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Abstract—Stereo confidence measures are important functions for global reconstruction methods and some applications of stereo. In

this article we evaluate and compare several models of confidence which are defined at the whole disparity range. We propose a new

stereo confidence measure to which we call the Histogram Sensor Model (HSM), and show how it is one of the best performing

functions overall. We also introduce, for parametric models, a systematic method for estimating their parameters which is shown to

lead to better performance when compared to parameters as computed in previous literature. All models were evaluated when applied

to two different cost functions at different window sizes and model parameters. Contrary to previous stereo confidence measure

benchmark literature, we evaluate the models with criteria important not only to winner-take-all stereo, but also to global applications.

To this end, we evaluate the models on a real-world application using a recent formulation of 3D reconstruction through occupancy

grids which integrates stereo confidence at all disparities. We obtain and discuss our results on both indoors’ and outdoors’ publicly

available datasets.

Index Terms—Stereo vision, stereo matching, confidence, uncertainty, 3D reconstruction, occupancy grids
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1 INTRODUCTION

MODELING stereo matching’s uncertainty is of high
interest to stereo vision applications. How much con-

fidence is to be given to a certain stereo match should be
established by the right functions so that global [1], [2], [3],
fusion [4], [5], [6] and progressive methods [7] are reliable.
Traditionally, pixel matching costs have been used for this
purpose, but it has been shown that these do not model
uncertainty correctly [8]. Confidence measures of stereo are
functions of stereo cost that attempt to better model match
uncertainty and consequently increase performance of ste-
reo methods. Some comparisons have been published on
stereo confidence measures [8], [9] for use with winner-
take-all (WTA) strategies, where only the highest-confi-
dence estimates are considered and evaluated. However,
evaluation of functions providing a confidence measure to
each disparity of the disparity range is of high interest to
global methods and certain global 3D reconstruction frame-
works which fuse stereo information over time [4], [6].

Furthermore, performance of these functions will change
depending on the choice of parameters and care should be
taken to correctly estimate these before evaluation. Evalua-
tion and proposal of confidence measures and their parame-
ters, in terms of impact to performance of global methods,
will be the focus of this article. Evaluation will be made not
only on a WTA stereo paradigm, but also on the recently
proposed ”Cost-Curve Occupancy Grid” method [6] which
fuses stereo measurements over time using the whole dis-
parity range.

The contributions of this article are 1) A comparison of a
set of models that provide a confidence measure for stereo
at the whole disparity range in indoors and outdoors data-
sets, and an analysis of the influence of model parameters
when they exist; 2) An automatic method to compute model
parameters from a stereo pair without ground-truth (GT)
data, based on maximum likelihood (ML) ; 3) A new model,
the Histogram Sensor Model (HSM), which we show to be
one of the best performing; 4) A comparison of the confi-
dence models on a real-world application—mapping of an
outdoors scenario for autonomous driving. For this purpose
we use an existing global occupancy grid method that inte-
grates confidence measures at all disparities along time.
Relation between results of contribution 1 and occupancy
grid performance is discussed.

The structure of the article is as follows. We introduce,
under a common notation, three existing and one new ste-
reo confidence measures in Section 2. We then propose a
method for parameter estimation of the parametric models
in Section 3. We go on to briefly introduce the occupancy
grid method (Section 4) and analyze the performance of the
models and parameter choices in Sections 5 and 6. Conclu-
sions are summarized in Section 7.
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1.1 Background

Traditionally, uncertainty of stereo matches has been
modeled by cost-functions of pixel neighborhoods, or
windows. The cost function computes the cost of match-
ing a pair of pixels between images and assumptions
regard to noise distributions, continuity and local smooth-
ness. Common cost functions include Sum of Squared
Differences (SSD), Sum of Absolute Differences (SAD)
and different variants of Correlation. Other more elabo-
rate cost functions have been proposed, some of which
can be implemented as a filter to the images followed by
one of the previously mentioned costs [10]. For a thor-
ough comparison of cost functions refer to [10].

Based on these cost functions several models of stereo
uncertainty, or confidence measures, have been proposed
since the late 1980s. Some of them assume a winner-take-all
approach, refining a disparity estimate around the least cost
disparity, others take all costs into consideration. Models
targeting WTA stereo are usually only defined at the high-
est-confidence (i.e., lowest-cost) match and do not provide
confidence measures on the rest of the disparity range.
Examples include left-right consistency checks, uniqueness
or curvature tests (how much the highest-confidence is
higher than others), texture thresholds, among others. Some
of these WTA confidence measures were recently reviewed
in [8], [9]. Other confidence measures include statistical
models that compute a variance of the disparity estimate.
Some models do so by polynomial fitting [11], others by
modeling disparity and texture fluctuation inside windows
[12], or even by directly computing the variance of WTA
disparity between different window sizes [13].

Global methods, however, usually require a likelihood
function over disparity to be propagated in order to
obtain a final 3D reconstruction. This asks for confidence
measures that are defined along the whole disparity
range and that model the confidence on each stereo match
hypothesis in a reliable way. Specifically, it is not only
important that the highest-confidence disparity is of high
accuracy but also that when this estimate is wrong, a
high confidence is still attributed to the true disparity.
Fig. 1 shows an example of a good confidence function,
or confidence measure, in these terms.A few stereo confi-
dence measures have been proposed that are defined at
all disparities within the disparity range, although they
are only evaluated at WTA disparity in recent bench-
marks [8]. For example, in [14], Matthies and Okutomi
assume normally distributed image noise and model the
probability of the measured pixel differences inside a
window according to that model. Sun et al. use a pixel-
wise likelihood function [1] in a global stereo method,
propagating these likelihoods to neighboring pixels in a
Markov Random Field formulation of stereo. The cost
falunction used was the pixel dissimilarity function pro-
posed by Birchfield and Tomasi in [15], chosen for its
invariance to image sampling. Also, Mordohai recently
proposed the SAMM measure [16] which computes a con-
fidence for each disparity based on the correlation
between the left-right stereo cost curve and the self-
matching (i.e., left-left) cost curve. No explicit probability
distribution assumptions are made. Although promising,
the function scores poorly for large support windows

when used with SAD costs [16]. Merrell et al. [5] assumes
costs to be normally distributed with mean equal to the
best cost value and is also evaluated in [8].

Researchers have recently benchmarked several of these
stereo confidence measures [8], [9], [17], [18]. Such bench-
marks typically compare different methods for detection of
correspondence errors [9], [17]; or evaluate whether stereo
confidence measures can accurately rank matches on a
WTA scenario [8], [9]. The latter make use of receiver oper-
ating characteristic (ROC) curves for the evaluation, which
have been frequently used in the stereo community [16],
[19]. ROC curves are obtained by plotting the error-rate of a
WTA strategy from the highest confidence matches, for dif-
ferent confidence thresholds. Using ROCs as the compari-
son criterion, a notable contribution to the state of the art of
stereo confidence measures was made by Hu and Mordohai
[8]. In that article the authors analyze 17 different confi-
dence functions both in terms of detection of correct WTA
matches, occlusions and performance on discontinuities.
Nevertheless, the influence of parameter choice on the per-
formance of parametric functions was not discussed. We
studied this problem and present our results in this article
as well, concluding that indeed parameter choice drastically
influences performance both in WTA stereo and global
methods. Finally, these recent benchmarks were conducted
mostly for confidence measures defined only at WTA dis-
parity. Even when measures were well defined across the
whole disparity range, evaluation was only made on WTA
disparity. Such evaluations are hence useful for WTA meth-
ods but less so for global methods which integrate the infor-
mation at all disparities, such as those targeted in this
article. They leave out possible global and semi-global ste-
reo approaches using multiple disparity hypotheses [1], [2],
[3], [6], [19], [20].

Although WTA approaches to stereo are frequently pre-
ferred due to their higher computational speed, they are
more susceptible to problems with occlusions, discontinu-
ities, noise and lack of texture. Such problems can be avoided
by discarding matches that could have happened by chance
(a contrario models [21]), or that are ambiguous given the
confidence measure (e.g. confidently stable matching [22],
training of confidence thresholds from ground-truth [23]).

Fig. 1. Top: Matching a pixel in one image to pixels at different disparities
in another image. Middle: Cost for each disparity. Bottom: Confidence
measure computed from the cost values. Dashed line indicates true dis-
parity. Even if the minimum cost is wrong, true disparity should still be
attributed some confidence.
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However, these methods come at the cost of lower density.
Global methods, by considering the whole disparity range
and certain geometry assumptions, have the potential to bet-
ter overcome such problems. Popular examples of these
methods include dynamic programming [19], optimization
methods using Markov network representations of stereo
matching [1], [2], [3], among others.

Furthermore, we recently showed that occupancy grid
algorithms using stereo sensors can also improve perfor-
mance by integrating confidence measures at all disparities
instead of WTA disparity alone [6], [24]. This integration of
several stereo pairs into a final occupancy grid was the cho-
sen application in the present article for confidence measure
evaluation. Such is a typical scenario found in real-world
robotics applications and autonomous driving applications,
which are usually approached using grid-based methods
[4], [6], [23], [25]. Inclusively, recent work has provided the
community with urban driving datasets including stereo
and laser rangefinder data which can be used as ground-
truth [26]. The existence of such datasets also asks for an
evaluation of stereo confidence functions and their global
integration in time in such challenging scenarios.

2 STEREO CONFIDENCE MEASURES

We consider two images I1ðx; yÞ and I2ðx; yÞ coming from
the same underlying image Iðx; yÞ, displaced along the x-
axis with added Gaussian noise. Therefore,

I2ðx; yÞ � I1ðxþ dðx; yÞ; yÞ ¼ N ð0; s2
i Þ (1)

where Nð0; s2
i Þ represents Gaussian white noise with vari-

ance equal to the sum of noise variances of each image

s2
i ¼ s2

1 þ s2
2. Here dðx; yÞ 2 f0; 1; . . . ; D� 1g represents the

disparity at each pixel. We define also a window with
M �N pixels where ðx; yÞ is the anchor pixel in the center
of the window.

Different confidence measures model stereo matches dif-
ferently. For example, one can model the probability of a
disparity value dðx; yÞ conditioned on a cost function of the
pixels inside a window, but another option is to condition
disparity on the whole set of pixel differences inside that
window. We then define for each pixel ðx; yÞ a matrix of

measurements E 2 RS�D, where the D columns are dispar-
ity hypotheses and the rows are measurements used for the
stereo confidence model (e.g. S ¼ 1 for a single cost value
per disparity, or S ¼ MN pixel differences per disparity).
We will use the notation E:;d to represent all rows taken at
disparity d. We will also refer to the disparity with mini-
mum cost by dmincost. Finally, in this work we assume inde-
pendence of measurements at different disparities such that

pðEÞ ¼
Y
d

pðE:;dÞ: (2)

In this article we will deal with a special class of stereo
confidence measures defined along the whole disparity
range such that

CðdÞ ¼ pðE:;d j dÞP
d0 pðE:;d0 j d0Þ

(3)

is the confidence of assigning disparity d to a certain pixel,
and pðE:;d j dÞ is the probability density of measurements
assuming d is the true disparity. Such formulation is used
implicitly in other benchmarks [8] and will also be conve-
nient for the integration into probabilistic frameworks
described in Section 4.

We will evaluate and compare different confidence
measures with two different stereo cost functions:

� Sum of Squared Differences
� Sum of Absolute Differences using Birchfield and

Tomasi’s pixel dissimilarity function [15], which we
will call BTSAD.

These are widely used cost functions, adopted by
recent computer vision libraries [27] for local and global
stereo methods. The implementations used in this work
were those found in OpenCV [27], which also apply a
9� 9 Sobel filter as a prefilter to the images. Sobel prefil-
tering is a common procedure seen in other stereo meth-
ods as well (e.g. [28]).

2.1 Matthies’ Model

Matthies and Okutomi [14] propose a probabilistic model of
stereo that assumes pixel differences inside a window to be
i.i.d. and zero-mean Gaussian distributed. The joint proba-
bility of all pixel differences is given by

pðE:;d j dÞ ¼i:i:d:
Y
s

pðEs;d j dÞ / exp � 1

2s2
Mat

X
s

E2
s;d

 !
; (4)

where E 2 RS�D with S ¼ MN . Each element Es;d holds one
of the MN pixel differences inside a window at disparity d.

Note that the joint distribution is related to a SSD (
P

s E
2
s;d).

Similarly to recent literature [8], we normalize the SSD by

the number of window pixels 1by setting s2
Mat ¼ MNs2

i .
To obtain a similar model for a SAD cost function we can

assume the i.i.d. pixel differences to follow a zero-mean
Laplace distribution. The joint distribution is then given by

pðE:;d j dÞ ¼i:i:d:
Y
s

pðEs;d j dÞ / exp � 1

bMat

X
s

jEs;dj
 !

: (5)

In this case the joint distribution is related to a SAD
(
P

s jEs;dj). Likewise the SSD case and since it lead us to bet-
ter performance, we set bMat ¼ MNbi where bi is the param-
eter of the zero-mean Laplacian of single pixel differences.

2.2 Merrell’s Model

Merrel et al. [5] assume costs themselves to be normally
distributed. The mean is set to the minimum cost of the cor-
responding pixel and variance is a parameter s2

Mer. Confi-
dence is in this case defined by

pðE1;d j dÞ / exp �ðE1;d � E1;d mincostÞ2
2s2

Mer

 !
; (6)

1. Note that the original model [14] sets s2
Mat ¼ s2

i . While the nor-
malization by MN was not used in that publication, we still refer to the
model as used in this article as ”Matthies’ model” for acknowledgment.
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where E 2 R1�D and each element E1;d is a window cost
value, e.g. E1;d ¼ SSD or BTSAD.

2.3 The Exponential Distribution

The exponential model [1], [2], [3] assumes costs to be expo-
nentially distributed and is given by

pðE1;d j dÞ / exp �E1;d

m

� �
; (7)

where E 2 R1�D and each element E1;d is a window cost
value, e.g. E1;d ¼ SSD or BTSAD. Note that this model’s
expression is similar to Matthies’. However, while the expo-
nential model is a pdf of the cost values, Matthies’ is a joint
pdf of all window pixel differences.

Note also that in other literature m is often omitted
from the equations, thus m ¼ 1 is often assumed. The
underlying problem of that assumption is that, for
m << E1;d equation (7) will approximate minðE1;dÞ and
thus pðE1;d mincost j dmincostÞ ¼ 1 will hold for all dmincost.
Such choice of parameter could hence lead to low perfor-
mance of the confidence measure.

2.4 New Confidence Measure: Histogram Sensor
Model (HSM)

We finally propose our new confidence measure—the
HSM—which consists of a histogram trained with costs at
true disparity. Confidence is modeled from the cost val-
ues and as such E 2 R1�D. In Fig. 2, we show these histo-
grams for SSD and BTSAD costs with different window

sizes, taken from true disparity d of all images in the 2003
and 2006 Middlebury datasets. We populated the histo-
grams with costs measured at all un-occluded pixels of
all images, while true disparity was retrieved from the
ground-truth disparity maps provided by the datasets.

The dimension of bins was chosen at 3:5sh=N
1=3 accord-

ing to Scott’s normal reference rule [29], where sh repre-
sents the standard deviation of the costs and N the
number of samples.

Stereo confidence is in this case defined as

pðE1;d j dÞ / histðE1;dÞ; (8)

where E1;d is a window cost value, e.g. E1;d ¼ SSD or
BTSAD, and histðE1;dÞ refers to the frequency of the histo-
gram bin associated with E1;d.

3 PARAMETER ESTIMATION

The parametric confidence measures introduced so far
depend on the estimation of a probability distribution’s
parameter (s2

Mat, s
2
Mer, m). In this section we propose to esti-

mate the parameters in a systematic way without ground-
truth data, from each stereo pair being matched: through
maximum likelihood estimation of the distribution’s param-
eters computed directly from cost values. The method does
not require ground-truth data but assumes cost functions
provide relatively low error-rates (low number of bad pix-
els). To achieve this, in our study we compute ML parameters
from costs at all image pixels where left-right disparity consis-
tency is verified.

In a nutshell, we: 1) Compute cost values at all pixels and
disparities; 2) Compute dmincost and perform a left-right dis-
parity consistency check; 3) For all (x,y) with consistent dis-
parities we compute the mean and variance of the costs at
dmincost; 4) Compute model parameters from those means or
variances.

3.1 Matthies’ Model

Matthies’ model for the SSD cost function assumes pixel dif-
ferences to be zero-mean Gaussian. The Gaussian’s parame-
ter s2

i can be computed by maximum likelihood from the
variance of the data. For convenience we estimate this vari-
ance from the SSD cost values instead of the individual pixel
differences. We do this by the following heuristic,2 which
we found best performing:

ŝ2
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varx;yðSSDðx; y; dmincostðx; yÞÞÞ

p
MN

ffiffiffi
2

p : (9)

As mentioned in Section 2.1 we set ŝ2
Mat ¼ MN ŝ2

i , which is
effectively eliminating theMN normalization in (9).

Fig. 2. Distribution of costs at true disparity (E1;d� ) for SSD (left) and
BTSAD (right) cost functions on a 5� 5, 9� 9 and 13� 13 window.
Horizontal axis represents the values of E1;d� .

2. Note that from the moments of the normal distribution we know
that a variable X2 has variance 2s4 for X ¼ Nð0; s2Þ. We compute the

variance of an SSD by VarðPMN
s¼1 E

2
s Þ ¼ 2s4

iMNð1þ rðMN � 1ÞÞ, where
r is the average correlation between the squared pixel differences E2

s .
Our heuristic assumes r ¼ 1. While the original i.i.d. assumption of the
model [14] would lead to r ¼ 0, assuming r ¼ 1 lead us to better perfor-
mance results. Finally, note that another option for estimating s2

i would

be ŝ2
i ¼ MeanðPMN

s¼1 E
2
s Þ=ð2MNÞ, which would make the estimated

model’s expression equal to that of the exponential.
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On a SAD (or BTSAD) cost function, we assume pixel
differences are zero-mean Laplace-distributed, for which
the maximum likelihood parameter is the mean of the
absolute value of the data. As done in the SSD case, we
compute this estimate from the cost values themselves:

b̂i ¼ Meanx;yðBTSADðx; y; dmincostðx; yÞÞÞÞ
MN

; (10)

and we set b̂Mat ¼ MNb̂i. Please note that using this normali-

zation makes b̂Mat equal to the costs’ mean, leading to the
same model expression and parameter as the exponential
model (see (7) (12)). In this article, results obtained by maxi-
mum likelihood will then be the same for BTSAD Matthies’
and the BTSAD exponential models.

3.2 Merrell’s Model

Merrell’s model is a Gaussian distribution of costs with
mean E1;d mincost. The maximum likelihood parameter is
estimated from the variance of the data,

ŝ2
Mer ¼ Varx;yðE1;d mincostðx; yÞÞ; (11)

where E1;d mincost is an SSD or BTSAD.

3.3 The Exponential Distribution

Given an exponential distribution of costs, the maximum
likelihood estimate of the distribution’s parameter m is
given by

m̂ ¼ Meanx;yðE1;d mincostðx; yÞÞ; (12)

where E1;d mincost is an SSD or BTSAD.

4 INTEGRATING STEREO INTO OCCUPANCY GRIDS

USING CONFIDENCE MEASURES

Consider a grid of cells which can be in one of two states:
occupied O or free O. The objective of an occupancy grid
algorithm is to compute or update the probabilities
pðOijz0:::t; x0:::tÞ for each cell i 2 1; 2; . . . ; C, at each time
instant t, given measurements z0:::t and sensor locations x0:::t

until time t. This is implemented as a Bayes filter at each
cell, which updates occupancy probabilities every time a
new measurement is taken [30].

In this article we use a cost-curve occupancy grid [6] to
compute occupancy at each cell from stereo cost measure-
ments at the whole disparity range. The method computes
occupancy of cell i as

P ðOijEÞ ¼ P ðOijVi; EÞP ðVijEÞ
þ P ðOijV i; EÞð1� P ðVijEÞÞ; (13)

where the event Vi ¼ Oi�1; . . . ; O2; O1 represents visibility of
cell i. For the sake of readability and compactness, the equa-
tions shown here are for a one-dimensional grid aligned
with the sensor—correspondent to the intersection of a cam-
era ray with the three-dimensional grid. Also, the order of
cells is reversed from that of pixel disparity: for example
i ¼ 1 is the closest cell to the camera, equivalent to
d ¼ D� i ¼ D� 1.

In the original paper [6], which the interested reader
should refer to, it is demonstrated that

P ðVijEÞ ¼
Y

j¼1...i�1

P ðOjjVj; EÞ; (14)

P ðOijVi; EÞ ¼ pðEjOi; ViÞP ðOi; ViÞ
P ðVijEÞpðEÞ ; (15)

P ðVijEÞpðEÞ ¼
X

j¼i...C

pðEjOj; VjÞP ðOj; VjÞ; (16)

P ðOijVi; EÞ ¼ pðE:;D�ijOi; ViÞP
j¼i...C pðE:;D�jjOj; VjÞ : (17)

Note that (17) is similar to our definition of stereo match
confidence (3) if disparity is seen as a position (i.e., cell)
which is both occupied and visible.

As discussed in [6], the method makes the following
assumptions:

� A target surface exists for any 1D grid, or in other
words, there exists at least one occupied cell. Thus
P ðVCþ1Þ ¼ 0 and P ðVCþ1jEÞ ¼ 0;

� The target is equally probable to be at any of the cells
along the 1D grid. Thus P ðOi; ViÞ ¼ 1=C 8i;

� Measurements E can give no information about

occupancy on invisible cells V i. Thus P ðOijV i; EÞ ¼
P ðOijV iÞ, which corresponds to a prior on world
geometry. In our work we model this prior as a con-
stant 0:5 for all i, so that occupied and free cells are

equally probable. Thus P ðOijViÞ ¼ 0:5 8i;
� Measurements are independent between disparities

(see (2)).
� pðE:;dÞ is uniform.
� Occupancy or visibility on a cell i gives no informa-

tion on match measurements taken on other cells.
Thus pðE:;D�kjOi; ViÞ ¼ pðE:;D�kÞ 8k 6¼i;

5 EXPERIMENTAL RESULTS IN STEREO

In this section we make use of stereo datasets and their
ground-truth data to evaluate and compare the introduced
stereo confidence measures. We base our comparison on
two criteria:

1) Performance on a WTA strategy (selecting maximum
confidence disparity at each pixel). For easy compar-
ison with other literature, we make use of ROC
curves [8], [16], [19]. These curves are obtained by
plotting the error-rate of a WTA strategy from the
highest confidence matches, for different confidence
thresholds. The area under this curve, AUC, is used
to measure the quality of the function as a confidence
measure. Concretely, whether correct matches are
given higher confidence than incorrect ones. Lower
values of AUC mean better performance.

2) We consider the cases where WTA disparity is dif-
ferent from true disparity by more than one pixel
(we will call these “bad pixels”). We compute, at all
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bad pixels, the sum of the confidence attributed to a
neighborhood around ground-truth disparity d�

given by the dataset: Cðd 2 GT Þbadpx ¼Pd2GT CðdÞ.
Here GT represents the interval ½d� � 1; d� þ 1�. A
single performance indicator for each image is then
given by the average of Cðd 2 GT Þbadpx over all bad

pixels. Higher values of Cðd 2 GT Þbadpx indicate higher

probability given to true disparity and, as we will argue,
better performance of some global algorithms.

We evaluated all models in two sets of data:

1) Indoors set: 23 stereo pairs (all pairs from Middle-
bury 2003 and 2006 [31], [32], [33])

2) Outdoors set: 10 stereo pairs (KITTI stereo dataset
[26], first 10 images).

For each set, the AUC and Cðd 2 GT Þbadpx results are
averaged from all its stereo pairs and occluded pixels are
excluded. The images were used in gray-scale. As cost
functions we used SSD, and SAD with BT pixel differences
(BTSAD) on window sizes 5� 5, 9� 9 and 13� 13, after
prefiltering the images with a Sobel 9� 9 filter (OpenCV
implementation [27]). This prefilter is adopted in several
stereo methods (e.g. [27], [28]) and we also found both
AUC and Cðd 2 GT Þbadpx performance to improve signifi-

cantly with prefiltering for all models.

5.1 Parametric Models: The Influence of Parameter
Choice

For the parametric functions introduced in Section 2, we
evaluated the influence of parameter choice on the two men-
tioned performance criteria (i.e., AUC and Cðd 2 GT Þbadpx).
In Fig. 3 we show the performance curves obtained for dif-
ferent window sizes, cost functions and confidence meas-
ures. Results are shown for four of the indoors stereo
pairs. Other stereo pairs have similar curves, although we
do not display all to keep figures understandable. The
results show that performance of the confidence measures,
with respect to parameter choice, has one clear maximum
followed by a slow exponential decay of performance.
However, a performance ”cliff” exists as the parameter
tends to zero (i.e., is under-estimated). One important
observation is that m ¼ 1 or m ¼ MN , common parameter
choices for the exponential model [8], could easily fall into
the ”performance cliff” by underestimating noise, thus
drastically reducing performance. We believe this to be the
reason why that model scores poorly in recent benchmarks
[8] (it is there called Negative Entropy Measure). Further-
more, we argue that measuring parameter sensitivity
through an analysis such as the one in Fig. 3 or similar,
should be used in future benchmarks and confidence mea-
sure proposals for more complete evaluations.

Fig. 3. The parametric models’ cliff-maximum-and-tail of performance. Both Cðd 2 GT Þbadpx (first two rows) and AUC (last two rows) are shown for the
exponential and Merrell models. Results with the different cost functions and window sizes are shown. Note how the curves and optimal parameters
vary both between images and cost functions. Figures for Matthies’ model are not shown since they can be obtained by linearly rescaling the horizon-
tal axis of the exponential model’s figures (see equations (4), (5) and (7)).
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Another interesting observation is that these parameter
performance curves have some inter-image variability.
For each combination of cost function and window size, we
computed the standard-deviation of the optimal parameter
values across the 23 images of the indoors set. The average
standard deviation of parameters was 131 percent when
optimizing AUC and 84 percent when optimizing
Cðd 2 GT Þbadpx. On the other hand, optimal parameters also

highly depend on the chosen cost function: for a fixed
image the average standard-deviation across all combina-
tions of cost function and window size was 352 percent in
the AUC case and 338 percent in the Cðd 2 GT Þbadpx case.

Even the fact that a prefilter is applied to the images, in our
case the commonly used Sobel filter [27], [28], leads to an
average displacement of the parameter with optimal AUC
by 60 percent or optimal Cðd 2 GT Þbadpx by 167 percent.

Fig. 4 shows such a comparison, taken from the Cones
image in the indoors set. Still, note that the AUC curves are
relatively flat after the performance cliff and so optimal
parameter variabilty does not pose a problem as long as
parameters are not strongly under or overestimated.

Such performance variability between image conditions
and between cost function options has strong implications
for researchers working on stereo. During the design stage of
a stereo algorithm, such as the experimentation with
different cost definitions, prefiltering options and different
datasets, the optimal value of the confidence measure’s
parameter should be recomputed each time. In Hu and
Mordohai’s important contribution to confidence measure
benchmarking [8], the authors compute an optimal parame-
ter value for each measure on a subset of the images in the
dataset: which requires recomputing all confidences and a
performance value (e.g. AUC) for each parameter sample
during an optimization process. The parameters were there
selected such that they lead on average to high performance
within a subset of the dataset images, although the proce-
dure is not described in detail. Besides the fact that averaging
solves inter-image variability sub-optimally, such methodol-
ogy (of optimal parameter estimation from datasets with
ground-truth) could be a bothersome process when design-
ing a stereo algorithm and considering a large number of
cost function or prefiltering options. Automatic, fast estima-
tion of stereo confidence parameters for a given image and
cost function design, for example through maximum likeli-
hood as done in this article, is then of high importance.

5.2 Parametric Models: Parameter Estimation

Optimal parameters for the confidence measures can only
be computed when ground-truth disparity is available.

Practically, on unknown stereo pairs, stereo methods have
to either assume certain fixed parameter values (as dis-
cussed previously), or automatically estimate them from
each image without ground-truth data. In this section we
evaluate two different parameter estimation strategies for
the parametric models:

� Fixed parameters, computed using a slow offline
optimization procedure on training datasets where
ground-truth is available. Methodology used was
similar to [8]: we estimated parameters by averaging
the optimal parameters across train set images. For
each image in the indoors set we first computed
densely sampled parameter-performance curves
such as the ones shown in Fig. 3, and then averaged
the curves’ optima across all images. We will call
these ”average best performing” (ABP) parameters.

� Per-stereo-pair, maximum likelihood parameter esti-
mation as proposed in this article, which does not
require any ground-truth data. We will call these
”ML” parameters.

Table 1 shows the ABP parameters that we used in this
article, computed from the indoors set. Since these can be
chosen to optimize either AUC or Cðd 2 GT Þbadpx, we dis-
play both in the table. As already discussed in Section 5.1,
ABP parameters optimizing AUC (column ”minAUC”)
have more variability than those optimizing Cðd 2 GT Þbadpx
(column ”maxC”). This suggests that a strategy of offline
selection of parameters by averaging on a training set could
be more reliable if the criterion being optimized is C.

We then computed the AUC and Cðd 2 GT Þbadpx metrics
for each model using ML and ABP parameters. Table 2
shows the average and standard deviation of the distances
between the obtained and the optimal performance taken
from all 23 images of the indoors set. The table compares
two situations: a typical scenario where ground-truth is not
available on the image set, and another when it is available.

Fig. 4. Performance of models with parameter values changes with pre-
filtering conditions. Results obtained from the Cones image of the
indoors set.

TABLE 1
Average Best Performing Parameters Computed from the

Indoors Set (Total 23 Images)

Cost Model minAUC param maxC param

SSD 5� 5 Mat 2:95 � 102 � 151% 5:99 � 102 � 92%
SSD 9� 9 Mat 1:91 � 103 � 126% 2:36 � 103 � 47%
SSD 13� 13 Mat 4:17 � 103 � 117% 4:83 � 103 � 42%
SSD 5� 5 Mer 2:59 � 106 � 197% 3:49 � 106 � 103%
SSD 9� 9 Mer 5:49 � 107 � 146% 3:92 � 107 � 65%
SSD 13� 13 Mer 2:82 � 108 � 147% 1:55 � 108 � 59%
SSD 5� 5 Exp 5:94 � 102 � 150% 1:20 � 103 � 93%
SSD 9� 9 Exp 3:67 � 103 � 130% 3:15 � 103 � 98%
SSD 13� 13 Exp 8:27 � 103 � 118% 8:70 � 103 � 56%
BTSAD 5� 5 Mat 1:18 � 101 � 106% 1:18 � 101 � 88%
BTSAD 9� 9 Mat 5:64 � 101 � 110% 4:24 � 101 � 94%
BTSAD 13� 13 Mat 1:12 � 102 � 105% 1:40 � 102 � 67%
BTSAD 5� 5 Mer 1:88 � 103 � 173% 1:25 � 103 � 126%
BTSAD 9� 9 Mer 3:89 � 104 � 130% 1:94 � 104 � 124%
BTSAD 13� 13 Mer 1:81 � 105 � 132% 1:91 � 105 � 101%
BTSAD 5� 5 Exp 2:37 � 101 � 106% 2:37 � 101 � 88%
BTSAD 9� 9 Exp 1:13 � 102 � 110% 8:49 � 101 � 94%
BTSAD 13� 13 Exp 2:24 � 102 � 105% 2:81 � 102 � 67%
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In the ”No GT” scenario, ABP parameters are computed
from a different set (same images but without the use of
image prefiltering with a Sobel prefilter). It is noticeable
how in both situations ML parameters lead to values of
AUC and Cðd 2 GT Þbadpx which are similar but slightly

closer to the optimal value than ABP. This was expected
from the analysis in Section 5.1 where we discussed high
variability of optimal parameters, thus again stressing the
importance of ML estimation or the use of parameter-insen-
sitive confidence measures. The table also shows results
obtained with the ML method ran on GT disparity instead
of WTA (see columns ML-GT). It performed similarly to the
no-ground-truth version and better than ABP on average.
Importantly, these results mean that the tedious process of
obtaining datasets with ground-truth for model training is
unnecessary. Model parameters can be computed using our
proposed ML strategy, without ground-truth data. Natu-
rally, ABP had slightly higher performance when trained
with GT than in the ”No GT” condition.

To exemplify the better results of ML seen in Table 2, we
also compare the shape of CðdÞ at a given pixel of Mid-
dlebury’s Teddy image which favors the ML method. In
this example, shown in Fig. 5, Merrell’s model with ABP
parameters behaves in a uni-modal way (i.e., single maxi-
mum), which exemplifies the effect of the ”performance-
cliff”. We remind that as s tends to 0, a normalized expð� x

s
Þ

becomes an approximation to minðxÞ, thus leading to a con-
fidence of 1 on the best match and 0 otherwise. The model
using ML parameters has two maxima: one on WTA dispar-
ity and another on ground-truth.

5.3 All Models: Evaluation of Winner-take-all
Confidence

We evaluated each models’ performance, including the
HSM’s, in the indoors and outdoors set using the two
parameter selection strategies already discussed. In this sec-
tion we focus on the AUC criterion. We remind that AUC
measures whether higher confidence WTA assignments are
more likely to be correct assignments or not. The models’
AUC, averaged across all images in each dataset, is shown
in Table 3. Each model’s performance is shown with ML
and ABP parameters. In case of the HSM, we also compare
two versions of the model, roughly corresponding to ML
and ABP. The first version is a no-ground-truth single-ste-
reo-pair model to which we will call ”ML HSM”. This histo-
gram is trained from WTA disparity costs where left-right
disparity is consistent, for each stereo pair. The second is
the ground-truth-trained model as described in Section 2.4,
computed from the costs at true disparity of all stereo pairs
in the indoors set. We refer to it as ”average ground-truth”
(AGT) HSM.

Table 3 also shows the optimal AUC across parametric
models, for each cost function. These values were
obtained by a slow offline optimization procedure given
ground-truth data, searching the minimum AUC across
all parametric models and whole parameter space for
each image. Values shown in the table are the average
over all test set’s images.

Arguably the most noticeable result is that the AGT HSM
model ranks 1st in most conditions, both indoors (where it is
trained) and outdoors. This indicates the HSMmodel to be a
good choice when training on a dataset with ground-truth is
acceptable. Expectedly, a histogram can better model the
real distribution of costs than the parametric models here
compared—we remind that distributions in Fig. 2 are not
purely exponential or Gaussian. This can also be seen clearly
in the table results (indoors set, BTSAD cost function) where
the HSM performs better than the parametric models’ maxi-
mum possible performance (minAUC column). On the other
hand, the ML version of the HSM had poor performance,
meaning the data available on a single stereo-pair may be
insufficient to train theHSM for goodAUC.

It is interesting to note, however, that cost function choice
is crucial: note how it had higher impact on the AUC than

TABLE 2
On Average, How Close to Optimal Performance Do Models Get? Distances Computed as

jAUCMethodðimgÞ �minAUCðimgÞj=minAUCðimgÞ and jCMethodðimgÞ �maxCðimgÞj=maxCðimgÞ
Averaged over All Indoors Images

Distance to minAUC Distance to maxC

No GT available GT available No GT available GT available

Model ML ABP-DS ML-GT ABP ML ABP-DS ML-GT ABP

Mat SSD 0.08 � 0.07 0.12 � 0.22 0.11 � 0.09 0.11 � 0.13 0.11 � 0.14 0.19 � 0.15 0.19 � 0.16 0.11 � 0.12
Mat BTSAD 0.10 � 0.22 0.14 � 0.29 0.08 � 0.17 0.11 � 0.14 0.11 � 0.09 0.14 � 0.10 0.09 � 0.08 0.11 � 0.11
Mer SSD 0.06 � 0.05 0.12 � 0.22 0.06 � 0.06 0.09 � 0.08 0.04 � 0.05 0.10 � 0.09 0.07 � 0.09 0.07 � 0.10
Mer BTSAD 0.13 � 0.27 0.15 � 0.29 0.09 � 0.18 0.11 � 0.10 0.10 � 0.08 0.13 � 0.08 0.09 � 0.08 0.14 � 0.17
Exp SSD 0.06 � 0.05 0.12 � 0.22 0.08 � 0.06 0.11 � 0.13 0.12 � 0.13 0.19 � 0.15 0.15 � 0.15 0.11 � 0.12
Exp BTSAD 0.10 � 0.22 0.14 � 0.29 0.08 � 0.17 0.11 � 0.14 0.11 � 0.09 0.14 � 0.10 0.09 � 0.08 0.11 � 0.11

ABP are average best performing parameters trained on the same image set given GT disparity; ABP-DS are average best performing parameters trained on a dif-
ferent set - same images different filtering conditions; ML parameters computed for each image given WTA disparity; ML-GT parameters computed using the
same method on ground-truth disparity.

Fig. 5. CðdÞ given Merrell’s model with ABP and ML parameters. Dashed
red line indicates true disparity d� as indicated by the dataset. Results
taken from pixel (364,150) of the Teddy image, as an example of ML’s
better performance seen in Table 2. ML does not require ground-truth
and leads here to higher Cðd�Þ.
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model choice itself. We argue that the reason for this is that
the models presented here are well estimated, rendering
their fit to the real distribution, and performance, very simi-
lar to each other. Note again in Tables 2 and 3 that obtained
AUCs are very close to their optimal values, both in the
indoors and outdoors set. Since optimal AUC depends on
the error rate achieved by each cost function, as shown in
[8], then as long as close-to-optimal AUCs are obtained on
each model, performance will depend mainly on the cost
function. The HSM seems to achieve AUC values that are
closer to the optimal for each cost function.

Importantly as well, the results show once more that the
usage of the datasets with ground-truth to train parametric
models is (not only tedious but also) unnecessary, and our
proposed ML strategy for parametric models leads consis-
tently to high performance without the need for GT.

5.4 All Models: Evaluation on Winner-take-all
Failure

We now present all models’ performance regarding
Cðd 2 GT Þbadpx: the confidence given to true disparity when

WTA fails. We compare the different models using this cri-
terion in Table 4.

There is a different ranking of models in terms of AUC
and C, which suggests that the appropriate choice of
model for stereo applications strongly depends on which
criterion is to be optimized. However Merrell’s model,
which had already scored high in the AUC criterion, per-
formed highest in the C criterion using ML estimation
(i.e., without the need for training with ground-truth
datasets). Such consistency and convenience of ML-esti-
mated Merrell’s model makes it a good candidate model
for stereo applications.

Regarding theHSMmodel, its AGT (ground-truth-trained)
version performed quite low. Its ML (no-ground-truth)

version performed higher, even though it was poor on AUC
(Table 3). In the next section we will see how this balance
betweenAUCandC is actually reflected onhighperformance
of both versions of theHSM in practice.

6 EXPERIMENTAL RESULTS ON APPLICATION TO

OCCUPANCY GRIDS

On a second experimental setup we evaluate the different
models on a real application, using our occupancy grid
method which integrates stereo confidence. In this section
we will describe the setup and results, as well as discuss the
relation between grid performance and the AUC and C cri-
teria results.

Our grid method assumes static scenes and so the experi-
mental evaluation was also conducted on a dataset with no
moving objects: the KITTI residential area dataset
”2011_09_26_drive_0079” [26]. The dataset contains 100
synchronized stereo pairs, laser rangefinder measurements
and localization data taken from a moving car, while no
moving people or moving cars can be seen. An image of this
dataset is shown in Fig. 6.

In order to obtain a ground-truth grid, a simple grid algo-
rithm for range data was implemented and run on all
frames using the available laser rangefinder data: cells that
were occupied with point data in more than a single frame
were considered occupied and the rest as free. The localiza-
tion data, given by the dataset, was assumed to be correct.
Cell size used was 20 cm � 20 cm � 20 cm and the resulting
grid 60 m � 12 m � 3 m. Generated ground-truth is shown
on Fig. 6.

To quantitatively evaluate performance of the occupancy
grid method we take two measures: ”precision” and
”recall”. Precision measures the fraction of cells classified as
occupied which are correct. It is defined as tp

tpþfp, where tp

TABLE 3
Performance in AUC for All Models and Window Cost Functions, Averaged over a Test Set

Test set: indoors (ABP/AGT is trained on the same set and requires GT disparity)

Optimal AUC
(parametric)

Mat Mer Exp HSM

Cost ABP ML ABP ML ABP ML AGT ML

SSD 5� 5 0.083 0.087 0.088 0.091 0.087 0.087 0.086 0.088 0.106
SSD 9� 9 0.058 0.063 0.063 0.065 0.063 0.063 0.062 0.062 0.085
SSD 13� 13 0.056 0.060 0.061 0.062 0.060 0.060 0.060 0.060 0.084
BTSAD 5� 5 0.066 0.069 0.067 0.070 0.068 0.069 0.067 0.058 0.065
BTSAD 9� 9 0.051 0.055 0.054 0.056 0.054 0.055 0.054 0.045 0.058
BTSAD 13� 13 0.050 0.054 0.053 0.056 0.053 0.054 0.053 0.046 0.064

Test set: outdoors (ABP/AGT is trained on a different set - indoors)

Optimal AUC
(parametric)

Mat Mer Exp HSM

Cost ABP-DS ML ABP-DS ML ABP-DS ML AGT-DS ML

SSD 5� 5 0.223 0.230 0.233 0.233 0.229 0.230 0.232 0.225 0.256
SSD 9� 9 0.175 0.180 0.184 0.183 0.181 0.180 0.183 0.176 0.230
SSD 13� 13 0.202 0.205 0.207 0.206 0.206 0.205 0.207 0.200 0.273
BTSAD 5� 5 0.147 0.152 0.153 0.155 0.152 0.152 0.153 0.153 0.157
BTSAD 9� 9 0.117 0.121 0.123 0.124 0.121 0.121 0.123 0.122 0.136
BTSAD 13� 13 0.145 0.148 0.149 0.149 0.148 0.148 0.149 0.145 0.168

Note: lower AUC is better. ABP are average best performing parameters computed from the indoors set using ground-truth; AGT are average ground-truth histo-
grams as proposed in Section 2.4, i.e., HSMs trained on the whole indoors set using ground-truth; ML parameters are estimated for each image fromWTA dispar-
ity, without ground-truth. Optimal AUC values are shown for comparison and were computed by a slow offline optimization procedure given ground-truth
(minimum AUC across all parametric models and whole parameter space).
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(true positives) refers to the number of cells correctly classi-
fied as occupied (i.e., occupancy P > 0:5) and fp (false posi-
tives) refers to the number of cells incorrectly classified as
occupied. Recall measures the fraction of occupied cells cor-

rectly classified. It is defined as tp
n , where n refers to the total

number of occupied cells on ground-truth data.

6.1 Model Comparison: Precision, Recall, AUC and
Confidence on Ground-Truth

We computed reconstruction performance with all models,
including the HSM, using both ABP/AGT and ML parame-
ter estimation. Results are shown in Fig. 7. For the ABP
parameters of parametric models, we ran the experiment
with both maxC and minAUC parameters (see Table 1).
Their curves are similar, though, and so we include only
one of them (minAUC) in Fig. 7. Each dot in the figure

represents one instant of time of the image sequence (i.e.,
frame) and hence an update of the occupancy grid. The first
frames are marked with “t = 0”. Frames used were: 0, 5, 10,
etc, in multiples of 5.

The curves in Fig. 7 show how the occupancy grid algo-
rithm leads to increasingly higher recall and precision rates
as new frames are processed. Precision rates of around 0:9
and recall 0:5 are achieved by most models by the end of the
experiment. Another observation is that precision increases
slightly with window size, which is consistent with the
results in Section 5.

Importantly, the HSM and Merrell models lead to the
highest final precision results across most cost function and
window size combinations, with the exception of BTSAD
5 � 5. The ML-estimated exponential had slightly higher
precision in that case, however at the cost of low recall. Also
note that the HSM model’s curve is above other curves dur-
ing most of the image sequence, showing highest precision,
although this distance decreases as the number of used
images increases. Models with ML and ABP parameters
perform similarly for each model-cost combination, with
the exception of Matthies’ and the exponential models
where ML leads to higher precision but lower recall. These
results are consistent with Tables 3 and 4: HSM and Merrell
were best performing in either the AUC or C criterion, also
ML Exp and Mat had lower C score than their ABP ver-
sions, corresponding to the lower recall in the grid applica-
tion. Overall, higher C criterion is related to higher final
grid recall (correlation r ¼ 0:29), but not related to precision
in our method. Lower AUC is also related to higher final
grid recall (correlation r ¼ �0:35) and higher final precision
(correlation r ¼ �0:48).

An interesting observation is how the ML HSM lead
mostly to the same performance as the AGT one, even
though AUC in the ML case was poor. As we discussed in
Section 5.3, the fact that an ML HSM is computed from a
single stereo pair could lead to a sparsely populated histo-
gram: thus leading to a poor AUC because the confidence

Fig. 6. The KITTI residential area dataset [26] used for occupancy grid
evaluation. Green regions on the bottom image represent ground-truth
occupied cells. Blue points represent laser data at one of the frames.

TABLE 4
Performance in Cðd 2 GT Þbadpx for All Models and Window Cost Functions, Averaged over a Test Set

Test set: indoors (ABP/AGT is trained on the same set and requires GT disparity)

Optimal C
(parametric)

Mat Mer Exp HSM

Cost ABP ML ABP ML ABP ML AGT ML

SSD 5� 5 0.108 0.083 0.090 0.097 0.097 0.083 0.090 0.077 0.083
SSD 9� 9 0.091 0.076 0.072 0.084 0.086 0.076 0.074 0.061 0.066
SSD 13� 13 0.101 0.086 0.073 0.093 0.094 0.086 0.073 0.060 0.072
BTSAD 5� 5 0.109 0.087 0.086 0.088 0.095 0.087 0.086 0.076 0.094
BTSAD 9� 9 0.099 0.084 0.083 0.090 0.090 0.084 0.083 0.067 0.085
BTSAD 13� 13 0.112 0.095 0.094 0.104 0.103 0.095 0.094 0.070 0.088

Test set: outdoors (ABP/AGT is trained on a different set - indoors)

Optimal C Mat Mer Exp HSM
Cost (parametric) ABP-DS ML ABP-DS ML ABP-DS ML AGT-DS ML

SSD 5� 5 0.065 0.053 0.049 0.052 0.062 0.053 0.050 0.031 0.043
SSD 9� 9 0.059 0.047 0.036 0.045 0.051 0.047 0.036 0.025 0.028
SSD 13� 13 0.046 0.037 0.029 0.036 0.039 0.037 0.029 0.022 0.020
BTSAD 5� 5 0.084 0.063 0.060 0.055 0.072 0.063 0.060 0.040 0.061
BTSAD 9� 9 0.079 0.055 0.045 0.048 0.061 0.055 0.045 0.030 0.050
BTSAD 13� 13 0.069 0.048 0.039 0.043 0.051 0.048 0.039 0.027 0.040

Note: higher C is better. See notes in Table 3.
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function is not continuous (and ranking of pixels as a
function of error rates will also not be continuous). How-
ever, the ML histogram is trained from costs at WTA dis-
parity where left-right disparity is consistent. Thus the
reason for the ML model’s poor AUC could be its bad con-
ditioning near cost values where errors are common (and

thus left-right consistency is often not met), even though
conditioning is good around common cost values of true
disparity. This would explain the still high Cðd 2 GT Þbadpx
result of the model (see Section 5.4, Table 4), as well as its
good performance in the occupancy grid application. Such
observations again stress the need for criteria other than
AUC for stereo confidence model evaluation, depending
on the application.

Finally, in Fig. 8 we show the reconstruction of ML HSM
and Merrell’s models (using BTSAD 13�13). The HSM’s
higher recall can be seen quite clearly (e.g. the car and tree
are better reconstructed), although the number of false posi-
tives is also slightly higher (since recall is higher and preci-
sion rate is not 1).

7 CONCLUSIONS AND DISCUSSION

In this article we evaluated several existing models of confi-
dence which are defined at the whole disparity range. We
proposed a new stereo confidence measure, the Histogram
Sensor Model, which consists of a histogram of costs and
improves performance in several criteria (i.e., AUC, applica-
tion to occupancy grids). We also proposed a method to
estimate parametric models’ parameters that avoids the
need for training with ground-truth data. All models were
evaluated when applied to two different cost functions
(SSD and BTSAD) at different window sizes and model
parameters. Contrary to previous stereo confidence mea-
sure benchmark literature, we evaluate the models not only
using the WTA-relevant criterion AUC, but also with a
whole-cost-curve-relevant criterion Cðd 2 GT Þbadpx: the con-
fidence given to ground-truth on WTA fail. Finally we eval-
uated the models on a real-world application using a recent
global formulation of 3D reconstruction through occupancy
grids. Our experimental results lead to several conclusions:

Fig. 7. Comparison of the performance of all models along time when used with the occupancy grid algorithm. Each point represents a different
instant of time, while the first frame of the image sequence is marked with “t = 0”. “Mat ABP” overlaps perfectly with “Exp ABP” on both cost functions,
and “Mat ML” overlaps perfectly with “Exp ML” for the BTSAD cost function.

Fig. 8. Reconstruction results obtained using a BTSAD 13 � 13 cost
function with the two top models: Merrell’s model (top) and the HSM
(bottom). Green squares represent true-positives (i.e., cells correctly
classified as occupied), brown squares represent false-positives (i.e.,
cells incorrectly classified as occupied).
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� Performance of parametric confidence measures
varies drastically with parameter choice, concretely
showing a cliff-maximum-and-tail of performance
with parameters. This also leads to the conclusion
that over-shooting of parameters is safer than under-
shooting. The reason for performance drop when
parameters are under-estimated is clear: since the
analyzed confidence functions are normalized expo-
nentials of costs, they tend to a min function as the
cost normalizer tends to zero (is under-estimated)—
leading to a single confidence maximum equal to 1.

� Our results indicate that it is possible in certain
applications to train parameters of the parametric
models from off-the-shelf datasets with ground-truth
disparity (i.e., using average best performing param-
eters). However, care should be taken such as to re-
train the parameters every time costs, prefilters or
dataset conditions are changed.

� We proposed a systematic parameter estimation
method for parametric models using maximum like-
lihood, eliminating the need for any ground-truth or
offline training. Our results indicated that these
parameters lead to performance in stereo which is
similar but slightly closer to the optimumwhen com-
pared to ABP parameters—which require training
datasets with ground-truth. At the same time, the
proposed method is trivial to implement and compu-
tationally inexpensive. ML should allow for better
compensation of environment changes and be more
practical when different cost or prefiltering options
are applied during the design stage of algorithms.

� The AUC criterion usually compared in the bench-
marking literature was shown to be less informa-
tive than desirable when used to choose the best
model for a global method integrating confidence
measures (Cost-Curve Occupancy Grid [6]). We
here proposed another criterion, Cðd 2 GT Þbadpx,
which is related to the recall of the grid and ML
HSM’s performance. Training of parameters by
optimizing Cðd 2 GT Þbadpx is also subject to lower

inter-image variance than AUC.
� In the occupancy grid application the HSM and

Merrell’s models performed best in terms of grid
precision. The HSM actually achieved higher preci-
sion earlier on (i.e., using a fewer number of stereo
pairs). On the other hand, the exponential and
Matthies’ models with ABP parameters lead to over-
all high recall rates but lower precision.

� The HSM was the best performing model in terms of
AUC and occupancy grid precision when trained on
off-the-shelf datasets with ground-truth. As seen by
the shape of the HSM (Fig. 3), the distribution of
costs at true disparity is not well approximated by a
distribution of the exponential-family. We believe
this to be a good sign for a push in stereo research
towards non-parametric confidence models.

� For applications where AUC is an important crite-
rion, our results show however that the HSM should
not be trained on WTA disparity with few data.
Merrell’s model with ML parameters is a good

choice when ground-truth datasets are not available
for training, since it scores high in terms of AUC,
Cðd 2 GT Þbadpx and grid performance.

Important directions of research include new non-
parametric models of stereo confidence, or models with low
parameter sensitivity. We hope to have made clear that
more research into methods for online (no ground-truth)
estimation of model parameters has the potential for high
impact on stereo and its applications. Other approaches to
training the HSM without ground-truth may also be worth
investigating, as is the combination of different confidence
measures [34].

ACKNOWLEDGMENTS

The authors deeply thank the reviewers of this article for
their invaluable comments and suggestions for improve-
ment of the research. This study was conducted as part of
the Research Institute for Science and Engineering, Waseda
University, and Humanoid Robotics Institute, Waseda Uni-
versity. It was also supported in part by JSPS KAKENHI
(Grant Number: 24360099 and 25220005), Strategic Young
Researcher Overseas Visits Program for Accelerating Brain
Circulation, JSPS, Japan, and the EU Project Poeticon++
FP7-ICT-288382.

REFERENCES

[1] J. Sun, N. Zheng, and H. Shum, “Stereo matching using belief
propagation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 7,
pp. 1–14, Jul. 2003.

[2] D. Scharstein and R. Szeliski, “Stereo matching with nonlinear dif-
fusion,” Int. J. Comput. Vis,, vol. 28, no. 2, pp. 155–174, 1998.

[3] C. J. Pal, J. J. Weinman, L. C. Tran, and D. Scharstein, “On learning
conditional random fields for stereo,” Int. J. Comput. Vis., vol. 99,
no. 3, pp. 319–337, Oct. 2010.

[4] R. A. Newcombe, S. Lovegrove, and A. Davison, “Dtam: Dense
tracking and mapping in real-time,” in Proc. IEEE Int. Conf. Com-
put. Vis., 2011, pp. 2320–2327.

[5] P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J.-M. Frahm,
R. Yang, D. Nist�er, and M. Pollefeys, “Real-time visibility-based
fusion of depth maps,” in Proc. IEEE 11th Int. Conf. Comput. Vis.,
2007, pp. 1–8.

[6] M. Brandao, R. Ferreira, K. Hashimoto, J. Santos-Victor, and
A. Takanishi, “On the formulation, performance and design
choices of cost-curve occupancy grids for stereo-vision based 3d
reconstruction,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Sept. 2014, pp. 1818–1823.

[7] J. Cech and R. Sara, “Efficient sampling of disparity space for fast
and accurate matching,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2007, pp. 1–8.

[8] X. Hu and P. Mordohai, “A quantitative evaluation of confidence
measures for stereo vision,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 34, no. 11, pp. 2121–2133, Nov. 2012.

[9] G. Egnal, M. Mintz, and R. P. Wildes, “A stereo confidence metric
using single view imagery with comparison to five alternative
approaches,” Image Visi. Comput., vol. 22, no. 12, pp. 943–957,
2004.

[10] H. Hirschm€uller and D. Scharstein, “Evaluation of stereo match-
ing costs on images with radiometric differences,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 31, no. 9, pp. 1582–1599, Sep. 2009.

[11] L. Matthies, T. Kanade, and R. Szeliski, “Kalman filter-based algo-
rithms for estimating depth from image sequences,” Int. J. Comput.
Vis., vol. 236, pp. 209–236, 1989.

[12] T. Kanade and M. Okutomi, “A stereo matching algorithm with
an adaptive window: Theory and experiment,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 16, no. 9, pp. 920–932, Sep. 1994.

[13] a. Fusiello, V. Roberto, and E. Trucco, “Efficient stereo with multi-
ple windowing,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., 1997, no. 2, pp. 858–863.

BRANDeAO ET AL.: ON STEREO CONFIDENCE MEASURES FOR GLOBAL METHODS: EVALUATION, NEW MODEL AND INTEGRATION INTO... 127



[14] L. Matthies and M. Okutomi, “A Bayesian foundation for active
stereo vision,” in Proc. SPIE Sensor Fusion II: Human Mach. Strate-
gies, 1989, pp. 1–13.

[15] S. Birchfield and C. Tomasi, “A pixel dissimilarity measure that is
insensitive to image sampling,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 20, no. 4, pp. 401–406, Apr. 1998.

[16] P. Mordohai, “The self-aware matching measure for stereo,” in
Proc. IEEE Int. Conf. Comput. Vis., 2009, pp. 1841–1848.

[17] R. Mayoral, G. Lera, and M. J. Perez-Ilzarbe, “Evaluation of corre-
spondence errors for stereo,” Image Vis. Comput., vol. 24, no. 12,
pp. 1288–1300, 2006.

[18] A. Torabi, M. Najafianrazavi, and G. A. Bilodeau, “A comparative
evaluation of multimodal dense stereo correspondence meas-
ures,” in Proc. IEEE Int. Symp. Robotic Sens. Environ., 2011,
pp. 143–148.

[19] M. Gong and Y.-H. Yang, “Fast unambiguous stereo matching
using reliability-based dynamic programming,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 27, no. 6, pp. 998–1003, Jun. 2005.

[20] C. Dima and S. Lacroix, “Using multiple disparity hypotheses for
improved indoor stereo,” in Proc. IEEE Int. Conf. Robotics Autom.,
2002, pp. 3347–3353.

[21] N. Sabater, A. Almansa, and J. M. Morel, “Meaningful matches in
stereovision,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 5,
pp. 930–942, May 2012.

[22] R. S�ara, “Finding the largest unambiguous component of stereo
matching,” in Proc. 7th Eur. Conf. Comput. Vis.-Part III, London,
UK, 2002, pp. 900–914.

[23] D. Pfeiffer, S. Gehrig, and N. Schneider, “Exploiting the power of
stereo confidences,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., Jun. 2013, pp. 297–304.

[24] M. Brandao, R. Ferreira, K. Hashimoto, J. Santos-Victor, and A.
Takanishi, “Integrating the whole cost-curve of stereo into occu-
pancy grids,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Nov.
2013, pp. 4681–4686.

[25] R. Shade and P. Newman, “Choosing where to go: Complete 3D
exploration with stereo,” in Proc. 2011 IEEE Int. Conf. Robotics
Autom., May 2011, pp. 2806–2811.

[26] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autono-
mous driving? the kitti vision benchmark suite,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2012, pp. 3354–3361.

[27] G. Bradski, “The opencv library,” Dr. Dobb’s J. Softw. Tools, 2000.
[Online]. Available: http://drdobbs.com/opensource/184404319

[28] A. Geiger, M. Roser, and R. Urtasun, “Efficient large-scale stereo
matching,” in Proc. Asian Conf. Comput. Vis., 2010, pp. 25–38.

[29] D. W. Scott, “On optimal and data-based histograms,” Biometrika,
vol. 66, no. 3, pp. 605–610, 1979.

[30] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). Cambridge, MA, USA: MIT
Press, 2005.

[31] D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps
using structured light,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2003, pp. I–195–I–202.

[32] D. Scharstein and C. Pal, “Learning conditional random fields for
stereo,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun.
2007, pp. 1–8.

[33] H. Hirschmuller and D. Scharstein, “Evaluation of cost functions
for stereo matching,” in Proc. IEEE Conf. Comput. Vis. Pattern Rec-
ognit., 2007, pp. 1–8.

[34] R. Haeusler and D. Kondermann, “Synthesizing real world stereo
challenges,” in Proc. 35th German Conf. Pattern Recognit., Berlin
Heidelberg, 2013, vol. 8142, pp. 164–173.

Martim Brand~ao received the MSc degree in
electrical and computer engineering from Insti-
tuto Superior T�ecnico (IST, Portugal) in 2010.
He is now working towards the PhD degree at
Waseda University. He was a research assis-
tant at the Computer and Robot Vision Lab
(IST) in 2011, and a research student at Taka-
nishi Laboratory (Waseda University, Japan)
until 2013. His research focuses on computer
and robot vision topics such as 3D reconstruc-
tion, visual tracking, and robot motion planning.

He is a member of the IEEE.

Ricardo Ferreira received the BSc in electrical
and computer engineering in 2004, the MSc
degree in 2006, and the PhD degree in 2010, all at
Instituto Superior T�ecnico (IST). In his MSc he
studied underwater stereo reconstructions of 3D
scenes when observed through an air-water inter-
face and the PhD was focused on reconstructing
paper-like surfaces from multiple camera images.
His research interests include manifold optimiza-
tion and geometric problems in robotics and com-
puter vision. He is amember of the IEEE.

Kenji Hashimoto received the BE and ME
degrees in mechanical engineering in 2004 and
2006, respectively, and the PhD degree in inte-
grative bioscience and biomedical engineering in
2009, all from Waseda University, Japan. He is
an assistant professor of the Waseda Institute for
Advanced Study, Japan. His research interests
include walking systems, biped robots, and
humanoid robots. He is a member of the IEEE.

Atsuo Takanishi received the PhD degree in
1988 in mechanical engineering from Waseda
University. He is a professor of the Department of
Modern Mechanical Engineering, Waseda Uni-
versity and the director of the Humanoid Robotics
Institute (HRI), Waseda University, Japan. He is
the president of the Robotics Society of Japan
from March 2015. His current research is mainly
related to humanoid robots and its applications
in medicine and well-being. He is a member of
the IEEE.

Jos�e Santos-Victor received the PhD degree in
electrical and computer engineering in 1995 from
Instituto Superior T�ecnico (IST, Portugal), and in
computer vision and robotics. He is an associate
professor at the Department of Electrical and
Computer Engineering of IST and a researcher of
the Computer and Robot Vision Lab. His is inter-
ested in computer and robot vision, particularly
visual perception and the control of action, and
biologically inspired vision and robotics. He is a
member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

128 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 38, NO. 1, JANUARY 2016



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


