
A Novel Approach for Optimization in Dynamic

Environments Based on Modi¯ed Arti¯cial Fish

Swarm Algorithm

Danial Yazdani

Young Researchers and Elite Club, Mashhad Branch

Islamic Azad University, Mashhad, Iran

d_yazdani@mshdiau.ac.ir

Alireza Sepas-Moghaddam*

Department of Electrical and Computer Engineering

Instituto Superior T�ecnico

Universidade de Lisboa Lisbon, Portugal

alireza.sepas-moghaddam@tecnico.ulisboa.pt;

sepasmoghaddam@gmail.com

Atabak Dehban

Institute for Systems and Robotics

Instituto Superior T�ecnico
Universidade de Lisboa Lisbon, Portugal

adehban@isr.ist.utl.pt

Nuno Horta

Instituto de Telecomunica�c~oes
Instituto Superior T�ecnico

Universidade de Lisboa Lisbon, Portugal

nuno.horta@lx.it.pt

Received 13 December 2014

Accepted 07 March 2016

Published 8 June 2016

Swarm intelligence algorithms are amongst the most e±cient approaches toward solving opti-
mization problems. Up to now, most of swarm intelligence approaches have been proposed for
optimization in static environments. However, numerous real-world problems are dynamic
which could not be solved using static approaches. In this paper, a novel approach based on
arti¯cial ¯sh swarm algorithm (AFSA) has been proposed for optimization in dynamic envir-
onments in which changes in the problem space occur in discrete intervals. The proposed
algorithm can quickly ¯nd the peaks in the problem space and track them after an environment
change. In this algorithm, arti¯cial ¯sh swarms are responsible for ¯nding and tracking peaks
and several behaviors and mechanisms are employed to cope with the dynamic environment.
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Extensive experiments show that the proposed algorithm signi¯cantly outperforms previous
algorithms in most of tested dynamic environments modeled by moving peaks benchmark.

Keywords: Arti¯cial ¯sh swarm algorithm; dynamic optimization problems; swarm intelligence;
evolutionary algorithms; moving peaks benchmark.

1. Introduction

The study of applying evolutionary algorithms for optimization in dynamic envir-

onments is an active research topic and has increasingly attracted interest from the

evolutionary computation community. In Ref. 1, Nguyen de¯ned dynamic optimi-

zation problems as follows: \Given a dynamic problem ft, an optimization algorithm

G to solve ft, and a given optimization period [tbegin; tend], ft is called a dynamic

optimization problem (DOP) in the period [tbegin; tend] if during [tbegin; tend] the

underlying ¯tness landscape thatG uses to represent ft changes andG has to react to

this change by providing new optimal solutions." The most prominent aim in static

optimization problems is ¯nding the global optimum. However, in DOPs, tracking

the global optimum should be also considered.

So far, di®erent optimization approaches have been proposed, including swarm

intelligence methods for optimization in dynamic environments.2,3 The designed

algorithms based on swarm intelligence approaches include some mechanisms in their

structure to solve the particular challenges faced in dynamic environments. Due to

the lack of appropriate time between the occurrences of two consecutive environment

changes, which contribute to further complications of DOPs, the need for powerful

and e±cient optimization techniques is imminent.

Optimization algorithms which are proposed to be performed in dynamic envir-

onments are typically extended versions of those in static environments. For in-

stance, evolutionary algorithms,4,5 particle swarm optimization (PSO),2,6 ant colony

optimization,7,8 di®erential evolution9,10 and arti¯cial ¯sh swarm algorithm

(AFSA)11 can be mentioned.

There are various types of optimization problems in real-world environments in

which di®erent challenges are involved. In fact, designing e±cient optimization

problems in dynamic environments is dependent on the particular challenges of the

problem. In this paper, a novel algorithm based on AFSA has been proposed for

optimization in dynamic environments that has been modeled by moving peaks

benchmark (MPB).12,13 There are some assumptions regarding the proposed ap-

proach as follows: (1) The approach is applied to unconstrained multi-modal pro-

blems (2) The problem space is continuous (3) The changes in the space take place in

a discrete in time (4) The dimension and domain of the search space are constant

after environment changes. In the proposed algorithm, various mechanisms have

been employed in order to solve particular challenges of dynamic environments.

Several mechanisms are novel and some of them are the extended versions of the

previously used mechanisms.
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The rest of this paper is organized as follows: In Sec. 2, related work is discussed.

Section 3 dedicated to the proposed algorithm. Section 4 the results of the extensive

experiments of the proposed algorithm and its comparison with other approaches

from the literature. Finally, Sec. 5 concludes this paper.

2. Related Work

Multi-swarm is considered as a well-known solution for designing DOPs. Several

algorithms for DOPs based on multi-swarm approach have been proposed in the

literature. In Ref. 14, a method called shifting balance genetic algorithm (SBGA) has

been proposed in which a number of small subpopulations were responsible for global

search in the problem space, and a large subpopulation was responsible for tracking

the peaks. Another approach was presented in Ref. 15, called self-organizing scouts

(SOS), which utilized a big subpopulation for global search and a number of small

subpopulations for tracking changes. This strategy has also been proposed with other

meta-heuristic methods such as genetic algorithm in Ref. 16 and di®erential evolu-

tion in Ref. 17. In Refs. 18 and 19, two methods similar to SOS were proposed,

respectively called fast multi-swarm optimization (FMSO) and multi-swarm PSO

(mPSO), in which a parent type explored the search space to discover existing

promising areas in the environment, and a series of child types performed local

search. Another approach was to use a population for both local search and global

search simultaneously. In Ref. 20, a population was used for performing global

search, and after discovering an optimum, the population was divided into two

subpopulations. The ¯rst and second subpopulations were responsible to track op-

timum changes and conducting global search, respectively. In Refs. 21–23 a specia-

tion-based PSO (SPSO) approach was proposed for optimization in dynamic

environments. Also in Ref. 24, a regression-based PSO approach (RSPSO) was

presented in order to enhance the convergence rate using speciation-based methods.

In that approach, every subpopulation was considered as a hypersphere and was

developed through a certain radius of the best solution. In Ref. 25, a method called

SPSO was proposed in which every cluster was divided into two. The ¯rst cluster was

responsible for exploitation and the second one was in charge of exploration. In that

research, Gaussian local search and di®erential mutation have been used in order to

improve diversity in the environment. In Ref. 26, a method based on clustering was

proposed for developing subpopulations, and in Ref. 27, this method PSO with

composite particle (PSO-CP) has been improved, in which some simpli¯cations, e.g.,

eliminating the learning procedure, and reducing the number of phases for clustering

from two phases to only one phase was made. In Ref. 28, two multi-population

methods, called multi-sawarm optimization (mQSO) and multi-changed particle

swarm optimization (mCPSO), were proposed. In the former one, quantum particles

and in the latter one, charged particles were used to generate diversity. The number

of solutions in this technique was equal for every subpopulation, and the number of

subpopulations was also initialized. In Ref. 29, an approach for enhancing this
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method was proposed by adapting the number of subpopulations, which was called

AmQSO. It has signi¯cantly improved the performance of the algorithm. Finally, a

method for optimization in dynamic environments was proposed based on composite

particles in Ref. 30 which demonstrated a suitable e±ciency.

The AFSA is one of the algorithms inspired from the nature and swarm intelli-

gence algorithms.31 This algorithm was inspired from social behaviors of ¯sh swarm

in the nature. This algorithm has some characteristics such as high convergence rate,

insensibility to initial values, °exibility and high fault tolerance. AFSA has been used

in optimization applications such as neural network learning,27,32 color quantiza-

tion,33 global optimization,34,35 data clustering,36–38 multi-objective optimization,39

PID controller parameters optimization,40 image segmentation,41,42 etc. A multi-

swarm algorithm (mNAFSA)43 was proposed to conquer particular challenges of

dynamic environment by proposing modi¯ed multi-swarm mechanism for ¯nding

and covering potential optimum peaks. In Ref. 11, Yazdani et al. proposed a modi¯ed

AFSA (MAFSA) for designing optimization algorithms in dynamic environments. In

the MAFSA algorithm, parameters, behaviors and the standard AFSA procedure

were modi¯ed to be appropriate for optimization in dynamic environments. In this

algorithm, several behaviors were performed on arti¯cial ¯sh (AF).

In Ref. 44, the idea of hibernation was applied in a PSO optimization algorithm,

in which a parent swarm explores the search space and child swarms exploit prom-

ising areas found by the parent swarm. In Ref. 45, a new PSO algorithm for dynamic

environments was proposed to adapt exclusion radios and utilize a local search on

best swarm to accelerate progress of algorithm and adjust inertia weight adaptively.

Cellular PSO,46 a new hybrid model of PSO and cellular automata, was proposed to

¯nd global optima quickly after the change in environment. PSO-CP47 proposed to

address dynamic optimization problems by partitioning the swarm into a set of

composite particles based on their similarity. In Ref. 48 a new technique was pre-

sented that can be used with most evolutionary algorithms that improve their

convergence speed. In Ref. 49, a new multi-strategy ensemble PSO (MEPSO) for

dynamic optimization was proposed that included two new strategies, Gaussian local

search and di®erential mutation. Woldesenbet et al.50 proposed a new dynamic

evolutionary algorithm that uses variable relocation to adapt already converged or

currently evolving individuals to the new environmental condition. In Ref. 51, an

algorithm based on ¯re°y algorithm was proposed for multi-modal optimization in

dynamic environment. CDEPSO52 was a bi-population hybrid collaborative model

of crowding-based di®erential evolution and PSO for dynamic optimization pro-

blems. In Ref. 53, a novel multi-swarm cellular PSO algorithm was proposed by

clustering and local search, where the search space was partitioned into cells and a

local search is applied to improve the solutions in the each cell. Yazdani et al.54

proposed a novel algorithm for optimization in dynamic environments based on PSO

in which a novel mechanism has been used to increase the ability of local search

around optimum with focusing on best found peak in each environment. In Ref. 55,

a speciation-based ¯re°y algorithm was investigated to enhance the population
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diversity in order to generate several populations in di®erent areas in the landscape

without knowing the number of optima in each landscape.

3. The Proposed Algorithm: Parent–Child AFSA

In this section, the proposed algorithm for optimization in dynamic environments is

presented. The proposed approach presented in this paper is a modi¯ed version of

MAFSA algorithm,11 where we added some new mechanisms to MAFSA in order to

overcome the particular challenges of dynamic environments and improve its per-

formance. There is only one type of swarm in MAFSA, where it initiates another

swarm after its convergence. However, in parent–child AFSA (PCAFSA), the

swarms have been divided into parent, non-best child, and best child swarms with

di®erent con¯gurations. Parent swarms are responsible for ¯nding undiscovered

peaks in an appropriate time, where child swarms cover the peaks and subsequently,

track them after an environment change. The ¯rst added mechanism to MAFSA is

migration to increase the speed of ¯nding undiscovered peaks. Born mechanism is the

second additional mechanism to MAFSA for solving the challenges of existing po-

tential optimums and unknown number of peaks in the problem space. The last

added mechanism is exclusion which is proposed to solve the challenge of conver-

gence of two swarms to one peak. In addition to the added mechanisms, some

modi¯cations have been performed in the structure of MAFSA to solve the chal-

lenges of diversity loss and outdated memory.

Since the proposed algorithm utilizes parent–child mechanisms, it is called

PCAFSA. In what follows, the behaviors, mechanisms and procedure used in the

PCAFSA algorithm are discussed in detail to solve challenges in dynamic environ-

ments. In this algorithm, prey, follow and swarm behaviors are performed on AF

and several mechanisms are employed to face particular challenges of dynamic

environments.

3.1. Prey behavior

This behavior is an individual behavior, where each AF does a local search around

itself without considering other swarm members. By performing this behavior, each

AF attempts try number times to replace to a new position with a better ¯t. Suppose

AFi is in position Xi and wants to display prey behavior. The following steps are

performed in prey behavior:

(a) AFi considers a target position in visual by Eq. (1), and then evaluates its ¯tness

value. d is the dimension number and Rand generates a random number with a

uniform distribution in [�1, 1]:

Td ¼ Xi;d þ Visual � Randdð�1; 1Þ: ð1Þ
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(b) If the ¯tness value of position XT is better than the current position of AFi, the

position will be updated by Eq. (2):

Xi ¼ T: ð2Þ

Steps (a) and (b) are performed try number times. By executing the above steps,

an AF can update its position at most try number times in the best case and

move toward better positions. In the worst case, none of the AF's attempts to

¯nd a better position will succeed. In this situation, after performing the prey

behavior, there will be no replacement at all. The schematic of prey behavior for

ith AF in two-dimensional space is shown in Fig. 1(a).

Visual space is a D-dimensional cubic space in which ith AF performs a search

process by Eq. (1). As can be seen, ith AF which is placed in Xi;1 position ¯nds a

better position in the third execution of Eq. (1) and moves to this position by Eq. (2).

Again, the AF performs this process from its new position (Xi;2Þ. This procedure is

performed up to try number times. In Fig. 1(a), it is considered that try number is

equal to 5 and the AF improved its position two times. Pseudo-code of prey behavior

is shown in Fig. 1(b).

3.2. Follow behavior

In standard AFSA, in case of not ¯nding better positions by standard prey behavior,

AFs move one step randomly and so lose their previous positions. But in PCAFSA, if

an AF is not able to move to better positions in prey behavior, it will not move at all

and will keep its previous position. This causes the best AF (according to the ¯tness

value) of the swarm to be located in the best position found by the swarm member so

far. The reason is that in prey behavior in the proposed algorithm, an AF displaces if

only it moves to a better position. In the following behavior, each of AFs moves one

(a) (b)

Fig. 1. (a) The schematic of prey behavior and (b) pseudo-code of prey behavior.
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step toward the best AF of swarm using Eq. (3):

Xiðtþ 1Þ ¼ XiðtÞ þ
XBest �XiðtÞ

Disi;Best
� ½Visual � Randð0; 1Þ�; ð3Þ

where Xi is the position vector of AFi which performs the follow behavior andXBest is

the position vector of the best AF in the swarm. Therefore, AFi can move at most as

much as its visual value in each dimension towards the best AF of the swarm. In fact,

after ¯nding more food by a ¯sh, other swarm members follow it to reach more food.

Following the best AF of the swarm makes the convergence rate increase and helps to

keep the integrity of AFs in a swarm. This behavior is a group behavior and inter-

actions among swarm members take place globally. Pseudo-code of follow behavior is

shown in Fig. 2.

3.3. Swarm behavior

This function is also a group behavior and is performed globally among members of

the swarm. In swarm behavior, ¯rst of all, the central position of the swarm is

calculated in terms of the arithmetic average of the positions of all swarm members in

every dimension. The central position of the swarm is obtained by Eq. (4):

XCenter;d ¼
1

N

XN

i¼1

Xi;d; ð4Þ

where N is equal to the population size. As it is observed, component d of vector

Xcenter is the arithmetic mean of component d of all AFs of the swarm. For AFi, the

move condition toward the central position is checked, i.e., fðXCenterÞ � fðXiÞ and if

this condition is satis¯ed, the next position of AFi is obtained by Eq. (5):

Xiðtþ 1Þ ¼ XiðtÞ þ
XCenter �XiðtÞ

Disi;Center
� ½Visual� Randð0; 1Þ�: ð5Þ

Equation (5) is used for all AFs that have positions worser than the central position,

so they move towards XCenter. For the best AF located in XBest, if the ¯tness value of

XCenter is better than XBest, the next position of the best AF is obtained by (6):

XBest ¼ XCenter: ð6Þ
The reason for using Eq. (6) for the best AF is that it may be located in a position

worse than its current position by moving toward XCenter using Eq. (5), because it

Fig. 2. Pseudo-code of follow behavior.
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is possible to have worse positions in the way ending in XCenter from XBest.

Therefore, it may cause to lose the best position found by all members of the

swarm so far. This problem is sorted out by using Eq. (6) for the best AF. The

reason for not using Eq. (6) for all AFs is that changing the position of swarm

¯shes to a similar position leads to an extreme decrease in the diversity of the

swarm and a considerable decrease in convergence rate. The schematic of swarm

behavior is shown in Fig. 3(a). In this ¯gure, the central position and the best AF

are illustrated, respectively, by a plus and a star. As can be seen, the best AF is

directly placed in the central position using Eq. (6), in case of a better situation

for the central position, whereas other AFs move one step in their visual toward

the central position using Eq. (5).

PCAFSA performs the optimization process iteratively using the functions that

were explained as its behavior. Algorithm agents which are also called AFs, in a

similar manner of standard AFSA, try to move toward better solutions in the

problem space in each iteration. At the end of each iteration of swarm behavior in

PCAFSA, the visual value is updated for AFs. In this paper, a speci¯ed random

number generator function is used in Eq. (7) to determine the value of visual.

Visualðtþ 1Þ ¼ VisualðtÞ � ðLmin þ ðRand� ð1� LminÞÞÞ; ð7Þ

where visual is obtained randomly in each iteration based on its value at the pre-

vious iteration. LLow is the lower limit of visual change percentage in comparison

with the previous iteration. Rand is the random number generator function

with uniform distribution in [0, 1]. So, visual value in each iteration is in

[visualðt� 1Þ � Lmin, visual(t� 1)] randomly. Pseudo-code of swarm behavior is

shown in Fig. 3(b).

(a) (b)

Fig. 3. (a) The schematic of swarm behavior (b) Pseudo-code of swarm behavior.
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3.4. Solving the challenge of change detection in an environment

One of the challenges that optimization algorithms in dynamic environments en-

counter is detecting an environment change. In fact, the change must be detected

without any prior knowledge after the environment change. The designed mechan-

isms in this domain are completely dependent on the range of changes.

In PCAFSA, to discover changes in the environment, the best AF of each swarm

must be evaluated at the end of each iteration. In case that any changes in the

obtained values, compared to the stored ones, the environment has been changed.

3.5. Solving diversity loss challenge

Regarding the structure of the proposed algorithm, diversity loss occurs after con-

vergence. In this situation, all AFs are placed close to each other and visual also

decreases extremely after a while. To solve this problem, the diversity loss is initially

allowed to occur with the aim of increasing the accuracy of the result, before an

environment change. After detecting a change in the environment diversity is created

amongst the AFs for increasing convergence speed toward the new position of the

goal. For increasing diversity between AFs, the position of the best AF in the swarm

is kept and other AFs are randomly distributed around it with a uniform distribution

in a space with a radius of rdiv in each dimension, using Eq. (8):

Xi;j ¼ XBest;j þ ðrandð�1; 1Þ � rdivÞ; ð8Þ
where, jth component of the ith AF in the swarm is randomly calculated regarding

the jth position of the best AF in the swarm (XbestÞ and rdiv parameter. The Rand

function generates a random number in the range of [�1,1] with a uniform distri-

bution. After detecting the positions of AFs, the visual value is also adjusted for AFs

to search a bigger space around itself by displaying prey behavior and move toward

the new position with longer steps.

3.6. Solving outdated memory challenge

As it was mentioned, the position of the best AF in the swarm remains unchanged

and the positions of the other AFs are randomly determined after detecting an

environment change. Then, the ¯tness of all AFs is evaluated and their ¯tness values

in the new environment are stored in the memory. Thus, the stored ¯tness values in

the memory are valid.

3.7. Born mechanism: solving the challenges of existing potential

optimums and unknown number of peaks

As it was stated before, there are several peaks in dynamic environments, where each

peak could be transformed to a global optimum; therefore, each peak is a potential

optimum. Thus, the algorithm must cover all peaks to ¯nd the optimum peak in an

appropriate time after each environment change. The Born mechanism is utilized in

A Novel Approach for Optimization in Dynamic Environments Based on MAFSA
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the proposed algorithm in order to cover the peaks. Hence, there are several AF

swarms in the problem space which are executed simultaneously and independently

for performing the optimization process.

Each swarm in PCAFSA is responsible for one peak in the problem space. The

mechanism used in this algorithm for controlling swarms is in the form of parent–

child, in which there are di®erent swarms as parents and children. Parent swarms are

responsible for ¯nding peaks and their parameters are adjusted in a way that they

can ¯nd the peaks quickly. On the other hand, child swarms cover a peak and

subsequently track it, and their parameters are adjusted accordingly. In the begin-

ning of the algorithm, only parent swarms exist in the search space and there is no

child swarm in the problem space. At ¯rst, the AFs of parent swarms are randomly

initialized and start the searching process. After convergence of a parent swarm to a

peak, it generates a child swarm and replaces the child swarm with itself on the peak.

If the Euclidean distances between the position of the best AF of a parent swarm in

the mth iteration and mþ nth iteration are less than a threshold called rconv, a

parent swarm has converged to a peak which means a peak is found. After creation

and replacement of a child swarm in the peak found by the parent, the child swarm

must cover the peak and track it after environment changes. The child swarm is also

responsible for exploitation. After placing the new child swarm in the peak, the

parent swarm is re-initialized in the environment and starts a search to ¯nd a new

peak. The processes of generation and placement of a new child swarm and re-

initialization of a parent swarm are carried out after each convergence of the parent

swarm to a new peak. Parent swarms in the environment search for the peaks which

have not been previously found and once they ¯nd a new peak, it is covered by a child

swarm. Consequently, the number of the existing swarms in the environment cor-

responds to the found peaks and it is expected that all of the peaks be covered by the

child swarms after some time. Hence, parent swarms solve the challenge of unknown

number of peaks by ¯nding uncovered peaks and generating child swarms to cover

them. In addition, by placing child swarms on the peaks, the algorithm monitors the

peaks and rapidly ¯nds the peaks which have been transformed to a global optimum,

after an environment change. Thus, the unknown number of peaks challenge is also

addressed. The pseudo-code for generating child swarms by the converged parent

swarms in Born mechanism is demonstrated in Fig. 4(a).

3.8. Exclusion mechanism: solving the challenge of convergence of two

swarms to one peak

In the proposed method, it is possible that a parent swarm converges to a peak to

which it has previously converged and a child swarm has been placed on it. In this

situation, the algorithm is re-initialized. In fact, the peaks which have been found

previously are covered by a child swarm. Thus, if the Euclidean distance of the best

AF of a child swarm and the best AF of a child swam is less than a threshold which is

called rexcl, the parent swarm converges to a peak which was previously found. The

D. Yazdani et al.
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value of rexcl in the proposed algorithm is determined by Eq. (2). Thus, by performing

each iteration of the algorithm, Euclidean distances between the best AF of each

parent swarm and the best AF of all child swarms are calculated in the problem space

and in case the distance is less than rexcl, the parent swarm is re-initialized.

In addition, it is possible that a parent swarm converges before reaching a peak;

hence, it generates a child swarm to be replaced in the position. Thus, the child

swarm could move toward a peak which is already covered by another child swarm.

In this situation, there are two child swarms in one peak. For solving this challenge,

Euclidean distances between the best AF of all child swarms are calculated at ¯rst

and two swarms amongst AFs for which the Euclidean distances are less than rexcl,

are selected as the swarms that are placed in a particular peak. In this situation, the

swarm in which the ¯tness of the best AF is worse, compared to another swarm, is

eliminated. The mechanism used for solving this challenge is called exclusion. The

pseudo-code of the exclusion mechanism is demonstrated in Fig. 4(b).

3.9. Migration mechanism: solving the convergence speed challenge

One of the most important challenges in this domain is the short time between two

successive environment changes. This limitation leads to several problems, i.e.,

changing optimum positions that are not already found, losing goals after several

environment changes and thus, increasing in errors and degrading e±ciency.

PCAFSA also bene¯ted from a suitable convergence speed. Increasing diversity is

another approach for increasing the convergence speed of the proposed algorithm.

Distributing AFs around the position of the best AF in the swarm and re-adjusting

visual values lead to covering the new optimum position with a high probability and

¯nding it by the swarm with a high speed. Parent swarm is utilized in order to

increase the speed of ¯nding and covering peaks. Adjusting parameters in this swarm

is appropriately performed for ¯nding the peaks with a higher speed. On the other

hand, adjusting the parameters of child swarm is performed regarding their tasks.

The reason for using two types of swarms in PCAFSA is the fact that adjusting the

parameters of parent and child swarms with equal values leads to a decrease in the

(a) (b)

Fig. 4. Pseudo-codes of (a) Born mechanism and (b) exclusion mechanism.
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convergence speed of PCAFSA and consequently, degrading the algorithm e±ciency.

Thus, by using two types of swarms, each swarm could be independently adjusted to

perform its own task with a higher speed.

After a change in the environment, each child swarm tracks the peak in which it

has been placed by performing a local search. This issue is more important for the

swarm placed in the highest peak than that for the other peaks. In fact, the current

error value and the e±ciency of the algorithm are calculated based on the swarm

whose ¯tness value of its best AF is better, compared to other swarms. As a result,

other child swarms have no e®ect on determining results in the current environment.

However, it is important to perform a local search for them. Indeed, if these swarms

do not perform a local search, their distances from their corresponding peaks are high

or in some cases they may lose it, after several environment changes. Thus, per-

forming local search for all child swarms is mandatory after an environment change.

After a swarm approaches its goal by performing a local search, the search con-

tinues for improving the accuracy of the results. As it was mentioned, the child

swarm placed in the highest peak determines the results; therefore, this swarm must

perform a more precise local search to improve the results. For this purpose, the value

of try-number corresponding to this swarm is considered greater, compared to other

swarms. Thus, AFs of the best swarm perform more searches in each iteration for

reaching better positions by using prey behavior, and so the local search ability and

convergence speed are enhanced.

After each environment change, the visual parameter values of child swarms are

reset in order to increase diversity. Determining the value of this parameter after

detecting an environment change is considerably important for algorithm e±ciency.

After an environment change, the child swarms are divided into two swarms: best

and non-best. The best swarm is a swarm whose best AF ¯tness is better, compared

to other child swarms. The current error value is determined by the best swarm in the

environment; hence, this swarm must converge to the optimum with a high speed.

For this purpose, the visual value of this swarm must correspond to the maximum

movement step of peaks. On the other hand, the visual value of other child swarms

would be determined large, regarding the length of the problem space, so that a child

swarm migrates from a peak to a better one. This situation occurs when the adjacent

peak that is in the range of the AFs visual is better than the peak in which the related

swarm is placed. Therefore, child swarms could support the parent swarms, in terms

of ¯nding better peaks. This support is more e®ective, when parent swarms have not

yet found all of the peaks. Thus, child swarms could cover better peaks.

Migration takes place only once for a swarm in each environment. In case of

moving AFs of the migrating swarm with steps greater than rmigr, this swarm could

not generate another swarm. In addition, the exclusion mechanism between the

swarm which has migrated in the current environment and the replaced new swarm

is not activated until the next environment change. The pseudo-code of the migra-

tion mechanism is illustrated in Fig. 5.
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3.10. PCAFSA: main procedure

Finally, after describing all modules of PCAFSA, the pseudo-code of the main pro-

cedure is presented in Fig. 6.

4. Experimental Study

In this section, the e±ciency of the proposed method on MPB is surveyed. At ¯rst,

MPB is described. After that, the e®ects of various values of the proposed algorithm

parameters are studied and subsequently, its e±ciency is compared with several

state-of-the-art algorithms in this domain.

4.1. Moving peaks benchmark

In our simulations, we used the MPB originally introduced by Branke12,13 as a

benchmark function. It is extensively used in the literature for evaluating the per-

formance of optimization algorithms in dynamic environments. In this benchmark,

there are some peaks in a multi-dimensional space, where height, width and position

of the peaks vary when a change occurs in the environment.

In order to measure the e±ciency of the algorithms, o®line error is used, which is

the average of the di®erence between ¯tness of the best solution found by the al-

gorithm and the ¯tness of the global optimum5,12,13:

offline error ¼ 1

FEs

XFEs

t¼1

ðfitnessðgbestðtÞÞ � fitnessðglobalOptimumðtÞÞÞ ð9Þ

where FEs is the maximum ¯tness evaluation, and gbest(t) and globalOptimum(t)

are the best positions found by the algorithm and the global optimum at the tth

¯tness evaluation, respectively. In other words, the value of o®line error equals the

average of all current errors which is de¯ned in time t as the deviance between the

best position found by the algorithm in time t in the current environment and

the position of the global optimum in the current environments.

Fig. 5. Pseudo-code of migration mechanism.
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Fig. 6. Pseudo-code of PCAFSA.
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4.2. Parameter settings

The e±ciency of the proposed algorithm using di®erent numbers of parent swarms is

presented after adjusting the parameters and surveying their e®ects on the e±ciency

of the algorithm. In PCAFSA, a parent swarm initiates the optimization process.

Thus, the e±ciency of this swarm is considerably important. In what follows, the

e®ects of di®erent MAFSA con¯gurations on the e±ciency of the parent swarm are

studied.

4.2.1. Parameter settings for parent swarms

Parent swarms are responsible in terms of ¯nding the peaks in the problem space.

Therefore, the PCAFSA parameters should be de¯ned in such a way that parent

swarms can converge toward the peaks with a high speed. There are four parameters

including: visual, Lmin, try-number and population size in MAFSA which de¯ne its

convergence behavior. The parameters Try-number and population size depend to

each other. Hence, they could not be investigated independently. These parameters

determine the search strategy as well as the level of ¯tness evaluation in each iter-

ation. The value of try-number determines the volume of local search around each AF

and the size of the population shows the number of AF positions around which the

search is performed. In addition, visual and Lmin parameters are dependent on each

other. The e®ects of di®erent values of population size and try-number parameters on

the parent e±ciency are tabulated in Table 1. It is worth mentioning that to perform

the experiments presented in Table 1, the value of visual and Lmin are, respectively,

20 and 0.8 by default. Also, experiments are performed 100 times to ¯nd a peak in

MBP for up to 2500 ¯tness evaluations. It is evident in the course of experiments that

Table 1. E®ect of di®erent values of population size and try number parameters on the parent

e±ciency.

(Population size,

Try number) Final error � Standard error

(Population size,

Try number) Final error � Standard error

(2,2) 5.8275� 2.6851 (4,2) 1.6048� 0.2905

(2,3) 2.4130� 1.3661 (4,3) 3.64e�05� 3.88e�06
(2,4) 2.42e�09� 3.21e�10 (4,4) 0.0003� 4.98e�05

(2,5) 9.32e�08� 1.71e�08 (4,5) 0.0023� 0.0002

(2,7) 1.14e�05� 2.13e�06 (4,7) 0.0267� 0.0036
(2,10) 0.0006� 7.72e�05 (4,10) 0.1709� 0.0186

(2,15) 0.0143� 0.0013 (4,15) 1.0893� 0.1108

(2,20) 0.1174� 0.0110 (4,20) 2.2069� 0.1807

(3,2) 7.7404� 4.0610 (5,2) 0.1043� 0.1042
(3,3) 1.90e�07� 2.18e�08 (5,3) 0.0045� 0.0005

(3,4) 9.45e�06� 1.69e�06 (5,4) 0.0004� 5.76e�05

(3,5) 0.0001� 1.84�05 (5,5) 0.0197� 0.0024

(3,7) 0.0020� 0.0002 (5,7) 0.1098� 0.0142
(3,10) 0.0306� 0.0036 (5,10) 0.4235� 0.0382

(3,15) 0.2683� 0.0295 (5,15) 1.9447� 0.1864

(3,20) 0.8447� 0.0811 (5,20) 3.6547� 0.3659

A Novel Approach for Optimization in Dynamic Environments Based on MAFSA
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the best result is obtained when the values of population size and try number para-

meters are 2 and 4, respectively.

As it was stated, the value of visual is considered high at ¯rst and then it decreases

by Eq. (7), in which Lmin determines the reduction rate. In Table 2, the e®ect of using

di®erent values of visual and Lmin parameters on the parent e±ciency with popula-

tion size of 2 and try-number of 4 is tabulated. Regarding the results of Table 2,

parent e±ciency is improved by setting the visual value to 25 and the Lmin value to

0.75, compared to other values for these two parameters.

In addition, it was obvious in the course of experiments that the best values of k

and rconv should be 3 and 0.5 for having the best convergence of parent swarms. The

experiments showed that the best results are obtained when the Euclidean distance

of the best AF of the parent swarm inmth and mþ 3th iterations are calculated as a

criterion for determining the convergence of the parent. In addition, by considering

the value of rconv as 0.5, the algorithm e±ciency is improved.

4.2.2. Parameter settings for child swarms

Child swarms in PCAFSA are categorized as best and non-best child swarms in which

the values of some parameters are di®erent after an environment change, regarding

the structure of PCAFSA as discussed in the previous section. There are di®erent

parameters for best and non-best childswarms that should be set in order to achieve

the best performance of the proposed algorithm. Comprehensive experiments have

been done on MPB with di®erent values of peaks number, change frequency and shift

severity in order to determine the best value of these parameters. Table 3 summarizes

the best obtained values of PCAFSA parameters for best child and non-best child

swarms as well as those for parent swarms.

4.3. Comparison between PCAFSA and other related methods

In this part of the paper, we compare the e±ciency of PCAFSA and that of other

state-of-the-art algorithms in this domain to perform the optimization process on

di®erent con¯gurations of MPB. Table 3 summarizes the values of involved

PCAFSA parameters for parent, best child and non-best child swarms.

The experiments have been conducted on MPB using a con¯guration which is

presented in Table 4. The experimental results are obtained by the average of 50

executions. Each execution has been performed using di®erent random seeds and it

has continued up to 100 environment changes. Some of the presented results of the

related works are obtained by implementing the methods and some of them are

extracted from the related references.

In Table 5, the e±ciency of the proposed algorithm on MPB with di®erent

numbers of peaks, a change frequency of 5000 and shift severity of 1 is compared with

21 state-of-the-art algorithms in this domain including: mQSO,2 AmQSO,25

CLPSO,42 FMSO,29 RPSO,43 mCPSO,2 SPSO,44 rSPSO,45 mPSO,28 HmSO,44
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PSO-CP,47 RVDEA,50 SFA,51 APSO,45 CLDE,10 DynPopDE,9 DMAFSA,11

CDEPSO,52 CPSOL,53 PSO-AQ,54 Adaptive-SFA55 and mNAFSA.43

As it could be seen in Table 5, the e±ciency of the proposed method outperforms

that of other 21 state-of-the-art algorithms in this domain. Setting the parameters of

the swarms based on their operations is one of the most prominent reasons for the

superiority of the proposed method. In fact, di®erent operations and situations are

involved in parent, best child and non-best child swarms and setting the parameters

based on the operations and situations leads to improving the e±ciency of the pro-

posed method. On the other hand, diversity increase mechanism causes an appro-

priate diversity increment in swarms after an environment change, which leads to an

increase in the convergence speed of swarms toward their new goals. The experi-

mental results show that using MAFSA as the base algorithm is signi¯cantly useful

and appropriate convergence speed is involved in this algorithm.

Table 4. Con¯guration of MPB.

Parameter Value

Number of peaks, M 1, 5, 10, 20, 30, 50, 100, 200 (variable)
Change frequency 2500, 5000, 10,000 (variable)

Height change 7.0

Width change 1.0

Peaks shape Cone
Basic function No

Shift length, severity 1.0, 2.0, 3.0, 5.0 (variable)

Number of dimensions, D 2, 3, 4, 5, 10, 15, 20

Correlation coe±cinet, � 0
Peaks location range [0–100]

Peak height [30.0–70.0]

Peak width [1–12]
Initial value of peaks 50.0

Table 3. Values of the involved PCAFSA parameters for parent, best child and non-

best child swarms.

Parameter Parent Best child Non-best child

Population size 2 2 2

Swarm number 2 1 N/A

Try number 4 10 2
Initiale visaul 25 1� Shift severity 25

Initialize visual after: Convergence Environment change Environment change

Lmin 0.75 0.75 0.75
rdiv N/A 1� Shift severity 1� Shift severity

k N/A N/A N/A

rconv 0.5 N/A N/A

rmigr N/A N/A 2� Shift severity

rexcl dboa
2 dboa

2 dboa
2
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5. Conclusion

In this paper, a novel algorithm was proposed for optimization in dynamic envir-

onments in which changes in problem space have occurred in discrete intervals. The

proposed algorithm was able to ¯nd the peaks quickly in the problem space and

follow them after an environment change. In the proposed algorithm, swarms in the

problem space were categorized into parent, best child and non-best child swarms,

each of which was con¯gured in a way that it can demonstrate high e±ciency in

performing its tasks. In the proposed algorithm, all of the AFs performed a search

process based on prey, follow, and swarm behaviors. Each swarm has been equipped

with some mechanisms, based on its corresponding function, to overcome its par-

ticular challenges.

The e±ciency of the proposed algorithm has been evaluated on MPB, which is the

most well-known benchmark in this domain, and its results were compared with

those of the state-of-the-art algorithms. The experimental results and comparative

studies showed the superiority of the proposed method. Diverse experiments showed

that the proposed algorithm involved a high convergence speed along with high

accuracy which is signi¯cantly important in designing optimization algorithms in

dynamic environments.

A primary knowledge concerning several parameters of the problem space, e.g.,

number of peaks, shift length and change frequency needed to be determined in

almost all previous algorithms in dynamic environments. In the proposed algorithm,

we tried to solve such dependencies. Nevertheless, the shift severity parameter must

be determined for performing the proposed algorithm. By adding online learning

algorithms or self-adaptive mechanisms to the proposed algorithm, the algorithm

could be completely independent of the primary knowledge which will be pursued as

future works.
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