in Algorithm 1 for a better

trade-of between accuracy and computation speed.
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Fig. 5.1 System architecture

5.2.2 System integration

We integrated the planning and perception algorithms described in this the-

sis into a single system architecture, shown in Figure 5.1.

a) Hardware and communication

Robot. We use the humanoid robot WABIAN-2, which is described in

Section 2.3.2. We replaced the original neck and head by the Carnegie

Robotics Multisense-SL sensor-head and a neck support. All robot motors

and sensors (joint encoders, photosensors, force sensors) are monitored and

controled from a computer which is mounted on its backpack - to which we

call robotPC.

robotPC. Has access to sensors and motors through an interface board. Is

responsible for executing full-body trajectories. Sends the state of the robot

and gets trajectories from the externalPC through a LAN connection. Uses

a real-time operating system (QNX) for reliable robot control.

robotMultisense. Consists of two cameras, inertial measurement unit, and

laser rangeĄnder. Stereo matching is computed onboard and data is sent to

the externalPC through a LAN connection.

externalPC. Is connected to robotPC and robotMultisense through LAN

connections. Is reponsible for collecting robot and vision data, planning

full-body trajectories and sending them to robotPC for execution.
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b) Modules and libraries

Stereo. Runs on robotMultisense as a ROS node. Publishes images, stereo

matching costs and WTA depth maps.

Friction. Runs on externalPC as a ROS node. From input images, uses

a deep CNN with trained parameters to estimate the p.d.f. of material at

each pixel, then estimates the (1 − 0.95)-quantile of friction per pixel and

publishes this image. Uses libraries Cafe, CUDA, OpenCV.

OccupancyGrid. Runs on externalPC as a ROS node. From input stereo

data, updates and publishes an occupancy grid as a point cloud of the gridŠs

centers. Uses the OctoMap library / ROS node.

ProblemPublisher. Runs on externalPC as a ROS node. Collects the

robot state, point cloud, friction image and locomotion target, combines the

data into a Şplanning problemŤ - consisting of a friction-annotated point

cloud in the world reference frame, start and goal positions. Uses libraries

OpenCV and PCL.

WabianPlanner. Runs on externalPC as a ROS node. From input plan-

ning problems, it plans a full-body trajectory using the robust hierarchical

planning algorithm, then publishes the trajectory. Uses libraries SBPL, tra-

jopt, OpenRAVE.

WabianInterface. Runs on externalPC as a ROS node. Collects robot

state data from a TCP connection with RobotController (robotPC ) and re-

publishes it as ROS topics. Sends input trajectories to RobotController

(robotPC ) through a TCP connection.

RobotController. Runs on robotPC as a process. Collects sensor data

and updates motor commands on a real-time 1ms-loop thread. Sends the

robot state to WabianInterface (externalPC ) on a separate thread. Obtains

trajectories for execution from WabianInterface (externalPC ), along with

the instant of time at which the trajectories should start. These are checked

for consistency with the current trajectory in execution and added to an

execution queue.

5.2.3 Real-robot results on a mock-up scenario

We prepared a mock-up scenario in the laboratory which demonstrates the

capabilities of our planner. The scenario consists of a Ćoor with two areas

of diferent materials. One is made of wood and the other is a high-friction

Ćooring resembling ceramic tiles both in appearance and coeicient of fric-



5.2 Perception-planning architecture 133

x

x

Fig. 5.2 Mock-up scenario and friction from vision. Left: the view from the
robotŠs camera of the mock-up scenario built in the laboratory. The

locomotion target is one meter ahead, marked with a white ŞxŤ. Middle:
material segmentation. Right: coeicient of friction quantiles Q1−0.95 of
equation (3.9). Darker shades of gray correspond to higher friction, such

that white is µ = 0 and black µ = 1.

tion. The perception-planning algorithms were run on this scenario, and

then a piece of cloth (T-shirt) was laid Ćat on one of the surfaces to pro-

voke changes in friction and force a diferent plan. See Figure 5.2 for the

scenario, segmentation and friction as seen from the robotŠs camera at the

initial condition. Once again, the Ągures show the advantage of using the

full probability distribution of materials given by the CNN. While cloth is

the highest-ranking material only in part of the object region, friction is low

on a larger region which is highly consistent with object borders.

The robot starts in double-support, with one foot on each surface. The

goal stance is one meter ahead, also with a foot on each surface. After the

robot is placed at the initial state, the perception and planning algorithms

run without any human input except the push of a button to execute the

planned full-body trajectory open-loop. Trajectory optimization parameters

are the collision penalty weight α of equation (2.9), which is set to 50, and

the distance at which the collision penalty starts being applied (for all links

except those in contact), which we set to 2.5cm. The obtained full-body

trajectory is tracked by position control at the joint level.

For these experiments we customized the WABIAN-2 robot (described
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in Section 2.3.2) with a Carnegie Robotics Multisense SL sensor-head. The

perception pipeline predicts pixel-wise material label distributions and pixel-

wise friction using SegNet [149] and equation (3.9), and combines them with

the stereo depth maps computed onboard by the Multisense. It produces

friction-annotated point clouds at 2Hz. For collision checking, the point

cloud is converted into a mesh using the fast surface reconstruction algo-

rithm of [189] as implemented in PCL [124]. All perception and planning

computation ran on the external PC (connected to the robotŠs onboard PC),

and we used ROS [190] for communication.

We show the results of the perception-planning experiments in Figure 5.3.

From left to right, we show the material and friction point clouds, the foot-

step plan, the collision-checking bounding boxes used by the footstep planner

and the Ąnal planned full-body trajectory after optimization and stabiliza-

tion. In the Ąrst situation there are only wood and ceramic surfaces, but

the predicted lower bound of friction of the wood surface is lower than that

of the tiles (Q1−0.95 =0.1 vs 0.4). The footstep planner returns a sequence

of stances that reduces the amount of times wood is stepped on. This be-

havior comes naturally from the extended footstep planning approach [191],

since walking on low friction ground requires higher stance times (slower

motion) and thus more energy cost. Furthermore, note that the trajectory

optimization uses all degrees-of-freedom to satisfy the constraints (e.g. trunk

roll use is clear in the image sequence, important mainly for the stability

constraints), and that the knees are relatively stretched in order to reduce

torque consumption but still satisfy stability constraints. Also note that

swing leg clearance happens automatically due to the use of collision costs.

In the second situation we laid a Ćat piece of cloth on a ceramic spot used

by the previous trajectory. The cloth was correctly classiĄed and its friction

was practically zero. The footstep planner returned a trajectory around the

cloth and on the wood surface, which led to a slightly longer time and energy

cost of the full-body trajectory (63 vs 60 seconds, 5% longer than on the

Ąrst situation). Note that while the times are long they correspond to 25

stances because of step length limits, and thus the average time per stance

is approximately 2.5 seconds.

Footstep planning took approximately 20 seconds in the Ąrst situation

and 10 in the second. The reason for the diference is clear from the sce-

nario: while in the Ąrst situation stances on both surfaces are expanded by

A* in order to guarantee optimality, in the second situation no stances are
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Fig. 5.3 Perception, planning and locomotion results on the mock-up scenario. First two rows: two surfaces (wood and ceramic).
Last two rows: three surfaces (wood, ceramic and cloth). We show the material segmentation (same colour codes as in

Figure 5.2), friction (cold colours are high friction, warm are low), footstep plan, collision bounding boxes, full-body plan and
Ąnally the walking sequence on the real robot.
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expanded on the surface with cloth since friction zero has inĄnite cost. Full-

body trajectory optimization took approximately 40 seconds and dynamic

stabilization 2 seconds. Note that these are for 25-stance, 60 second trajec-

tories, and therefore they should be considerably faster in case planning is

done one or two steps at a time.

5.2.4 Simulation results on a real-world outdoors

dataset

We also applied the friction-from-vision and planning algorithms to larger

and realistic outdoor scenarios. We did this while avoiding the logistics

of transporting the real robot (and its crane, battery charger, computers,

etc) by acquiring a 3D dataset of real outdoor environments. We ran the

same perception and planning algorithms on the data, and then analyzed

the resulting trajectories without actually executing them on the real robot.

The gathered dataset consists of stereo pairs acquired with a consumer-

level stereo camera. We used a FujiFilm FinePix REAL 3D W3, a compact-

sized camera with 10 megapixels and a 75mm baseline. The camera was

calibrated using a 10-by-10 squared chessboard pattern and the stereo cali-

bration functions of the OpenCV library [179].

We started by acquiring several high-quality stereo pairs on the streets

and parks of Tokyo, Japan. Then, we obtained 3D reconstructions from the

pictures by applying the block-matching stereo algorithm implemented in

OpenCV. To recover the direction of gravity we assumed that the largest

plane in the scene was always a horizontal ground plane - which we tried

to guarantee during dataset collection by appropriate framing. That plane

was automatically segmented from the 3D reconstruction through RANSAC-

based plane segmentation using PCL [124], and the world reference frame

thus placed with the vertical direction aligned with gravity (i.e. the Z vector

perpendicular to the largest plane). The CNN-based friction estimation

algorithm of Section 3.5 was applied to the left image of the stereo pair, and

the resulting friction quantiles merged with the 3D construction to form

friction-annotated point clouds for planning.

Figures 5.4 to 5.9 show the dataset pictures and results. Each Ągure

consists of the original picture, the 3D-reconstructed scenario, the friction-

colored scenario together with the footstep plan, and an image sequence of

the planned trajectory. The friction-colored scenario represents coeicient
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of friction values in hue space, so that cold colors are high friction and warm

are low (i.e. red is µ = 0, blue µ = 1).

In the scenario of Figure 5.4, grassy and leafy areas are predicted to

have lower friction. We set the locomotion target to the inside of the grass

patch, on the right side of the tree. The planned trajectory avoids the dirt

on the way to the target, and makes a curve when approaching the grass

in order to reduce the distance covered over grass. This curve is especially

visible on the footstep plan image. In Figure 5.5, the robot climbs dirt at

a construction site. Due to matching errors in stereo, traic cones were not

correctly reconstructed as obstacles but as being part of the ground surface,

and thus the planned trajectory erroneously crosses them. In Figure 5.6, the

robot climbs down a ramp and goes up stairs at low angles, while avoiding

collision with the handrail. In Figure 5.7, the robot starts in the middle of

a dirt patch and gets out of it to the asphalt by a trajectory that takes the

shallower slope (instead of a steep step). In Figure 5.8, the robot starts in

front of a metal pole, and walks to a traic cone directly behind it. This

scenario is similar in concept to our real robot experiment of Figure 5.2.

The target can be approached either through the surface on the right (high

friction ceramic) or through the surface on the left (lower friction asphalt).

The Ąnal trajectory opts for the higher-friction path while still avoiding

collision with the poles. Finally, in Figure 5.9 the robot avoids a straight

path that would involve walking over a wet surface of low friction, by taking

a curved path through grass.

5.3 Discussion

We will organize the discussion of this chapter according to the objectives

we set in the beginning.

5.3.1 Robust planning

We showed that planning can be made robust to uncertainty in friction esti-

mates using chance constraints. Using the method described in Section 3.5

a full p.d.f. of friction is available, from which we can also estimate the

probability of satisfying Coloumb friction constraints. That probability can

be used as a parameter for conservativeness.



138 Vision-based hierarchical planning in the real world

Fig. 5.4 Simulation results on real stereo data. In order: original picture,
3D-reconstructed scenario together with initial pose, friction-colored

scenario together with footstep plan, image sequence of planned trajectory.
Friction coloring: cold colors are high friction and warm are low (i.e. red is

µ = 0, blue µ = 1).
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Fig. 5.5 Simulation results on real stereo data. In order: original picture,
3D-reconstructed scenario together with initial pose, friction-colored

scenario together with footstep plan, image sequence of planned trajectory.
Friction coloring: cold colors are high friction and warm are low (i.e. red is

µ = 0, blue µ = 1).
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Fig. 5.6 Simulation results on real stereo data. In order: original picture,
3D-reconstructed scenario together with initial pose, friction-colored

scenario together with footstep plan, image sequence of planned trajectory.
Friction coloring: cold colors are high friction and warm are low (i.e. red is

µ = 0, blue µ = 1).
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Fig. 5.7 Simulation results on real stereo data. In order: original picture,
3D-reconstructed scenario together with initial pose, friction-colored

scenario together with footstep plan, image sequence of planned trajectory.
Friction coloring: cold colors are high friction and warm are low (i.e. red is

µ = 0, blue µ = 1).
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Fig. 5.8 Simulation results on real stereo data. In order: original picture,
3D-reconstructed scenario together with initial pose, friction-colored

scenario together with footstep plan, image sequence of planned trajectory.
Friction coloring: cold colors are high friction and warm are low (i.e. red is

µ = 0, blue µ = 1).
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Fig. 5.9 Simulation results on real stereo data. In order: original picture,
3D-reconstructed scenario together with initial pose, friction-colored

scenario together with footstep plan, image sequence of planned trajectory.
Friction coloring: cold colors are high friction and warm are low (i.e. red is

µ = 0, blue µ = 1).
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Our formulation assumes that RCOF and energy models are not cor-

rupted by noise, but model uncertainty could be considered using chance

constraints as well. This would come at the extra cost of computing a con-

volution between the two p.d.f., or using a convex approximation of the

constraints.

5.3.2 Whole system evaluation

We showed that locomotion planning considering world geometry and fric-

tion can be fully automated on a real robot at both perception and planning

levels. These friction-aware algorithms are relevant since not only obstacles

but also diferent terrain types abound in the real world, and locomotion

choices should take them into account - whether for safety or energetic con-

siderations.

Our implementation of the whole perception pipeline can be executed at

2Hz, which is arguably suicient for high-level planning. Footstep plans are

provided every 10 seconds, and the full-body planning stage takes around

1.6 seconds per stance. Planning time is considerably slow, and so speeding

up computation is one important direction of research. There is also a

clear hierarchy in both representation and computation time, which can be

exploited by successively lowering the planning horizon at each level. For

example, with the current implementation timings, if stances last on average

2 seconds then for continuous walking the footstep planner should plan 5

stances at a time, and the full-body planner one or two stances at a time.

Ideally, there should also be one extra layer of planning at the COM level

to guide footstep planning.

Importantly, another problem with the proposed perception and plan-

ning approach is that wrong material classiĄcations can lead to there being

no solution to the footstep planning problem. An example of such a sit-

uation is when a material the robot cannot walk on, such as water in our

case, is mistakenly given very high conĄdence. Our view is that the solution

could be semi-supervision where a teleoperator can correct a segmented re-

gionŠs material label. However, as we concluded in Chapter 3, inexperienced

teleoperators should not directly annotate COF.

The results of Section 5.2.4 show that the perception and planning al-

gorithms introduced can not only be applied to simple laboratory scenarios

but also complex outdoor scenarios. In general, paths avoided obstacles and
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dealt with slippery terrain and slopes. However, the results also show the

consequences of not considering stereo uncertainty during planning: one of

the paths (Figure 5.5) actually traverses obstacles as if they were not there

because of a mismatch in stereo. An important avenue for future research

then, is the integration of 3D-reconstruction uncertainty into planning. For

example, using stereo matching likelihoods or occupancy probabilities to

frame probabilistic collision constraints.

5.4 Summary

In this chapter we extended the planning algorithm of Chapter 2 in order to

enforce robust friction constraints. We showed that uncertainty in the coei-

cient of friction estimates can be integrated into extended footstep planning

without increasing problem complexity by using chance constraints. Then

we introduced an architecture for the full perception-planning system on

a real robot, and demonstrated the system on a real scenario. The real

robot was able to correctly perceive surface friction, as well as optimally

plan footstep placement and motion to reduce energy under friction con-

straints. We Ąnished with an evaluation of the perception-planning system

on a set of real-world scenarios to demonstrate the applicability of the sys-

tem to a wide range of environments. Overall, this chapter showed that the

perception and planning algorithms of this thesis are applicable to challeng-

ing scenarios with varying surface friction, slopes and obstacles - both in

laboratory-made environments and realistic outdoor scenarios.





Chapter 6

Conclusion and discussion

6.1 Contributions of this thesis

6.1.1 Technical contributions

In this thesis we proposed a complete solution to the problem of biped robot

locomotion on environments with complex geometry and slippery terrain.

We developed:

a) a robust and objective-consistent hierarchical planning method which

considers energetic trajectory costs, friction, kinematics, collision and

stability;

b) a visual friction estimation algorithm which provides uncertainty esti-

mates for robust planning; and

c) a geometry estimation algorithm which accumulates stereo and its un-

certainty over time for high precision and visual robustness.

One important contribution of the planning methods we introduced is

that they can reason about friction in ways that were not possible before. For

example in the ice puddle scenarios we used for evaluation in Section 2.4.2,

the planner automatically opts between avoiding or slowly traversing the

ice. Such scenarios would not be solvable by previous footstep planners

unless slippery surfaces were treated as non-traversable - in which case the

trajectory could be energetically ineicient when compared to our friction-

aware slow-traversal approach. Friction-aware footstep planning was made

possible mainly by the use of step times as variables estimated from step
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placement and surface friction. The fact that we plan step times is also

innovative - with few exceptions, most state-of-the-art humanoid locomotion

planners still assume Ąxed step times, which can highly limit the motion of

the robots. Finally, we also made footstep and full-body motion planning

more tightly coupled and consistent when compared with previous contact-

before-motion approaches. This was possible by the concept of ŞoraclesŤ or

Şlearned modelsŤ which predict the cost and RCOF of footsteps obtained

at the end of the whole (full-body) planning pipeline. These are learned

oline by feeding the full-body motion planner with a large number of stance

transitions and saving the results on a hash table for online use.

The friction from vision algorithms we described, especially the Şmate-

rial CNNs with material friction p.d.f.sŤ algorithm of Section 3.5, is also

a pioneer in the Ąeld. While some state-of-the-art control and planning

frameworks now include friction in the models, the authors of these meth-

ods do not estimate the coeicients of friction yet, but only assume them

to be constant. Our work on friction estimation is thus an important and

large step towards the actual and practical use of friction during planning,

since we prove not only that it is possible but quantitatively estimate the

error expected out of these estimates. Since our method can provide a whole

probability distribution of friction, it will hopefully Ąnd its way into trending

robust planning and control frameworks.

Our treatment of stereo reconstruction in Chapter 4 also follows a simi-

lar probabilistic approach. While the common methodology in the robotics

community is to discard the uncertainty in stereo matching early on and use

disparity images to build occupancy maps, we instead estimate these maps

from the full p.d.f. of stereo matching costs. This is actually the main com-

mon principle we use for both visual estimation of friction and geometry: to

avoid making early decisions on uncertain variables (e.g. on material class

or stereo disparity) but instead keep the probability distributions until the

end of the perception pipeline. As we showed in both cases, this approach

is advantageous. In the friction case, friction quantiles were more consistent

with object margins than highest-conĄdence material images because true

materials were still given high conĄdence by the segmentation algorithm. In

the geometry case, we obtained higher grid precision in outdoor scenarios,

visually repetitive scenarios and noisy images, because when the least-cost

disparity is wrong, true disparity is still given high conĄdence by the occu-

pancy grid algorithm. We believe this thesis also contributes to demonstrate
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this advantage and hope that the community will follow.

6.1.2 Impact and applicability to different fields

We would like to stress that the methods introduced in this thesis have

broad cross-disciplinary applications. Starting with the Şextended footstep

planningŤ method and in general our approach to locomotion planning with

oracles, the approach is applicable not only to humanoids but legged and

mobile robots in general. Most robot locomotion algorithms start by some

sort of high-level planning representation such as static bounding boxes that

discard the diferent ways the robot can use to get to target states. Using

our approach these can be parameterized, the respective energy/required-

friction learned by physics simulation of the whole planning pipeline, and

Ąnal models (i.e. oracles) used online by the high-level planner for energy

and friction considerations.

Our friction from vision work can be applied straightforwardly to robot

manipulation, where grasp parameters depend on COF estimates which

could be provided by our algorithm. Since robots can also repeat manipu-

lation experiments more easily at scale, when compared to walking experi-

ments, the probability distributions of material friction could in that case be

more easily obtained through autonomous robot learning behaviour instead

of the manual experiments we used in Section 3.5. Furthermore, we can

envision the friction algorithm being applied to well-being applications for

the blind and people with low-visual-acuity, such as assistive devices that

warn or provide safer locomotion paths to the user.

Finally, our new data-driven approach to stereo conĄdence measures,

such as the new histogram-based model trained on stereo datasets with

ground-truth, or the maximum-likelihood-estimated parametric models, can

be applied to global stereo methods in general, and visual SLAM methods

in general. We believe these methods could all beneĄt from better stereo

conĄdence measures and from the conclusions we reached in Section 4.5.

6.1.3 Insights for robotics and vision

The experiments conducted for the purpose of this thesis brought forward

several useful insights for the robotics and vision communities. Namely:

a) Friction should be considered in humanoid robot locomotion planners,
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not only controllers. Considering it can lead to both lower falling risk

and lower energy consumption

b) Including timing variables in footstep planning is crucial for friction, en-

ergy and stability considerations

c) Human-inspired gait principles applied to footstep planning have slippage

and electrical energy advantages, as well as leading to human-like motion

d) Humans are not good at the task of predicting friction of a robot foot

in various terrain. A single teleoperator system, or even crowd-sourced

teleoperation, should not involve friction estimation but, more usefully,

material label correction

e) Material is a highly predictive feature for friction estimation. It is impor-

tant for robotics to build large-scale datasets and algorithms for material

segmentation

f) Stereo uncertainty models (i.e. conĄdence measures) should be carefully

chosen, estimated and integrated into time Ąltering algorithms for better

performance and visual robustness

6.2 General discussion

6.2.1 Planning vs control

In this thesis we focused on planning algorithms for humanoid locomotion,

generating open-loop full-body robot trajectories that are predicted to be

low-energy, slippage-free and collision-free. We did not especially develop

control algorithms to track these trajectories with guarantees, or to avoid

falling when the robot actually slips, which is another important and active

Ąeld of research. One of the reasons we opted for this route was to comple-

ment existing feedback control-centred locomotion approaches [58, 89, 90].

The motivation is that feedback controlŠs local adaptation of tangential-to-

normal force ratios may not be suicient in very low friction surfaces, and

so the global trajectory itself should be better planned so that we can tackle

general scenarios. We do this by predicting the performance of the controller

as a function of step parameters, using an oracle for footstep planning. The

performance of our planning algorithm should thus also improve with the
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introduction of better full-body controllers which consider dynamics and

friction.

Since we planned full-body trajectories for the whole path from start

to goal, even when these were fairly distant (e.g. 1 to 3 meters), planning

was relatively slow. This begs the question of whether we are planning too

far ahead. More importantly: how far ahead should full-body motion be

planned? What about footstep plans? Are we using too much detail at

the full-body planning level? These are recurring questions in robot motion

planning. We believe deep planning hierarchies are an interesting answer

to the computational speed problem. For example, planning at the point

or bounding box level, followed by footstep level, followed by full-body. Or

instead, planning base motion at Ąrst with all joints Ąxed and collision con-

sideration, then successively reĄning the path by adding more joint freedom

and constraints, in an approach similar to continuation numerical optimiza-

tion [29]. Of course the issue then is how to deĄne the hierarchy for best

performance, and we believe the answer could lie somewhere between good

designer intuition and machine learning. Diferent methods other than graph

search for high-level planning are also an interesting option, such comput-

ing homotopy classes (i.e. topological constraints) to guide search [192],

sampling or optimization [193] methods. In addition to that, it is impor-

tant to develop eicient synergies between planning layers instead of strict

hierarchies, something that is dealt with for example in [194].

Importantly, to reduce computation complexity, planning can be coarse

but long-ranged for high-level descriptions and Ąne but short-ranged for low-

level descriptions. While we did it for simplicity in this thesis, there was no

need to plan the footstep or full-body trajectories from start to goal - they

could be computed for the next few steps successively as the robot is walking

and more visual input is received, thus creating several levels of feedback as

well.

6.2.2 Model-based vs model-free planning

In this thesis we opted for a model-based approach to planning by using

precise robot models which include all link masses and at some point use

analytic inverse kinematics for dynamic stabilization. This approach is a

popular one in humanoid robots due to the robotsŠ complexity and high cost,

which make them hard to control and risky to experiment on without huge
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Ąnancial and time expenses. If robots were robust enough to fail, fall and

autonomously repeat experiments, then alternative model-free reinforcement

learning techniques or other black-box machine learning-based techniques

would also be a competitive approach to the problem. The main advantage

in that case would be to avoid the simpliĄcation and modeling errors inherent

to the model-based approach. Of course the model-free approach would not

need to be run from zero on the real robot, but warm-started from a training

stage in simulation. Even in that case, the real platform would need to be

ready to fall several times before the policy would converge to something

stable. This is something most platforms are not designed for, including the

one we used in this thesis (WABIAN-2). However, it is still a promising

Ąeld of research, especially with recent developments in the reinforcement

learning literature [68] and as more fall-robust robots are built.

Contact models in thesis were also model-based. In particular, we used

CoulombŠs physical contact model to include friction in planning as com-

monly done in the humanoid literature. Still it is arguable that physical

contact models themselves are not precise. As stated in Ruina and PratapŠs

book [195], ŞNot only canŠt you know the coeicient of friction between any

two pieces of steel with any certainty, you also canŠt even trust the concept

of a coeicient of friction to be very accurateŤ, and because of that theory

and practice typically difer by 5 to 50% [195]. For example, the coeicient

of friction between our robot foot and any given surface, measured at the

same spot and at the same foot orientation, had a SD of 0.05. Each exper-

iment is slightly diferent, either due to small contact-area variations, dust,

applied force proĄles, etc.

So while physical contact models are not precise, they are intuitive and

reusable between robots. The alternative could be learning black-box mod-

els of physical contact by interaction for each robot, which could have more

accuracy in the long run. The same problem of small data we just described

applies here once again though, since most current humanoid robot plat-

forms are not ready for the amount of training trials that would require.

Despite that fact, this avenue is a crucial one for the improvement of robot

robustness, especially after model-based planning and control algorithms

have been better understood.
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6.2.3 Direct vs indirect perception

This thesis adopts an Şindirect perceptionŤ model of perception and action.

In other words, perception is Ştop-downŤ - mediated by knowledge which

is coded in the robot [196]. This is opposed to the Şdirect perceptionŤ,

Şbottom-upŤ model, in which perception is mediated by past experience

and data. This discussion is closely related to that of model-based and

model-free control.

In indirect perception, exempliĄed by MarrŠs important work [197], per-

ception can be studied and implemented independently of action, i.e. the

control system. This is what we do here. We develop friction and geom-

etry estimation methods, combine them into a representation (a friction-

annotated point cloud), and then plan motion on it. This is a strict hierar-

chical model of perception and action in which the planner or the controller

do not inĆuence perception. This of course need not be the case and is

arguably inĆexible. If the robot slips or detects the current surface has a

diferent coeicient of friction from that which was predicted by vision, this

information could feed back into the visual system to update the whole sur-

face (e.g. using material segmentation regions) with a new p.d.f. or prior

for friction. Such an interconnected model of perception and action is closer

to the ideas of direct perception. Pure direct perception, as defended by

GibsonŠs work [198], would lead to a model-free controller of locomotion

where sensor input translates directly to actions or action modulators (he

calls these associations affordances) without explicit intermediate blocks of

Şfriction from visionŤ, Şgeometry from visionŤ, ŞplanningŤ, etc, which are

typical of top-down approaches such as ours. The best performance might

come out of a combination of both worlds, such as these feedbacks into vi-

sion that we just mentioned and other interactions between perception and

action layers.

6.3 Limitations

6.3.1 Serial design, strict hierarchy

One of the limitations of this thesis is tightly related to the general discussion

of Şindirect perceptionŤ we touched on the previous section. Our planning

approach in this thesis has a strict hierarchy of processing from perception
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to plans which can lead to inĆexible behaviour. For example, wrong material

classiĄcations can lead to there being no solution to the footstep planning

problem. In addition to that, there is no feedback from the controller to

the vision system in order to update friction predictions of surfaces which

Şlook likeŤ the one the robot is currently walking on, or walked on at some

point in time. We believe this kind of feedback and memory mechanisms

can greatly improve friction prediction and locomotion performance in the

real world.

6.3.2 No dynamics in full-body planning

Another limitation of our planner is the absence of dynamics and friction

consideration in the full-body motion planner. Because of this, even if the

statically stable motion of the full-body planner is subsequently made dy-

namically stable by another algorithm, the resulting motion is overly con-

servative. For example, the COM needlessly lies inside the support polygon

and in order to achieve this knees are bent more than necessary as well. In

addition to that, since the dynamic stabilization algorithm will locally adapt

joint motion, the full-body planner must assume tighter margins on joint an-

gle limits so that these are not crossed after the stabilization stage. This

further constrains the Ąnal solutions which might seem overly static. In any

case, our planning architecture in itself is not limited and simply improving

the full-body planner to consider dynamics and friction will suice to solve

this limitation.

6.3.3 Computational speed of planning

The computational speed of our footstep and full-body planners as currently

implemented is arguably slow for real applications. In our experiments,

the planning pipeline of footstep and full-body planning for 25 stances can

take up to 1 minute when solved to optimality. There are several reasons

for this. One of them is the currently large branching factor of footstep

planning, due to the fact that all feasible neighbour points of a foot in

contact will be considered to create a new stance. One way to attenuate this

problem is to reduce point cloud resolution, another to introduce randomness

by sampling. The low speed of footstep planners is a problem of current

methods in general, and the 10 second planning times we obtained in our
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experiments are actually common with other search and optimization-based

approaches.

Our footstep planner is also relatively slow because it is being solved to

optimality (ϵ = 1 in A* search). So another possibility to reduce search time

could be to stop search once a solution with a good enough sub-optimality

criteria is reached. In addition to that, we current use an admissible heuristic

for optimality guarantees. This can lead to slow convergence, and so if sub-

optimality is not an issue then more efective heuristics could be used or

learned with experience.

Regarding the current full-body planner, its low computational speed is

mainly due to the computation of collision constraints which require eval-

uating mesh penetrations, and the optimization design itself (Sequential

Quadratic Programming), which requires successive approximations of the

objective and constraints and solving quadric programs until convergence.

Planning speed could be improved by approximating the robot and envi-

ronment meshes with simpler primitives (now the full meshes are used),

by investigating other optimization designs, by warm-starting the planner

with solutions which are close to a local optimum, and most importantly by

planning motion not for all footsteps but for a shorter horizon.

As we discussed in Section 6.2.1, deeper planning architectures with suc-

cessively shorter horizons could also make planning faster. Importantly,

before footstep planning there could be a planning stage based on grids or

similar representations of low dimension.

6.3.4 Uncertainty factors in planning

In this thesis we dealt with the problem of high uncertainty in friction esti-

mates by considering that uncertainty during footstep planning using chance

constraints. Friction perception is in fact a large source of uncertainty for

locomotion according to our experiments. In Section 3.4 we measured the

estimation errorŠs SD of coeicient of friction to be close to 0.13 when mate-

rials are correctly labeled. Figure 2.5 shows that to accommodate for 1-SD

of such errors the robot would have to walk up to 3 times slower, which

corresponds to around extra 40J per step on Ćat terrain (Figure 2.4). Er-

rors from stereo reconstruction are relatively smaller but also present. On

the Multisense sensor-head we use, they are around 0.3mm at 1m distances,

which is extremely small compared to the scale of footstep distances. At
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10m distances the error is 3cm. In that case steps could contact the ground

3cm higher than expected which, ignoring extra energy expenses due to sta-

bility control, would lead to around 25J more energy per step (Figure 2.3).

Although we did not account for this uncertainty in our footstep planner,

that would be an interesting extension of our work.

In addition to that, there is also uncertainty in the energy and RCOF

returned by the oracles/models. There is uncertainty due to the gap between

simulation and real robot and due to the discretization of the space we make

for speed (using hash functions). This uncertainty could also be considered,

modeled for example as Gaussian noise added to the energy objective and

RCOF constraint.

6.3.5 No motion in friction from vision

One of our conclusions was that humansŠ judgements of friction for a robot

foot are poor. Such an observation matches previous work where COF was

diicult to estimate for humans [135], and work which associates human falls

to over-reliance on shine [136]. Nevertheless, our friction from vision datasets

consisted of images only, from which the detection of specularities and gloss

is made diicult due to the absence of motion. HumansŠ performance could

have been overly bad due to a dataset bias which leads humans to make

incorrect gloss (and consequently friction) estimates. In order to better

quantify the reliance of humans on gloss, and its relationship to friction, we

believe future datasets should include video clips of a moving camera over

the surface of interest.

Another avenue of improvement is related to the CNN-based friction

from vision algorithm, which estimates friction pixel-wise from each frame

independently. Filtering the measurements over time, perhaps directly in the

occupancy grid, could lead to improvements in smoothness and robustness

to visual conditions such as the ones observed in geometry reconstruction

(Section 4.4.3).

6.4 Future work and open problems

We will now point out several possible directions for future research related

to this thesis.
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6.4.1 More physical properties

One interesting research direction to be explored is that of considering more

physical properties of contact surfaces, other than friction. For example, how

to predict deformation of soft contact surfaces and its impact on stability

and energy consumption is an important open problem. Previous research

has modeled soft ground as springs with known stifness and developed con-

trollers for stable walking on such surfaces [199], however, our extended

footstep planning or a similar approach could be used to plan better ref-

erence motion or avoid these surfaces altogether when predicted energy or

instability is too high. Another problem is that of predicting terrain stifness

from images. Measuring terrain stifness is more challenging than measuring

coeicients of friction, so it is also important to Ąnd out whether an oline

way to train predictors is possible at all. The solution might lie somewhere

between a simple measurable model of terrain deformation and empirical

human knowledge through engineerŠs coeicient tables, surveys or text min-

ing.

6.4.2 Planning architectures

Several planning approaches to locomotion with contact have been proposed

in the humanoid robot community, from search as in this thesis to sampling

[26], to mixed-integer optimization [15] and continued optimization [29]. The

number of design options grows even higher once we consider also the difer-

ent representations and planning algorithms at each level of a hierarchical

architecture, as well as diferent interfaces between layers. It is still not

clear which out of the large number of possibilities is preferable, mainly be-

cause each researcher obtains planning results on a diferent environment.

It is thus of extreme importance to create a common benchmark for plan-

ning on legged robots, consisting of a common set of environments, task

speciĄcations and robots. Only then comparison of the advantages and dis-

advantages of each design choice can be made clearer. Finally, due to the

exploding number of possibilities for representation, planning and interface

of planning layers, another interesting direction of research is that of design-

ing algorithms to automatically evaluate, combine and optimize complete

planning architectures, instead of parameters for a pre-established architec-

ture.
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6.4.3 Large datasets for friction from vision

The datasets we developed for the context of this thesis provided some in-

sights on features with high predictive power for the friction-from-vision

task. Still, the conclusions that can be taken from datasets of this dimen-

sion are limited, and non-linear end-to-end learning is not possible without

over-Ątting. One interesting direction of research then is that of developing

large-scale datasets with thousands of friction-annotated images, so that al-

gorithms such as CNNs can be trained end-to-end (i.e. pixels to friction).

In addition to that, such large-scale datasets would allow to test non-linear

models of human perception of friction with reliable signiĄcance statistics.

Such datasets could include many more materials than those tested in this

thesis, as well as labeled surface conditions, such as dry/wet, presence of

Ąxed/rolling stones, etc.

The process of acquiring such dataset would be very time consuming, es-

pecially if the same manual-measurement procedure is taken. Other options

include developing autonomous mobile robots that explore large environ-

ments collecting measurements, or special wearable sensors which capture

data from a humanŠs shoes throughout the day without human intervention.

Taken to the extreme, a ŞcompleteŤ city could be mapped oline together

with measurements of friction or other meaningful physical properties. Such

a map could be used online for planning in a similar approach to that used

in autonomous cars [200] but with extra material or physical property infor-

mation.

6.4.4 Text mining for navigation in unseen terrain

One of the promising results of this thesis was the performance of text mining

at the material friction prediction task. Our algorithm estimated the average

friction between a reference material and all other materials which co-occur

with it, but this need not be the case. One more interesting direction of

research is thus to further explore this Ąeld, by estimating friction between

two speciĄc materials, using larger text databases, and estimating more

environments properties - such as traversability, fragility, stability, etc.
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Friction from vision

questionnaires

This appendix shows the questionnaires used to obtain the datasets and

results described in Chapter 3.
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A.1 OSA+F dataset

Fig. A.1 Question from the OSA+F survey
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A.2 GTF dataset

Fig. A.2 Question from the GTF survey
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A.3 Material friction

Fig. A.3 Material friction survey
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