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a b s t r a c t 

Dermatologists often prefer clinically oriented Computer Aided Diagnosis (CAD) Systems that provide med- 

ical justifications for the estimated diagnosis. The development of such systems is hampered by the lack of 

detailed image annotations (medical labels and segmentations of the associated regions). In most cases, we 

only have access to weakly annotated images (text labels) that are not sufficient to learn proper models. In 

this work we address this issue and propose a CAD System that uses medically inspired color information 

to diagnose skin lesions. We deal with the weakly annotated dermoscopy images using the Correspondence- 

LDA algorithm to learn a probabilistic model. The algorithm is applied with success to the identification of 

relevant colors in dermoscopy images, obtaining an average Precision of 83.8% and a Recall of 89.8%. The pro- 

posed color representation is then used to classify skin lesions, resulting in a Sensitivity of 77.6% and Speci- 

ficity of 73.0% using Random Forests, and a Sensitivity of 75.1% and Specificity of 77.5% using SVM. These 

results comparable favorably with related works. 

© 2015 Elsevier Inc. All rights reserved. 
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1. Introduction 

The most dangerous characteristic of melanoma is its ability to

grow and spread rapidly to other tissues and organs [1] . This makes

melanoma the deadliest form of skin cancer, although it is by far

one of the less common types of skin related neoplasms. According

to the most recent data, the incidence rate of melanoma has been

steadily increasing for the past three decades and it currently ranks

in the ninth position among the most common types of cancer in

Europe alone [2] . The advanced stage of melanoma is often incurable

and leads to the death of the patient, but an early diagnosis of this

disease (when the abnormal growing cells are still contained within

skin tissue) can lead to a full recovery [1] . Thus, a great effort has

been put on the development of skin lesion visualization and diagno-

sis techniques, that can help dermatologists improve their diagnostic

accuracies. 

Dermoscopy is among the most popular imaging methods used by

dermatologists, because it combines magnification and special illu-

mination techniques that render an improved image of the skin lesion

[3] . With this method, dermatologists are able to observe and ana-

lyze surface and subsurface structures that are invisible to the naked

eye [1,4] . The observed structures, called dermoscopic criteria, play
∗ Corresponding author. 

E-mail address: ana.c.fidalgo.barata@ist.utl.pt (C. Barata). 
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n important role in the diagnosis of melanoma and are considered

n different medical procedures, such as the ABCD rule [5] and 7-point

hecklist [6] . The main drawback of dermoscopy is that it can only be

ffectively applied by trained practitioners [7] . Other negative charac-

eristics of this method are its subjectivity and lack of reproducibility

8] . These drawbacks fostered the development of Computer Aided

iagnosis (CAD) systems, such as the ones described in [9–12] (see

13] for a survey on this topic), that can act as a second opinion tool

nd be used by non-experienced dermatologists [14] . 

Despite the interesting experimental results achieved by some of

he CAD systems, dermatologists have pointed out that several of

hem have not been designed to work as a support tool [15] . The prac-

itioners see these systems more as parallel/second opinion tools that

ive an output of melanoma or benign, without providing compre-

ensive medical information to justify the diagnosis. This black box

tructure and lack of interaction are two of the main reasons why der-

atologists avoid including CAD systems in their routine practices.

hese two issues can be addressed with the development of more

linically oriented systems that focus not only on the diagnosis but

lso on the identification of key dermoscopic criteria (e.g., clinically

elevant colors). 

The development of clinically oriented CAD systems is an active

opic of research. Different research groups have proposed strategies

o detect the presence of dermoscopic criteria, such as pigment net-

ork [16–20] , streaks [21,22] , dots [23] , and colors [24–27] or color

http://dx.doi.org/10.1016/j.cviu.2015.09.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2015.09.011&domain=pdf
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Fig. 1. Example of the application of the ABCD rule [1] . 
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w  
elated structures [26–31] . However, only a few of these works use

he detected criteria to obtain a diagnosis of the lesions as melanoma

r benign [13] , which demonstrates the difficulty of this problem. 

One of the major challenges of developing a clinically oriented

AD system is that it might require a large number of detailed

nnotated images (i.e., medical text labels and segmentations of the

elevant dermoscopic criteria). This detailed medical information

ust be obtained through consultation with experienced practi-

ioners. Dermatologists usually provide text labels stating whether

 dermoscopic criterion is present or absent, but do not perform

heir corresponding segmentations because it is a time consuming

nd subjective task. However, several of the methods described in

he literature require detailed annotations (e.g., detection of colors

24–26] , blue-whitish veil [28,30] , and global patterns [32–34] ), and

an result in incomplete systems if the number of available segmen-

ations is not sufficient. This limitation can be addressed through the

esign of systems that are capable of dealing with weakly annotated

ata (i.e., images for which there are text labels and it is not known

hich are the image regions that correspond to those labels). Such

ystems must be able not only to reproduce the medical labeling

rocess in new images but also to identify the regions within the

esions that correspond to the text labels. Although one might argue

hat this last aspect is unnecessary as the system already provides

ext labels, it can be quite useful for dermatologists as it would allow

hem to associate the text outputs of the system with specific areas

n the lesion and verify if the suggested output makes sense. It is also

mportant for the designed systems to be able to diagnose the lesions

s melanoma or benign using the detected medical criteria. 

This work addresses the aforementioned problems and investi-

ates the development of a clinically oriented CAD system, in which

t is possible to learn a probabilistic model to represent the dermo-

copic criteria using only medical text labels. The system is capable

f i) reproducing the labeling process; ii) identifying the regions in

he lesion associated with each of the labels, and iii) diagnosing the

esion as melanoma or benign. Various dermoscopic criteria could be

sed to study the labeling process. In this work we have selected the

linically relevant colors that are considered in the ABCD rule (Dark

nd Light Browns, Blue-Gray, Black, Red, and White) [5] . The selection

f the color criterion is based both on the difficulty of the problem

nd on the fact that color detection systems usually require train-

ng examples of color segmentations. The probabilistic model used

o learn the correlation between medical labels and image regions is

orrespondence-LDA (corr-LDA) [35] . To the best of our knowledge

his is the first time that such a model and approach are applied to

he analysis and classification of dermoscopy images. 

The paper is organized as follows. First we give an overview of

he problem and the notation used ( Section 2 ). Then, we discuss

he state-of-the-art in annotation ( Section 3 ), describe the proba-

ilistic model ( Section 4 ) and present the proposed modifications

 Section 5 ). We discuss different possibilities to diagnose the skin

esions using the detected color information in Section 6 . Finally
e present the obtained results ( Section 8 ) and conclude the paper

 Section 9 ). 

. Problem formulation 

.1. Clinical analysis 

A clinically oriented CAD system for the diagnosis of melanoma

ust have the following framework: i) identify relevant regions in

he dermoscopy images and associate them with the dermoscopic

riteria; ii) provide labels for the entire image stating whether the

ermoscopic criteria are present or absent; and iii) use the identified

edical information to estimate a diagnosis. 

The first challenge that we must address is the selection of the

ermoscopic criteria that must be identified by the developed CAD

ystem. Medical procedures such as the ABCD rule [5] provide us

ith the necessary information regarding which are the criteria

hat dermatologists use to distinguish between benign lesions and

elanomas. ABCD rule is a scoring approach that considers four dif-

erent aspects of the lesion in order to obtain a diagnosis. The as-

essed criteria are: (A)symmetry regarding shape, color, and struc-

ures; irregular (B)orders; the number of (C)olors (up to six); and the

xistence of (D)ermoscopic structures, such as pigment network or

treaks. During the diagnosis, dermatologists start by assigning an

ndividual score to each of these criteria. Then, the scores are com-

ined into a total lesion score using a weighted sum. The obtained

core gives information about the level of suspiciousness/malignancy

f the lesion. Fig. 1 shows an example of the ABCD rule [1] . 

In this work we address the detection of the clinically relevant col-

rs considered by in the ABCD rule: Dark and Light Browns, Blue-

ray, Black, Red, and White ( Fig. 2 shows some examples of le-

ions and the colors identified by experts). The detection of colors

n dermoscopy images has already been addressed by some research

roups [24–27,36] . Among these works, some require training exam-

les of segmented color regions, which are not easy to obtain as was

ointed out in the beginning of this paper. Other works do not use

raining examples and focus on the process of color quantification

27,36] , usually using clustering methods, without actually identify-

ng which are the colors that can be found in a given lesion. Our ob-

ective is to perform color identification and quantification first and

hen use this information to diagnose skin lesions. The main limita-

ion is the lack of training examples of segmented color regions, since

he segmentation of colors in dermoscopy images is a cumbersome

nd subjective task that is avoided by most dermatologists. Thus, we

ust investigate an alternative strategy that allows us to train a color

odel based on the available data. 

.2. Preliminary information and goals 

Our dataset comprises D dermoscopy images in which the lesions

ere divided into small non-overlapping square patches, as shown
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Fig. 2. Examples of the color identification/annotation performed by dermatologists [1] . (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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f  
in Fig. 3 . Each of the patches is characterized by a feature vector

r d n , n = 1 , . . . , N 

d , where N 

d is the number of patches of image d . A

group of dermatologists provided a set of global text labels for each

of the images w 

d 
m 

, m = 1 , . . . , M 

d , stating which are the M 

d colors of

the lesion d . The used notation is exemplified in Fig. 3 and see Fig. 2

for more examples of the color labels provided by experts. 

Our work has two main goals. The first one is to find a corre-

spondence between the patches and the medical text labels using a

probabilistic model, so that we can automatically reproduce the color

annotations for new images. Global colors labels allow an overall de-

scription of the lesion, which by itself could provide the dermatol-

ogists with sufficient medical information for a diagnosis. However,

for visualization and medical validation purposes we are also strongly

interested in being able to associate the global labels with specific re-

gions of the lesions. Thus, the selected probabilistic model must rep-

resent the data in such a way that it can associate the color labels

with specific image patches. In other words, the model must allow

the computation of the following probabilities: i) the distribution of

a label given a single patch p(w m 

| r n ), which is used to fulfill the task

of patch labeling; and ii) the distribution of a label given the entire

image/lesion p(w m 

| r ) that can be used to estimate the global color

labels. 

After performing the labeling process, our second goal is to use

the obtained color annotations to diagnose the lesion as melanoma or

benign. The best strategy for using these annotations to diagnose the

lesions is unknown. Thus it is necessary to define an approach that

converts the color annotations into descriptors suitable to be used by

a classification algorithm. 

2.3. Proposed framework 

Fig. 3 shows the training process of the proposed CAD system. The

training phase can be divided into three steps, as shown in the figure.

First, we estimate the parameters of a probabilistic model that relates

the patch features r d n with the text labels w 

d 
m 

using the D images of the
raining set. Then, we apply the estimated model to the training im-

ges and label their patches according to the most probable color (see

ig. 3 ). The global color labels are also obtained for each image during

his stage. The probabilistic model and its application to dermoscopy

mages are discussed in Sections 4 and 5 . Finally, we extract discrim-

native features from this color representation and use them to train

 classification algorithm to distinguish between benign and lesions.

he investigated features and classification approaches are discussed

n Section 6 . 

Fig. 4 shows an example of the application of the CAD system to

 new image. This is an example of the performance of the system in

he real world, where the only information that we have access to are

he image, its patches and collection of corresponding features r . The

nalysis of a new image is performed in a sequential way. First, we ap-

ly the previously estimated probabilistic model to obtain the patch

nd global image labels w , as exemplified in the figure. Finally, fea-

ures are extracted and the previously trained classification algorithm

s used to obtain a diagnosis. In the example, the lesion is diagnosed

s a melanoma. 

The main advantage of the proposed system is its ability to inter-

ct with the dermatologist, since it is performing a diagnosis relying

n a color description that is medically inspired. By trying to identify

elevant colors and showing the ones that are detected by the sys-

em, we are allowing the dermatologist to understand and validate

he suggested lesion diagnosis. Furthermore, its sequential frame-

ork is similar to the analysis performed by an expert: first look for

ermoscopic criteria (color) and then perform a diagnosis. These two

haracteristics of the proposed system make it valuable for the medi-

al community and make it significantly different from other systems

ound in the literature [15] . 

. Related work 

The automatic reproduction of the image labeling process per-

ormed by humans is the goal of image annotation algorithms.
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Fig. 3. Proposed framework: training step. Here r d is the collection of local features r d n for the d -th image and w 

d represents the corresponding global text labels. 
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owadays, there are significantly large image and video repositories

hat require image annotation algorithms to speed up the labeling

rocess. These annotations can then be used in tasks such as image

etrieval or recognition. One of the major challenges of image anno-

ation algorithms is that they have to be trained using weakly labeled
ata, i.e., they have image labels but no indication of the image re-

ions that are connected to each of the labels [37] . Recalling the pre-

ious section, it is possible to notice that the we have the same dif-

culty in this paper: we have access to medical text labels but the

orresponding segmentations are missing. Thus, it makes sense for
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Fig. 4. Proposed framework: test step. Here r is the collection of local features r n and w represents the corresponding global text labels. 
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us to see our color detection problem as an image annotation one,

and apply an annotation algorithm to solve it. 

Image annotation algorithms can be divided into two different

categories [38] . The first one can be seen as a supervised classifica-

tion approach, where a classifier is trained separately for each of the

possible labels. This leads to the application of several detection prob-

lems, whenever a new image is being annotated [37,38] . The super-

vised approach was used in the earliest works of image annotation

since it guaranteed that the obtained labels were optimal to be sub-

sequently used in an image retrieval or recognition method. However,

learning a separate classifier for each of the labels might not be prac-

tical if we have a significant number of possible labels and/or training

images. Furthermore, supervised annotation is less suitable for prob-

lems where multiple labels can be assigned to a single image, as is

the case of this work. 

An alternative is to use unsupervised learning [38] . The general

idea behind this type of approach is to introduce hidden variables

z that capture the probabilistic relationship between image patches

and text labels. Several algorithms have been proposed to perform

unsupervised image annotation (e.g., [35,37,39] ). Among these algo-

rithms, we would like to select one that is capable of not only pro-

viding annotations, but also of associating the obtained labels with

different image regions. This is important for medical validation pur-

poses, since it will allow the dermatologists to associate the produced

labels with regions of the lesions. An algorithm that fulfills this re-

quirement is a generative probabilistic model called Correspondence

Latent Derichlet Allocation (corr-LDA) [35] . This model assumes an

image generation process based on hidden variables z called topics,

which are also used to model the joint density between the differ-

ent image regions and the labels. Due to its probabilistic formulation,

corr-LDA also allows the computation of the conditional probabilities

p(w m 

| r n ) and p(w m 

| r ), defined in the previous section, which can be

used to perform image annotation and to obtain the desired medical

representation. Furthermore, the output of corr-LDA can be used to

characterize the lesions and obtain suitable feature vectors that can

be used to classify the lesions as melanoma or benign. 

Corr-LDA is an extension of another generative model called LDA

[40] , which was proposed for document retrieval and later used in

image related tasks (e.g., scene recognition [41] ). However, without

modifications, LDA is unsuitable for image annotation. The purpose

of LDA is to obtain a representation of the data based on the hidden
ariables that can be used for description and data classification. Its

riginal formulation does not allow the computation of the desired

onditional probabilities p(w m 

| r n ) and p(w m 

| r ). Variants of corr-LDA

an also be found in the literature (e.g., [42–44] ). These new versions

nclude additional information to improve the annotation process,

amely new observed variables are considered in the joint probabili-

ies. An example is the inclusion of a variable that identifies the class

f the image, e.g., the type of scenario: landscape, seashore, moun-

ain, etc [42] . In several annotation tasks it makes sense to define a

elationship between the class of the image and the obtained labels.

n our system we prefer not to enforce a relationship between colors

nd the class of the lesion (melanoma or benign), since the colors are

elated to different aspects, such as the skin layer where the lesion

riginated [1] . Furthermore, this allows us to separately address the

wo problems of this paper: i) obtain a medical representation of the

esion and ii) lesion classification. 

The new lesion characterization can then be used to train a clas-

ifier in order to obtain the decision rule: melanoma or benign. Color

etection in dermoscopy images has been addressed before. How-

ver, to the best of our knowledge this is the first work where an im-

ge annotation framework and corr-LDA are applied to this problem.

he same can be said for the identification of any other dermoscopic

riterion. 

. Correspondence Latent Dirichlet Allocation (corr-LDA) 

corr-LDA is a generative model that first creates the patch features

nd then generates the annotation words conditioned on the image

atches [35] , as shown in Fig. 5 (a). This figure depicts a simplified

ersion of the generative process, which can be summarized as fol-

ows. First, N 

d feature vectors r d n are generated to characterize each

f the image patches. This allows the creation of an image described

y r d = { r d 
1 
, . . . , r d 

N 
} . Each of the descriptors is generated conditioned

n a hidden variable (topic) z d n , where z d = { z d 
1 
, . . . , z d 

N 
} is the set of

opics that was used to obtain the image d . Finally, the global image

nnotations are obtained as follows. For each of the M 

d annotations,

ne of the image patches is selected and a corresponding annotation

 

d 
m 

is drawn conditioned on the topic that was used to generate the

atch descriptor. The selection of the image patch is performed using

 latent indexing variable y d m 

that takes values between 1 and N 

d . 
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Fig. 5. Graphical representations of: (a) simplified Corr-LDA, (b) complete Corr-LDA, and (c) LDA. Each of the boxes represents an image, a patch or a label replication. The filled 

circles represent the variables observed in the training set. 
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Each of the previous variables is generated using a parametric dis-

ribution. The full generative process and the parameters involved are

hown in Fig. 5 (b). For a set of D images the generative process can be

ummarized as follows [35] : 

1. For each image d , from a set of D images, sample a topic distribu-

tion θ ∼ Dirichlet( α). 

2. For each of the N image patches described by r n 
(a) Sample a topic z n ∼ Multinomial( θ ). 

(b) Sample a patch descriptor r n ∼ p ( r | z n , �) from a multivari-

ate Gaussian distribution conditioned on z n . 

3. For each of the M labels w m 

(a) Sample an indexing variable y m 

∼ Uniform (1 , . . . , N). 

(b) Sample an annotation w m 

∼ p(w | y m 

, z , β) from a multino-

mial distribution conditioned on the z y m topic. 

ere, α is the Dirichlet parameter and equals the number of topics

 K ). � is the set of parameters of one of the k = 1 , . . . , K multivariate

aussian distributions that characterize the image patches, and β is

he distribution of the possible labels over each of the k topics. These

re model parameters, while θ is an image specific parameter that

quals K and is sampled once per image. 

Fig. 5 (c) shows the graphical representation of the traditional

DA model. A comparison of this model with the one of Corr-LDA

 Fig. 5 (b)) shows that the latter applies LDA to obtain the image

atches. The main difference between the two methods is that Corr-

DA also includes a block that generates the annotations conditioned

n the selected topics. 

.1. Inference 

In order to use corr-LDA it is necessary to compute the posterior

istribution of the latent variables (θ, z , y ) given the observations

patch features and annotations) 

p(θ, z , y | w , r , α, β, �) = 

p(r , w , θ, z , y | α, β, �)

p(r , w | α, β, �)
. (1)

he joint distribution of image patches, annotations, and latent vari-

bles is obtained as follows 

p(r , w , θ, z , y | α, β, �) = p(θ | α)

( 

N ∏ 

n =1 

p(z n | θ)p(r n | z n , �)

) 

. 

( 

M ∏ 

m =1 

p(y m 

| N)p(w m 

| y m 

, z , β)

) 

, (2) 
here independence is assumed among the several image patches

nd the different annotations. The distribution p(r , w | α, β, �) is ob-

ained through the marginalization of p(r , w , θ, z , y | α, β, �) over the

atent variables. This distribution is intractable, which means that it

s not possible to obtain an exact computation of the posterior distri-

ution of the latent variables. Fortunately, this issue can be addressed

sing variational inference to approximate the posterior. 

Variational inference consists of applying Jensen’s Inequality to

btain a family of lower bounds of the log-likelihood. A simple way

o obtain the family of lower bounds is to define a factorized distri-

ution on the latent variables [35] 

(θ, z , y ) = q(θ | γ )

( 

N ∏ 

n =1 

q(z n | φn )

) 

. 

( 

M ∏ 

m =1 

q(y m 

| λm 

)

) 

, (3)

sing the variational parameters ( γ , φ, λ). Each of these parameters

s related to its respective latent variable, thus γ is a K -dimensional

irichlet parameter, φn are N K -dimensional multinomial parameters

nd λm 

are M N -dimensional multinomial parameters. 

The optimal values of the variational parameters are found by

inimizing the Kullback–Leibler (KL) divergence between the de-

ned factorized distribution and the true posterior. This enforces

 dependence on the data (r , w ). Minimizing the KL divergence is

quivalent to maximizing the lower bound obtained using Jensen’s

nequality as follows (refer to [40] for more details): 

og p(r , w | α, β, �) = log 

∫ 
θ

∑ 

z 

∑ 

y 

p(r , w , θ, z , y | α, β, �)d θ

= log 

∫ 
θ

∑ 

z 

∑ 

y 

p(r , w , θ, z , y | α, β, �)q(θ, z , y )

q(θ, z , y )
d θ

≥ E q [ log p(r , w , θ, z , y | α, β, �)] − E q [ log q(θ, z , y )] . (4) 

The right side of (4) is the lower bound of the log-likelihood:

 (γ , φ, λ;α, β, �). The distributions p(r , w , θ, z , y | α, β, �) and

(θ, z , y ) can be factorized, leading to the following factorization of

he lower bound 

 (γ , φ, λ;α, β, �) = E q [ log p(θ | α)] + E q [ log p(z | θ)] 

+ E q [ log p(r | z , �)] + E q [ log p(y | N)] 

+ E q [ log p(w | y , z , β)] − E q [ log q(θ | γ )] 

− E q [ log q(z | φ)] − E q [ log q(y | λ)] . (5) 

Each of the terms in (5) can be expanded into explicit func-

ions of the model ( α, β , �) and variational ( γ , φ, λ) parameters.

or completeness, the expanded version of each of the terms of

 (γ , φ, λ;α, β, �) is included in Appendix A . 
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The variational parameters can be obtained by taking the deriva-

tives of L (γ , φ, λ;α, β, �) with respect to each of them and setting

these derivatives to zero. This leads to an iterative process that is

repeated until the change in the KL divergence is negligible [35] . In

Section 5 we present the update equations for each of the variational

parameters. 

After obtaining an approximation for the posterior it is now pos-

sible to compute the conditional distributions of interest p(w | r n ) and

p(w | r ). The first probability can be used to perform the patch labeling

[35] 

p(w | r n ) ∝ 

∑ 

z n 

q(z n | φn )p(w | z n , β), (6)

while the second probability can be used to obtain the global labels

[35] 

p(w | r ) ∝ 

N ∑ 

n =1 

∑ 

z n 

q(z n | φn )p(w | z n , β). (7)

4.2. Parameter estimation 

Given a set of pairs images features/annotations ( r d , w 

d ), d =
1 , . . . , D, our goal is to obtain the maximum likelihood estimates of

the model parameters ( α, β , �). These estimates can be obtained us-

ing a variational Expectation-Maximization (EM) method that max-

imizes the aforementioned lower bound L (γ , φ, λ;α, β, �). More

specifically, this process consists of iteratively applying the following

two steps until convergence 

• E-Step: The variational parameters ( γ d , φd , λd ) are estimated for

each image in the dataset and the lower bound L (γ , φ, λ;α, β, �)
is computed, as described in Section 4.1 . 

• M-Step: The model parameters α, β , and � are estimated by

maximizing the lower bound L (γ , φ, λ;α, β, �) obtained in the

E-step. 

The update equations of the model parameters are obtained by

taking derivatives of L (γ , φ, λ;α, β, �) with respect to each of them

and then setting these derivatives to zero. In Section 5 we will show

the update equations in detail. 

5. Color detection using corr-LDA 

This section describes the application of corr-LDA to dermoscopy

images as well as some modifications introduced to the original

algorithm. 

5.1. Patch and feature extraction 

Before the application of corr-LDA it is necessary to divide the der-

moscopy images into several regions. Different approaches can be

used to achieve this task. In this work we apply an uniform grid to

divide the lesion into small non-overlapping square patches of size

12 × 12 pixels. This size was selected based on the average resolution

of the dermoscopy images (570 × 760) and on the results obtained in

previous works [12,26] . Furthermore, these are the dimensions that

allow us to identify small color regions in the lesions, without signif-

icantly increasing the computational running times. 

We are only interested in patches that contain the lesion, thus

patches containing less than 50% lesion pixels are discarded. The

identification of the lesion’s pixels is performed using a manual seg-

mentation, which allow us to separate the lesion from the healthy

skin. Ideally a CAD system should be fully automatic, meaning that

it should not require any interaction, such as manual segmentation,

from the user. Despite the large number of works on this topic, au-

tomatic border detection algorithms are far from perfection [45–47] .

Incorrect segmentations can negatively influence the color detection
rocess and hamper a proper estimation of the color detection model

nd lesion classification algorithms [4 8,4 9] . Thus, it is preferable to

se manual segmentations in the learning stage and only incorporate

n automatic segmentation method in a final version of the system,

here its influence is mitigated, as has been shown in [49] . 

Each of the patches is characterized using the mean color vector

n the HSV color space. Although RGB is the original color space of

ermoscopy images, we prefer to use HSV because this color space

erforms a description of color similar to the human visual system.

urthermore, this color space has been shown to perform well in dif-

erent dermoscopy image problems [12,26] . The uniform color space

IE L ∗a ∗b ∗ was tested as well. However, it performed poorly for the

ark brown, black, and white colors. This same limitation of L ∗a ∗b ∗

ad been noted before, in a previous color detection work [26] . The

et of mean color vectors that characterize the patches corresponds

o the set r = { r 1 , . . . , r N } defined in the previous section. 

.2. Medical color annotations 

The annotations provided by the dermatologists are strings. In or-

er to simplify this information and make it usable for a computer,

e have changed the format of the annotations. The annotation vec-

or w is assumed to be a binary vector of length M = 6 (same as the

umber of colors [5] ) where w m 

= 1 if the m -th color is present and

 otherwise. 

.3. Training and testing of corr-LDA 

The application of corr-LDA to dermoscopy images can be divided

nto two phases: training and testing. 

Training: We use a set of D annotated images to estimate the

odel parameters ( α, β , �) as described in Section 4.2 . 

Testing: The annotation of new images is performed as follows.

irst we apply the E-step to each of the images in order to determine

heir corresponding variational parameters. Then we use (6) to label

ach image patch according to each of the six possible colors (blue-

ray, dark brown, light brown, white, red, or black). 

Our strategy to obtain the global labels is different from the one

escribe in [35] . Corr-LDA and other annotation algorithms are usu-

lly trained using a large dictionary of possible text labels (these dic-

ionaries can contain more than 10k words). However, it is assumed

hat each training image is only associated with a very small set of

ll the possible text labels. During the annotation of a new image

test phase), the possible labels of the dictionary are sorted accord-

ng to their conditional probabilities p(w | r ) (computed using (7) ).

his means that labels with higher probabilities will come first and

he labels with lower probabilities will be the last ones. Then, a fixed

umber of these sorted annotations is selected per image (e.g., in [35]

hey select 4 words per image) and are set as the global labels. This

estricts the number of possible annotations that can be associated

ith an image. Finally, these global labels are compared with the ones

rovided by human users and the corresponding performance met-

ics are computed. 

The problem addressed in this work is slightly different because

e have a dictionary of only six words and there is no restriction re-

arding the number of colors that can be found in the lesions. We can

nd just one color but we can also find all of the six colors in a single

esion. Thus, the approach described in the previous paragraph could

ot be applied to our problem and it was necessary to adopt an alter-

ative strategy based on the number of patches per color that could

e found in the lesion. In our simplified method, an image is labeled

ith a certain color if the same label was assigned to at least three

atches of image during the patch labeling step. 
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.4. Inclusion of the von-Mises distribution 

The HSV color space represents the colors in terms of their (H)ue,

S)atu-ration, and (V)alue. This is a mixture of angular (H) and linear

S and V) information. The original formulation of corr-LDA consid-

rs that the patch features are modeled using multivariate Gaussian

istributions. This representation is not appropriate in the case of the

 channel, since this is a periodic angular measure. Therefore, it is

ecessary to find an alternative distribution that is more suitable for

ur kind of data. In our approach, we use a von-Mises distribution

o model the content of the H channel, while S and V channels are

odeled using a multivariate Gaussian, as before. We have selected

 von-Mises distribution to represent the H channel because this is a

eriodic distribution that has been used before to represent this an-

ular information [50] . 

Assuming independence between H and the other channels, it is

ossible to obtain the following distribution 

p(r n | z n , �) = ν(H n | z n , τ, ε) . G(S n ,V n | z n , μ, �), (8)

here G is the 2-dimensional Gaussian and ν is a von-Mises

istribution 

(H n | z n , τ, ε ) = 

1 

2 π I 0 (ε )
e ε cos (H n −τ) , (9)

here the normalization factor I 0 is the modified zero-order Bessel

unction of the first kind and ε ≥ 0 denotes the concentration of the

istribution around the mean τ . 

The new distribution of p(r n | z n , �), � = (μ, �, τ, ε) is used to

efine the update equations of the variational and model parame-

ers. The update equations of the parameters were obtained by taking

erivatives of L (γ , φ, λ;α, β, �) (see Appendix A ) and setting them

o zero (refer to [35,40] for details on the derivatives). Below are the

quations obtained. The equations are divided according to their cor-

esponding step of the variational EM-algorithm and are sorted by

rder of computation. 

• E-step (performed for any lesion d during train or test) 

φd 
nk ∝ p(r d n | z n = k, τ, ε, θ, �) exp { E q [ log q(θk | γ d )] } . 

. exp 

{ 

M=6 ∑ 

m =1 

λd 
mn log p(w 

d 
m 

| y m 

= n, z m 

= i, β)

} 

, (10) 

λd 
mn ∝ exp 

{ 

K ∑ 

k =1 

φd 
nk log p(w 

d 
m 

| y m 

= n, z m 

= i, β)

} 

, (11) 

γ d 
k = αk + 

N d ∑ 

n =1 

φd 
nk , (12) 

It is necessary to perform an initialization of the variational pa-

rameters. This is performed as proposed in [35,40] . 
• M-step (performed using the training set of size D ) 

μk = 

∑ D 
d=1 

∑ N d 
n =1 

φd 
nk 

[ S,V ] d n ∑ D 
d=1 

∑ N d 
n =1 

φd 
nk 

, (13) 

τk = tan 

−1 

( ∑ D 
d=1 

∑ N d 
n =1 

φd 
nk 

sin H 

d 
n ∑ D 

d=1 

∑ N d 
n =1 

φd 
nk 

cos H 

d 
n 

)
, (14) 

�k = 

∑ D 
d=1 

∑ N d 
n =1 

φd 
nk 

([ S,V ] d n − μk )([ S,V ] d n − μk )
T ∑ D 

d=1 

∑ N d 
n =1 

φd 
nk 

. (15) 

An analytical computation of the parameter ε k is not possible. Dif-

ferent approximations have been proposed to tackle this issue. In

this work we use the approach described in [51] , which makes use
of Newton–Raphson’s method to obtain an approximation. This

method requires a few iterations t of the following equation: 

ε t k = ε t−1 
k 

− A(ε t−1 
k 

) − R 

1 − A(ε t−1 
k 

)
, (16) 

where 

A(ε t−1 
k 

) = 

I 1 (ε 
t−1 
k 

)

I 0 (ε 
t−1 
k 

)
, (17) 

and the variable R is computed as follows 

R = 

∑ D 
d=1 

∑ N d 
n =1 

φd 
nk 

cos ([ H ] d n − τk )∑ D 
d=1 

∑ N d 
n =1 

φd 
nk 

. (18) 

In the first iteration ε 0 
k 

is set as follows [51] 

ε 0 k = 

R − R 

3 

1 − R 

2 
. (19) 

We perform the update equation until convergence is reached. 

The next parameter to be estimated is β that relates the color

labels with the topics k 

βkm 

∝ 

D ∑ 

d=1 

w 

d 
m 

N d ∑ 

n =1 

φd 
nk λ

d 
mn . (20) 

The Dirichlet parameter α is updated. An exact computation of

this parameter not possible, thus Blei and Jordan make use of

Newton–Raphson’s method [40] to obtain an update equation.

Please refer to [40] for details. 

Fig. 6 shows two examples of the performance of the proposed

on-Mises Gaussian formulation against the traditional formulation

hat uses a multivariate Gaussian. These examples clearly demon-

trate that the proposed formulation outperforms the traditional one,

endering better results and more consistent color regions. 

. Lesion diagnosis 

corr-LDA allows us to obtain local (patch) and global (image) color

abels for the lesions. Our second goal is to use this medical color in-

ormation to diagnose the lesions as melanoma or benign. To achieve

his goal it is necessary to convert the color annotations to an appro-

riate description that can be used by machine learning algorithms.

ince we do not know the optimal way to describe the lesions, we

nvestigate four different strategies: 

• Number of Colors (i): This is the simplest and most clinically ori-

ented description. We simply count the number of global labels

(colors) that are obtained for a given lesion and use this number

to characterize the lesion. 
• Present/Absent Colors (ii): Instead of counting the number of col-

ors, we can describe the lesion stating which are the colors that

are present or absent. We represent the lesion by a feature vector

c d of length 6, where c d m 

is equal to 1 if the m th color is present

and 0 otherwise. The reader might identify this description as the

same one that we use to represent the medical color annotations

during the train of corr-LDA. 
• Distribution of Color Annotations (iii): Another possibility is to

describe the images using the conditional distribution p(w | r ),
which provides an approximation of the distribution of each color

in a given lesion. We represent each lesion by a feature vector c d of

size 6, where c d m 

= p(w m 

| r d ) and m identifies one of the six colors.
• Number of Patches per Topics (iv): Recalling (12) it is possible to see

that each of the variational parameters γ d 
k 

corresponds to approx-

imately to the k th model parameter αk plus the expected number

of patch features that were generated by the k th topic. This means
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Fig. 6. Original image and medical labels (left), output of corr-LDA using a multivariate Gaussian (mid), and output of corr-LDA using a von Mises-Gaussian (right). 
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that if we subtract the model parameter α from a variational pa-

rameter γ d of a given image, we will obtain the expected number

of patches that was generated by each of the topics. The number

of patches per topic can also be used to characterize the lesions,

as proposed in [40] . The feature vector c d obtained in this case has

the same length as the number of topics and c d 
k 

= αk − γ d 
k 

. 

Each of the aforementioned descriptors is used to classify the le-

sions as melanoma or benign. The classification method based on fea-

ture (i) is the simplest one. We classify the lesion as melanoma if the

number of annotations/colors is higher than 3. This threshold is de-

fined based on the findings of MacKie et al. [52] and has been previ-

ously used in the color-based system proposed by Seidenari et al. [24] .

The diagnosis based on the remaining descriptors requires the use of

a classification algorithm. This means that we have to train a classi-

fier using a training set of images previously diagnosed by an expert.

Then, the obtained classification rule is used to classify new lesions

as melanoma or benign. Four classification algorithms are considered

in this work: AdaBoost, Support Vector Machines (SVM), k-Nearest

Neighbor (kNN), and Random Forests. 

7. Experimental setup 

This section describes the experimental setup used to train and

evaluate the different parts of the CAD system, namely color detec-

tion using corr-LDA and lesion diagnosis (recall Fig. 3 ). 

7.1. Dataset and performance metrics 

The experiments were performed using a dataset of 482 der-

moscopy images (50% melanomas) randomly selected from the com-

mercial database EDRA [1] . This is a multi-source database that con-

tains dermoscopy images from three different universities hospitals:

University Federico II of Naples (Italy), University of Graz (Austria),

and University of Florence (Italy). Each of the lesions has been ana-

lyzed by a group of experienced dermatologists, who provided sev-

eral annotations regarding the presence or absence of clinically rele-

vant structures as well as a diagnosis. The same dataset of 482 images

has been used in previous works of lesion diagnosis, namely [53] ,

which allows us to have a fair comparison between approaches. 
Color labels were provided according to the ABCD rule [1] , which

eans that we had information about the presence/absence of six

linically relevant colors (dark and light browns, blue-gray, black, red,

nd white). The ABCD rule can only be applied when the lesion is fully

ontained within the image. Unfortunately not all the images in our

ataset complied with this constraint, thus we had color annotations

or 344 out of the 482 images. In order to tackle this issue, we used the

educed set to train and evaluate the color detection method based

n corr-LDA while the full set was used to train and test the lesion

iagnosis block. 

All of the images were pre-processed in order to remove acquisi-

ion artifacts and skin hair as described in [19] and their colors were

ormalized as proposed in [53] . Color normalization has been shown

o improve the task of color detection in previous works [54] . In order

o separate the lesions from healthy skin we have performed manual

egmentations. 

To evaluate the performance of the color detection strategy we

omputed two metrics for each color: Precision and Recall, defined as

ollows 

recision = 

# I rel ∩ # I ret 

# I ret 
, (21)

ecall = 

# I rel ∩ # I ret 

# I rel 

. (22)

here # I rel is the number of images that was annotated with a cer-

ain color by the experts and # I ret is the number of images that was

nnotated with the same color by the probabilistic model. 

The performance of lesion diagnosis is evaluated using the met-

ics Sensitivity and Specificity. Sensitivity is the percentage of cor-

ectly diagnosed melanomas and Specificity stands for the percent-

ge of correctly classified benign lesions. The aforementioned metrics

ere computed using a 10-fold cross validation approach in which

he dataset is divided into ten subsets, each with approximately the

ame number of melanomas and benign lesions. Nine folds were used

or training the classifier and the remaining one was used for testing.

he results correspond to the average performance on the ten test

olds. We used the same folds to train and test the color detection

nd lesion diagnosis blocks. Therefore, ensured that the reduced set

f 344 images was fairly split among the 10 folds, such that we had

nough images for train and test each time. 
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Fig. 7. Original image medical labels (left) and output of corr-LDA (right) . 
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.2. Training of the color detection block 

The training of corr-LDA corresponds to finding the optimal set

f model parameters ( α, β , �) using annotated images. This process

s described in Section 5 . The only variable that can be tuned by the

ser is the number of topics K considered in the generative process.

n this work we have searched for the best number of topics in the set

 = { 50 , 75 , . . . , 300 } . 

.3. Training of the lesion classification block 

In Section 6 we described different features that can be extracted

rom the medical color representation obtained with corr-LDA. Since

e do not know which is the best feature, we evaluated each of them

eparately. This means that we tested four diagnosis systems, each

eveloped using a different feature. 

Features (ii), (iii), and (iv) require the learning of a classification

ule. We investigated three classifiers in our work: AdaBoost, SVM,

nd kNN. Each of these classifiers requires the tuning of at least one

arameter. In the case of AdaBoost we have set the number of weak

lassifiers W ∈ { 1 , 2 , . . . , 150 } , for kNN we set the number of neigh-

ors p ∈ { 1 , 3 , . . . , 25 } , and in the case of Random Forests we defined

he number of trees T ∈ { 1 , 2 , . . . , 50 } . SVM requires the tuning of a

arger number of parameters. We studied two kernels in this work:
adial Basis Function (RBF) and polynomial. According to this choice

f kernels, we tuned the following parameters: the width of the RGB

ernel ρ ∈ { 2 −6 , 2 −5 , . . . , 2 6 } , the degree of the polynomial kernel

 ∈ { 1 , 2 , . . . , 5 } and the cost C ∈ { 2 −5 , 2 −4 , . . . , 2 5 } given to the soft

argin (tuned for both kernels). 

We have also combined the four types of features into a single fea-

ure vector in order to determine if the results could be improved by

ombining the different features. A feature selection method was ap-

lied to check if there was a subset of the different features that was

ore informative than using the entire feature vector. We tuned the

umber of selected features to range from 1 to the length of the orig-

nal feature vector. The used feature selection strategy was Mutual

nformation with the max-dependency criterion [55] . 

. Results and discussion 

.1. Color detection 

Fig. 7 shows some examples of the output of the color detection

lock as well as the ground truth labels provided by the experts. The

erformance of color detection is shown in Table 1 . This table shows

he scores obtained for each color as well as the average performance

f the probabilistic model. The best results were obtained with a con-

guration of K = 150 topics. 
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Table 1 

Color detection results. 

#Images Precision Recall 

Blue-gray 226 87.6% 94.2% 

Dark-brown 303 95.7% 95.7% 

Light-brown 247 89.1% 92.7% 

Black 179 81.5% 88.8% 

Red 31 79.3% 74.2% 

White 15 63.6% 93.3% 

Average – 83.8% 89.8% 

Table 2 

Comparison of color detection methods. In bold we highlight the best 

results. 

Proposed method Gaussian mixtures [26,54] 

Precision Recall Precision Recall 

Blue-gray 87.6% 94.2% 86.5% 92.2% 

Dark-brown 95.7% 95.7% 98.3% 76.4% 

Light-brown 89.1% 92.7% 97.0% 81.0% 

Black 81.5% 88.8% 90.9% 67.0% 

Red 79.3% 74.2% - - 

White 63.6% 93.3% 42.1% 85.7% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Best configuration – feature and classifier. 

Classifier/Parameters 

Feature AdaBoost SVM kNN Random forests 

(iv) W = 145 RBF kernel, C = 2 2 , ρ = 2 2 k = 13 T = 48 

All W = 60 RBF kernel, C = 2 5 , ρ = 2 5 k = 61 T = 29 
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corr-LDA performs well, achieving good average detection scores.

It is possible to obtain a good probabilistic model for the Dark and

Light-Brown colors, Blue-Gray, and Black. However, the model does

not perform so well for the red and white colors. The different per-

formances can be justified by the number of examples that we have

for each color. There is a large number of images where the Dark and

Light Brown and the Blue-Gray colors are represented, and for each

of this colors corr-LDA shows a good performance. In the case of the

Black color, the results are still good, but slightly worse than for the

three previous colors. The number of images that contains this color

is smaller than in the previous cases. Finally, let us inspect the red

and white colors. For each of these colors, the number of examples is

very small. Red and white are the colors that are more difficult to find

in skin lesions, mainly because they are associated with malignant

lesions [1] and images from melanomas are more difficult to obtain. 

Despite the different performances for each color, it is important

to keep in mind that the detection of colors in skin lesions is a chal-

lenging task, especially if one is only using text labels and does not

have segmentation examples of each of the colors. 

Table 2 compares the performance of the method described in this

paper with the one proposed in [26] . This method uses a set of Gaus-

sian mixtures to model the colors. The Gaussian mixtures that rep-

resent each color were estimated using color segmentations from a

set of 27 images, obtained from the publicly available PH 

2 dataset

[56] . We applied each of the mixtures to our images, in order to

identify the colors that were present. Although the mixtures were

trained using the PH 

2 dataset, they can still be applied to images from

other datasets as shown in [54] . This work reports the importance of

color normalization and how it can be used to successfully improve

the analysis of dermoscopy images in different tasks for single and
Table 3 

Lesion diagnosis results. In bold we highlight the best resu

Threshold AdaBoost SVM 

Feature SE SP SE SP SE 

(i) 54.8% 83.8% – – –

(ii) – – 67.7% 73.0% 65.6%

(iii) – – 60.2% 63.4% 76.3%

(iv) – – 70.9% 70.1% 77.6% 

All – – 74.3% 73.8% 75.1%
ulti-source datasets, as is the case of EDRA. Color detection using

he method described in [26] was one of the investigated tasks. Here

e report the results obtained in [54] , since we are using exactly the

ame subset of EDRA images for color detection. Unfortunately, as re-

orted in [26] , the number of color segmentations was small and it

as not possible to model the red color due to lack of training exam-

les. Nonetheless, it is still possible to compare the performance of

he two methods for the remaining colors. 

Both color detection methods perform well for most of the colors.

t is easy to notice that the proposed method outperforms [26] for the

hite color. Moreover, it seems to achieve a better recall score for all

f the colors. The method described in [26] achieves a better preci-

ion score for three of the colors. Nonetheless, the precision scores

btained with the approach described in this paper are also high and

romising, especially if one considers that in this work we are trying

o identify colors using only text labels as training data. 

We believe that Corr-LDA can also be applied in the detection of

ther relevant dermoscopic features such as blue-whitish veil and re-

ression areas [1] . This can help us improve the developed clinically

riented CAD system, since color is not the only criteria considered

y dermatologists in their diagnosis. Hence one of our future goals

s to extend this methodology to the detection of other dermoscopic

tructures. 

.2. Lesion classification 

Table 3 shows the classification scores obtained using each of

he features described in Section 6 and their combination (labeled

s “All”, last row). These results show that each feature performs

ifferently and that some of them are more appropriate to iden-

ify melanomas than others. The investigated features were com-

uted over the output of the best corr-LDA model (number of top-

cs K = 150 ). Table 4 shows the best configuration: feature and clas-

ifier (refer to Section 7 for a definition of each of the classifier’s

arameters). 

The number of colors (feature (i)) was based on the findings of

acKie et al. [52] . They found that the presence of more than 3 colors

as a sign of malignancy, obtaining an SE = 92% and an SP = 51% on

heir experiments. Applying the same strategy to our database lead

o different results, with a significantly lower SE (54.8%) an higher SP

83.8%). Similar observations were made by Seidenari et al. [24] , dur-

ng the development of their color-based CAD system. In their work,

hey also used the number of colors to classify the skin lesions and

he scores were an SE = 69.9% and SP = 85.8%. The differences be-

ween our scores and the ones reported in the literature can be re-

ated to the dataset used or with different performances of the color

etection method (in the case of [24] ). 
lts. 

kNN Random forests 

SP SE SP SE SP 

– – – – –

 73.4% 44.8% 86.7% 64.8% 75.9% 

 50.1% 63.5% 57.6% 61.5% 57.2% 

57.2% 55.6% 79.7% 76.3% 70.5% 

 77.5% 70.5% 78.0% 77.6% 73.0% 
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Table 5 

Comparison of the proposed approach with related works. 

Method SE SP 

[24] 69.9% 85.8% 

[27] 61.6% 75.8% 

Proposed – Feature (iv) 76.3% 70.5% 

Proposed – All 74.3% / 75.1% / 77.6% 73.8% / 77.5% / 73.0% 
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Assessing the colors that can be found in the lesion (feature (ii))

eads to better SP scores than SE. Feature (iii), which corresponds to

he distribution p(w | r ), do not allow a good discrimination between

he melanoma and benign classes. 

The best classification results are obtained using feature (iv), i.e.,

he number of regions per topic. Both AdaBoost and Random Forests

btain interesting classification results, more specifically we achieve

he best classification results using Random Forests (SE = 76.3% and

P = 70.5%). Despite being the less clinically inspired feature, it still

ncorporates medical knowledge, since it is possible to associate each

f the topics with the colors through the model parameter β (recall

ection 4 ). 

The last row of Table 3 shows the performance of the classifiers af-

er combining all the features and performing feature selection. The

eature vector had a length of 163 features (recall Section 6 for in-

ormation on the dimensions of each type of feature), from which we

elected a subset of the S most informative features. This combination

ead to a small improvement in the performance of Random Forests

nd AdaBoost. This was expected because these two algorithms be-

ong to the family of boosting algorithms, which means that they are

lready capable of selecting the most relevant features to obtain the

est classification results. On the other hand, the performance of SVM

nd kNN is degraded for high dimensional spaces (curse of dimen-

ionality) and these classifiers are not capable of selecting the best

eatures. Thus, as expected, feature fusion and selection significantly

mproves the performance of these classifiers. 

The achieved results are comparable to those obtained in a previ-

us work using exactly the same dataset [53] : SE = 73.9%, SP = 80.1%

nd a Bag-of-Features (BoF) framework with HSV color histograms.

his shows us that it is possible to develop clinically oriented ap-

roaches, where medical representations of the lesions are used, and

till obtain performances similar to those of traditional pattern recog-

ition strategies. 

A direct comparison with other related works is not possible due

o the different datasets used. Nonetheless, we can still check if our

esults lead to similar conclusions. Table 5 shows the comparison

etween our method and two related works that can be found in

he literature. Seidenari et al. [24] report scores of SE = 69.9% and

P = 85.8% on calibrated image data, while Celebi and Zornberg [27]

eport SE = 61.6% SP = 75.8% on uncalibrated image data. The SE

cores obtained in our work are higher than the ones reported in

hese works. On the other hand, our SP scores are lower than the one

eported in [24] and similar to the one reported in [27] . Overall, our

ethod obtains a better trade-off between SE and SP. 

Although the achieved results are promising, the developed sys-

em cannot be used in clinical practice yet. A diagnosis is performed

ased on more criteria besides color and basing the decision solely

n this criterion could lead to an incorrect diagnosis. In future work

e would like to extend our corr-LDA model to other relevant dermo-

copic structures and use that information to obtain a more reliable

AD system and improve the classification results. 

. Conclusions 

This work describes a clinically oriented CAD system where

he diagnosis of the skin lesions is performed based on a medical

olor description. The proposed system comprises two main tasks:
) detection of relevant colors using a probabilistic model and ii) di-

gnosis of lesions using the obtained color information. The system

as trained and tested on a dataset of 482 dermoscopy images. 

Our main challenge was to learn a probabilistic model using

eakly annotated dermoscopy images, i.e., we knew the color labels

f each image but did not know the location of each of the colors

n the lesion. We addressed this issue using the Correspondence La-

ent Dirichlet Allocation (corr-LDA) algorithm to obtain a probabilistic

odel that relates text labels and image features. This allowed us to

imultaneously obtain global image labels and individually annotate

mage patches. Due to the type of image features used (mean color in

he HSV space), it was necessary to modify the original formulation of

orr-LDA in order to incorporate a von-Misses-Gaussian distribution.

his distribution was more suitable to describe the data. The results

ere promising, with the following average scores for color detec-

ion: Precision = 83.8% and Recall = 89.8%. 

We have also addressed the problem of lesion classification us-

ng the extracted medical information. Four different strategies were

tudied in order to determine which is the best way to use the color

nformation to classify the lesions. Our results showed that one of

he strategies outperformed the remaining, leading to a diagnostic

ensitivity of 76.3% and a Specificity of 70.5% using Random Forests.

ombining the four types of features allowed us to achieve the best

lassification results, with a Sensitivity of 77.6% and a Specificity of

3.0% using Random Forests and a Sensitivity of 75.1% and Specificity

f 77.5% using SVM. 

In the future we would like to extend our model to other clinically

elevant dermoscopic criteria in order to obtain a more robust and

eliable system. 
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ppendix A. Expanded lower bound L (γ, φ, λ;α, β, �)

Here we show the expanded version of every term in (5) , such

hat we obtain a lower bound L (γ , φ, λ;α, β, �) as a function of the

odel ( α, β , �) and variational ( γ , φ, λ) parameters. We do not show

ow to expand each of the terms, so for details on these derivations

lease refer to [35,40] . 

 q [ log p(θ | α)] = log �

( 

K ∑ 

k =1 

αk 

) 

−
K ∑ 

k =1 

log �(αk )

+ 

K ∑ 

k =1 

(αk − 1 )

( 

�(γk ) − �

( 

K ∑ 

j=1 

γ j 

) ) 

, (A.1) 

here �(.) is the gamma function and �(.) is the digamma function,

.e., the first derivative of the gamma function. 

 q [ log p(z | θ)] = 

N ∑ 

n =1 

K ∑ 

k =1 

( 

�(γk ) − �

( 

K ∑ 

j=1 

γ j 

) ) 

φnk . (A.2)

 q [ log p(r | z , �)] = 

N ∑ 

n =1 

K ∑ 

k =1 

φnk log p(r n | z n = k, �). (A.3)

 q [ log p(y | N)] = C , (A.4)

here C is a constant. 

 q [ log p(w | y , z , β)] = 

M ∑ 

m =1 

N ∑ 

n =1 

K ∑ 

k =1 

λmn φnk log 

p(w m 

| y m 

= n, z n = k, β). (A.5) 
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E q [ log q(θ | γ )] = log �

( 

K ∑ 

k =1 

γk 

) 

−
K ∑ 

k =1 

log �(γk )

+ 

K ∑ 

k =1 

(αk − 1 )

( 

�(γk ) − �

( 

K ∑ 

j=1 

γ j 

) ) 

. (A.6)

E q [ log q(z | φ)] = 

N ∑ 

n =1 

K ∑ 

k =1 

φnk log φnk . (A.7)

E q [ log q(y | λ)] = 

M ∑ 

m =1 

N ∑ 

n =1 

λmn log λmn . (A.8)
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