
Pattern Recognition Letters 68 (2015) 297–305

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Shape Context for soft biometrics in person re-identification and

database retrieval✩

Athira Nambiar∗, Alexandre Bernardino, Jacinto Nascimento

Institute for Systems and Robotics, Instituto Superior Técnico, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal

a r t i c l e i n f o

Article history:

Available online 11 July 2015

Keywords:

Multimedia

Soft biometrics

Shape Context

Re-Identification

Silhouettes

Retrieval

Surveillance

a b s t r a c t

We introduce a novel descriptor for the analysis of pedestrians and its applications to person re-identification

and database retrieval. A Shape Context descriptor of the head-torso region of persons’ silhouettes is shown

to have a very good discrimination ability and application to re-identification. For database retrieval using

human queries, we train a map from the Shape Context to interpretable soft biometric quantities that can

be reasoned about by humans. We show that a good linear correlation exists between Shape Context de-

scriptors and soft biometrics quantities in the upper human torso and illustrate its application to retrieval in

databases from human queries. Shape Context to biometrics maps are learned from virtual avatars rendered

by computer graphics engines, to circumvent the need for time-consuming manual labelling of data sets.

We obtained promising results of Shape Context based person re-identification and database retrieval from

human compliant description of biometric traits, in both synthetic data and real imagery.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Soft biometrics are the physical, behavioral or adhered human

haracteristics, classifiable in predefined human compliant cate-

ories which are established and time proven by humans with the

im of differentiating individuals [7]. Different from hard biomet-

ics, they lack the distinctiveness and permanence to identify an in-

ividual with high reliability. However, they have certain advantages

ver hard biometrics exclusively making them best suited to deploy

n surveillance applications viz. non obtrusiveness, acquisition from

istance, non-requirement for the cooperation of the subject, compu-

ational and time efficiency and human compliance.

Soft biometric features leverage human characteristic traits such

s height, body size and gait. These characteristics are more coher-

nt and reliable for long term re-identification than the commonly

sed temporary appearance cues such as dress color and texture info

5]. Recently, the arrival of sophisticated systems such as motion cap-

uring devices, 3D sensors (Kinect) and high definition cameras ac-

elerated the exploitation of soft biometrics in wide range. As a re-

ult, unprecedented real time applications were reported in person

e-identification and other video surveillance applications.

However the direct computation of soft biometric features from

ideo images is not trivial and existing methods rely on human man-
✩ This paper has been recommended for acceptance by Paulo Lobato Correia and

homas Moeslund.
∗ Corresponding author. Tel.: +351 218418050.

E-mail address: anambiar@isr.ist.utl.pt, nambiar.athira@gmail.com (A. Nambiar).

v

j

l

a

w

ttp://dx.doi.org/10.1016/j.patrec.2015.07.001

167-8655/© 2015 Elsevier B.V. All rights reserved.
al measurements made on individual images [17]. Instead, auto-

ated computer vision analysis methods have been more success-

ul with features that are not interpretable by humans, like SIFT [13],

OG [6], Shape Context [4] and others. These features, though use-

ul in automated methods, are hard to reason about by humans and

hus not suited for formulating verbal descriptions of search queries

n databases. For instance, we would like to be able to search on a

atabase for persons with large torso, thin neck, long head, etc. Thus,

e propose a methodology to infer soft biometric person character-

stics from their computer vision based descriptors, using regression

nalysis.

Obtaining a predictive model of soft biometric features from com-

uter vision features involves several challenges and difficulties: (i)

hich computer vision features are more adequate; (ii) how to ob-

ain the ground truth biometric features to train the model and; (iii)

hich regression model is more suitable.

With respect to the first point, we propose the use of Shape Con-

ext features computed in the upper-torso part of the frontal hu-

an silhouettes, where we capture the human images from their

ideo clips walking towards the camera. The upper torso region of

he body presents less temporal variance with respect to arms and

egs motions, thus producing more stable features. In addition to that,

ince person re-identification is carried out in an uncontrolled en-

ironment, there are chances for clutters and other interacting ob-

ects making the lower body part occluded. In many indoor surveil-

ance systems cameras are placed along corridors at high positions

nd tilted down, which makes the legs and lower torso occluded

hen persons are close to the camera. However, the head to chest

http://dx.doi.org/10.1016/j.patrec.2015.07.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2015.07.001&domain=pdf
mailto:anambiar@isr.ist.utl.pt
mailto:nambiar.athira@gmail.com
http://dx.doi.org/10.1016/j.patrec.2015.07.001
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(a)

(b)

Fig. 1. Images showing the relevance of head-to-chest region for person re-

identification tasks in various situations. (a) A forward walking sequence captured

in our HDA data set [14] highlights the visibility of head-to-chest region in most of

the frames, while the other parts are occluded. (b) Relevance of Upper body region in

Human-Robot/Computer interaction. Head to chest region are clearly visible in both

cases and could be used for re-identification task.

Table 1

A summary of anthropometric data taken from [9] relevant in the upper

torso region. These statistical summaries reveals significant variation in

the head and chest measures (All measurements are in centimeters.) The

features shown in bold letters are some of the soft biometric cues used

in our study.

Measurement name Mean Standard

deviation

Min Max

Biacromial breadth 39.70 1.80 33.0 45.10

Bideltoid breadth 49.18 2.59 41.0 59.3

Head width 15.51 0.60 13.6 17.7

Head circumference 56.77 1.54 51.4 62.7

Head length 20.02 0.72 17.6 22.6

Chest breadth 32.15 2.55 25.70 42.20

Neck-bustpoint length 27.24 1.81 22.2 34.2

Neck circumference 37.96 1.97 31.6 47.0

Shoulder circumference 117.52 6.04 96.6 142.4

Shoulder-elbow length 36.9 1.79 29.7 44.6

Shoulder length 15.05 1.10 11.4 18.5
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region, unlike the waist and legs, maintain a relatively consistent

shape through a broader range of walking frames. A real world ex-

ample (video sequence in the HDA Data set1) where this effect is

clear is shown in Fig. 1(a). In addition to that, there are scenarios in

Human-Robot Interaction (Fig. 1(b) left) and Human-Computer Inter-

action (Fig. 1(b) right) that highlight the relevance of upper body part

selection for person re-identification.

The use of a silhouette based feature is motivated by the fact that

it is less sensitive to the color and texture of the inner region of per-

son’s images and thus making itself a better candidate towards long

term based person re-identification. Furthermore, the Shape Context

feature computes the density of boundary points at various distances

and angles. As such, it more directly encodes soft biometric traits such

as lengths, curvatures and size ratios in the human body. In this pa-

per, we explore this idea with the goal of recovering the soft biometric

features encrypted in the Shape Context descriptors of body silhou-

ettes using regression methods.

The second challenge is the availability of ground truth biomet-

ric features to train the model in the regression analysis. It is not

easy to model this in a real environment due to the necessity of a

range of variations of discriminative biometric features in relatively

large population. Also, it is laborious to annotate the human biomet-

rics manually on real data. In order to tackle this issue, we used syn-

thetic avatars in a virtual reality platform. In contrast to [17], where

the training set was generated by manual annotations done on real

imagery by a large number of human annotators, here we avoid such

a troublesome training phase by generating the ground truth with the

help of modern computer graphics technology.

In this work we leverage on the ability to simulate thousands

of variations in biometrics on avatars according to our choice for

two purposes. First, we conduct a baseline study to verify the im-

pact of our descriptor for re-identification (Re-ID), since the simu-

lated avatars provide flawless silhouette images. Second, we model

the regression between computer vision based features (Shape Con-

text) and human interpretable features (Biometrics) and thus bridge

the gap between the human and machine interpretations of human

body shape. Thus we present a novel automatic person retrieval sys-

tem which could work in dual mode (viz., multimedia mode or hu-

man query mode) depending on the test data.

For obtaining some geometric features of the head to chest re-

gion, distinguishable from person to person, some measurable met-
1 http://vislab.isr.ist.utl.pt/hda-dataset/ .

c
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p

ics which vary significantly within the population should be cho-

en. The measurement and study of such features and their variation

s the domain of anthropometry. An anthropometric survey (ANSUR)

as conducted by the U.S. military in 1988 upon more than 150 an-

hropometric dimensions, measured from 9,000 soldiers. A statistical

ummary of those standard biometric features related to the upper

orso regions is provided in Table 1. In our study, we consider some

f those key biometric features described here.

Concerning the regression model, several choices are possible to

e used, e.g., a non-linear mapping based on Gaussian process regres-

ion [16]. However, this kind of approaches usually require a signifi-

ant amount of data. In our case, we will adopt a linear approach as a

aseline, to perform a mapping between the Shape Context and soft

iometrics. We will experimentally demonstrate that with the avail-

ble amount of data such linear approach will suffice for obtaining

igh accuracy in the results.

The paper is organized as follows. Section 2 describes related

iterature on soft biometric based person retrieval as well as former

pplications of Shape Context in surveillance scenarios. The system

rchitecture is explained in detail in Section 3. In Section 4, the main

ethodologies used in our framework viz. Shape Context feature

xtraction and regression are described. Then, Section 5 explains

n detail our Re-ID experiments conducted in both real and virtual

latforms, by acquiring Re-ID data set and by simulating avatars

espectively. The regression analysis carried out is also explained

ere. Section 6 presents a set of promising results accentuating the

eliability of the proposed architecture in person re-identification, as

ell as demonstrating the human retrieval performance with human

ompliant queries. Finally in Section 7, we summarize our work and

numerate some future work plans.

. Related work

.1. Shape Context on surveillance applications

The application of Shape Context (SC) in human video surveillance

ystems are reported in the state-of-the-art. Some works are found in

edestrian detection by [12], highlighting that SC descriptor trained

n real edge images exhibited high performance, particularly on diffi-

ult images and backgrounds. Some application of SC have also been

mployed in gait recognition [22] where SC is used to compute the

imilarity between two procrustes mean shape, which is a compact

epresentation of gait sequence. A similar application of SC is found

n human pose estimation [1]. However, the literature is scarce con-

erning the use of SC in re-identification applications. One exception

s [21] that created shape labelled images by means of shape and ap-

earance models which was inspired from the idea of Shape Context.

http://vislab.isr.ist.utl.pt/hda-dataset/
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nother work [11], used Shape Context descriptors to represent the

ntra distribution of colors for person re-identification. In this work,

e propose Shape Context features computed on the contour of the

ilhouette of frontal images of persons.

.2. Silhouette based person re-identification

Most of the state-of-the-art methods leverage either color infor-

ation or local feature descriptors inside the human body after seg-

enting the silhouettes. In [20], a robust classification procedure ex-

loited the discriminative nature of sparse representation to perform

eople re-identification. [2] presented a person Re-ID method based

n appearance classification and silhouette part segmentation using

arious descriptors such as SIFT, SURF and SPIN. In this work, instead

f appearance cues, we exclusively depend upon contour information

nd propose a new way of long-term person re-identification using

ilhouettes. To the best of our knowledge no complete work for per-

on re-identification, leveraging solely the edge information of the

ilhouette is reported in the literature.

.3. Soft biometrics based person retrieval

The last decade witnessed pioneering research in video surveil-

ance applications using soft biometry which was enhanced with the

ntroduction of advanced motion capturing devices and high defini-

ion cameras. [3] presented a set of 3D soft biometric cues related

o anthropometric measurements, obtained from KINECT RGB-D sen-

ors and employed in person re-identification. Many studies on gait

ased person recognition and re-identification were also reported

8,15,18]. In [7] a bag of soft biometric traits (e.g., facial and body

oft biometrics) was presented for person re-identification. They pro-

osed a general framework by integrating both the primary biomet-

ics (i.e. face, iris) and soft biometric system (i.e. height, gender). The

etrieval using soft biometrics is also addressed in [17]. In that work, a

ovel method of comparative human descriptions for soft biometrics

as introduced, in which manual annotations of comparative bio-

etric measurements were collected. Out of these measurements,

elative biometric measurements were inferred and exploited for re-

rieval. However, our retrieval system using soft biometrics neither

equires very high image resolution as required for facial features in

7], nor laborious manual annotations over real world data set as in

17]. Here we propose a novel automatic person identification system

xploiting machine learning technique and modern computer graph-

cs technology.
ig. 2. The scheme presents the framework of our human identification system. The prob

escription of the subject provided by a human operator such as eyewitness statement in a c
. System architecture

Our scheme is designed to work in two different modes depend-

ng on application scenarios. In the first scenario (Scenario#1), the

est images/ videos of the subject to identify are provided, whereas in

he second mode (Scenario#2) the probe is solely a query or descrip-

ion of the subject provided by a human operator. The former scenario

ainly concerns the use of multimedia content for re-identification

f a suspect in a video surveillance network by extracting his feature

escriptors and matching with gallery database. The latter scenario

nstead does not require any multimedia content but exploits the eye-

itness description of the suspect related to biometrics cues such as

hort neck, large chest etc. We note here that these human descrip-

ions are analogous to human compliant labeling referred by [7] or

emantic annotation referred by [19]. Rather than re-identifying, this

ode is more pertinent towards categorizing the population based

n their respective human compliant traits and thus retrieving their

dentifier(#ID). Since many people could have similar semantic la-

els resulting in subject interference, grouping them into classes with

imilar traits could be the best technique to tackle this issue. This is a

ind of pruning method, which normally the security people do man-

ally on receiving the human queries; we do it here automatically.

The general framework of the system is presented in Fig. 2. In the

raining phase, human video footage is acquired in a video surveil-

ance system and stored in gallery. The camera network is connected

o the SC descriptor module, where the acquired persons’ SC fea-

ures are extracted. These extracted SC features are stored in a gallery

atabase for later use. The database is accessible by the feature

atching module, which has the purpose to compare the feature de-

criptor of the person we want to identify (i.e., the probe) with the

nes stored in the database. In Scenario#1, when a new image frame

f the person is acquired, his SC descriptor is extracted and com-

ared with those in the gallery set. In the decision module, based

n the matching similarity measurements, the most similar person

D in the train set is retrieved thus facilitating the system for person

e-identification.

Another major module of the system in the training phase is a re-

ression block connected to the database of SC features. It divulges

he relation of SC descriptors with soft biometrics, and it estimates

iometric values (BF) corresponding to each sample. These estimated

iometric values are stored in a gallery database of biometrics, which

s connected to decision module. The decision module analyses these

iometric data and carries out a statistical analysis among the popu-

ation. In Scenario#2, when the probe input in terms of human query
e data can be either the images/videos of the subject to identify (Scenario#1), or a

riminal scene (Scenario#2).
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enters in the decision module, it will examine the statistical profile of

the population and retrieve the category of suspect. As a result, all the

person IDs’ in the suspected category as well as the tentative ranked

list of suspect are published.

To learn the regression module, we require a vast and vivid bench-

marking data set to substantiate the mapping between SC feature

space and biometric space. For that purpose, we generate avatars in

virtual reality and carry out regression analysis. When a new SC fea-

ture is received, the corresponding output biometric values are esti-

mated based on this regression model. In addition to that, a virtual re-

ality population is also employed to verify our methodology towards

person re-identification and to compare with the counterpart exper-

iment in real scenario. A more detailed description of simulation of

avatars and their application in both Scenario#1 and Scenario#2 is

given in section 5.1 and section 5.2, respectively.

4. Proposed methodology

This section describes the main ingredients of the proposed ap-

proach. Basically it comprises: (i) computation of the Shape Context

features from the images containing the head and torso, (ii) matching

the Shape Context between two head-torso silhouettes and (iii) the

statistical regression analysis between Shape Context and the space

of biometric features.

4.1. Shape Context

The original idea of Shape Context was described in the paper of

[4]. In order to achieve the shape similarity or the shape distance,

they introduced a new descriptor called Shape Context which mea-

sures the distribution of points in a shape relative to each point in

that shape.

Fig. 3 depicts the method of obtaining Shape Context descriptors.

The silhouette of an object is sampled at N discrete points along the

contours, P = (p1, p2, . . . . , pN). For a point pi, a coarse histogram hi

of the relative co-ordinates of the remaining N − 1 points is identified

and is termed as the Shape Context of pi:

hi(k) = #{q �= pi : (q − pi) ∈ bin(k)} (1)

Thus, a compact and highly discriminative descriptor is computed

as the distribution over these relative positions. A uniform binning
Fig. 3. Shape Context computation. (a) Silhouette of upper human body part. (b) Sam-

pled edge points of the silhouette shape. (c) Diagram of log-polar histogram bins used

in computing the Shape Contexts. We have used five bins for logr and 12 bins for θ .

(d–f) correspond to the Shape Contexts for reference samples marked by �, © and �.

Visual similarity of the Shape Context for nearby points �, © is pretty obvious whereas

the Shape Context of the � point, is quite different (note: dark = large value).
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cheme in log-polar space is adopted making the descriptor much

ore sensitive to nearby sample points than to those farther away. As

hown in Fig. 3(c), we use 12 equally spaced angle bins and 5 equally

paced log-radius bins, altogether making the dimension of the SC as

0. In contrast to the closed object shapes proposed in the original

ork, we apply the re-sampling on the open shape of the silhouette,

.e., we do not consider the cropping line in the chest. To represent

ach silhouette (Fig. 3(a)) we used 40 points uniformly sampled from

he Canny edges (Fig. 3(b)). Then we flattened and concatenated the

omplete set of 40 sample point SC each with 60 dimensions, thus

roducing a SC histogram of dimension 2400.

.2. Matching Shape Context

In order to compare two different shapes we must define a similar-

ty metric. To mitigate problems of misalignments of the silhouettes’

ampling points due to discretization, a previous alignment step is

ecessary. Two criteria are to be met while matching SC features: (1)

orresponding points should have very similar descriptors, and (2)

he correspondences should be unique.

First criteria is handled via cost matching technique. Let Cij de-

ote the cost of matching two sample points pi and qj in two different

hapes, by means of χ2 test statistics

i j = C(pi, qj) = 1

2

K∑

k=1

[hi(k) − hj(k)]2

[hi(k) + hj(k)]
(2)

where, hi(k) and hj(k) denote the K-bin normalized histogram at

i and qj. Given the set of costs Cij between all pairs of points, the

niqueness criterion is addressed as follows. To match two shape

ontours say, P and Q, we minimize the total cost of matching

(π) =
∑

i

C(pi, qπ(i)) (3)

subject to the constraint that the matching is one-to-one, i.e., π
s a permutation. This is an instance of the square assignment (or

eighted bipartite matching) problem. In our experiments, we make

se of the Hungarian algorithm [10].

.3. Regression

Regression analysis is a statistical process for estimating the rela-

ionships among variables. The technique is widely used in machine

earning for prediction and forecasting. In statistics, linear regression

s an approach for modelling the relationship between a scalar de-

endent variable and one or more explanatory variables, in which

ata are modelled by linear functions and unknown model param-

ters are estimated from data.

Suppose a linear regression is carried out from an input space of

imension IRp to an output space of dimension IR. Each element in

he input space is a feature vector of size p × 1. i.e. x =
[
x1, . . . , xp

]T
.

e collect n such samples and represent it as a matrix X ∈ IRn × p as

ollows:

= [x1 | · · · | xn]
T

(4)

Each row in the X matrix represents a feature vector correspond-

ng to the nth sample in the data set. We collect the response variable

i corresponding to each input sample x and represent it as a vector y

n the output space

=
[
y1, y2, y3, . . . , yn

]T ∈ IRn×1 (5)

The sample mean is x̄ = 1
n

∑n
i=1 x and the preprocessed centered

ata with zero mean is X′ = X − 1x̄T
, where 1 is a vector of ones of

imension n. Similarly, their counterparts in output space are ȳ and
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Fig. 4. Sample images and corresponding silhouettes in our real-world experiment.

Fig. 5. Pixel count value curve facilitating the automatic cropping of the upper body

region by observing the minima point in the neck.
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2 http://www.iit.it/en/datasets-and-code/datasets/rgbdid.html .
′. Now, the least squares regression computes the weight vector wLS

hat minimizes the error of fit:

ˆ LS(y′) = arg min
w∈IRp

n∑

i=1

(y′
i − wT x′

i)
2 = arg min

w∈IRp

‖y′ − X′w‖2
2 (6)

olving (6) leads to the following linear regression solution:

ˆ LS(y′) = (X′T X′)−1X′T y′ = X′+y′ (7)

here X′+ is the pseudo inverse of X′.
We apply Principal Component Analysis (PCA) for dimensionality

eduction of the input space into IRd. Eigenvalue decomposition of

he covariance of X’ produces the eigenvectors

=
[
v1, v2, v3, . . . , vp

]
∈ IRp×p (8)

f which the reduced eigenvectors are the first d columns.

′ =
[
v1, v2, v3, . . . , vd

]
∈ IRp×d (9)

hen the reduced scores corresponding to the Principal Components

re computed by the relation Z′ = X′V′. Thus, in the Principal Com-

onent egression method, the Eq. (7) turns out to be

ˆ LS(y′) = (Z′T Z′)−1Z′T y′ (10)

hen a new input variable xnew is available, the regression model

stablished above is used to estimate the predicted output variable,

sing the equation:

ˆnew = (xnew − x̄)T .V′
.ŵLS(y′) + ȳ (11)

Statistics such as estimate of error variance R2, also known as the

oefficient of determination, acts as the metric to check the perfor-

ance of regression modelling. It is formally defined as

2 ≡ 1 − SSres

SStot
, (12)

here SSres is the residual sum of squares, measuring the discrepancy

etween the data and an estimation model and SStot is the total sum

f squares, i.e., the sum of the squares of the difference of the depen-

ent variable and its mean. It is a very important indicator to state

f the regression is efficient while it informs the goodness of fit of a

odel. R2 represents the percent of the data that is the closest to the

ine of best fit.

. Experiments

We conducted the experiments in two modes, as mentioned in

ection 3. First, we carry out experiments in Scenario#1 to study the

easibility of upper torso Shape Context for person re-identification.

nitially we conduct a study with an existing person Re-ID data set.

owever, the real world scenario is prone to segmentation noise.

hus, in order to validate our system in a noise free environment,

e conducted our second experiment in a simulator platform, using

irtual reality avatars. We simulated custom avatars corresponding

o the humans in the real world, and conducted our experiments on

hem as well.

The second mode of experiments is done in Scenario#2. Here, we

xplore the relationship between Shape Context descriptors and soft

iometrics by means of regression. Thus, we bridge the gap between

uman and the machine definition of biometrics with aid of com-

uter vision and machine learning techniques. One noteworthy as-

ect is that in both experimental modes, the system does not require

he co-operation of the subject as in hard-biometric data acquisition,

hus making this soft biometric system very suitable for surveillance

pplications, where such cooperation is hard to achieve.
.1. Scenario#1

.1.1. Real data set for re-identification

We conducted a pilot study in the real world, where we incorpo-

ate the human silhouettes captured using KINECT camera in RGB-D

erson re-identification Dataset2 [3]. Along with each human image,

orresponding human silhouette information is also provided. An ex-

mple of the data set is seen in Fig. 4. For our studies, we made use

f their ‘walking1’ and ‘walking2’ categories, where we can obtain

rontal appearance of the walking people. As a case study we only

sed 20 people, each one with 4 samples. There are images with dif-

erent backgrounds, and the same person in different dressing, thus

aking the data set very suitable to study the impact of our method-

logy in long-term person identification based on shape of the sil-

ouette.

Since we are interested only in the upper torso region, we carry

ut some pre-processing in order to get the cropped images. Initially,

e split the body into 2 parts and select only the region of interest,

hich is the upper part. Then we try to localize the neck location,

hich could be acted as key point. As seen in Fig. 5, the pixel count

long the row of the image is plotted against the row number, which

epicts the variation of the silhouette’s thickness. We apply moving

verage filter to smooth out the fluctuations in the data curve. A key

oint corresponding to the neck is found by searching the minimum

n the curve. Next, a standard amount of height equal to head to neck,

s added towards bottom onto the chest region from the neck point in

rder to define the crop line in the chest. Afterwards, we normalize

he height and rescale the width of the cropped region, maintaining

he aspect ratio.

Prior to conducting the experiment of person re-identification, we

ad to apply some initial pre-processing steps to address the problem

f silhouette imperfection mostly occurring due to segmentation er-

ors and pixel noise. To get rid of the void spaces in silhouettes and to

ttain data quality, we applied morphological operations such as dila-

ion followed by erosion. Afterwards, while the silhouettes are ready

or our experiment, we equally split the data set into half. Former

et is the training set and the latter is the test set. In real world sce-

ario, out of 80 sample images, we have 40 samples in both gallery

nd probe, i.e., 2 samples per 20 different persons are made available

http://www.iit.it/en/datasets-and-code/datasets/rgbdid.html
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#female1 #female2 #male1 #male2

Fig. 6. Sample instances of custom virtual avatars simulated corresponding to the real

world data set.
Fig. 7. Six standard avatars used in the synthetic platform for the generation of large

data set by changing the biometric features. We make use of only the upper-torso re-

gion including head, shoulder and chest.

Fig. 8. The nine variations of biometrics simulated in the generic avatars. Only the

upper torso region is shown since it is the region of our interest. Please refer to the

Table 2 for measurement details.
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in both training and test set. Afterwards, the SC descriptor for each

silhouette in the gallery is calculated. When the test set is provided,

its matching cost towards each of the 40 gallery samples is found us-

ing the Hungarian method. Then, each test sample will search for the

minimal cost between itself and the gallery descriptors. The gallery

sample with minimal cost corresponds to maximum similarity and is

selected as the best matching.

5.1.2. Custom avatars for re-identification

In the previous section we discussed about the experiments con-

ducted in real database. In this section we evaluate the influence of

the noise of the segmentation while extracting the head-to-torso re-

gion. To perform this study, we replicate the real data set with virtual

reality avatars leveraging computer graphics tool (the game engine

Unity3D®) that allow us to render and manipulate the shape of

synthetic humans. We used some standard avatar packages viz. male

character pack and female character pack from Mixamo 3D3 char-

acter animation service and Character Pack 02 from Animation arts

Creative GmbH.4 We modelled the custom avatars as close as the cor-

responding human instances by matching their shape traits and in-

corporating the posture and inclination of shoulders. Samples of the

real human instances and their corresponding custom avatar models

are illustrated in Fig. 6. After generating the custom avatars, we ex-

ecuted walking animations of these avatars and captured random 4

frames for each person which resembled the video surveillance image

acquisition. Thus our virtual reality data set also consisted of 80 syn-

thetic samples corresponding to the 20 human instances in real world

experiment. Then, we split them into gallery and probe and conduct

descriptor matching in the same way conducted for real world

data set.

5.2. Scenario#2

5.2.1. Generic avatars for regression

Albeit we simulated custom avatars in our previous experimen-

tal setup, the data set was limited in terms of variability of biometric

features since only 20 human instances were generated in the simula-

tor. In order to compute the regression model between Shape Context

features and soft biometrics, this was not enough to represent varia-

tion range of the real human population. Thus, we introduced a more

global avatar set called as generic avatars, by imposing larger variabil-

ities as observed in the human population. Such a generic population

is preferred over custom avatars for modelling the regression map,

since it covers wider ranges of features. By incorporating extremal

shapes, the generic data set provides a higher Signal to Noise ratio5

available for regression analysis.

Again we exploit the graphics engine Unity3D® to simulate the

multiple avatars in virtual reality. Here we used six standard avatars
3 https://www.assetstore.unity3d.com/en/#!/publisher/150.
4 https://www.assetstore.unity3d.com/en/#!/publisher/6659.
5 Considering the noise in the SC features as constant (discretization noise), a higher

variability in the range of the features (signal) will result in a better signal-to-noise

ratio that will improve the quality of the regression model.

g

m

n

t

t

iz. male character pack and female character pack (shown in Fig. 7)

rom Mixamo 3D character animation service, as the baseline avatars.

he default avatars models available in the package were considered

s standard models, in which we assumed a unitary scale factor of

ach biometric measurement(see Fig. 8(a)). Afterwards, we generated

he other avatars by imposing variations to the biometric features

ith respect to this standard model in the Unity3D® platform. The

cale parameters of the avatar examples are defined by analysing the

ariability in real world human population. Here are the biometric

ues we employ in our experiment:

• Neckness (N) : length of the neck
• Chestsize (C) : horizontal distance between the lateral margins of

the upper torso
• Bodysize (B) : overall body size
• Headlength (HL) : maximum vertical length of the head
• Headwidth (HW) : maximum horizontal width of the head

Table 2 shows the soft biometric parametrization imposed for

imulating generic avatar population. Each value in the table corre-

ponds to the scale applied to the standard model counterpart of that

nthropometric measurement. We alter the biometric values one at a

ime by keeping other features intact. Thus, as per mentioned in the

able, we can have 8 different modified avatar models generated out

f the standard avatar, by altering each biometric feature individu-

lly. Fig. 8 shows an example of the different virtual avatar samples

enerated out of a single basic standard avatar.

Fig. 8 (a) is a standard avatar where all the parameters are nor-

alized (100%). Fig. 8(b) and (c) correspond to 200% and 300% Neck-

ess, which intuitively means those models’ neck length is twice and

hrice longer compared to the standard one. Fig. 8(d) and (e) illus-

rate the 200% and 300% chest sized avatars respectively. Thin body

https://www.assetstore.unity3d.com/en/\043!/publisher/150
https://www.assetstore.unity3d.com/en/\043!/publisher/6659
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Table 2

Chart showing the soft biometric scale factors for the simulated avatar versions in Fig. 8. Values highlighted in bold characters in each row

represents the modification imposed for that particular avatar.

Avatar Index Neckness (N) Chestsize (C) Bodysize (B) Headlength (HL) Headwidth (HW) Human description label

(a) 100% 100% 100% 100% 100% Standard

(b) 200% 100% 100% 100% 100% Large neck

(c) 300% 100% 100% 100% 100% Very large neck

(d) 100% 200% 100% 100% 100% Large chest

(e) 100% 300% 100% 100% 100% Very large chest

(f) 100% 100% 50% 100% 100% Thin body

(g) 100% 100% 200% 100% 100% Fat body

(h) 100% 100% 100% 125% 100% Long head

(i) 100% 100% 100% 100% 125% Wide head
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Fig. 9. (a) Confusion matrix showing a re-identification accuracy of 92.5% among the

20 humans in the real world scenario. (b) and 95% among the 20 custom avatars simu-

lated corresponding to the instances in the real human data set.
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ize and fat body are generated in Fig. 8(f) and (g) by setting scaling

he body size parameter by 50% and 200% respectively. The last two

vatars concentrate on the geometric parameters of head, by increas-

ng 25% horizontally (head width) and 25% vertically (head length).

hus, we managed to generate an approximate variation of biometric

eatures in synthetic population as observed in the human popula-

ion.The idea was to be able to cover the range of variability as much

s possible with the least number of examples. This way we could

nhance the signal-to-noise ratio of the regression analysis.

Altogether nine variations were generated out of each of 6 stan-

ard avatar. Then, we executed walking animations and captured ran-

om 4 frames for each person which resembled the video surveil-

ance image acquisition. Thus our generic avatar data set consisted of

16 images.

.2.2. Regression model

Putting Section 4.3 in practice, we have Shape context (SC) de-

criptors correspond to input vectors x and Biometric features (BF)

alues correspond to output variables y. Since we have n = 216 sam-

le avatars in the generic data set, the input matrix X is of dimension

16 × 2400. Next, we perform PCA to reduce the dimension of space

eading to a reduced input matrix of size 216 × 60. Considering five

iometric features exploited in our study viz. BF = (N,C, B, HL, HW),
e perform linear regression as described in Section 4.3 individually

or each of the biometric in the set BF. More specifically, y in Eq. (5)

ill be a vector of dimension 216 containing a given biometric feature

or all the avatars. Based on the Eqs. (8)–(10), the regression analysis

s carried out further. Afterwards, when a new sample SC descriptor is

rovided, our model will estimate the corresponding response vari-

bles, B̂F new using the Eq. (11).

. Results

.1. Person re-identification using Shape Context

Regarding both the experiments in Scenario#1, the goal is to re-

rieve the most similar person in the gallery set for a given test

erson, by matching its Shape Context descriptor with those in the

allery. Or in other words, when the probe imagery of the suspect

s provided, its shape similarity with all the other training images in

he gallery is measured by bipartite graph matching technique on SC

eatures and the person re-identification is carried out.

We depict the result of re-identification with the help of confu-

ion matrix. Confusion matrix is a specific table layout that allows

isualization of the performance of an algorithm, where each column

f the matrix represents the instances in a predicted class (predicted

erson ID), and each row represents the instances in an actual class

actual person ID).

Our results of person Re-ID is illustrated in Fig. 9. The first re-

ult in Fig. 9(a) is the confusion matrix corresponding to our study

ith 20 real world instances and showing a re-identification accu-

acy of 92.5%. Fig. 9(b) is the counterpart confusion matrix in virtual
etup with 20 custom avatars, and it achieved 95% accuracy in Re-ID.

n both cases, we could observe high performance of our proposed

C algorithm to re-identify people. This accentuates the feasibility of

tilizing shape as an effective soft-biometric cue in re-identification

cenarios. Moreover, by conducting the comparative study in virtual

etup, we could observe the influence of segmentation noise in re-

ucing the Re-ID rate in the real world scenario. Real data segmen-

ation is more irregular due to sensor measurement noise, whereas

egmentation in the avatars is perfect, apart from pixel discretiza-

ion errors. Thus, better segmentation methods should be sought for

chieving higher accuracy in the real world.

.2. Categorization from human queries

Refering to system architecture in Fig. 2, human query based cat-

gorization is related to Scenario#2. Here, the input to the system is

human query specifying the biometric features of the probe, rather

han an image query. With this query system, our system will not

roduce a unique human#ID as if working with a Re-ID Scenario#1.

nstead, the output will be a set of people belonging to that particular

ategory according to the probe description.

.2.1. Regression analysis

In order to facilitate this retrieval purely based on biometric query,

e carried out linear regression analysis between the Shape Context

escriptor and biometic features as explained in Section 5.2.2. For the

iagnosis of the quality of regression modelling, we use the R2 statis-

ics. In all of our regression analysis, we could observe the value of R2

round 0.9, implying that the regression function approximates well

he true values.

As explained earlier, the input is a human query conveying some

ualitative information regarding the biometric features of the

erson. The regression coefficients obtained from the generic avatar

egression model is applied to the SC descriptors of the real human

ilhouettes in the gallery database and corresponding biometrics are

stimated and stored in a gallery database of soft biometrics. Our
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Fig. 10. Biometric data distribution predicted for the real human population, using the

regression model learned using simulated avatars.

#P1 #P2 #P3 #P4 #P5 #P6 #P7 #P8 #P9 #P10

Fig. 11. A sample real world data set for the retrieval test based on human queries on

biometric info.

(#P6) 285% (#P8) 276% (#P7) 263%

(#P5) 157% (#P3) 160% (#P2) 185%

Fig. 12. Human categorization based on biometric query: The results for large chest

(L) query and short chest (S) query are presented in first and second row, respectively.

The retrieved ranked list of human #IDs along with the predicted biometric data value

are shown.
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system collects this gallery data set of soft biometrics and analyse

the distribution of the estimated biometric data in the training

population. The most common semantic categories such as Short (S),

Medium (M) and Large (L) are interpreted in terms of data ranges in

this distribution profile. When a human query is available (eyewit-

ness makes a statement regarding the characteristics of the suspect),

it is compared against the aforementioned semantic categories, and

the valid category of interest retrieved.

The statistical analysis on such estimated biometric values among

real human dataset is presented in Fig. 10. We could observe a range

of variances along the biometrics estimated among the data set. The

distribution of Neckness ranges between 90% and 200% of the trained

simulator models. Larger necks above that range (like Fig. 8(c)) are

unexpected in real scenario. The parameter distribution of chest size

ranges between 100% and 300%, with median close to 220%. This

makes sense while checking with similar avatar models in Fig. 8(d),

which is a common candidate in the real world. Body size, head width

and head length are centered near the 100%, and have lower vari-

ances.

It is important to have certain biometrics with large variance in

the population in order to avoid the problem of subject interference

and to improve the distinctiveness among people. They acts as the

most discriminative features. One interesting fact to notice is that,

from the survey results in Table 1, we observed the variance in the

chest width, viz., bideltoid breadth (2.59) is larger compared to the

others. In our sample real world population in Fig. 10, we could also
Table 3

Results of person retrieval based on biometric feature vectors estimated by regress

and retrieval rate is the rate with which our retrieved category agrees with that of g

Person index Neckness(N) Chestsize (C)

(#ID) GT Retrieval rate GT Retrieval rate

#1 M 0.25 M 1

#2 L 1 S 0.5

#3 L 0 S 1

#4 M 1 M 1

#5 L 0 S 0.25

#6 S 0.5 L 1

#7 L 1 L 1

#8 S 0 L 0.25

#9 S 1 M 1

#10 M 1 M 0.75

Average retrieval accuracy 57.5% 77.5%
bserve that chest size shows large variance and happens to be very

ood discriminative feature. At the same time, head length and width

o not show the same level of variances. A very similar analysis was

eported in the real human data set in Table 1, showing smaller vari-

nces for head length (0.72) and head width (0.60). These are very

nteresting observations highlighting the intuitive fact that, our re-

ression model trained in virtual world, could generate similar test

esult statistics in the real world.

.2.2. Person categorization

Here we conduct a sample test of person retrieval. Consider a sam-

le real world human data set of 10 people shown in Fig. 11. We as-

ume 3 categories among the population for each biometric viz. Short

S—less than lower quartile) ,Medium (M—lower quartile to upper

uartile) and Large (L—above upper quartile). For example, in search

f a person with large chest size, we try to retrieve the people whose

hestsize ≥ 260%, which is more than the upper quartile of the distri-

ution. Similarly, for the short chest, we can identify the people cate-

ory chestsize ≤ 210%, which is less than the lower quartile in the data

istribution profile. The result thus retrieves a ranked list of people

rained in those respective category along with their #IDs. Retrieval

ased on chest query is depicted in Fig. 12. According to the results,
ion. GT refers to the ground truth biometrics defined by manual inspection,

round truth.

Bodysize (B) Headwidth (HW) Headlength (HL)

GT Retrieval rate GT Retrieval rate GT Retrieval rate

M 1 M 0.75 M 0.25

S 0.5 S 0 L 1

M 0.5 M 0.25 M 0.25

M 0.5 M 1 M 0.75

S 1 S 1 M 0.25

L 0 L 0 S 0.75

M 0.75 M 0.5 M 0.25

L 0 L 0 S 0

L 1 M 0 M 0.75

M 0.5 S 0 L 0

47.5% 35% 42.5%
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uman index #6, #7 and #8 were classified with large chest, and #2,

3 and #5 found to have a short chest. The retrieval based on other

arameters is analogous. Albeit, we considered the aforementioned

hree classes (S,M and L) as default in our case study, it could be re-

uced to two classes or increased to 4 or more classes (like XXS, XS, XL,

XL). The selection of the number of classes and range for each class

re the choice of the operator. According to the requirement, he can

ither split or merge classes. However, with the increase in the num-

er of classes, the retrieval performance decreases due to increase of

oise influence in class assignment and inter-class ambiguity.

Among 10 people sample test set each with 4 samples, our re-

rieval rate for each biometric feature is given in Table 3. Since there

s no availability of the ground truth for the performance evaluation

n the real human data set, we rely on visual inspection of the probe

mages and define our ground truth(GT). The rate of correct category

etrieval obtained for each person with respect to the ground truth is

enoted in retrieval rate. Average retrieval accuracy is found to be the

ighest for chest size (77.5%), thus proving to be the best discrimina-

ive features among the biometrics.

. Conclusion and future works

In this paper, we presented a novel proposal towards identifying

eople in a video surveillance system either through the multimedia

ata acquired via video cameras or solely by means of manual queries

escribing natural human compliant labels known as soft biometric

raits. We introduced a novel feature descriptor, Shape Context de-

criptor extracted on the head-to-torso region on frontal human sil-

ouettes and verified its practicality in both real and virtual reality

ata sets. A slightly higher level of re-identification performance was

eported in our experiment in virtual environment compared to their

ounterpart experiment in real world. We assign this fact to the lack

r silhouette imperfections in the virtual reality scenario, thus better

mage segmentation methods could impact positively in real world

cenario.

Another innovative contribution of this paper was the exploita-

ion of linear relationship between Shape Context descriptors and

oft biometrics. Such a regression phase filled the gap between the

anual and machine interpretation of human profile and equipped

he system to retrieve the person merely by soft biometric description

f the subject. In order to learn this mapping, we simulated generic

irtual avatars rendered by Unity3D® graphics engine, thus bypass-

ng the requirement for laborious manual annotation of data sets. We

ubstantiated the performance of our system by carrying out person

etrieval in a sample real surveillance database.

Our automatic dual mode system is found quite appropriate in the

earch of an incident happened in a video surveillance, where the

ecurity personnel could opt collecting either multimedia info from

he camera or eyewitness description of the suspect, which are the

ommon ways of person identification. In future work, we plan to ex-

rapolate the feature extraction over full body and to exploit a large

et of soft biometrics. Also, we will combine other modalities (e.g.,

olor, texture, face, gait) along with soft biometric features using mul-

imodal fusion techniques.
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