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Abstract. Plenoptic cameras make a trade-off between spatial and an-
gular resolution. The knowledge of the disparity map allows to improve
the resolution of these cameras using superresolution techniques. Nonethe-
less, the disparity map is often unknown and must be recovered from
the lightfield captured. Hence, we focus on improving the disparity esti-
mation from the structure tensor analysis of the epipolar plane images
obtained from the lightfield. Using an hypercube representation, we for-
malize a data fusion problem with total variation regularization using the
Alternating Direction Method of Multipliers. Assuming periodic bound-
ary conditions allowed us to integrate the full 4D lightfield efficiently
using the frequency domain. We applied this methodology to a synthetic
dataset. The disparity estimations are more accurate than those of the
structure tensor.
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1 Introduction

The plenoptic cameras allow to capture the direction and contribution of each
ray to the total amount of light captured on an image. These cameras sample
the plenoptic function.

The original 7D plenoptic function can be simplified into a 4D lightfield, the
lumigraph L(u, v, x, y) [7]. The lightfield is parameterized describing a ray by
its intersection with two planes. In this parameterization a light ray intersects
the first plane at coordinates (u, v) and then intersects a second plane at (x, y).
The first pair of coordinates define the location of the ray and the second pair
of coordinates allows to define the direction of the ray.

The image sensors are flat, therefore, this 4D space must be mapped into a 2D
space, limiting the spatial and angular resolution [6]. Superresolution techniques
are useful to overcome this limitation. These techniques can be applied if the
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images are shifted by sub-pixel amounts between successive images [8] or if there
is a priori knowledge of the camera geometry to obtain this sub-pixel accuracy
[5]. In plenoptic cameras we do not know the correspondence between the image
views since the depth map, and consequently the disparity map, of the scene
is unknown. Therefore, the knowledge of the disparity map is a requirement
for superresolution techniques. In this work, we will focus on improving and
recovering the disparity map from the lightfield captured.

2 Related Work

The problem of depth or disparity estimation is widely studied in computer
vision. In the recent years, with the appearance of commercial versions this
subject has been studied more intensively in plenoptic cameras.

Adelson and Wang [1] applied their lenticular array setup to estimate depth
using the different views provided by the sensor by observing the vertical and
horizontal parallax between the different views. Other strategies consider that
the object becomes blurred according to their distance from the plane of focus
[9]. More recent approaches, estimate depth from the epipolar plane images
(EPI) obtained from the lightfield using the structure tensor analysis [15, 13,
4]. In these images, points in space are projected onto lines which can be more
robustly detected than point correspondences.

Wanner et al. [15] proposed a global optimization framework that is based
on the regularization and integration of the disparity maps obtained from the
EPIs. This framework can be preceded of a labeling scheme to impose visibil-
ity constraints that imply a discretization of the disparity values. This step is
computationally expensive and the discretization reduces the accuracy of the
disparity estimation. Hence, Wanner et al. [13] considered a more efficient ap-
proach by performing a fast denoising scheme of a disparity estimation that
combines the disparities obtained from two slices with orthogonal directions ac-
cording to the coherence measurement of the structure tensor. In this method,
the occlusion is handled by merging the information of horizontal and vertical
EPIs. Although the results are good, the allowed disparity range is small and the
occlusion boundaries are noisy. Diebold et al. [4] proposed a method that allows
to extend the allowed disparity range using a refocusing scheme. The refocus of
the EPIs to virtual depth layers allows to accommodate the orientation of the
lines in the EPIs to the allowed disparity range. The results are then integrated
into a global disparity map using a metric for occlusion handling that is based
on a coherence measurement.

In this work, we propose a variational method to regularize and integrate
the 2D EPIs of the full 4D lightfield without the discretization of the disparity
values. This approach is computed efficiently by considering periodic boundary
conditions that allows us to use Fast Fourier Transforms (FFTs).
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3 Disparity Estimation from Lumigraph

Let us consider the 4D lightfield or lumigraph introduced in section 1. The
lumigraph L (u, v, x, y) maps an intensity value to the light ray whose direction
is defined by the intersection with the main lens plane at (u, v) and the image
plane at (x, y) where u,v are the viewpoint coordinates, and x,y are the image
coordinates.

The sampling of the lightfield and the configuration of the plenoptic camera
satisfies the conditions presented by Bolles et al. [3] for constructing an EPI (Fig.
1). In the EPI, a point in space is projected onto a line with a slope ∆x/∆u
proportional to its disparity. Considering the geometry defined by the EPI, the
disparity d of a point in space is given by d = f/z = ∆x/∆u, where z is the
depth of the point, and f is the distance between the main lens plane and the
image plane. To compute the slopes of the lines in the EPIs, we will use the
structure tensor analysis similarly to Diebold et al. [4] and Wanner et al. [13].

Fig. 1. Epipolar plane images from Still dataset [14].

4 Disparity Estimation Regularization

The EPI analysis allows to retrieve disparity information from a static scene for
each pixel. The approaches used, normally, depend on gradient computations
that increase the noise of the original image. Therefore, denoising using regular-
ization is a useful approach to obtain a more accurate disparity estimation.

Let us consider the lumigraph L ∈ Rnu×nv×nx×ny , where nu,nv are the horizon-
tal and vertical angular resolutions, and nx,ny, are the horizontal and vertical
spatial resolutions. For each ray in the lumigraph we can assign a disparity value
performing an analysis of the EPIs. Therefore, the disparity values have the same
dimensionality of the lumigraph, i.e., D ∈ Rnu×nv×nx×ny .
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Let us consider an alternative representation for the disparity structure, an
hypercube H. The hypercube is a set of datacubes Cvk (u, x, y) = D (u, vk, x, y)
that are obtained fixing one of the angular coordinates. These datacubes C(·)
consist on a vertical stack of the disparity observations obtained from the EPIs
(Fig. 2). Another observation of the hypercube can be obtained by fixing u.
Although they represent the same object, the disparity observations may differ
due to the nature of the structure tensor.

(A) (B)

Fig. 2. Disparity hypercube representation. (A) Hypercube and datacube (green) rep-
resented as matrices, and image (blue) as viewed from a given viewpoint. (B) Datacube
structure for fixed v = vk.

For an easier notation, let us consider that the disparity observations from a
datacube Cvk can be represented as a two-dimensional matrix, where each line
corresponds to the disparity retrieved from each of the pixels of the EPI, lexico-
graphically ordered (Fig. 2). Let the matrix representing the observed disparity
be Yvk ∈ Rny×(nx×nu). Assuming that our observations are only affected by i.i.d.
additive noise Wvk ∈ Rny×(nx×nu), we can model our disparity observations as
Yvk = Zvk + Wvk , where Zvk ∈ Rny×(nx×nu) are the real disparities from the
datacube. For simplicity, we assume that the boundary conditions are periodic.
This allows to compute convolutions and matrix inversions using FFTs. The pre-
vious observation model can be generalized for the hypercube H by including
the datacubes Cvk , k = 1, . . . , nv (Fig. 2).

Yv = MvZ + Wv (1)

with Yv,Z,Wv ∈ R(ny×nv)×(nx×nu) resulting from the vertical stacking of the
matrices Yvk , Zvk , and Wvk for k = 1, . . . , nv, respectively. Mv ∈ R(ny×nv)×(ny×nv)

correspond to a uniform subsampling of Z. This allows to include disparity ob-
servations from several viewpoints while considering the same virtual camera
motion to obtain the EPIs. Similarly, we can obtain the observation model for
the hypercube observation obtained by fixing u, Yu = ZTMT

u + Wu.



Disparity Estimation using TV Regularization 5

These structures (Fig. 2) represent a repeating sequence of disparity images
that differ in a small number of pixels due to the different viewpoint coordi-
nates. Since we obtain natural like images we propose to apply an isotropic total
variation regularizer proposed by Rudin et al. [11] to promote sharp discontinu-
ities at edges. This type of regularizer has already been used in the context of
lightfield analysis [13]. This leads to an optimization problem that is similar to
the one presented by Simões et al. [12] in the context of hyperspectral cameras
superresolution:

Ẑ = arg min
Z

1

2
‖Yv −MvZ‖2F +

λu
2

∥∥YT
u −MuZ

∥∥2
F

+ λrTV (ZDh,ZDv) (2)

where ‖·‖F =

√
tr
[
(·) (·)T

]
corresponds to the Frobenius norm, TV corresponds

to the isotropic total variation regularizer [11], and Dh and Dv are matrices that
allow to compute the horizontal and vertical discrete differences considering
periodic boundary conditions, respectively. In this optimization problem, the
first two terms are data-fitting terms while the last term is the regularizer. The
data terms should explain the observed disparities considering the observation
models for Yv and Yu. The weights λu and λr allows to control the contribution
of each of the terms.

The solution for this optimization problem is obtained using an Alternating
Direction Method of Multipliers (ADMM) instance, the Split Augmented La-
grangian Shrinkage Algorithm (SALSA) [2]. Thus, the optimization variable Z
is split into auxiliar variables using the variable splitting technique. The opti-
mization problem (2) is now defined by:

Ẑ = arg min
Z

1
2 ‖Yv −MvV1‖2F + λu

2

∥∥YT
u −MuV2

∥∥2
F

+ λrTV (V3,V4)

subject to V1 = Z, V2 = Z, V3 = ZDh, V4 = ZDv

(3)

Considering f (V) = 1
2 ‖Yv −MvV1‖2F+λu

2

∥∥YT
u −MuV2

∥∥2
F

+λrTV (V3,V4),

V =
[
VT

1 VT
2 VT

3 VT
4

]T
, and G =

[
I I DT

h DT
v

]T
, the problem has the follow-

ing Augmented Lagrangian [10]:

L(Z,V,A) = f (V) +
µ

2

∥∥∥GZT −V −A
∥∥∥2
F

(4)

where µ is a positive constant called the penalty parameter. Now, we are able to
apply SALSA. Considering as input the observations Yv and Yu, the parameters
λu, λr and µ, and the initializations for V(0) and A(0), we will solve the following
optimizations at each iteration k until a stopping criterion is satisfied:

Z(k+1) = arg min
Z

L(Z,V(k),A(k))

V(k+1) = arg min
V

L(Z(k+1),V,A(k))
(5)

The algorithm described above has a matrix G with full column rank (due
to the presence of identity matrix I), and the function f (·) is a sum of closed,
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proper, and convex functions. Therefore, the conditions for the convergence of
SALSA established in [2] are met.

5 Experimental Results

The methodology described in the previous sections was applied to the Still syn-
thetic dataset provided by the HCI Heidelberg Group [14] (Fig. 2). The results of
the regularization with one and two data terms are compared with the disparity
estimates from the structure tensor and with the ground truth provided with
the synthetic dataset. Since the ground truth values correspond to depth mea-
surements and our values are disparity measurements, we converted the depth
ground truth to disparity. The results are depicted in Fig. 3.

The structure tensor analysis was performed assuming an equal contribution
for each of the color channels. Also, the smoothing of the image and the compo-
nents of the structure tensor was obtained by applying Gaussian distributions
with standard deviation 0.8 and 3.2, respectively. To compute the derivatives we
considered the 3× 3 Sobel mask. For the optimization problem, we consider an
equal contribution for each of the data terms (λu = 1), and the penalty param-
eter µ to be fixed and equal to 1 since it only affects the convergence speed and
not the convergence. The parameter λr was fine tuned by performing a denois-
ing of the disparity ground truth and selecting the one that provides the highest
PSNR.

From Fig. 3, we can see that the hypercube obtained from the structure tensor
analysis presents a noticeable decay on accuracy in the peripheral viewpoints.
Focusing on a specific viewpoint (peripheral or central), we can conclude that the
depth accuracy also depends on the region of the image. The disparity estimates
are less accurate on homogeneous regions, which in the EPI represent regions
of constant intensity between the lines that we want to detect. A small change
of intensity in these regions lead to disparity estimates that change rapidly and
have high variability. This is more noticeable on the 3D representation of the
disparity estimates (Fig. 3.B and 3.D).

The hypercube after the regularization has reduced noise and the accuracy
remains almost the same from the central to the peripheral viewpoints, which
confirms the statement of section 4. Indeed, if we compare the 3D representations
of the disparity estimates we can see that the noise is significantly reduced. This
is confirmed by the increased PSNR after regularization (from 8.65 dB to 10.76
dB). The noise can be further reduced by considering the additional data term
of the optimization problem (2) (PSNR of 11.00 dB).

Furthermore, the formulation allows to select specific disparity measurements
for each of the observations of the hypercube through the matrices Mv and Mu.
Therefore, we performed the same analysis but now considering only the dispar-
ity observations with higher coherence values from each hypercube observation.
In this scenario, a compromise between the two hypercube observations will only
occur for disparities with similar coherence values between the two observations
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(A) (B) (C) (D)

(E) (F) (G) (H)

(I) (J) (K) (L)

Fig. 3. Disparity estimation before (top) and after regularization with one (middle)
and two data terms (bottom). Peripheral viewpoint: (A), (B), (E), (F), (I), and (J).
Central viewpoint: (C), (D), (G), (H), (K), and (L).

instead of achieving this compromise for all disparities. Hence, this approach
leads to an increase in the PSNR value for 11.38 dB.

6 Conclusions

In this work, we formalize a data fusion problem which uses the full 4D lightfield.
The optimization problem was solved by resorting to an ADMM instance that
provides good results with few iterations. Furthermore, we considered simplifica-
tions to the boundary conditions that allowed to use FFTs in the computations.
Therefore, the algorithm is computationally efficient. This methodology was ap-
plied to a synthetic dataset and allows to obtain estimates that are more accu-
rate and robust to noise. The results are improved when we consider only the
disparities with higher coherence values in each of the hypercube observations.

The formulation for the data fusion problem can still be improved. In the for-
mulation, we are considering the full 4D lightfield information for the disparities
but we are not considering blurring in the observation models. Additionally, the
initial disparity estimations can also be improved. The disparity observations
were obtained from the structure tensor analysis of the EPIs, but we did not
consider refocusing or occlusion handling [4] to improve the disparity observa-
tions.
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I would like to thank Prof. José Bioucas-Dias for the discussions that allowed
us to improve our work. This work has been supported by the Portuguese Foun-
dation for Science and Technology (FCT) project [UID / EEA / 50009 / 2013].
Nuno Barroso Monteiro is funded by FCT PhD grant PD/BD/105778/2014.

References

1. Adelson, E.H., Wang, J.Y.A.: Single lens stereo with a plenoptic camera. IEEE
Transactions on Pattern Analysis & Machine Intelligence (2), 99–106 (1992)

2. Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.: An augmented lagrangian
approach to the constrained optimization formulation of imaging inverse problems.
Image Processing, IEEE Transactions on 20(3), 681–695 (2011)

3. Bolles, R.C., Baker, H.H., Marimont, D.H.: Epipolar-plane image analysis: An
approach to determining structure from motion. International Journal of Computer
Vision 1(1), 7–55 (1987)

4. Diebold, M., Goldluecke, B.: Epipolar plane image refocusing for improved depth
estimation and occlusion handling (2013)

5. Georgiev, T., Lumsdaine, A.: Superresolution with plenoptic camera 2.0. Adobe
Systems Incorporated, Tech. Rep (2009)

6. Georgiev, T., Zheng, K.C., Curless, B., Salesin, D., Nayar, S., Intwala, C.: Spatio-
angular resolution tradeoffs in integral photography. Rendering Techniques 2006,
263–272 (2006)

7. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: Pro-
ceedings of the 23rd annual conference on Computer graphics and interactive tech-
niques. pp. 43–54. ACM (1996)

8. Ng, M.K., Yau, A.C.: Super-resolution image restoration from blurred low-
resolution images. Journal of Mathematical Imaging and Vision 23(3), 367–378
(2005)

9. Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., Hanrahan, P.: Light field
photography with a hand-held plenoptic camera. Computer Science Technical Re-
port CSTR 2(11), 1–11 (2005)

10. Nocedal, J., Wright, S.: Numerical optimization. Springer Science & Business Me-
dia (2006)

11. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena 60(1), 259–268 (1992)

12. Simões, M., Bioucas-Dias, J., Almeida, L.B., Chanussot, J.: A convex formulation
for hyperspectral image superresolution via subspace-based regularization. Geo-
science and Remote Sensing, IEEE Transactions on 53(6), 3373–3388 (2015)

13. Wanner, S., Goldluecke, B.: Variational light field analysis for disparity estimation
and super-resolution. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on 36(3), 606–619 (2014)

14. Wanner, S., Meister, S., Goldluecke, B.: Datasets and benchmarks for densely
sampled 4d light fields. In: VMV. pp. 225–226. Citeseer (2013)

15. Wanner, S., Straehle, C., Goldluecke, B.: Globally consistent multi-label assign-
ment on the ray space of 4d light fields. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 1011–1018 (2013)


