
IEEE International Conference on Robotics and Automation (ICRA 2016)
Stockholm, Sweden, 16-21 May 2016

From Human Instructions to Robot Actions:
Formulation of Goals, Affordances and Probabilistic Planning

Alexandre Antunes, Lorenzo Jamone, Giovanni Saponaro, Alexandre Bernardino, Rodrigo Ventura
Institute for Systems and Robotics, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

{aantunes, ljamone, gsaponaro, alex, rodrigo.ventura}@isr.tecnico.ulisboa.pt

Abstract— This paper addresses the problem of having a
robot executing motor tasks requested by a human through
spoken language. Verbal instructions do not typically have a
one-to-one mapping to robot actions, due to various reasons:
economy of spoken language, e.g., one short instruction might
indeed correspond to a complex sequence of robot actions, and
details about action execution might be omitted; grounding,
e.g., some actions might need to be added or adapted due to
environmental contingencies; embodiment, e.g., a robot might
have different means than the human ones to obtain the goals
that the instruction refers to. We propose a general cognitive
architecture to deal with these issues, based on three steps:
i) language-based semantic reasoning on the instruction (high-
level), ii) formulation of goals in robot symbols and probabilistic
planning to achieve them (mid-level), iii) action execution (low-
level). The description of the mid-level is the main focus of
this paper. The robot plans are adapted to the current sce-
nario, perceived in real-time and continuously updated, taking
in consideration the robot capabilities, modeled through the
concept of affordances: this allows for flexibility and creativity
in the task execution. We showcase the performance of the
proposed architecture with real world experiments using the
iCub humanoid robot, also in the presence of unexpected events
and action failures.

I. INTRODUCTION

With the growing presence of robots in public spaces,
human-robot interaction is becoming increasingly important.
When communicating in natural language, humans omit
many details that are left to the interpretation of other
participants, since they all share common sense knowledge
and have similar motor skills. This is not, however, the
case of a robot, that has to reason on the natural language
instruction, understand the goals, plan a sequence of actions
to achieve them, and then execute the planned actions. This
setup can be translated into three steps: semantic reasoning
to understand the instruction (high-level), goal formulation
and planning (mid-level), and motor execution (low-level).
In this paper we present a general architecture that supports
such behaviours in autonomous robots, with focus on the
mid-level step, and the integration of different sources of
knowledge: i) robot prior knowledge, in the form of learned
affordances; ii) semantic knowledge, provided by semantic
language-based reasoning on the verbal instructions; iii) per-
ceptual knowledge, obtained from the robot perception about
the current state of the world.

Since the early days of Artificial Intelligence (AI), plan-
ning techniques have been employed to allow agents to
achieve complex tasks in closed and deterministic worlds.

Fig. 1: The iCub robot looking at a table full of objects. In the back
screen, images from the robot cameras showing object segmentation
and tracking.

Every action has clearly defined pre-conditions and deter-
ministic post-conditions; the world is assumed to be fully
observable, and only the agent’s actions can change the world
state. These assumptions are not plausible for a real robot
acting in real unstructured environments: the consequences of
actions are not deterministic, the world is perceived through
noisy sensing and it is constantly and dynamically changing
due to unpredictable events.

In this paper we tackle the planning problem by resorting
to probabilistic planning, in which actions with probabilistic
outcomes are considered. These probabilities depend on the
characteristics of the specific objects the robot has to act
upon, and on the robot perceptual and motor apparatus.
In our framework, these probabilities are extracted from
the knowledge of affordances, that the robot has acquired
through motor exploration. In this way, the set of actions
available to the planner (i.e., the actions repertoire of the
robot) can be grounded to the specific context when the robot
looks at the objects around, enabling it to plan the sequence
of actions that has the highest probability to achieve the
goals. Additionally, the robot continuously monitors the state
of the world, in order to be able to react to unexpected events
(e.g., action failures, erroneous perception, modifications in
the environment due to other agents).

Another important aspect of our approach is to exploit the
semantic reasoning performed by the high-level to help the
probabilistic planner find a solution. In our implementation,
the high-level is represented by a language-based semantic



network, the PRAXICON [1]. Indeed, if the planner had to
compute a sequence of actions that goes from the initial
conditions to the final goal, it might not converge to a
solution, or it might take too long to do it, due to the
huge amount of possibilities it has to consider. Instead, the
high-level step suggests a sequence of actions that lead to
the goal, based on semantic reasoning about i) the human
verbal request and ii) the names of the objects available; the
expected outcomes of these actions are expressed as states
of the world that can be perceived by the robot (e.g., “grasp
bread with left hand” becomes bread_inhand_left), which
constitute the sub-goals of the planner. Planning toward
these sub-goals reduces the search space of the probabilistic
planner, making complex problems solvable. In short, our
system (mid-level) merges semantic knowledge with robot
prior knowledge coming from the affordances and perceptual
knowledge about the current context by using probabilistic
planning; the output of the mid-level is the motor actions to
be executed by the low-level, which in our case is represented
by the iCub robot motor control libraries [2], [3].

The rest of the paper is organized as follows. In Sec. II we
review the related work in the fields of planning and affor-
dances models. Then in Sec. III we describe each component
of our system, separated in domain-independent and domain-
dependent. In Sec. IV we present experimental results that
showcase a number of situations that our approach allows to
deal with. Finally, in Sec. V we report our conclusions and
sketch the future work.

II. RELATED WORK

A vast amount of work has been done in the area of com-
bined task and motion planning [4]. Hierarchical planning
was also studied in detail, with some algorithms available
that incorporate Hierarchical Task Networks (HTN), like
SHOPS2 [5], [6]. These methods, however, usually consist
of one plan, which could be followed and completed. Some
work has been done on simultaneous plan and execution on
Hierarchy Planning in the Now (HPN) [7], which is oriented
towards the execution of geometrical problems. Below we
will go into detail on the points of contact.

From Natural Language to Action Execution One of the
aspects we are working with in this system is the translation
of natural language instructions into robot knowledge and
actions. This field has seen some recent studies, as shown in
PRAXICON [1] and DIARC [8]. In DIARC, a similar archi-
tecture was developed, where Natural Language instructions
would be translated and executed by the robot, but while
the system allowed for a failure detection, it did not re-plan
nor use robot prior knowledge in the form of affordances.
In PRAXICON, a human instruction is decomposed into a
set of deterministic, human-like actions, that do not take into
account the world around the robot, thus requiring planning
on these instructions.

Hierarchy Planning in the Now The problem of real-
time planning and execution requires an algorithm that
can adapt to changes in the state. HPN introduces this by
updating the world state at each step, and planning from

there. Using hierarchy on the actions, it transforms a big,
hard-to-solve problem into several smaller problems that are
more easily solved by a planner. This approach was initially
suggested by Nourbakhsh [9], where a big problem would be
turned into smaller problems by completing sub-goals and re-
planning. Our proposal uses Nourbakhsh’s concept applied to
a probabilistic planner, where we merge semantic knowledge
with robot prior knowledge and the geometry of the world
state.

Combining Symbolic and Geometrical Planning In
the works of Kaelbling and Lozano-Pérez [7], a depth-
first approach is used, where a plan-branch is recursively
expanded until all that is left is a primitive task that can be
executed. The problem to this approach is the feasibility of
the plan, and the solution is to evaluate the serializability of
the sub-goals, guaranteeing that no step in the plan makes
it impossible for the other sub-goals to be achieved. This is
a very different approach from the one we are using, which
could be considered breadth-first, in the sense that we have
the abstract plan, with all the sub-goals found, before we
proceed with the execution.

Multi-Level Planners One of the concepts discussed in
this paper is the use of different types of planners to solve
a problem. This kind of work comes up in some papers [5],
[7], [10], but is usually secondary or only somewhat present,
in the sense that a set of instructions already exists, or
the actions for the robots are predetermined. Our approach
tries to create a full chain, from a human instruction, very
abstract, to very specific motions at the lower level, using
PRADA [11] for the mid-level probabilistic planner: we
choose this planner because it allows to seamlessly incorpo-
rate the prior robot knowledge encoded in probabilistic terms
(in our case, using the Bayesian Network of affordances
we previously developed [12]) and because it is quite fast
and accurate in planning the first best action of the plan,
permitting real robot operations.

Affordances and Robot Knowledge A number of com-
putational models have been investigated in the robotics
literature to learn object affordances and use them for
prediction [13], tool use [3], [12], [14], [15] and plan-
ning [16]–[19]. In the framework presented by Montesano
et al. [13], objects affordances are modeled with a Bayesian
Network [20], a general probabilistic representation of de-
pendencies between actions, objects and effects. We recently
extended this model to deal with actions that involve two
objects: a held object (tool) and an affected one [12]. In [17]
the relational affordances between objects pairs are exploited
to plan a sequence of actions to achieve a desired goal, using
probabilistic reasoning; however, how these interactions are
affected by different geometrical properties of the objects is
not investigated. In [18] the robot learns first affordance cate-
gories and then logical high-level rules, which are eventually
encoded in Planning Domain Definition Language (PDDL),
enabling symbolic planning with off-the-shelf AI planners. In
a follow-up work [19] the generated plans are used in a real-
world object stacking task and new affordances that appear
during plan execution are discovered. The robot is able to



Low-level

Semantic memory 
and reasoner Goal Compiler Planner Action 

Grounding

robot perception

robot action

Action rules World state Object affordances

next action

High-level Mid-level

Fig. 2: Proposed architecture. The high-level side deals with interpreting human instructions provided in Natural Language; the mid-
level part formulates robot goals and a probabilistic plan, also taking into account the state of the world (robot environment) and object
affordances; the low-level block manages motor execution and control. Blocks in the upper row are specific to the assigned task (e.g., they
would be different in an assembling scenario and in a cleaning scenario), while those in the lower row are general. This paper describes
the mid-level part, in particular the goals, the actions grounding and the planner components – highlighted with dark background and
bold text.

build stable towers exhibiting some interesting reasoning
capabilities, such as stacking larger objects before smaller
ones.

III. SYSTEM ARCHITECTURE

The proposed system merges three different sources of
knowledge: i) language-based semantic knowledge about
the task, ii) perceptual information about the current con-
text, and iii) robot prior motor experience. This is realized
through four domain-independent modules: Semantic mem-
ory/reasoner, Goal Compiler, Action Grounding and Planner;
one domain-dependent module: World State Monitor; and
two databases: Rules (possible robot actions) and Object Af-
fordances (see Sec. III-B). This paper focuses on the domain-
independent modules, in particular the three highlighted
blocks in Fig. 2. The system composed by these modules
is very generic, and can be adapted to most situations.

A. Action Rules

A rule (ungrounded action) is a symbolic template
for each action. Each rule is defined by: i) Sym-
bol, e.g., grasp__obj_with__hand; ii) Context, defining
the pre-conditions necessary to execute said action, e.g.,
_hand_clearhand, _obj_isreachable_with__hand; iii) Out-
come, consisting of a list of possible outcomes, organized
from most to least likely, e.g., _obj_inhand__hand. Objects
are indicated by _obj and hands _hand, when grounding.
This is explained in detail in Sec. III-F.

B. Affordances

Affordances, defined by J. J. Gibson as action possibilities
offered by the environment [21], depend both on the object
properties and on the sensorimotor capabilities of the agent.
In a previous work we proposed a computational model of
affordances which represents relationships between actions,
visual features of objects (both a held object, or tool, and an
affected one) and the resulting effects [12], [15]. The model
is learned by the robot through sensorimotor experience. In
this work, we refer to such model as inter-object affordances.
The model represents the robot prior knowledge about what
consequences its own actions can generate in the world. The
Action Grounding module queries the affordance model to

obtain the probabilities of the action effects given the visual
properties of the objects involved: P (E|A,O, T ), where E
are the effects, A is the action, O are visual features of the
affected object, and T are visual features of the held object
(or tool) used by the robot. For further details about the
affordance model, the reader can refer to [12], [15].

C. World State Monitor
One of the sources of information for the planner is what

we call World State, as shown in Fig. 2. This block consists
of a short-term memory of the symbols needed by the plan-
ner. These symbols pertain to characteristics of the objects
present in the environment as well as robot proprioception,
for instance: spatial position of an object, whether it is
currently grasped by a hand or “free”, in which hand it is, a
set of shape descriptors (used for affordance inference, see
Sec. III-B), etc. This memory, or database, is kept consistent
by fusing the information that comes from different sensory
modules in real time (visual routines such as object feature
extractor and tracking, shown in the background of Fig. 1),
applying some task-specific constraints (e.g., whether far
objects are in-reach with the help of a tool, by using an
optimization procedure based on an internal simulation of
the robot actions [3]), maintaining symbols of occluded
or disappeared objects in memory and applying temporal
filtering to remove noise.

D. Semantic Memory and Reasoner
Natural language instructions are usually very abstract

in details, often assuming the other agent is seeing the
same objects, can execute the same actions, and understands
what is being asked. This is not true for robots, which
means such an instruction has to be processed. This is done
by semantic memory and reasoner, PRAXICON [1], which
decomposes an abstract instruction into an action sequence
using the objects the robot can see, e.g., “make a sandwich”
would return “hand grasp cheese, cheese reach bun-bottom,
hand put cheese. . . ”. While the semantic reasoner provides
a sequence of human-like actions, it does not take into
account if the objects are robot-usable (e.g., if an object is
reachable), or if the robot can execute the actions (e.g., self-
or environment collisions).



E. Goal Compiler

In order to translate the instructions provided by the
semantic reasoner, from human-language to robot-language,
some common ground has to be found. A way to achieve
this would be to use robot symbols to describe human
actions and their results. This translation is performed by
the Goal Compiler. Instructions provided by the semantic
reasoner come in the form (object action object), allowing
for easy identification of the action. The algorithm searches
for a matching action, with a similar symbol, e.g.: for (hand
grasp cheese), it finds grasp__obj_with__hand. Finally, it
creates a sub-goal from the first (most likely) outcome of
this action. The process is cyclic, using the previous sub-
goals and changing them with the outcomes of the following
actions, until the final goal is created.

During this translation, the Goal Compiler evaluates if
these instructions can be executed, given the previous state,
in order to detect inconsistencies. This is useful since the
semantic reasoner lives in the conceptual space, without any
knowledge of the real world. This allows the compiler to
detect when an object that cannot be used appears in an
instruction, which would be impossible to solve, providing
some early-detection of mistakes.

The Goal Compiler works independently of the rules, since
it only finds a match between the rules the robot knows and
the instructions from the semantic reasoner. If no match is
found, it announces the unknown instruction and awaits new
instructions.

F. Action Grounding

While the Goal Compiler provides the planner with the
goals to be achieved, to achieve those goals the robot motor
experience needs to be considered. The Action Grounding
serves this function, matching the repertoire of robot rules
with the learned affordances of the objects around.

The outcome of the grounding is a list of possible actions,
given robot knowledge and what surrounds it. For each
rule, the grounding module will find the possible objects
match, creating several possible grounded actions, e.g.,
grasp__obj_with__hand becomes grasp_spoon_with_left,
grasp_spoon_with_right, grasp_tomato_with_left, etc. Then,
for each of these actions, we predict the effects by querying
the Bayesian Network: the effects are encoded as probability
distributions, and therefore the actions become probabilistic
rules that can be used by the planner. The list of possible
outcomes is now associated to their respective probability:

Grounded action example
ACTION:

grasp_spoon_with_left
CONTEXT:

¬spoon_ishand left_clearhand left_ishand
spoon_isreachable_with_left ¬ALL_on_spoon

OUTCOMES:
0.85 spoon_inhand_left ¬left_clearhand
0.15 <noise>

All actions have a noise outcome, representing unforeseen
results from a certain action, and usually with a small
probability associated with it. This outcome is used by
PRADA [11] in predicting the best next action, as we will
see in the next sub-section. We use this outcome to represent
the failure of the action for simplification, but more outcomes
can be encoded if needed. The rules can be changed and
adapted to any problem, as long as the structure is kept as
above (Action; Context; Outcome).

G. Planner

The objective of this architecture is the execution of a task
specified by a human in the form of a verbal instruction. In
order to achieve this, the robot has to react to changes in
the environment, and problems not foreseen by the semantic
reasoner. In this paper we propose a planning cycle, where in
each loop the robot will update its perception of the world,
check to see if the goal has been met, plan the next action
using PRADA [11], and execute the planned action. The
introduction of this method allows the implementation of
some heuristics, as well as the exploitation of some features
of the previous modules. We have labeled these features into
three different categories:

1. Goal Consistency Check. Since all the sub-goals are
stored in memory, it is then possible to manage them in
order to fix some problem, like outside interference. At
each planning step, a consistency check is performed on the
symbols that are common to the current and previous sub-
goals. If one of those symbols fails the check, the planner
backtracks on its sub-goal list until this check passes, and
re-plans from there.

2. Adaptability. If an action fails, and nothing changes in
the world state, the robot would keep trying to use that action
endlessly. Since the grounded actions are independent from
each other, we can adapt an action that fails by lowering its
probability of success and increasing its <noise>, making its
outcome less certain, and as such, less useful for planning,
forcing the robot to try a different approach.

3. Creativity. When no action is found for a certain sub-
goal, and the planning horizon is already too large, the
planner jumps to the next sub-goal, and tries for that instead.
This is possible because all relevant information is present
in the final goal, and no information is lost in jumping sub-
goals. This can solve some problems with action-specific
sub-goals, like having an object on a specific hand, e.g.,
spoon_inhand_left.

IV. EXAMPLES AND RESULTS

The proposed planning architecture is not only able to
solve the geometric problems not generally considered in
natural language instructions, but also deal with other situa-
tions, like external and robot-related problems. To showcase
these capabilities we report here experiments in which an
iCub robot [22] is instructed to make a sandwich, with
cheese, tomato and bread. These objects are on top of a
table, together with two tools: a rake and a stick.



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3: Temporal snapshots of the robot during the first example (Object Out of Reach), see Sec. IV-A. Best seen in color.

A. First Example: Object Out of Reach

In the first experiment, shown in Fig. 3, the tomato
is far from robot reach, but reachable by the tools. The
instructions provided by the semantic reasoner are: “hand
grasp cheese; cheese reach bun-bottom; hand put cheese;
hand grasp tomato; tomato reach cheese; hand put tomato;
hand grasp bun-top; bun-top reach tomato; hand put bun-
top”. These are translated by the Goal Compiler into a
list of sub-goals, where the final goal is cheese_on_bun-
bottom; tomato_on_cheese; bun-top_on_tomato. The initial
world state can be seen on Fig. 3a.

The first two actions are the same as in the instructions
sent by the semantic reasoner: grasp_cheese_with_left;
put_cheese_on_bun-bottom_with_left (Figs. 3b–3c).
However, when the robot tries to grasp the tomato, it detects
that the tomato is out of reach. The probabilistic planner
then plans a way to grasp the tomato. From the affordances
database (see Sec. III-B), it knows that the action of pulling
the tomato with a rake has a higher success probability than
pulling it with the stick, and it plans the following sequence:
grasp_rake_with_right; pull_tomato_with_rake_on_right
(Fig. 3d–3f); grasp_tomato_with_left. With this sub-goal
met (Fig. 3g), it continues the planning cycle (explained
in Sec. III-G) until it gets to the final goal, shown in
Figs. 3h–3j.

B. Second Example: Sabotaged Plan

In the previous example, the robot is considered to be the
only agent able to act on the surrounding environment. In
most situations, however, and in the case of human-robot
shared tasks in particular, this is not true.

In this second example, shown in Fig. 4, a human sab-
otages the robot plan execution, by removing some ingre-
dients from the sandwich when the robot is almost ready
to complete the recipe plan, already with the bun-top in its
hand. This external disturbance can be seen in Figs. 4a–
4b. When the world state is updated, the Goal Consistency
Check fails for tomato_on_cheese. This check fails two

more times, jumping back on the sub-goal list for each
failure, until the sub-goal is cheese_on_bun-bottom. This
time, the check passes, and the planning cycle is resumed.
The resulting action sequence is: grasp_cheese_with_right;
put_cheese_on_bun-bottom_with_right, and so on, leading to
the final goal shown in Fig. 4e.

This example shows how the Goal Consistency Check
heuristic (see Sec. III-G) helps the planner in solving com-
plex problems, by receding in the plan to fix them first,
instead of trying to achieve the final goal despite the mistake.

C. Third Example: Action Failure

In the previous example, the robot solved a sabotage prob-
lem, but sometimes the robot itself might be the problem.
In this example, the robot has a faulty left hand, making it
impossible for the robot to grasp with it.

Since the first sub-goal requires the robot to have
cheese_inhand_left, and since this is an impossible
goal, the robot would be stuck here forever, retrying
grasp_cheese_with_left indefinitely. Due to the Adaptabil-
ity heuristic (see Sec. III-G), each failure reduces the
probability of success of that action. However, with no
alternative action to achieve this sub-goal, the planner
would still fail. This problem is solved by the Cre-
ativity heuristic. In this particular case, it jumps the
cheese_inhand_left sub-goal, and instead tries to achieve
cheese_on_bun-bottom. With the probability of success
of the grasp_cheese_with_left action so low, the robot
chooses the right hand instead: grasp_cheese_with_right;
put_cheese_on_bun-bottom_with_right.

The robot uses a different approach to achieve the sub-goal
compared to the natural language instructions it received,
showing some creativity in fixing the problems it faces. There
is a limit, however, as to how many sub-goals the robot can
jump, since given the probabilistic nature of the planner, if
too many steps are considered, the planner might not find a
solution. The number of steps that can be considered depends
on the probability of effects of the actions, but in this case



(a) (b) (c) (d)
· · ·

(e)

Fig. 4: Temporal snapshots of the robot during the second example (Sabotaged Plan), see Sec. IV-B. Best seen in color.

(for a probability of success around 0.80) we found the
planner could find a solution for a problem 5 steps deep.

D. Fourth Example: Missing Objects

In some situations, due to robot or external influence, some
objects might go missing. As long as this object is not a
part of the final goal (e.g.: rake), the planner can still find
a solution, otherwise it reports the failure back to the high-
level planning, and awaits new instructions.

V. CONCLUSIONS AND FUTURE WORK

We presented a general cognitive architecture to interpret
verbal instructions that involve motor tasks, and translate
them into robot actions, adapted to the robot sensorimotor
capabilities and to the contingencies of the current state of
the environment. We provide a number of real world exam-
ples in which the humanoid robot iCub successfully executes
complex motor tasks requested by a human user through
spoken language, showing flexible and creative behaviours
that allow to cope with i) details of the motor execution not
specified by the human user, ii) unexpected events caused by
external interventions, and iii) action failures.

These robot behaviours are made possible by the inte-
gration of different components: the definition of the goals
in robot-symbols (Goal Compiler), the inclusion of the
robot prior sensorimotor knowledge in the plans (Actions
Grounding through the Affordances, for the Probabilistic
Planner), the continuous monitoring of the state of the world
(World State). The three main modules (Goal Compiler,
Action Grounding and Planner) can be used with any robot,
provided the information is structured as described in Sec. III
(rules, symbols, instructions sequence). Moreover, the use
of a hierarchical reasoning process (high–mid–low levels)
allows to solve large, complex problems, by transforming
them into several smaller problems, each one with its own
small plan. All the software that implements the proposed ar-
chitecture is publicly available (https://github.com/
robotology/poeticon).

Currently, symbols and rules are defined by the program-
mer; a possible route for future work would be to have
the robot learning the symbols involved with each rule
automatically.

ACKNOWLEDGMENTS

This work was partially supported by the Portuguese
Government (Fundação para a Ciência e a Tecnologia,

UID/EEA/50009/2013) and by the European Commis-
sion under projects POETICON++ (FP7-ICT-288382) and
LIMOMAN (PIEF-GA-2013-628315).

REFERENCES

[1] K. Pastra, P. Dimitrakis, E. Balta, and G. Karakatsiotis. PRAXICON
and its language-related modules. In SETN, 2010.

[2] U. Pattacini, F. Nori, L. Natale, G. Metta, and G. Sandini. An
experimental evaluation of a novel minimum-jerk cartesian controller
for humanoid robots. In IROS, 2010.

[3] V. Tikhanoff, U. Pattacini, L. Natale, and G. Metta. Exploring
affordances and tool use on the icub. In Humanoids, 2013.

[4] T. Lozano-Pérez, J. L. Jones, E. Mazer, P. A. O’Donnell, W. E. L.
Grimson, P. Tournassoud, and A. Lanusse. HANDEY: A Robot System
that Recognizes, Plans, and Manipulates. In ICRA, 1987.

[5] J. Wolfe, B. Marthi, and S. J. Russell. Combined Task and Motion
Planning for Mobile Manipulation. In ICAPS, 2010.

[6] R. P. Goldman. A Semantics for HTN Methods. In ICAPS, 2009.
[7] L. P. Kaelbling and T. Lozano-Pérez. Hierarchical Planning in the

Now. In ICRA, 2011.
[8] J. Dzifcak, M. Scheutz, C. Baral, and P. Schermerhorn. What to do

and how to do it: Translating natural language directives into temporal
and dynamic logic representation for goal management and action
execution. In ICRA, 2009.

[9] I. R. Nourbakhsh. Using Astraction to Interleave Planning and
Execution. In Third Biannual World Automation Congress, 1998.

[10] T. Lozano-Pérez and L. P. Kaelbling. A constraint-based method for
solving sequential manipulation planning problems. In IROS, 2014.

[11] T. Lang and M. Toussaint. Planning with Noisy Probabilistic Rela-
tional Rules. Journal of Artificial Intelligence Research, 39, 2010.

[12] A. Gonçalves, J. Abrantes, G. Saponaro, L. Jamone, and
A. Bernardino. Learning Intermediate Object Affordances: Towards
the Development of a Tool Concept. In ICDL-EpiRob, 2014.

[13] L. Montesano, M. Lopes, A. Bernardino, , and J. Santos-Victor.
Learning Object Affordances: From Sensory–Motor Coordination to
Imitation. IEEE Transactions on Robotics, 24(1):15–26, 2008.

[14] A. Stoytchev. Learning the affordances of tools using a behavior-
grounded approach. Springer LNAI, pages 140–158, 2008.

[15] A. Gonçalves, G. Saponaro, L. Jamone, and A. Bernardino. Learning
Visual Affordances of Objects and Tools through Autonomous Robot
Exploration. In ICARSC, 2014.

[16] N. Krüger et al. Object–action complexes: Grounded abstractions of
sensory-motor processes. Robotics and Autonomous Systems, 59(10),
2011.

[17] B. Moldovan, P. Moreno, M. van Otterlo, J. Santos-Victor, and
L. De Raedt. Learning relational affordance models for robots in
multi-object manipulation tasks. In ICRA, 2012.

[18] E. Ugur and J. Piater. Bottom-up learning of object categories, action
effects and logical rules: From continuous manipulative exploration to
symbolic planning. In ICRA, 2015.

[19] E. Ugur and J. Piater. Refining discovered symbols with multi-step
interaction experience. In Humanoids, 2015.

[20] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[21] J. J. Gibson. The Ecological Approach to Visual Perception. Lawrence
Erlbaum Associates, USA, 1986. Original work published in 1979.

[22] G. Metta et al. The iCub humanoid robot: An open-systems platform
for research in cognitive development. Neural Networks, 23(8):1125–
1134, 2010.


