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Abstract Humanoid robots have complex kinematic

chains whose modeling is error prone. If the robot model

is not well calibrated, its hand pose cannot be deter-

mined precisely from the encoder readings, and this

affects reaching and grasping accuracy. In our work, we

propose a novel method to simultaneously i) estimate

the pose of the robot hand, and ii) calibrate the robot

kinematic model. This is achieved by combining stereo vi-

sion, proprioception, and a 3D computer graphics model

of the robot. Notably, the use of GPU programming

allows to perform the estimation and calibration in real

time during the execution of arm reaching movements.

Proprioceptive information is exploited to generate hy-

potheses about the visual appearance of the hand in the

camera images, using the 3D computer graphics model

of the robot that includes both kinematic and texture
information. These hypotheses are compared with the

actual visual input using particle filtering, to obtain

both i) the best estimate of the hand pose and ii) a set

of joint offsets to calibrate the kinematics of the robot

model. We evaluate two different approaches to estimate

the 6D pose of the hand from vision (silhouette segmen-

tation and edges extraction) and show experimentally

that the pose estimation error is considerably reduced

with respect to the nominal robot model. Moreover,

the GPU implementation ensures a performance about
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3 times faster than the CPU one, allowing real-time

operation.
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1 Introduction

Everyday tasks like grasping an object with precision or

pushing an electrical plug into a socket are quite simple

for humans, who deal with these activities on a daily ba-

sis, but complex and challenging for autonomous robots.

A correct kinematic model of the limbs structure is of

paramount importance when performing such tasks. In

particular, accurate models of the arms and hands are

crucial in order to properly grasp and manipulate ob-

jects. Moreover, real time reaching and grasping tasks in

robots are very often performed without any visual feed-

back control approach [8,38]. In that case, if the robot
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internal model is not accurate enough, the tasks will

not be successful. However, a precise analytical model

of the kinematic chain of a humanoid robot with several

degrees of freedom can be difficult to obtain due to hard-

to-model aspects (e.g. friction) and changes that might

occur over time (e.g. misalignment of a joint rotation

axis). Therefore, to correctly estimate the hand pose,

a continuous re-calibration of the model is desirable.

In general, this can be done by exploiting multisensory

information coming from the robot sensors, together

with advanced techniques for learning and estimation.
Indeed, if we consider human studies, it is known that

five-months-old infants already use vision to correct the

hand position and orientation during movements [27],

with performance that improves during development [1].

However, after nine months this visual guidance almost

disappears, and children become able to plan a proper

hand trajectory at the movement onset [26]. This might

suggest that an internal model has been learned by com-

bining visual and proprioceptive information during the

first months, and later exploited to improve the control.

Moreover, motor learning theories postulate that learned

internal models might be used to make predictions, that

are combined with the actual sensory feedback through

Bayesian integration to improve the estimation of the

current state of the system [23]. Overall, these studies

put forward the idea that the processes of model cali-

bration and state estimation might support each other

in natural systems, and therefore provide us with fur-

ther motivation to explore similar strategies in artificial

systems.

In our work we propose a novel computational frame-

work to simultaneously i) estimate the 6D pose of the
robot hand and ii) calibrate the kinematic model of the

robot arm. While the robot model is exploited to facili-

tate the hand pose estimation, the estimates are used

to calibrate the model itself. These two processes are

realized online in real time during reaching movements.
We apply our framework to the iCub humanoid robot

[29].

In this paper we implement the internal model of the

robot in a 3D graphical simulation environment using

the game engine Unityr, modeling both the kinemat-

ics and appearance (texture) of the robot. The nom-

inal kinematics is provided by the iKin library [36],

part of the YARP/iCub software repository (https:

//github.com/robotology). The robot texture is mod-

eled based on the open-source CAD documentation of

the robot, that can be found online at http://wiki.

icub.org/wiki/RobotCub. The internal model is used

to generate hypotheses about the hand appearance in

the eye cameras, based on the arm and head joint angles

(i.e. proprioception). These hypotheses are compared

to the actual hand appearance in the images coming

from the cameras (i.e. stereo vision). Using kernel den-

sity estimation and a maximum likelihood approach, we

compute the estimate of the current hand pose as well

as a set of joint angles corrections to calibrate the model

kinematics.

A preliminary version of the proposed framework has

been presented in a previous work [44], in which we

developed a CPU implementation of the method. We

realized that there was a computational bottleneck in

the hypotheses generation step and in the comparison
to the visual input, which are operations that can be

easily parallelized. To tackle this problem, in this paper,

we present an efficient GPU implementation of our com-

putational framework that makes it possible to use the

system in real time. Moreover, we evaluate two different

approaches for the visual estimation. The first approach

is simpler, and it consists of comparing only the silhou-

ettes of the real and simulated hand, that are obtained

by color-based segmentation. In the second approach,

instead, the edges extracted from the real and simulated

hand are compared. The use of edges provides better

robustness to clutter and illumination conditions than

the first approach based on color segmentation. How-

ever, it is computationally more expensive; this further

justifies the need for a GPU implementation. This paper

is an extended version of the work originally presented

in [45]. The major extensions consist of: a more detailed

description of the GPU implementation; new experimen-

tal data; a comparison between silhouette segmentation

and edges extraction for the visual pose estimation.

The rest of the paper is organized as follows. In Section 2

we report the related work in robotics and we highlight
our contribution more specifically. Then in Section 3 we

formulate the problem, while in Section 4 we provide

the details of our proposed solution. In Section 5 we

account for the implementation details as well as for the

robotic platform used. Finally, in Section 6 we present
the experimental results, and in Section 7 we draw our

conclusions and sketch the future work.

2 Related Work

Estimating the pose of a multifingered hand from vi-

sion is a challenging problem that has been studied in

Human-Computer Interaction (for human hands, see

[11] for a review up to the year 2007) as well as in

robotics (for robot hands). One recurring idea in human

hand pose estimation is to first detect the hand and then

to exploit a kinematics and appearance hand model to

estimate its pose. For example, in [33,34] the hand is

divided into different segments, and detected using skin

color segmentation and edge maps. Then it is compared

https://github.com/robotology
https://github.com/robotology
http://wiki.icub.org/wiki/RobotCub
http://wiki.icub.org/wiki/RobotCub
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to a 26-DOF model of the human hand using Particle

Swarm Optimization, with a GPU implementation to

speed-up the algorithm and allow it to run it in quasi-

real time. Another example is the work in [46], where

the hand detection is simplified by using a colored glove.

Then a search for a corresponding pose in a database of

examples is performed. A similar approach is described

in [37], where the hand silhouette is matched to a previ-

ously trained database of silhouettes to track the pose

of a human hand.

Since in our case we deal with the pose estimation of a
robotic hand, we can use the robot kinematics model to

obtain initial hypotheses of the hand pose, reducing the

problem to a local search.

Concerning visual robot hand detection and representa-

tion, we evaluate two strategies in this paper: one based

on silhouette segmentation and the other based on edges

extraction. The use of edges to detect the hand pose

from vision is inspired by the approach in [6], and it has

also been used in [15] to track the Schunk Dexterous

Hand in a Virtual Visual Servoing approach. A few in-

teresting works in robotics have dealt with the problem

of hand detection by using machine learning techniques.

The Cartesian Genetic Programming method was used

by [25] to learn from visual examples how to detect the

robot hand inside an image. Online Multiple Instance

Learning was used in [7] for the same task, exploit-

ing proprioceptive information from the arm joints and

visual optic flow to automatically label the training im-

ages.

To achieve real-time computation we exploit GPU pro-

gramming, that has been widely used in the last years to

speed-up well-known computer vision algorithms, such
as Canny-Edge detection [35] or image segmentation

procedures [13]. Some authors state that it is possible to

achieve a speed-up of almost 10 times [40] in high-level

computer vision algorithms, when more conservative

ones, and in a wider perspective, claim for 2.5 times on
average [24].

According to our knowledge, the work in the literature

more similar to ours, with respect to visual robot hand

pose estimation, is [15], where the authors use a 3D-

model based approach, an edge based error function

and graphics acceleration techniques. However, their

optimization method is based on Virtual Visual Servo-

ing [9] that, being a gradient based method, is prone

to converge to local minima. On the contrary, we pro-

pose a particle filtering method that is robust to non-

convex/non-gaussian error functions. Another key fea-

ture of our approach is that, while we exploit a model

of the robot to facilitate the hand detection and pose

estimation, at the same time we continuously calibrate

the model using sensory data.

The calibration of a robot kinematic model (sometimes

also referred as body schema adaptation, borrowing from

human sciences) has been per-se a topic of considerable

attention (see for example [16] for a review up to the

year 2010). A way to simplify the problem is to use

a marker to visually detect the end-effector (i.e. the

robot hand, in the humanoid case). The method used

by [2] requires five minutes of data acquisition during

specific robot movements with a special marker in the

robot wrist. It optimizes offline some parameters of the

kinematic chain (angle offsets and elasticity) of an upper
humanoid torso using non-linear least squares. Online

solutions have been studied for example in [42,21,18],

in which visual markers are used to easily detect the

hand position. The inclusion of additional parts into the

kinematic chain (i.e. tools) has been considered as well

[19,20]. A few marker-free solutions have been explored

as well. In [43] the kinematic chain is decomposed into

smaller segments, and both offline and online learning

solutions are proposed; although it seems that no mark-

ers are used, it is not described how the hand pose

is measured. The research in [22] is also based on a

marker-free correction of the robot kinematics using

RGB-D data. In [12] eye-hand calibration is realized by

performing several ellipsoidal arm movements with a pre-

defined hand pose, tracking the tip of the index finger in

the cameras, and employing optimization techniques to

learn the transformation between the fingertip position

obtained by stereo vision and the one computed from

the forward kinematics. Such transformation is then

used to calibrate the kinematics. The hand orientation

is not considered.

2.1 Our contribution

Automatic calibration and hand pose estimation are im-

portant and challenging skills for humanoid robots with

many degrees of freedom. In our work, we developed

a computational framework to achieve both objectives

simultaneously. Our solution is online, marker-free, fast,

and based on on-board stereo vision and proprioception

(i.e. no external sensor is required). To the best of our

knowledge, this is the first system that meets all these

requirements on a humanoid robot.

In previous work [44] we described a preliminary version

of the system, that we improved in [45] taking advan-

tage of GPU programming to reduce the time needed

for computation. The present manuscript extends the

work in [45] in four main aspects. First, we describe in

full details the GPU implementation, which combines

OpenCV GPU functions [4], OpenGL library [39], and

GPGPU (CUDA) programming [32], and show how this

combination considerably reduces the computation time.
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Second, we compare two different approaches for the

visual matching of hand pose hypotheses, one based on

silhouette segmentation and the other based on edges ex-

traction. Third, we replicate the experiments performed

in the previous papers by using the new system, with

GPU-enabled computation and edge-based hand pose

estimation, and we show that we can achieve a better

performance. Finally, we show experiments with the new

visual matching strategy in a non-uniform background,

where the previous observation model (silhouette-based)

cannot be exploited.

3 Problem statement

Consider the problem of reaching for an object in the

peripersonal space of a humanoid robotic platform. The

object’s pose is often computed using vision-based meth-

ods, so it is originally described in the camera reference
frame. The conversion of this pose to any other refer-

ence frame (e.g. the hand) will inevitably accumulate

the calibration errors in the serial kinematic chain from

the camera to the end frame. So, if we can obtain a good

estimate of the robot hand pose in the same camera

reference frame, we can achieve two goals:

– to compute the relative pose between the robot hand
and the object without kinematics calibration errors,

since both the object and the hand pose are com-

puted in the same sensor reference frame.

– to evaluate the error between two different estimates

of the hand pose, obtained using either vision or

proprioception, that will be used to correct the kine-
matics model so as to match the visual and the

proprioceptive perceptual systems.

In this paper, we focus on the latter objective. The

former will be subject of future work.

3.1 Parametrization of Calibration Errors

Let us consider the problem of estimating the robot

hand pose in the left camera reference frame. The pose

can be represented by a generic 4× 4 roto-translation

matrix T. Using the robot kinematics function from the

left camera to the hand palm K (·) and the vector of
joint encoder readings θ (see Fig. 2), an estimate of the

pose can be obtained by:

T̂k = K (θ) (1)

However, several sources of error may affect this estimate.

We consider the existence of calibration errors (bias) and

random errors (noise). These sources of errors can be

Fig. 2: The hand pose is a function of the joint angles.

encoded in many different ways. We propose to encode

the errors in the robot’s joint space, i.e.:

θr = θ + β + η (2)

where θr are the real angles; θ are the measured angles;

β are joint offsets representing calibration errors; and

η represents random measurement noise. Given an esti-

mate of the joint offsets β̂, a better hand pose estimate

can be computed by:

T̂j = K (θ + β̂) (3)

Another possibility could be to encode the errors in

Cartesian space. In this case, the errors would be parame-

trized as roto-translation matrices that compose with

the nominal kinematics function:

T = K (θ) ·Tβ ·Tη (4)

where Tβ encodes the calibration errors and Tη rep-

resents the random noise. Given an estimate of the

calibration error T̂β , the pose estimate would be given

by:

T̂c = K (θ) · T̂β (5)

This is the approach taken in a number of works in the

literature, as for example in [12,14,15]. We will show

experimentally that the joint space error parametriza-

tion has advantages over the Cartesian one in terms of

generalization to different parts of the workspace.

3.2 State Model

In our formulation, the adaptation of the robot internal

model consists in estimating the offsets (β) of the joint

angles in the kinematic chain:

β = θr − θ − η (6)
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where η is modeled as a zero-mean Gaussian noise with

covariance Q, η ∼ N (0,Q).

The state vector β is composed of the offsets in the

arm joints angles. In this paper, we only consider the

offsets of the arm to reduce the complexity of the prob-

lem, as the head chain is assumed to be calibrated using

the procedure defined in [30]. Also, miscalibration in
the finger joints has a small impact on the observations

since they are at the end of the kinematic chain.

The offsets in Eq. (6) define the state vector, β =

[β1 β2 β3 β4 β5 β6 β7]T , as an unobserved Markov

process where βi is the offset in joint i of the arm. We

assume an initial distribution p(β0) and a known state

transition distribution p(βt+1|βt). To cope with non-

modeled errors (for instance, about the size of a link)
we allow for small changes over time in β via a process

noise vector w and model the system state transition

as:

βt+1 = βt + w (7)

where w ∼ N (0,K) is a zero-mean Gaussian noise

with a given diagonal covariance K = σ2
sI7 and σs is

the standard deviation.

3.3 Observation Model

We consider two sources of information in our humanoid

robot: i) the motor encoders (proprioceptive sensing)

and ii) the cameras in the left and right eyes (visual

sensing).

We define the observations as the images acquired

from the cameras of the robot. A random variable yt
represents the concatenation of the left and right images
acquired at time step t. Also, we can generate virtual

images using the internal model of the robot, for an

arbitrary value of the state vector β (see Fig. 3):

ȳt = f(θ + β) (8)

where ȳt represents the concatenation of the virtual im-

ages in the left and right cameras of the robot simulator

and f(.) encodes the kinematics and texture information

of the robot as well as the environment in the simulation

scenario. The camera model (included in f(.)) introduces

noise through the rasterization and color quantization

processes. Moreover, the complex illumination model

(based on multiple light sources with different intensity,

color, and location in Cartesian space) produces arti-

facts in the simulated images like shadows, specularities,

and glitter which is the typical noise present in the real

images.

From the comparison between the real measurements

yt and the virtual measurements ȳt, through a suitable

Fig. 3: Generation of virtual images in the Unity iCub

simulator.

function g(yt, ȳt), we can compute a likelihood of the

state β at time t:

l(βt) = p(yt | βt,θt) = g(yt, ȳt) (9)

We have defined two different approaches for imple-

menting the comparison function g(·, ·). One is based

on silhouettes segmentation and the other is based on
edges extraction.

It is worth noting that due to the redundancy in

the robot kinematics (joints space is 7DOF while hand

pose is 6DOF) different states (β) may correspond to

the same hand pose. Therefore, the likelihood function

l(βt) is multimodal and a particular choice of β̂ will be

just one set of offsets that can explain the hand pose in

the images.

3.3.1 Silhouette segmentation approach

In this approach, we make use of the segmented binary

images from the real and virtual cameras (see Fig. 4).

To compute the similarity between the real and virtual

binary masks (silhouettes) we use the Jaccard coeffi-

cients (sJc) [10]. Let R(y) be the real silhouette and

R(ȳ) the virtual silhouette. The Jaccard coefficients are
defined as:

sJc(y, ȳ) =
# (R(y) ∩R(ȳ))

# (R(y) ∪R(ȳ))
(10)

where # denotes the number of pixels in the region.

The numerator term in Eq. 10 is measuring how

similar and overlaid the two silhouette regions are and

the denominator is normalizing the metric to a range

[0,1]. Therefore, we define the likelihood model as:

p(yt|βt,θt) ∝ sJc(yt, ȳt) (11)

This approach requires a good segmentation of the

hand. For example, this can be a feasible observation

model if: the background is uniformly colored and a

good silhouette can be obtained by color segmentation
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(a) Input image (b) Silhouette Image

Fig. 4: An example of the computation of the silhouette

segmentation in a simulated image of the iCub hand.

(a) Input image (b) Edge Image (c) Distance Trans-
form image

Fig. 5: An example of edges extraction and distance

transform in a simulated image of the iCub hand.

methods; or, the head of the robot is static and a sil-

houette can be extracted by background segmentation

methods. However, in more general cases, this approach

may be not very effective due to imprecise or noisy

segmentation, and more robust methods (like the one

described in the following Section) would be preferable.

3.3.2 Edges extraction approach

For this approach, we compute the average distance

between the edges of the real image to the closest edge

in the virtual image and denote this quantity as d̄. A
perfect match between the real and virtual images would

correspond to d̄ = 0 whereas bad matches would cor-

respond to large values of d̄. The likelihood function is

thus defined as:

p(yt|βt,θt) ∝ exp−λd̄ (12)

where λ is a tuning parameter to control sensitivity in

the distance metric.

To compute d̄ we make use of the distance transform

[3]. The distance transform (DT) consists of the appli-

cation of an edge detector to the image (e.g. [5]) and

then, for each pixel, compute its distance to the closest

edge point. In Fig. 5 we give an example of one input

image (in this case, from the right eye camera) and

the corresponding edge and distance transform images,

respectively.

Let D(y) be the distance transform of the real images

and E(ȳ) be the edge map of the virtual images (binary

image indicating the edge pixels).

The average distance, d̄, can be efficiently computed

by:

d̄ =
1

k
·
N∑
i=0

E (ȳ(i)) ·D (y(i)) (13)

where k is the number of edge pixels in the virtual image,

and N is the total number of pixels.

4 State Estimation Approach

In our approach, we use a particle filter as the one defined

in [41]. Particle filter is a non-parametric implementa-

tion of the Bayes filter, approximating the posterior

distribution of the state by a set of random samples

called particles denoted by:

Bt := β
[1]
t ,β

[2]
t ,β

[3]
t , ...,β

[M ]
t (14)

where M is the number of particles, β
[m]
t (with 1 <

m < M) is one state sample and Bt is the particle set

at time t. The posterior distribution is approximated by

the weighted set of particles:

p(βt|y1:t,θ1:t) ≈
M∑
m=1

ω[m]δ(βt − β
[m]
t ) ·

(
M∑
m=1

ω[m]

)−1

(15)

where ω[m] is the weight of particle m and δ(.) is the

Dirac delta function. In the beginning of each time step t

all the particles have the same weight ω[m] = 1
M . Under

the Markov assumption (see Section 3.2) we can compute

recursively p(βt|y1:t,θ1:t) sampling from the previous

state estimation p(βt−1|y1:t−1,θ1:t−1). The four stages

of the particle filter are:

1. prediction - we use the state transition equation

defined in Section 3.2 (Eq.(7));

2. observation - the predicted observation ȳ is gener-

ated using the internal model and compared with to

observation from the cameras, y, by using either the

silhouette or the edges approach (see Section 3.3);

3. update - the measurement likelihood defined for each

approach (Eq.(11) or Eq.(12)) is used to re-weight
the particles according to ω[m] = p(yt|βt,θt);

4. resampling - the particles are sampled according

to their weight. We use the systematic resampling

method [17] to guarantee that a particle with a

weight greater than 1/M is always resampled, where

M is the number of particles.
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4.1 Computing the state estimate

Although the state is represented at each time step as a

distribution approximated by the weighted particles, for

evaluation purposes we must compute our best guess of

the value of the state. For this purpose, we use a kernel

density estimation (KDE) to smooth the weight of the

particles according to the information of neighbor parti-

cles, and choose the particle with the highest smoothed

weight (ω′[i]) as our state estimate:

ω′[i] = ω[i] + α · 1

M

M∑
m=0

ω[m] ·K(β[i],β[m]) (16)

where ω[i] is the particle likelihood, α is a smoothing

parameter, M is the number of particles of the filter,

β[i] is the particle we are smoothing. The sum term is

the influence of the neighbors in the score of the particle

i. K is a kernel specifying the influence of a particle in

another one based on their distance. We use a Gaussian

Kernel in our experiments:

K(β[i],β[j]) =
1√

2π|Σ|
e[− 1

2 (β[i]−β[j]
)TΣ−1(β[i]−β[j]

)]

(17)

where Σ is the co-variance matrix and |Σ| its determi-
nant. The term (β[i] − β[j]) denotes the difference in

the joint space between the two particles (joint offsets).

We assume the joints offsets (β) are independent of

each other, so Σ will be a diagonal matrix Σ = σ2
KDEI7,

where σKDE is the standard deviation in each joint,

which we assume to be the same for all joints. This
parameter defines if two particles are close or not. If we
have a high σKDE it means that all particles are “close”

to each other. On the other hand, if we have a small

σKDE it means that all the particles are “far” from each

other resulting in ω′[i] ≈ ω[i].

4.2 Error metrics

In order to evaluate the accuracy of our method, we

compute both the position and orientation errors be-
tween the real and estimated poses. The orientation

error is defined as:

d(Rr, Re) =

√
‖logm(RTr Re)‖2F

2

180

π
[◦] (18)

where Rr is the real rotation matrix from the eye refer-

ence frame to the hand reference frame and Re is the

estimated one. The principal matrix logarithm, logm

with the Frobenius norm (‖.‖F ), implements the usual

distance on the group of rotations.

Fig. 6: The reference frame of the iCub right hand in the

CAD model of the robot. Axis color notation: x-red; y-

green; z-blue. Based on http://wiki.icub.org/wiki/

ICubFowardKinematics_right (Best viewed in color)

The position error is computed by the Euclidean

distance, d(Pr, Pe):

d(Pr, Pe) =
√

(xr − xe)2 + (yr − ye)2 + (zr − ze)2

(19)

where Pr is the real position of the hand in the eye

reference frame in 3D Cartesian space and Pe is the

estimated one.

5 Implementation

5.1 The robotic platform

The iCub (see Fig. 1) is a humanoid robot for research in

artificial intelligence and cognition. It has 53 motors that

move the legs, waist, head, arms, and hands and it has

the average size of a 3-year-old child. It was developed

in the context of the EU project RobotCub (2004-2010)

and subsequently adopted by more than 25 laborato-

ries worldwide. Its stereo vision system (cameras in the

eyeballs), proprioception (motor encoders), touch (tac-

tile fingertips and artificial skin) and vestibular sensing

(IMU on top of the head) are important characteristics

that enable the study of autonomy in humanoid robots.

For the experiments reported in this paper, we used

a novel simulator of the iCub that we developed with

the Unityr game engine. The iCub right hand reference

frame can be seen in Fig. 6. The errors presented in

the results section (Section 6) are computed using this

reference frame.

http://wiki.icub.org/wiki/ICubFowardKinematics_right
http://wiki.icub.org/wiki/ICubFowardKinematics_right
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Fig. 7: View of Unityr game engine workspace with iCub model. The hierarchical tree of the components of the

iCub can be seen on the left side.

5.2 The Unityr iCub Simulator

Unityr is a well-known cross-platform game engine de-

veloped by Unity Technologies. We choose this option

to develop our internal graphical simulation due to its

ease of use, efficiency, extensibility and programming

features. It uses the C# programming language for

scripting which we have used extensively to interact

with the other software components in our system. We

imported a previously developed model of the iCub in

the COLLADA file format into the game engine. This

model is based on the CAD model of the real robot. A

hierarchical tree of the robot kinematics (see Fig. 7) was

defined where each node has a reference frame attached

and a pivot point. The rotation of this hierarchical ob-

ject structure is around this pivot point. In other words,

this tree represents the relationship between the several

objects in the model (i.e. the robot body parts). For

instance, the fingers are coupled with the robot hand,

thus, if the hand moves the fingers will move along and

update their absolute position in the world, maintain-

ing the relative pose in the hand reference frame. A

built-in physics engine is present and can be used to

affect objects with gravity, forces, and torques. However,

since our observation model is based on geometrical

and appearance properties, the forces present in the

environment do not influence the results, so we decided

to turn the physics engine off to increase the speed of

image generation. Our goal was to develop a geomet-

ric simulator capable of generating several hundreds of

images per second in a desired pose. In spite of the

high nominal frame rate of the game engine (about 1000

Frames Per Second, FPS) the actual one depends on the

rendered scene (e.g. number of objects/triangles) and

on the CPU and GPU specifications (e.g. number of

cores). Another feature used to increase the generation

speed was the batching method. In order to be able to

use this feature, we define all the objects in the arm

with the same material, decreasing the draw calls in the
game engine. This means that all the body parts have

the same color and the same dynamic properties (which

does not affect the system behavior, since we are only

considering the geometrical and appearance properties

of the model, as mentioned before). Having the same

color is not a problem for both observation methods:
in the silhouette method, after the segmentation, we

compare binary images; in the edge method, the most

significant edges are generated by the shape of the bod-

ies (and not by their color). On average, and due to

the high number of different objects of the iCub body,

we reduce to half the number of draw calls, from 500
to 250. The cameras in the eyeballs of the robot were

defined using the intrinsic parameters of the real robot

cameras. In computer graphics, the intrinsic parameters

are defined through the Field Of View (FOV) instead

of the focal length. The horizontal field of view (FOVh)

can be computed as:

FOVh = 2 · arctan

(
W

2f

)
(20)

where, W is the width of the projection plane and f the

focal length.
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Fig. 8: The general workflow of our approach using an

internal model to generate hypotheses.

5.3 General workflow

In Fig. 8 we can see the workflow of one iteration of

our method. Four entities are present: Robot (1), Main

Program (2), Internal Model (3) and Estimated Offsets

(4) and three communications procedures: I), II) and III).

In this paper we will focus on the communication channel

II) and the implementation of the Main Program (2) and

the Internal Model (3). Moreover, it is worth noting that

in the experiments described in this paper we do not use

the real iCub robot, but instead, we use the Unityr iCub

simulator described in Section 5.2; indeed, the simulator

is used both as Robot and as Internal Model. When

using the simulator as Robot, we introduce artificial

errors in the model to simulate a more realistic situation;

this is explained in more details in Section 6. The main

reason for using the simulator only is that we wanted to

perform experiments with a precise ground truth about

the hand pose, in order to validate our computational

framework, and this would not have been possible by

using the real robot unless external sensors were added.

As we will discuss in Section 7, experiments with the

real iCub robot are planned as future work; the general

workflow and the software modules have been designed

already to work with the real iCub robot as well.

The Main Program runs on the CPU and is responsi-

ble for the generation of the particles and for sending the

information required by the Internal Model: the particles

(β); the encoders readings (θ) and the pre-processed

images from the Robot (y). This information is sent to

the Internal Model through communication port II) via
the YARP (Yet Another Robotic Platform) middleware

[28]. The predicted images (ȳ) are then generated inside

the Internal Model based on the encoder readings and

the best choice of particles (i.e. the current estimate of

the joints offsets). Finally, the predicted images are com-

pared to the real images and the likelihood computed

with the observation model (see Section 3.3).

The Internal Model generates the virtual images on

the GPU memory. In order to compare the real and

virtual images we have two possibilities: (i) “download”

the generated images from the GPU to CPU memory

and compare them in CPU (we call this CPU/GPU

approach, see Fig. 9), or (ii) “upload” the real image

from CPU to GPU and compare them inside the GPU

(we call this GPU approach, see Fig. 10). In this work we

have implemented both approaches and compared them.

The latter (GPU approach) is able to achieve up to 3

times speed-up with respect to the former (CPU/GPU

approach).

We will describe in detail the proposed GPU ap-

proach, given its better efficiency. The CPU/GPU inter-

operation and the data structures that are shared and

sent between the two processing units can be seen in

Fig. 10. The CPU is used to communicate with the

robot receiving the data from the cameras and encoders.

It also manages the particle filter steps according to our

filtering approach. The main bulk of data generation

and evaluation is carried out at the GPU level by means

of parallel processing, using the OpenGL, OpenCV and

CUDA libraries. This interoperability will be explained

in Section 5.4.

In section 6.1 we compare the two approaches. We

will benchmark the time needed to generate the images

(frame rate) and how many particles we can evaluate in

one second (particle rate).

5.4 Interoperability between Libraries

The image processing routine necessary to compute the

particles likelihood is implemented in the GPU thanks

to the integration between Unityr, YARP, OpenGL,

OpenCV and CUDA libraries. We use the game engine

software in OpenGL mode launching it with the param-

eter -force-opengl. This feature is important for the

integration of all the libraries. We render the visible

scene in the cameras into a render texture structure

(RenderTexture class) with the format ARGBHalf and

get its pointer within the GPU memory, using the func-

tion GetNativeTexturePtr(). We initialize M render

textures and generate M different scenes according to

the M particles received from the particle filter. Ev-

ery texture has the information of both left and right

cameras.

We receive via YARP the images from the robot vi-

sion. In order to transfer the image data to an OpenGL

structure we use two functions: glBindTexture, to de-

fine the initialized texture as the current one and

glTexImage2D to import the data into the new struc-

ture using the information of the number of channels,

the alignment, and the widthStep. The format used in

OpenGL is GL_RGBA16F.
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Fig. 9: Flowchart of the CPU/GPU approach, showing the operations made in CPU, GPU and at the robot level,

where M is the number of particles.

Fig. 10: Flowchart of the GPU approach, showing the operations made in CPU, GPU and at the robot level, where

M is the number of particles.



Robotic hand pose estimation based on stereo vision and GPU-enabled internal graphical simulation 11

In this phase, we have the concatenation of the real

images (left and right) and the M generated images

in OpenGL Texture2D. We exploit the CUDA pro-

gramming language from NVIDIA in order to wrap

the information from these OpenGL structures with

the visible scenes to the OpenCV GpuMat class. We

use the functions cudaGraphicsGLRegisterImage and

cudaGraphicsMapResources to access the OpenGL in-

formation by CUDA. The usage of the CUDA function

cudaBindTextureToArray() is now possible, transfer-

ring the image data from OpenGL texture to a CUDA
texture. Unmap and Unregister the OpenGL structures

in CUDA is an important step to guarantee a “clean”

GPU memory. The GPU-accelerated Computer Vision

module from the OpenCV library has some image pro-

cessing functions as well as matrices and per-element

operations. We have defined a CUDA kernel which takes

the information in a CUDA texture and writes the im-

age data in a GpuMat structure using the information

about the data pointer (GpuMat.data), the step size

(GpuMat.step) and the number of columns and rows

(GpuMat.cols, GpuMat.rows), where each thread is re-

sponsible for copying one-pixel information to this new

structure.

All the functions used to achieve the interoperability

between the different libraries are loaded through a

plugin written in C++.

6 Results

In this section we present the results of our experiments

illustrating the following aspects: i) comparison between

CPU/GPU and GPU implementation, in Section 6.1, ii)

comparison between the two observation models (i.e. sil-

houette segmentation vs edge extraction), in Section 6.2,

iii) general results of simultaneous online calibration and

pose estimation, with generalization to different areas of

the robot workspace, in Section 6.3 and iv) robustness

to non-uniform background, in Section 6.4.

The experiments consist of reaching movements towards

a target executed in the Unityr iCub simulator. To

simulate the presence of modeling errors (that we would

have on the real robot) we add artificial joint offsets in

the arm kinematic chain of the simulator; the offsets

have the same order of magnitude of the errors we typi-

cally encounter on the real robot. In the beginning of the

movement, the state that we want to estimate (i.e. the

joint offsets) is initialized from a Normal distribution

with zero mean and standard deviation σ = 5.0◦. As

soon as the robot hand enters the field of view of the

cameras, the particle filter starts estimating the hand

pose and updating the offsets state vector. In the end

of the movement, we evaluate the position and orienta-

tion errors of the estimated pose with respect to ground

truth.

6.1 Comparison between CPU/GPU and GPU

approaches

The GPU implementation of our computational frame-

work is one of the main focus of this paper. Here, we

compare two possible alternatives: i) CPU/GPU and

ii) GPU only. We use a computer equipped with an

Intelr Xeonr Processor W3503 at 2.4 GHz with 2 cores,

2 threads and a 4MB memory cache and an NVidia

GeForce GTX 750 with 512 CUDA Cores, a base clock

of 1020 MHz and 2048 MB of memory.

6.1.1 CPU/GPU methodology

In the CPU/GPU method we generate the virtual images

(either binary or edge images in accordance with the

observation model) on the GPU and “download” them

into the CPU to perform the comparison with the real

ones (see Fig. 9). The shortcoming of this methodology
is the latency between the CPU/GPU data transfer. The

data of the M generated images must be on the CPU in

order to perform the comparison. This method has ap-

plication in machines with a non-dedicated GPU, where

GPGPU programming is not possible. Some computers

have integrated graphics cards which do not support

CUDA or another GPU programming language. For this

reason, the study of this methodology is important as

an alternative to the full GPU-enabled approach.

6.1.2 GPU methodology

The GPU method is our proposed approach for ma-

chines with GPGPU abilities (see Fig. 10). We generate

and compare the virtual images inside the GPU using

the developed iCub internal model. We only upload the

stereo images from the real robot and download the

score/likelihood of each particle, thus saving computa-

tional effort due to the decreased data transfer between

CPU and GPU processing units. For this method a

CUDA compatible graphics card is needed in order to

perform the comparison between the observation and

the generated hypotheses. In Table 1 we can see the com-

putational efficiency of the different options in terms of

particle rate (number of particles evaluated per second)

and Frame rate (number of frames generated per second

on the visual simulator). We can see that the particle

rate is better when the image comparison is made at a

GPU level. This increasing speed can be justified due
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to the fact that we do not have to copy all the M gen-

erated images (M - particles) into the CPU. The only

data transferred from the GPU to the CPU, as can be

seen in Fig. 10, is the likelihood vector computed by the

comparison between the uploaded real image and the

generated hypotheses. With these results, we can argue

that the GPU methodology presented before is the best

way to branch the algorithm in order to increase the

computational speed.

CPU/GPU GPU
Particle Rate ∼ 100 ∼ 250
Frame Rate ∼ 200 ∼ 600

Table 1: Comparison between the two different possible

methodologies in particle Rate (particles per second)

and frame Rate (images per second). We can see the

better performance using the GPU only.

6.2 Silhouette segmentation vs Edge extraction

We performed 10 different experiments in order to com-

pare the two proposed observation methods. We have

pre-defined the duration of the reaching movement to be

equal in every experience (90 frames). Each experiment

consists of performing the same reaching movement

twice; using either the silhouette or the edge approach

as the observation method. In each experiment the ini-

tial and final poses of the hand are different. All the

movements have the same duration (90 frames). In these

experiments, we have a uniformly colored background

to perform a better segmentation of the iCub hand in

the image. The silhouette approach requires this par-

ticular background in order to be able to perform a

segmentation of the robotic hand based on color. How-

ever, the edge extraction approach does not require this

uniformly colored background. In order to provide a fair

comparison between the two observation models, we use

the same environment for both.

In Fig. 11 it is shown the mean (bold line) and stan-

dard deviation (shaded-part) of the estimation errors

of the hand pose (position and orientation) (See Fig. 6)

obtained during the experiments. We compare both

methods to the non-Calibrated case (where we use only

the proprioception, i.e., β = 0). The convergence of both

methods and the reduced error compared to the Non-

Calibrated case show that both metrics can be applied

to this problem. Notably, the orientation error using the

edge extraction approach is lower compared with the

silhouette segmentation. The position error of the hand

has similar magnitudes in both cases.

Frames
Errors 0 15 30 60 90
Orient. Error [◦] 9.00 8.06 6.84 6.07 5.40
Pos. Error [mm] 35.87 5.02 3.04 1.87 0.83

Table 2: The convergence of the pose estimation error

during one reaching movement.

Fig. 12: The estimated offsets reach a steady state after

about 30 frames (i.e. 30 iterations of the algorithm),

showing the online calibration of the robot model during

one reaching movement. (Best viewed in color)

6.3 Simultaneous pose estimation and robot calibration

In this section we illustrate the convergence proper-

ties of our algorithm using the GPU methodology (see

Section 6.1) with the edge extraction approach (see Sec-

tion 6.2). In Table 2 we show the estimation error of

the hand, position and orientation, at different frames

(i.e. iterations of the algorithm) in one reaching move-

ment. We can see that the orientation and position

errors significantly decrease during the motion. More-

over, in Fig. 12 we see the online offsets estimation

during the movement. The estimation reaches a steady

state after 30 frames. The calibration parameters in

this figure are the joint offsets that calibrate the robot

model, producing the hand pose estimation error that

is shown in Table 2. This is just one of the possible sets

of joint offsets that calibrate the model: as we explained

in Section 3.3, due to the redundancy of the robot arm

kinematics, other sets of offsets might be equally ef-

fective. Then, to better characterize the convergence

properties of our estimation approach, we perform 10

different reaching movements with different initial and

final hand poses. We use the same artificial offsets (β)

in all the movements. In Table 3 we show the mean and

standard deviation (Std Dev) of the hand pose estima-

tion error at the end of the reaching movements (Frame

90), comparing the online calibration and estimation

with the non-calibrated (without filter) case (β = 0).
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(a) Orientation Error

(b) Position Error

Fig. 11: Position and orientation errors during reaching movements in a uniformly colored background. Comparison

between the silhouette approach, the edges approach, and non-calibrated case. Thick lines represent the mean over

10 movements; the envelopes indicate the standard deviation. (Best viewed in color)

With Filter Without filter
Errors Mean Std Dev Mean Std Dev
Orient. Error [◦] 6.87 2.44 12.34 1.73
Pos. Error [mm] 7.81 6.37 41.27 2.74

Table 3: Mean and standard deviation of the final ori-

entation and position errors over several experiments

(different initial and final position).

6.3.1 Generalization and comparison with Cartesian

parametrization

In this section we compare the generalization of the

learned calibration parameters using two different types

of parametrization methods: one in the joint space (pro-

posed in this work) and other in the Cartesian space

(proposed in [12,14,15]). Our approach uses offsets in

the joints to compensate for calibration errors and es-

timate the hand pose (Eq. (3)). Another alternative,

as mentioned in Section 3, is to use a Cartesian error

transformation matrix (Eq. (5)). We can compute T̂β in

Eq. (5) as the error transformation matrix to be applied

to the nominal transformation (see Fig. 13).

In order to compare both methods, we introduce

a given set of artificial joint offsets in the model, and

then perform a reaching movement from an initial pose

toward a final pose; we call this the training movement.

During the movement, we estimate both the joint off-

sets β̂ and the Cartesian error transformation matrix

according to:

T̂β = K (θ)−1K (θ + β̂) (21)

We retain the values of β̂ and T̂β at the final (training)

pose. Then, we move the hand to six different testing

poses (see Fig. 14). At each pose we estimate the hand

pose using both the joint error parametrization β̂, and
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Fig. 13: Cartesian error transformation matrix (Tβ)

between the real hand pose and the hand pose estimated

by using the robot model.

(a) Final training Pose

(b) Testing pose 1 (c) Testing pose 2 (d) Testing pose 3

(e) Testing pose 4 (f) Testing pose 5 (g) Testing pose 6

Fig. 14: Training in a trajectory with a final pose and

testing in different poses. The position and orientation

of the hand are very distinct. Here we show the left

images.

the Cartesian error parametrization T̂β , obtained dur-

ing the training movement, and compare them to ground

truth. In Table 4 we show the position and orientation

errors both in the training pose and in the different

testing poses. We compare the joint offsets parametriza-

tion with the Cartesian parametrization; the nominal

(non-calibrated) case is also shown for reference. It can

be seen that the joint offsets parametrization is better

in all the cases.

Fig. 15: Simulation of a non-uniform environment into

the left and right eyes of the iCub robot.

6.4 Simultaneous pose estimation and robot calibration
with non-uniform background

We simulated a realistic virtual environment which re-

sults in a non-uniform visual background in the robot

images (see Fig. 15), to evaluate the robustness of our

method to more complex visual scenes. We use the robot

lab project from Unity Technologies that emulates a

laboratory environment which is similar to a realistic
background. With such non-uniform visual background,

we exploit the edge extraction approach, since the sil-

houette approach is not very effective in this kind of

scenarios, where it is difficult to obtain a good segmen-

tation of the hand. We perform reaching movements,

similar to the ones presented in Section 6.3, with the

new background environment. In Fig. 16, we present

the performance of our approach comparing it to the

non-calibrated case. The computed errors at the end of

the movement (6.61◦ orientation error and 8.69 mm po-

sition error) have the same magnitude as in the uniform

background case (6.87◦ orientation error and 7.81 mm

position error, see Fig. 11) which indicates that our ap-

proach is robust to non-uniform environments. Moreover,

after 70 frames the filter converges to a good solution

with small variance.

7 Conclusions and future work

We presented a method to simultaneously estimate the

pose of the robot hand and to calibrate the robot model

using a GPU-enabled particle filter approach. Our so-

lution is marker-free and solely based on the robot em-

bedded sensors (stereo vision and proprioception). We

use an online estimation technique, and the GPU imple-

mentation allows us to perform the computation in real

time. Indeed, we show that we can increase the speed

of computation almost of a factor of three, with respect

to our previous hybrid CPU/GPU implementation.

We introduce a new approach for the visual estimation of

the hand pose, based on edges extraction, that provides

advantages with respect to silhouette segmentation. In-
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Orientation Error [◦] Position Error [mm]
Joint offsets Cartesian Nominal Joint offsets Cartesian Nominal

Final training pose 5.42 5.42 12.28 4.16 4.16 42.05
Testing pose 1 6.55 7.2 13.84 9.17 9.30 46.06
Testing pose 2 5.53 11.66 13.210 8.14 31.69 41.71
Testing pose 3 8.10 14.23 16.50 12.56 35.37 50.15
Testing pose 4 7.70 14.3 16.32 13.31 30.97 44.34
Testing pose 5 3.44 6.65 9.87 5.60 17.14 33.06
Testing pose 6 5.90 6.45 12.30 3.82 4.33 34.96

Table 4: Estimation errors with the joint offsets parametrization, Cartesian parametrization and nominal model

(i.e. non-calibrated). The orientation and position errors are always smaller with the joint offsets parametrization.

(a) Orientation Error

(b) Position Error

Fig. 16: Position and orientations errors during reaching movement with a non-uniform background. Comparison

between edge-based approach and the uncalibrated case.

deed, we show the robustness of the edge extraction

approach to a non-uniform visual background, which

is similar to the environment present in a realistic sce-

nario.

Overall, we show that we can reduce the hand pose

estimation error considerably with respect to using the

nominal (non-calibrated) robot model (of about 2 times

in the hand orientation and 6 times in the hand posi-

tion). Moreover, we achieve good generalization when

calibrating the robot on a single reaching movement

and then testing the calibration in different areas of

the workspace. Therefore, the proposed method can be

used to correct the kinematic model of a robot during

reaching to improve, for instance, the task of grasping

an object. Despite no real world experiments are shown

in this manuscript, the proposed method and the devel-

oped software can be applied immediately to the real

robot.

Indeed, we plan to make real world experiments using ex-

ternal sensing to compute the ground-truth. Setting-up
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a 3D sensor, for instance, the optitrack motion capture

[31], could be a solution to compute the hand pose in a

real scenario. We also plan to continue improving the

speed of the algorithm implementing the Particle Fil-

ter framework at the GPU architecture and using more

than one iCub model inside the game engine. If we could

generate more hypotheses in real time we could evaluate

more images from our robotic platform. The segmenta-

tion procedure for the silhouette-based approach can be

also improved to cope with more complex backgrounds.

This aspect could be achieved using a 3D vision sys-
tem based on the stereo calibrated cameras in the iCub

eyeballs.
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