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Abstract— Energy consumption and stability are two im-
portant problems for humanoid robots deployed in remote
outdoor locations. In this paper we propose an extended
footstep planning method to optimize energy consumption while
considering motion feasibility and ground friction constraints.
To do this we estimate models of energy, feasibility and slippage
in physics simulation, and integrate them into a hybrid A*
search and optimization-based planner. The graph search is
done in footstep position space, while timing (leg swing and
double support times) and COM motion (parameterized height
trajectory) are obtained by solving an optimization problem at
each node. We conducted experiments to validate the obtained
energy model on the real robot, as well as planning experiments
showing 9 to 19% energy savings. In example scenarios, the
robot can correctly plan to optimally traverse slippery patches
or avoid them depending on their size and friction; and uses
stairs with the most beneficial dimensions in terms of energy
consumption.

I. INTRODUCTION

Recently there has been a rising interest in robots which
are able to navigate challenging outdoor and disaster envi-
ronments. There, robots might have to depend on batteries
and as such energy expenditure must be minimized while
still avoiding falls and undesirable slips.

Our claim in this paper is that energy consumption and
slippage on humanoid robots can be optimized at the footstep
planning level. The motivation is that both energy and
slippage are largely related to the center-of-mass dynamics,
which in turn is constrained by footstep placement and tim-
ing. The fact that certain step parameters ”work better” than
others has been empirically included in motion planners by
using heuristics such as nominal stride and postures during
planning. For example, [1] uses a quadratic preference for a
nominal stride length that is ”safer and more stable”, and [2]
uses human-inspired polynomial costs on step length, width
and rotation. Ideally, to obtain optimal energy consumption
realistic energy models should be estimated. Also, ground
friction and not only obstacle avoidance [3], [4], [5], [1]
should be considered. If friction is considered optimally, for
example, walking slower on slippery terrain might be more
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energy efficient than avoiding it [6]. Since both energy and
friction highly depend on the forces and motion of the COM,
not only footstep position but also other parameters such as
timing and COM motion should be planned.

The contributions of this paper are the following: 1) We
extend the notion of footstep planning to the planning of
footstep placement, timing and parameterized COM motion.
2) We obtain, through physics simulation, step-based models
of energy, feasibility (kinematic and dynamic) and slippage
for the full-size humanoid robot WABIAN. 3) We validate
the obtained energy consumption model with a subset of
experiments on the real robot. 4) We integrate these models
into a hybrid A* search and optimization-based planner,
decreasing energy consumption between 9 and 19% in simu-
lated environments with stairs and very-low-friction patches.

II. RELATED WORK

Search-based planners such as A* [2], [7], [3] and its
variants [4], [5] have been used successfully to plan obstacle
free paths in both static and dynamic [3] scenarios. Recently,
purely optimization-based planners have also been proposed
[1], which eliminate the sub-optimal discretization problem
inherent to search-based planners. While the aforementioned
planners focus on finding collision-free paths, our method
attempts to go one step further: computing energy optimal
paths, and considering both collision and slippage.

One important step in footstep planners it to estimate
whether a given stance or step is feasible or not. Some
authors opt to approximate feasibility by reachability of
the feet in each stance [5], while others also pre-compute
volumes swept by the legs to avoid collisions [8]. In this
paper we use both rough reachability intervals to discard
obivous unfeasible poses, as in [5], but also learn a model of
feasibility from physics simulation: where feasibility is both
kinematic (joint limits) and dynamic (no falls).

Perhaps the work most related to this paper is that of
Huang et. al [2], in which terrain-related and energy-related
cost functions are used in A* search to compute optimal cost
plans. Inspired by human gait-analysis and biomechanics
literature, they sum a set of empirical models of energy
cost that are polynomial functions of step length, width and
rotation. Also [7] uses a similar approach, with quadratic cost
functions on sequences of footstep positions. In this paper,
we use an off-the-shelf machine learning algorithm to learn
a realistic energy consumption function instead of fitting
it to a predefined empirical model of human walking. We
also consider ground friction when planning, and since our
models include step timing and rough COM motion they can



estimate the real model well, which we prove by validating
the energy function on the real robot.

Our focus on energy consumption of humanoid robots is
also related to passive walkers [9], which instead of motion
planning uses hardware design itself to induce drastic energy
efficiency improvements, and other works analysing energy
[10] and slippage [6], [11] in robot walking.

III. PROBLEM STATEMENT

We consider the problem of finding a sequence of N
footsteps fj = (x, y, z, θ) ∈ R4, j = 1, ..., N , such that
energy is minimized and approximate reachability, feasibility
and slippage constraints are respected. The plan starts at
a fixed initial stance s1 = (f1, f2) and finishes at a fixed
goal stance sN−1 = (fN−1, fN ). N is unknown; (x, y, z)
and θ are position and yaw orientation of a foot in a
global coordinate frame; for convenience fj is a left foot
if j is odd, right if j is even. The energetic cost E of
transitioning from a stance sj to sj+1 depends on both the
stances and some extra parameters p ∈ RP . p represents
action parameters or controller parameters that might provide
different ways for sj+1 to be reached from sj , such as step
timing and COM motion. In particular in this paper we use
p = (∆tds,∆tsw, φst, φsw) ∈ R4 to account for the double-
support time (i.e. time spent on sj), swing time (i.e. time
spent with the swing leg in the air), and angles of maximum
contraction of the stance and swing knees (as parameters to
modulate vertical COM motion).

A possible optimization formulation of this problem is

minimize
N,f1..fN ,p1..pN

∑
j=2...N−1

E(fj−1, fj , fj+1, pj)

subject to
R(fj , fj+1) < 0

F (fj−1, fj , fj+1, pj) < 0

S(fj−1, fj , fj+1, pj) < min(µj−1, µj , µj+1)

a < pj < b

(1)

where the function R implements constraints on the stances
due to robot kinematics, F implements feasibility constraints
on the steps due to kinematic, dynamic or controller limi-
tations, and S are approximate slippage constraints, where
we assume a coefficent of friction µj is known for each fj .
Bound constraints on the step parameters are implemented
with vectors a and b.

IV. OBTAINING ENERGY, SLIPPAGE,
REACHABILITY AND FEASIBILITY MODELS

A. Energy

We consider two models of energy consumption, which
we compare in the results section. One model is the total
mechanical work of the COM of the robot:

ECOM =

∫ t1

t0

|v.F|dt. (2)

where v and F are the velocity and total force vectors
at the COM, respectively, and t0, t1 the beginning and

ending time of a step (t1 − t0 = ∆tds + ∆tsw). During
a training stage we run physics simulations exploring the
space of steps (fj−1, fj , fj+1, pj) and collecting energy mea-
surements ECOM. Using an off-the-shelf machine learning
algorithm (Section IV-E) we learn an approximate model

Ê(∆xj ,∆yj ,∆zj ,∆xj+1,∆yj+1,∆zj+1, pj) =

ECOM(fj−1, fj , fj+1, pj) (3)

where ∆xj represents xj − xj−1 and likewise for y and z.
For a DC motor driven robot such as the one we use in the

experimental section, we will also compare (2) to the total
electrical energy spent by the motors:

Eele =
∑
i

(∫ t1

t0

|τiωi|dt+

∫ t1

t0

RiI
2
i dt

)
(4)

where i is an index of the motor, τ is motor torque and ω
angular velocity. I refers to current, which in simulation is
computed as τ/(r.Kτ ), where r is the motor’s gear reduction
ratio and Kτ the torque constant. RI2 are the power losses
due to motor armature resistance and we ignore mechanical
losses such as joint friction.

B. Slippage
As proposed in [6], we enforce slippage constraints at

the footstep planning level. We use the maximum ratio of
tangential-to-normal force applied at the feet during a given
step:

S = max
t∈[t0;t1]

∣∣∣∣FT(t)

FN(t)

∣∣∣∣ (5)

where S is called the Required Coefficient of Friction (termi-
nology from human gait literature [12]), FT is the tangential
force and FN normal force at the feet. Note that if S is lower
than the actual coefficient of friction between feet and floor,
slippage is prevented during that step.

As with the energy model, we collect S measurements
in physics simulations and use them to train the model:
Ŝ(∆xj ,∆yj ,∆zj ,∆xj+1,∆yj+1,∆zj+1, pj).

C. Reachability
We use the same footstep parameterization as in [5] to

obtain a heuristic approximation of footstep reachability. In
a stance sj , reachability is approximated by a set of intervals
for the variables (∆xj+1,∆yj+1,∆zj+1,∆θj+1), which are
distances from the first footstep to the second, i.e., ∆xj+1 =
xj+1 − xj , etc.

D. Feasibility
The simplified reachability heuristic described in Section

IV-C does not depend on step parameters p and may have
unmodelled kinematic restrictions and unfeasible regions due
to details in lower-level controllers. To avoid unnecessary
exploration of footsteps and unfeasible plans, we use an extra
feasibility constraint F . As with energy and slippage models,
we collect feasibility measurements from physics simulations
and use them to obtain an approximate model. We define
F ∈ {−1, 1} and use value 1 for unfeasible points where
the inverse kinematics fails, joint limits are reached or the
robot falls, and −1 otherwise.



E. Implementation

We estimate the energy, slippage and feasibility models by
supervised learning of a function f̂ : R6+P → R, as in (3).
In particular, we fit an Infinite Mixture of Linear Experts
(IMLE) [13] to the measured simulation data. We choose
IMLE due to its high query speed and low number of experts,
while still allowing for online learning if necessary. Error
performance is comparable to that of gaussian processes
[13]. All models mentioned in this paper were trained by
uniform sampling of the input space and using the necessary
number of experts to obtain a standardized mean squared
error (SMSE) lower than 0.1. Models have between 10 and
60 linear experts.

In the case of the feasibility function, we still fit a contin-
uous mixture model eventhough training points are discrete
F ∈ {−1, 1}, leading to interpolation regions between −1
and 1. While planning, we enforce a slightly conservative
feasibility constraint of F < 0 to avoid uncertain regions far
from feasibility (F = −1).

V. SOLVING THE PLANNING PROBLEM

A. Discretized search of footsteps, continuous optimization
of step parameters

In this paper we solve (1) by a hybrid discrete search and
continuous optimization-based planner. We first constrain the
footstep (position) space to a point cloud of traversable points
(x, y, z) ∈ R3 and a discrete set of orientations in the global
coordinate frame: θ ∈ {0◦, 360D

◦
, ..., 360(D−1)D

◦
}, where D

is the number of uniform footstep directions. This discrete
space is then searched with an anytime A* search variant:
Anytime Repairing A* (ARA*) [14].

ARA* executes a sequence of weighted A* with state costs
g(sj) + wh(sj). g(sj) is the cumulative cost-to-come from
the initial stance s1 to stance sj , the heuristic h(sj) estimates
the cost-to-go from sj to the goal stance sN−1, and w ≥ 1
is a weight that trades search speed for optimality (if h is
admissible then solution is optimal for w = 1). ARA* finds a
sub-optimal path quickly with a high weight and successively
decreases it to improve the path. We compute the energy cost
from a stance sj = (fj−1, fj) to sj+1 = (fj , fj+1) as

min
pj

E(fj−1, fj , fj+1, pj)

subject to R(fj , fj+1) < 0

F (fj−1, fj , fj+1, pj) < 0

S(fj−1, fj , fj+1, pj) < min(µj−1, µj , µj+1)

a < pj < b
(6)

and define E = ∞ when the problem has no solution. For
the cost-to-go heuristic we use an optimistic estimate

h(sj) =

(
min

E

d

)
.d(sj , sN−1) (7)

d(sk, sl) = ||sk − sl||left(x,y,z) + ||sk − sl||right(x,y,z) (8)

where ||.||left(x,y,z) (or ||.||right(x,y,z)) represents the Euclidean
distance between (x, y, z) of the left (or right) foot part of

the stances. (minE/d) is a lower bound on step energy per
distance. It is pre-computed once as the global minimum
of d-divided (6) including footstep positions as part of the
optimization variable.

Note that since ARA* uses successive weighted relax-
ations of the heuristic, either the choice of w or the scale
of h must be chosen appropriately. We keep the algorithm’s
default sequence of weights, starting at w = 5 and finishing
at w = 1 in 0.2 decrements, but normalize all energy costs
E such that the new costs E′ become

E′ =
V

ε
.

(
1 +

E −minE
maxE −minE

(ε− 1)

)
, (9)

where V > 0 is an arbitrarily large positive constant and ε
is the ratio between the global maximum and minimum of
the new scaled costs E′. Intuitively (9) scales and offsets the
step costs E such that the maximum possible cost is ε times
greater than the minimum possible cost. We set ε = w = 5,
corresponding to the largest A* weight used in the search
algorithm. Thus in the initial A* search with w = 5 we look
for a suboptimal plan where each step in a straight line to
the goal is expected to have the maximum possible energy
(i.e. be the least optimal possible in a straight line). The
plan is then successively refined until an optimal solution is
found (w = 1). In practice we found that such normalization
improves the speed of the algorithm in challenging scenarios.

B. Implementation

We implement point cloud discretization with the PCL
library [15] using 5cm grid-filtered point clouds. We also
apply a normal filter prior to planning (for simplification in
this paper we assume traversable points are horizontal). The
search for successors of a stance is done by a range search
of 3D points around the fixed foot, and discarding stances
heuristicly with reachability checks (Section IV-C) before
attempting to solve the step optimization problem (6).

We use the official implementation of ARA* [14] in
the Search-Based Planning Library (SBPL) [16]. The opti-
mization problem (6) is solved with the SLSQP algorithm
described in [17] and implemented in the NLOpt library
[18]. SLSQP is fast and allows arbitrary nonlinear objective
and inequality contraints. While its results are theoretically
only locally optimal, we did not notice problems with
local minima in practice. We always initialize the search
variable at the center of the search space. Also note that
a faster implementation could be achieved by pre-solving
the optimization problem for a large number of footstep and
friction conditions.

VI. RESULTS

All experiments described in this paper were conducted
on the human-size humanoid robot WABIAN [19].

A. Simulated models of energy, slippage and feasibility

We generated 11, 519 different walking patterns exploring
the input space of the models. Each pattern is a sequence
of 6 steps stabilized with a ZMP-based controller [20] and
simulated on the ODE physics simulator, 4ms control cycle.



0.05 0.1 0.15 0.2 0.25 0.3

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

steplength ∆x (m)

s
te

p
ti
m

e
 ∆

t d
s
+

∆
t s

w
 (

s
)

min E
COM

  s.t.  R<0, F<0

 

 

10

15

20

25

30

35

40

45

0.2 0.4 0.6 0.8
0.05

0.1

0.15

0.2

0.25

0.3

double support time ∆t
ds

 (s)

s
te

p
le

n
g

th
 ∆

x
 (

m
)

min E
COM

  s.t.  ∆t
sw

=0.9s, R<0, F<0

 

 

10

15

20

25

30

35

40

45

50

0.2 0.4 0.6 0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

double support time ∆t
ds

 (s)

le
g

 s
w

in
g

 t
im

e
 ∆

t s
w
 (

s
)

min E
COM

  s.t.  steplength=0.15m, R<0, F<0

 

 

10

12

14

16

18

20

22

0.05 0.1 0.15 0.2 0.25 0.3

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

steplength ∆x (m)

s
te

p
ti
m

e
 ∆

t d
s
+

∆
t s

w
 (

s
)

min E
ele

  s.t.  R<0, F<0

 

 

50

100

150

200

0.2 0.4 0.6 0.8
0.05

0.1

0.15

0.2

0.25

0.3

double support time ∆t
ds

 (s)

s
te

p
le

n
g

th
 ∆

x
 (

m
)

min E
ele

  s.t.  ∆t
sw

=0.9s, R<0, F<0

 

 

40

60

80

100

120

140

160

180

0.2 0.4 0.6 0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

double support time ∆t
ds

 (s)

le
g

 s
w

in
g

 t
im

e
 ∆

t s
w
 (

s
)

min E
ele

  s.t.  steplength=0.15m, R<0, F<0

 

 

30

35

40

45

50

55

Fig. 1. Minimum COM energy ECOM (top) and simulated electrical energy Eele (bottom) measured in physics simulation.

Joints are position controlled. Full trajectories of the knees
were obtained by spline interpolation between stretch (1
degree) at impact, and bend (φst, φsw) just after double
support. ZMP references were set on the center of the stance
foot during the swing phase, and spline-interpolated to the
other foot during the double support phase.

From these simulations we gathered measurements of
ECOM, Eele, S and F . The limits of stance reachability
(Section IV-C) were set according to the dimensions and
approximate kinematics of WABIAN by manual inspection:

• ∆x ∈ [0; 0.38] meters, where x points forward,
• ∆y ∈ [0.17; 0.30] meters, where y points to the left

(symmetric interval if fj+1 is a right foot),
• ∆z ∈ [−0.15; 0.15] meters, where z point upward,
• ∆θ ∈ [0; 30] degrees, where θ runs counter-clockwise

(symmetric interval if fj+1 is a right foot),

and step parameters p were sampled within the intervals:

• ∆tds ∈ [0.09; 0.9]; ∆tsw ∈ [0.9; 1.8] seconds,
• φst ∈ [5; 45]; φsw ∈ [5; 45] degrees.

Figure 1 shows the COM energy model ECOM and simu-
lated eletrical energy model Eele. The results are for forward
walking patterns. Step-length represents the quantity ∆xj =
∆xj+1 (e.g. a step-length of 30cm is a step taken from a
30cm-long stance to another 30cm-long stance) and step time
represents ∆tds + ∆tsw. The figures show that the contours
of ECOM are similar to Eele, suggesting that optimization
of the simpler ECOM could be sufficient. For both energy
definitions there is a clear global optimum of energy in step
length and time. Also, most of the energy is consumed in
the double support phase: the shorter ∆tds the lower the

energy. One important difference between the models is that
leg swing time mostly does not influence COM energy. This
is because the COM and stance leg have near zero velocity
during swing. Electrical energy, since it considers the squared
torques on the (zero velocity) stance leg, accounts for the
energy being spent to support the COM with the knee and
ankle joints. Hence the deformed graph of Eele(∆tds,∆tsw)
when compared to ECOM(∆tds,∆tsw). It is also interesting
to analyse the energy spent per distance traveled (i.e. per
step-length). Figure 2 shows the minimum ECOM per distance
depending on step-length and time, where the optimal step-
length is around 0.15m (i.e. 0.30m stride).

Figure 2 also shows the slippage and feasibility models.
Slippage S is the same as presented in [6], where it is refered
to as a ”required coefficient of friction” model. For a more in-
depth analysis please refer to [6]. The figure shows that when
walking on very slippery terrain, step-length and double
support time can be optimized such as to avoid slippage. To
achieve lower values of tangential-to-normal force and walk
on more slippery terrain, the robot should increase double
support time and/or shorten the steps. The feasibility model
is shown as a function of the knee angles φst, φsw used
to control vertical COM motion. Points between feasibility
F = −1 and unfeasibility F = 1 were interpolated.

B. Energy comparison: simulated vs real robot

We ran a small subset of experiments on the real
robot to compare real electrical energy E∗ele to the sim-
ulated Eele model. Figure 3 shows the simulated optimal
ECOM/steplength and Eele/steplength for each step-length,
varying all other step parameters. We also show the real
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Fig. 2. Left: Minimum COM energy ECOM per distance traveled. Middle: Slippage S, or the maximum ratio of tangential-to-normal force over a step. It
indicates the minimum ground coefficient of friction µ where the robot can walk without slipping. Right: Feasibility F for fixed step length and timing.
F = −1 is feasible, 1 unfeasible, points inbetween are interpolated. A point is considered feasible if during a step the inverse kinematics are feasible,
joint limits respected and the robot does not fall.
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Fig. 3. Simulated versus real energy consumption. Mechanical energy ECOM (left), simulated electrical energy Eele (middle) and measured electrical
energy E∗

ele (right). The real energy curve was obtained by averaging over 18 steps for each step-length and standard deviation is also shown.

measured E∗ele/steplength in the same figure for comparison.
To obtain E∗ele we made the robot walk in the laboratory
for a total of 18 steps for each step-length value (using
the energy-optimal step parameters obtained from simulated
models). We used motor current measurements given by
the motor drivers, and computed torques from the current
measurements as well. Each point in the graph is the average
energy over the 18 steps. The standard deviation of the mea-
surements is also shown in the same figure. The minimum
energy per distance is obtained at the same step-length of
0.15m for all models (i.e. 0.30m stride length). The standard
deviation of the energy measurements on the real robot is
low, especially at the optimum, which we believe to be due
to higher stability as well. The figure also shows that COM
mechanical energy ECOM overestimates energy consumption
after the minimum, and that this overestimation is lower in
case a more complex model is used (i.e. joint work plus a
τ2 term). Figure 4 shows one of the real robot experiments
taken at optimal step-length.

To observe the impact of mechanical energy and heat
losses in E∗ele, we also show in Figure 5 the total electrical
power across a 6-step experiment. We decompose power into
joint mechanical power (first term of equation 4) and power
losses (second term of equation 4). Mechanical power domi-
nates power consumption over heat losses of the DC motors,
and closely follows the total energy of the system. This
agrees with the other results, in that optimizing mechanical

Fig. 4. Real robot walking with optimal parameters (red dot in Fig. 3).
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work might be sufficient for good energy consumption of the
robot.

C. Optimal planning

We applied the described planner to two different scenarios
using ECOM as the objective function. Reported energy



µice = 0.12 µice = 0.06 µice = 0.06

Fig. 6. Optimal plans obtained by our planner in the ”ground and ice-patch” scenario. The top row shows the footstep plan and point cloud (red has
friction µice, blue µground = 1). Left: robot crosses a narrow ice patch (µice = 0.12). Middle: robot walks around the patch if its slipperiness is increased
(µice = 0.06). Right: robot walks slowly through the same ice patch in case the ice is wider (energy spent avoiding it would be too high).

results are the resultant Eele. The first scenario (Figure 6)
is as follows: the robot stands in a ground with friction
µground = 1.0 and has to walk to a target 3m away, straight.
Between the start and finish points there is an ”ice patch”
of very low friction µice. We conducted several planning
experiments with different µice = {0.12, 0.06} and different
widths of the the ice patch ({0.5, 1}m). Figure 6 shows
that the robot walked through the ice for µice = 0.12 but
walked around it if µice = 0.06. Specifically it walked 5%
slower than the normal speed when on the ice patch, to avoid
slipping (S < µ constraint). When we doubled the ice patch
width but kept the low friction µice = 0.06, the planner found
it more optimal to go slower through the ice than around a
great distance. We show the total energy cost of each plan
in Table I.

We also computed the energy cost of a sub-optimal plan:
one which forces the robot to avoid the ice patch when it is
optimal to cross it, or vice-versa. To obtain such plans we
used the same planner but constrained the environment to
force the opposite choice (i.e. treating the ice as an obstacle
or widening the ice). The results show that our optimal
path is between 10 and 19% more energy efficient than the
sub-optimal choice. With non-optimized code (optimization
problem (6) is solved for each expanded node), the planner
found a first sub-optimal path in around 8 seconds and the
final path in around 10 minutes.

The second scenario (Figure 7) is as follows: there are two
stairs at equal distance to the robot (x = 1 meter away, y =
±0.50m), both ending at the same final height (z = 0.50m).
One of the stairs has 3 high steps while the other has 6 lower
steps. The goal of the robot is to reach a distant centered
position (x, y, z) = (3, 0, 0.5)m. The energy cost should be
the same if the stairs were identical. Figure 7 shows that
the planner opts for the lower-but-many-step stairs. The total
energy spent is 9% lower than if the few-but-high-step stairs

Fig. 7. Optimal plan obtained by our planner in the ”two stairs” scenario.

TABLE I
ELECTRICAL ENERGY CONSUMPTION OF OPTIMAL AND SUBOPTIMAL

PLANS

Optimal energy ”Sub-optimal Energy
(our planner) choice”∗ saved

narrow ice µ = 0.12 2110 J 2427 J 14%
narrow ice µ = 0.06 2427 J 3031 J 19%
wide ice µ = 0.06 3031 J 3384 J 10%

stairs µ = 1 4116 J 4535 J 9%

*Note: ”Sub-optimal choice” refers to a sub-optimal plan that takes the
alternative option (i.e. around the ice instead of through; through instead
of around; or using the few-but-high-step stairs) although still with optimal
steps for that constraint.

were chosen (see Table I). With non-optimized code, the
planner found a first sub-optimal path in 130 seconds and the
final path in around 10 minutes. This experiment shows that
the robot has an energy-optimal step height: after a certain
height, steps become too costly for the distance travelled.

VII. DISCUSSION

Mechanical energy vs heat losses. In our experiments,
mechanical energy (torque times velocity term) dominated
over energy losses on the motor armature resistance (current



or torque squared term) and also mechanical COM energy
approximated total electrical energy. This is not a general
result to all humanoids, but one that may be considered if the
robot is DC-motor driven with high gear ratios (WABIAN’s
are 200) and uses a stretched-knees walking controller, which
can decrease torques on the knee joints [21]. A bent-knees
controller, on the other hand, where COM height is fixed
throughout the walk, could lead to higher average torques at
the knee joints, making energy losses higher.

Feasibility model. The use of a feasibility model learned
in simulation was crucial in our experiments. One of the
problems of the contact-before-motion planning paradigm
is to generate a contact plan for which whole-body motion
is feasible. In practice we found heuristic limits on stance
distances to be insufficient to obtain feasible plans due to two
reasons: unmodeled kinematics (e.g. a large step is possible
only if the COM height is below a certain limit), and dynamic
unfeasibility (e.g. the low-level controller might be unstable
for a certain region of the space). Using a learned F as a
constraint alleviated this problem and speeded up planning
considerably since more stances and steps were discarded
early on. Using this approach, we had no problems with
falls or joint limits being reached.

Improving planner speed. For the results in this paper,
optimization problem (6) was solved for each expanded
node in the A* search. While the plans were still obtained
reasonably fast (8 seconds for the first sub-optimal plan),
performance could be increased considerably by learning an
auxiliary function whose value is the solution of (6) for a
given µ. Then, each expanded node only queries E once,
and step parameters p can be computed on the final plan.

VIII. CONCLUSIONS

In this paper we showed that optimal planning of hu-
manoid robot locomotion, in terms of energy, feasibility
and slippage, is possible at the footstep level. We extended
the notion of footstep planning to placement, timing and
parameterized COM motion. We measured how energy of
the humanoid WABIAN varies with such parameters in
simulation and used the resulting models to minimize energy
consumption during walking. We also obtained models of
slippage (tangential over normal force) and feasibility (joint
limits and falls) used as constraints in the energy minimiza-
tion problem to guarantee slippage- and fall-free paths.

The results of planning experiments show that our models
and A*-integration allow the robot to optimally deal with the
presence of slippery surfaces and different climbing gradients
(stair dimensions), saving between 9 and 19% energy when
compared to a suboptimal planner that, for example, avoids
slippery terrain or chooses more energy-consuming stairs.

Our experiments also showed that minimizing the simu-
lated energy models leads to minimal energy consumption
on the real robot as well and that, at least for our robot and
stretched-knees walking controller, minimizing mechanical
work of the joints or, even simpler, the COM, is sufficient
for good energy efficiency.

REFERENCES

[1] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in 14th IEEE-RAS International
Conference on Humanoid Robots, Nov 2014, pp. 279–286.

[2] W. Huang, J. Kim, and C. Atkeson, “Energy-based optimal step
planning for humanoids,” in 2013 IEEE International Conference on
Robotics and Automation, May 2013, pp. 3124–3129.

[3] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and
T. Kanade, “Footstep planning for the honda asimo humanoid,” in
2005 IEEE International Conference on Robotics and Automation,
April 2005, pp. 629–634.

[4] J. Garimort and A. Hornung, “Humanoid navigation with dynamic
footstep plans,” in 2011 IEEE International Conference on Robotics
and Automation, May 2011, pp. 3982–3987.

[5] A. Hornung, A. Dornbush, M. Likhachev, and M. Bennewitz, “Any-
time search-based footstep planning with suboptimality bounds,” in
12th IEEE-RAS International Conference on Humanoid Robots, Nov
2012, pp. 674–679.

[6] M. Brandao, K. Hashimoto, J. Santos-Victor, and A. Takanishi, “Gait
planning for biped locomotion on slippery terrain,” in 14th IEEE-
RAS International Conference on Humanoid Robots (Humanoids),
November 2014, pp. 303–308.

[7] J. Kim, N. Pollard, and C. Atkeson, “Quadratic encoding of optimized
humanoid walking,” in 13th IEEE-RAS International Conference on
Humanoid Robots, Oct 2013, pp. 300–306.

[8] N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, and E. Yoshida, “Fast
humanoid robot collision-free footstep planning using swept volume
approximations,” IEEE Transactions on Robotics, vol. 28, no. 2, pp.
427–439, April 2012.

[9] S. Collins and A. Ruina, “A bipedal walking robot with efficient and
human-like gait,” in 2005 IEEE International Conference on Robotics
and Automation, April 2005, pp. 1983–1988.

[10] F. Silva and J. Machado, “Energy analysis during biped walking,”
in 1999 IEEE International Conference on Robotics and Automation,
vol. 1, 1999, pp. 59–64 vol.1.

[11] S. Kajita, K. Kaneko, K. Harada, F. Kanehiro, K. Fujiwara, and
H. Hirukawa, “Biped walking on a low friction floor,” in 2004
IEEE/RSJ International Conference on Intelligent Robots and Systems,
vol. 4, Sept 2004, pp. 3546–3552 vol.4.

[12] R. Cham and M. S. Redfern, “Changes in gait when anticipating
slippery floors,” Gait & Posture, vol. 15, no. 2, pp. 159 – 171, 2002.

[13] B. Damas and J. Santos-Victor, “Online learning of single-and mul-
tivalued functions with an infinite mixture of linear experts,” Neural
computation, vol. 25, no. 11, pp. 3044–3091, 2013.

[14] M. Likhachev, G. J. Gordon, and S. Thrun, “Ara*: Anytime a*
with provable bounds on sub-optimality,” in Advances in Neural
Information Processing Systems, 2003, p. None.

[15] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in 2011 IEEE International Conference on Robotics and Automation,
Shanghai, China, May 9-13 2011.

[16] M. Likhachev. (2010) Search-based planning library. [Online].
Available: http://www.ros.org/wiki/sbpl

[17] D. Kraft, “Algorithm 733: Tomp–fortran modules for optimal control
calculations,” ACM Transactions on Mathematical Software, vol. 20,
no. 3, pp. 262–281, Sep 1994.

[18] S. G. Johnson. The nlopt nonlinear-optimization package. [Online].
Available: http://ab-initio.mit.edu/nlopt

[19] Y. Ogura, H. Aikawa, K. Shimomura, H. Kondo, A. Morishima,
H. Lim, and A. Takanishi, “Development of a new humanoid robot
wabian-2,” in 2006 IEEE/RSJ International Conference on Robotics
and Automation. IEEE-RAS, 2006.

[20] Y. Ogura, T. Kataoka, K. Shimomura, H.-o. Lim, and A. Takanishi, “A
novel method of biped walking pattern generation with predetermined
knee joint motion,” in 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems, vol. 3. IEEE, 2004, pp. 2831–2836.

[21] Y. Ogura, T. Kataoka, H. Aikawa, K. Shimomura, H. ok Lim,
and A. Takanishi, “Evaluation of various walking patterns of biped
humanoid robot,” in 2005 IEEE International Conference on Robotics
and Automation, April 2005, pp. 603–608.


