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a b s t r a c t

This paper presents an iterative algorithm using a information geometric framework to perform the
optimization on a discrete probability spaces. In the proposed methodology, the probabilities are
considered as points in a statistical manifold. This differs greatly regarding the traditional approaches in
which the probabilities lie on a simplex mesh constraint. We present an application for estimating the
switching probabilities in a space-variant HMM to perform human activity recognition from trajectories;
a core contribution in this paper. More specifically, the HMM is equipped with a space-variant vector
fields that are not constant but depending on the objects's localization. To achieve this, we apply the
iterative optimization of switching probabilities based on the natural gradient vector, with respect to the
Fisher information metric. Experiments on synthetic and realworld problems, focused on human activity
recognition in long-range surveillance settings show that the proposed methodology compares favorably
with the state-of-the-art.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper presents a natural gradient method applied to the
optimization on discrete (finite) probability spaces. Traditionally,
this problem is tackled in a simplex probability constraint where
standard gradient based methods are used. In this paper, we show
that performing the optimization in a Riemannian space equipped
with the Fisher metric provides several advantages over the
standard methods. One of the advantages is that the Fisher metric
is able to smoothly modify the gradient direction, so that it flows
within the feasible region, i.e. the parameter space that satisfies all
probability constraints. If some constraints become active, then
the method behaves as the gradient projection method. Also, the
Fisher metric exhibits a fast convergence since it behaves asymp-
totically as a Newton method. From the above, it will be shown
that a formally correct interpretation of a natural gradient as the
steepest-descent method is verified. With this approach the

computational requirements are minimal: only marginally larger
than the standard gradient; constant in time and space; and using
rudimentary operations, i.e. additions and multiplications.

The novel contribution proposed in this paper is the application
of the above framework in a new context: classification of human
activities in far-field surveillance settings using the trajectories
performed by pedestrians. Indeed, in the so-called far field
scenarios, people are far from the camera, making it impossible
to obtain detailed shape information and the system has to extract
trajectories, or a rough shape description e.g., a bounding box or a
coarse silhouette [7]. Models of typical trajectories may be
estimated from training sets and then used to classify observed
trajectories. This is one traditional problem that arises in outdoor
surveillance systems and it will a focus of this paper. To model
human trajectories in video sequences, we use a generative model
of non-parametric vector fields proposed in [2]. The framework in
[2] models the trajectories using a small set of vector or motion
fields, estimated from observed trajectories. An advantage of using
this model resides in its flexibility of modeling pedestrian's
trajectories. More specifically, the trajectory is split into a sequence
of segments, each of which generated by one vector field. Switch-
ing between models can occur at any point in the image but with
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probability that may depend on the spatial location. This provides
a flexible tool to represent a wide variety of motion patterns. We
present an expectation-maximization (EM) algorithm to learn the
proposed model from sets of observed trajectories. The difference
regarding the work in [2] is that here, the switching probabilities
are estimated using the natural gradient instead of a projection
simplex approach. These two methods, for computing the gradi-
ent, will be compared and the effectiveness of using the natural
gradient will be illustrated.

2. Related work in human activity

Recognizing human activities in a quite diverse range of
contexts and scenarios remains an up-to-date topic in image
processing and computer vision communities. The goal is usually
to interpret or classify human activities using tracked features.
Related research in human activity analysis can be used in a wide
variety of fields, such as intelligent environments [13], human
machine interaction [14], surveillance [15,16], human computer
interaction and sports analysis [17,18], to quote a few. Most of the
work in this area falls into one of the two different settings,
depending on which, the camera is close or far away to the person.
In short range (SR) settings, the camera is close to the observed
people, thus detailed information of human gestures, pose, gait
can be computed. In long range or far field (FF) settings, the
camera covers a wide area, thus no longer able to acquire a
detailed type of information. Although, a large fraction of the
related work on human activity recognition has been devoted to
SR setup, we concentrate more to describe related work proposed
in FF scenarios, that is the focus of the application presented
herein, i.e. people are far from the camera and the trajectories are
used as the information to perform classification/recognition.

In FF scenarios, it is usually impossible to obtain detailed
descriptions of the observed persons, thus most methods rely
only on the use of trajectories, taking for instance the center of the
bounding box extracted by some region detection algorithm.
Several trajectory analysis problems such as the one addressed
herein, i.e. classification, have been addressed using pairwise
similarity or dissimilarity measures between trajectories; these
include Euclidean [4] and Hausdorff distances [5]. Because trajec-
tories may have different lengths, techniques to face trajectories
alignment have also been proposed. For instance, the use of
dynamic time warping [6] or longest common subsequence [19]
have been suggested to perform such comparisons. The class of
approaches adopted in this paper models the trajectories as being
produced by a probabilistic generative mechanism, usually an
HMM or one of its variants [8–12]. These approaches have the
key advantage of not requiring trajectory alignment or registra-
tion; moreover, they allow building a well grounded probabilistic
inference formulation, based on which model parameters may be
obtained from observed data. In that same class of approaches, in
[20] the authors proposed a set of behavioral maps based on
Markovian trajectory models, however, their application context is
orthogonal to ours, since their goal is to improve tracking results
by reconstructing full trajectories from fragments thereof.

All these contributions have been reported in [1], but in this
paper, we provide a more comprehensive literature review, expla-
nations and experimental results.

The paper is organized as follows. Section 3 describes the
natural gradient proposed herein. Section 4 presents the genera-
tive model from which trajectory classification is performed.
Section 5 describes how the generative model is learned with
the EM algorithm using the natural gradient. Section 6 presents
simulation results highlighting the superiority of the natural

gradient and provides results using the proposed framework for
human activity classification. Section 7 concludes the paper.

3. Discrete probability distributions in Riemannian space

This section provides detailed description of the proposed
natural gradient. An usual premise is to assume that the prob-
abilities lie on a simplex probability mesh. Contrasting with the
above approach, we bring a new methodology, based on the
information geometric framework [3,23,24], in which the prob-
abilities are considered as points in a statistical manifold. We
describe next how to parameterize the switching probabilities in
the presented context.

One way to parameterize the probability mass function (p.m.f)
of p(x) defined over the set of p.m.f., P, is to use the probabilities

θk ¼defPrfX ¼ kg ¼ pðkÞ, for k¼ 0;…;K . Since the probabilities satisfy
the partition of unity, the probability θ0 is defined as

θ0 ¼def1�∑K
k ¼ 1θ

k. This parameterization defined above provides a

global coordinate system of P, where θk are the coordinates.

3.1. The Fisher metric

The set P can be seen as a manifold, where each member pAP
is a p.m.f. and as an associated tangent space TpðPÞ. One suited
metric than can be introduced on the tangent space [3,23,24] uses
the Fisher information matrix for defining the inner product on
the manifold. The Fisher information matrix Gθ has its entries
defined as follows:

gijðθÞ ¼defE
∂ log pðxÞ

∂θi

∂ log pðxÞ
∂θj

� �
ð1Þ

It can be straightforwardly seen [3] that the components of the
Fisher information matrix are given by

gijðθÞ ¼
1

1�∑K
k ¼ 1θ

k
þδij
θi

ð2Þ

where δij is the Kronecker delta function (δij ¼ 1 if i¼ j, δij ¼ 0
otherwise) and the corresponding Fisher information matrix Gθ is
given by

Gθ ¼ Iθþ 1� ∑
K

k ¼ 1
θk

 !�1

1� 1> ð3Þ

where Iθ is the K�K matrix having a diagonal structure with the i-
th diagonal entry equal to ðθiÞ�1 and 1 is a K � 1 unit vector.

3.2. The natural gradient and its relation with Euclidean spaces

When performing optimization on P, it is necessary to define a
cost function F defined over pAP, i.e. F(p). Since we are given the
parameterization introduced in Section 3.1, it is possible to define
a new function in these parameters, that is Fθ . Then, we can iterate
over these parameters, until the convergence is reached.

Here, the parameter iteration that gives the gradient of Fθ in a
arbitrary v-direction is the vector ∇Fθ such that the following
equality holds:

〈∇Fθ ; v〉¼ dFθðvÞ; 8va0: ð4Þ
Comparing with the standard Euclidean space, the inner

product 〈�; �〉 (i.e. the gradient with respect to the Euclidean metric)
is simply the product, and (4) becomes

∇Fθ ¼
∂Fθ
∂θ1;…;

∂Fθ
∂θK

� �>
ð5Þ
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In the proposed context, i.e. in the Riemannian spaces, the inner
product is defined by the metric tensor; the Riemannian (natural)
gradient now becomes as an extension of (5) and given as follows:

~∇Fθ ¼G�1
θ

∂Fθ
∂θ1;…;

∂Fθ
∂θK

� �>
¼ G�1

θ ∇Fθ ð6Þ
It can be easily seen that the final result (6) is the same as the
standard gradient, if we replace the metric G by the identity
matrix.

3.3. Optimization in the manifold

The optimization of the p.m.f. pðxÞAP can be formulated as a
constrained optimization problem in RK , where the coordinates
satisfy the partition of unity property. A well known optimization
method is the steepest descent, which states that the parameters
should follow negative gradient. The parameters update of this
method can be written as

θðtþ1Þ ¼ θðtÞ �ηðtÞ∇Fθ ð7Þ
where η is the step size. In Euclidean spaces, the steepest descent
direction is given by ∇Fθ , whereas in Riemannian spaces the
direction is given by natural gradient ~∇Fθ as defined in (6). Thus,
for Riemannian the steepest descent method is re-defined as
follows:

θðtþ1Þ ¼ θðtÞ �ηðtÞ G�1
θ ∇Fθ : ð8Þ

3.4. Computational remarks of the natural gradient

One of the issues to take in to consideration when computing
the natural gradient is that of inverting the matrix Gθ , since it can
lead to a numerical problems. The metric given in (3) for a given
discrete p.m.f. is badly conditioned and numerical problems
may arise. Thus, the goal here is precisely to avoid the inversion
in (6). Following [3], we start by rewriting the Fisher information
matrix as

Gθ ¼ Iθþ1 1� ∑
K

k ¼ 1
θk

 !�1

1> ð9Þ

where Iθ is the K�K entity matrix with the i-th diagonal entry
equal to ðθiÞ�1 and 1 is a K � 1 unit vector (as in (3)). Using the
Woodbury identity, the matrix inverse G�1 can be expressed as

G�1
θ ¼ I�1

θ �I�1
θ 1 1> I�1

θ 1þ 1� ∑
K

k ¼ 1
θk

 ! !�1

1> I�1
θ ; ð10Þ

which can be further simplified to

G�1
θ ¼ I0θ�θθ> ð11Þ

where, I0θ is the K�K matrix having an identity structure with the
i-th diagonal entry equal to ðθiÞ and θ¼ ½θ1

;…;θK �> .
From (11) it can be easily seen that the information matrix can

be computed avoiding its inversion when computing the natural
gradient.

Taking (11) and (6), we can write the natural gradient, ~∇Fθ in
terms of the standard gradient ∇Fθ , i.e.

~∇Fθ ¼ θ○∇Fθ�θ θ � ∇Fθ
� � ð12Þ

where the notation ○ stands for the Hadamard product. From (12)
we conclude that it s not required to explicitly compute the entire
matrix G�1

θ to compute the product G�1
θ ∇Fθ as in (6).

Finally, one has to decide when the optimization iterative
procedure reaches its final solution. A natural approach would

be to compare the components of the gradient vector against a
pre-defined threshold τ. This is however a misleading choice, for
the following two reasons: first, this approach does not take into
consideration the geometric nature of the underlying space,
second, the components of the gradient vector have different
behaviors depending on the curvature of Fθ . To tackle the above
issues, the norm of the natural gradient is used and can be
developed as follows:

J ~∇Fθ J ¼ ~∇F >
θ Gθ

~∇Fθ

¼∇F >
θ G�1

θ ∇Fθ

¼∇F >
θ

~∇Fθ ð13Þ

where the second and third equalities comes from the result in (6).
Thus, the iterative procedure stops when the rate change of Fθ is
below a pre-defined threshold τ.

4. Multiple vector fields for describing trajectories

This section briefly revises the framework proposed in [2] for
modeling trajectories that take place in far-field surveillance
scenarios. We aim to demonstrate that the natural gradient is an
efficient methodology to estimate the parameters (i.e. transition
probabilities) of the generative model described in the next
section.

4.1. Generative motion model

We will denote the set of vector motion fields as T ¼ fT1;…;TKg,
with Tkt : R

2-R2, for ktAf1;…;Kg. The generative motion model of
the trajectory is given as

xt ¼ xt�1þTkt ðxt�1Þþwt ; t ¼ 2;…; L; ð14Þ

where wt �N ð0;σ2
kt
IÞ is white Gaussian noise with zero mean and

variance σ2
kt

(which may be different for each field), and L is the
number of points in the trajectory. Also, we will assume that the
sequence of active fields k¼ fk1;…; kLg is modeled as a realization
of a first order Markov process with space varying transition
probabilities. This model allows the switching to depend on the
object localization, thus having Pðkt ¼ jjkt�1 ¼ i; xt�1Þ ¼ Bijðxt�1Þ,
where B : R2-RK�K is a field of stochastic matrices. The matrix B
can also be seen as a set of K2-dimensional fields with values in
½0;1� s.t. ∑jBijðxtÞ ¼ 1, for any xt and any i.

The joint distribution of a trajectory x and its underlying sequence
of active fields k, under the model parameters Θ¼ ðT ;B;ΣÞ, is
given by

pðx;kjΘÞ ¼ pðx1ÞPðk1Þ ∏
L

t ¼ 2
pðxt jxt�1; ktÞpðkt jkt�1; xt�1Þ: ð15Þ

From (15), we see that pðkt jkt�1; xt�1Þ is a function of B, pðxt jxt�1; ktÞ
is a function of T and Σ, and pðxt ; kt jxt�1; kt�1Þ is a function of T , B,
and Σ.

As in [2] both of the fields and transition matrices ðT ;BÞ are
modeled in a non-parametric way. More specifically, they are
defined at the nodes of a regular grid. To obtain the velocity fields
and switching probability fields, we interpolate the vectors tðnÞk and
matrices bðnÞ defined at the nodes of the grid as follows:

TkðxÞ ¼ ∑
N

n ¼ 1
tðnÞk ϕnðxÞ; BðxÞ ¼ ∑

N

n ¼ 1
bðnÞϕnðxÞ ð16Þ

where ϕnðxÞ : R2-R, for n¼1,…,N is a set of scalar basis functions.
Given the image domain D¼ ½0;1�2, a discretization is performed
using an uniform grid with step Δ. The contribution of node n,
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centered at un ¼ ðu1
n;u

2
nÞ, to the interpolation (16) is given by

ϕnðxÞ ¼
jx1�u1

nj � jx2�u2
nj=Δ2 if jx1�u1

njoΔ and jx2�u2
njoΔ;

0 otherwise:

(

5. Learning the model with EM algorithm

Here, we detail how the model parameters Θ¼ ðT ;B;ΣÞ are
learned. More specifically, how the motion fields T ¼ fT1;…;TKg,
the field of the stochastic matrices B and the noise variances
Σ¼ fσ2

1;…;σ2
Kg are learned from a set of S independent observed

trajectories X ¼ fxð1Þ;…; xðSÞg, where xðsÞ ¼ ðxðsÞ
1 ;…; xðsÞ

Ls
Þ is the s-th

observed trajectory. Since we assume that the sequence of active
models K¼ fkð1Þ;…;kðSÞg are missing, we apply the EM algorithm
to find a marginal maximum a posteriori (MMAP) estimate of Θ;
formally the estimate is given bybΘ ¼ arg max

Θ
∑
K
pðX ;KjΘÞpðΘÞ

¼ arg max
Θ

∑
K

∏
S

s ¼ 1
pðxðsÞ;kðsÞjΘÞpðΘÞ ð17Þ

where each factor pðxðsÞ;kðsÞjΘÞ has the form given in (15), the sum
over K has Kð∑sLsÞ terms and pðΘÞ ¼ pðT ÞpðBÞpðΣÞ is some prior.

5.1. The complete log-likelihood

The EM algorithm aims at computing (the E-step) the expecta-
tion of the complete log-likelihood which is given by

Q ðΘ; bΘÞ � E log pðX ;KjΘÞjX ; bΘh i
¼ ∑

S

s ¼ 1
∑
Ls

t ¼ 2
∑
K

l ¼ 1
w ðsÞ

t;l log N ðxðsÞ
t jxðsÞ

t�1þTlðxðsÞ
t�1Þ;σ2

l IÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
AðX ;KÞ

þ ∑
S

s ¼ 1
∑
Ls

t ¼ 2
∑
K

l ¼ 1
∑
K

g ¼ 1
w ðsÞ

t;g;l log Bg;lðxðsÞ
t�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B ðX ;KÞ

; ð18Þ

where w ðsÞ
t;l ¼ P½wðsÞ

t;l ¼ 1jxðsÞ; bΘ�, and wðsÞ
t;g;l ¼ P½wðsÞ

t;g;l ¼ 1jxðsÞ; bΘ� which
are obtained by a modified forward–backward procedure [21].

The M-step maximizes the Q-function in (18) with respect to
the model parameters Θ. The maximization with respect to the
motion vector fields T and noise variances Σ (the term AðX ;KÞ in
(18)) is straightforward and it follows the same strategy as in [2].
The novelty resides how we optimize the term BðX ;KÞ in (18)), i.e.
the transition probabilities. To accomplish this, we first take the

transition matrix in (16). Notice that each component bðnÞARK�K is
a stochastic matrix at any location x, satisfying the constraint

∑
K

k ¼ 1
bðnÞp;k ¼ 1: ð19Þ

Given the formulation in (16), the problem of estimating B is the
same as estimating ðbð1Þ;…;bðNÞÞ, by maximizing the objective
function Q ðΘ; bΘÞ under the constraint (19). Inserting (16) into
(18) the objective function becomes

Q ðΘ; bΘÞ ¼AðX ;KÞþ ∑
S

s ¼ 1
∑
Ls

t ¼ 2
∑
K

l ¼ 1
∑
K

g ¼ 1
∑
N

n ¼ 1
w ðsÞ

t;g;l log bðnÞg;lϕnðxÞ; ð20Þ

Now, we derive (20) with respect to bðnÞp;k, where bðnÞp;k, stands for the
p-th line, k-th column at n-th node. Denoting the derivative of all
transition matrices in the grid as ∇B, this derivative is the term
∇Fθ in (12) and B is the term θ in (12). Thus, the natural gradient
provides the following update rule:

Bðtþ1Þ ¼ BðtÞ þη BðtÞ○∇BðtÞ �BðtÞðBðtÞ � ∇BðtÞÞ
� �

ð21Þ

where η is the step size.

6. Experimental results

This section reports experimental results using the proposed
approach. In the first part of the experiments, we report simula-
tion results of the framework described in Section 3. In the second
part of the experiments we focus on the learning the generative
model in (14) to perform activity classification from the trajec-
tories performed by pedestrians. In the first part of the results
(simulation), we perform a qualitative comparison between the
natural gradient and the standard gradient. In the second part of
the experiments (trajectory classification) we perform a compar-
ison between the natural gradient and the projection simplex
algorithm [22], where a fast gradient projections approach with ℓ1
domain constraints is proposed.

6.1. Simulation results

To illustrate the application of the natural gradient, we start by
presenting two examples where the goal is to show the superiority
of the natural gradient when compared to the standard gradient.

6.1.1. Example 1
In the first example, we are given a p.m.f. p(x) to minimize the

K�L divergence, DðpjjqÞ where q(x) is a target p.m.f. Although, the
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Fig. 1. Optimization of the K�L divergence DðpjjqÞ using the standard (left) and natural (right) gradient.
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solution is known, i.e. pðxÞ ¼ qðxÞ, this problem is useful since it
corresponds to a scenario in which both gradient and natural
gradient can be easily be compared.

Denoting p¼ ½θ0 θ1 … θK �> , with the constraint θ0 ¼def

1�∑K
k ¼ 1;θ

k, the standard gradient of the K�L divergence can
be written as

∇D¼ �1 I½ � ðlog p� log qÞ ð22Þ

where 1 is a K � 1 vector and I is a K�K identity matrix. We now
assume that the target p.m.f. is given as q¼ ½0:2494 0:0025 0:7481�> ,
and p¼ ½13 1

3
1
3 �> as an initial guess. Fig. 1 illustrates the behavior of

the standard (left) and natural (right) gradient using a constant step
size η¼ 0:01. From this figure (left), it is possible to observe the
following two limitations of the standard gradient. When the curva-
ture exhibits significant and different directions a small step η is
required. In this situation an undesirable slow convergence is obtained.
On the contrary, if the step size η is large, then instability occurs. Fig. 1
(right) shows the superiority of the natural gradient, where the two
above limitations are now overpassed. Here the step-size is set to
η¼ 0:18 and it is seen how fast is the convergence in the proposed
technique. The reason for this behavior is that the optimization using a
Fisher metric behaves asymptotically as a Newton method and
exhibits fast convergence rate near the optimum, i.e. p¼q.

6.1.2. Example 2
In the second example, the K�L divergence DðpjjqÞ is again

minimized, as before, however we assume that p is generated by the
joint p.m.f. pðx; yÞ ¼ pðyjxÞpðxÞ, where pðyjxÞ is the likelihood assumed
to be known and p(x) is a free prior, i.e. we have pðx; yÞ ¼ pðyjxÞpθðxÞ.
The optimization is performed in the prior pθðxÞ.

The gradient of the cost function Dðpðx; yÞjjqðx; yÞÞ is as follows:

∂D
∂θi

¼∑
x;y
pðyjxÞ log pðyjxÞpðxÞ

qðx; yÞ
∂pðxÞ
∂θi

ð23Þ

Adopting a matrix notation, we next describe how this example
can be implemented. Thus, pX denotes a K � 1 vector of probabil-
ities p(x); PYjX is a L�K matrix; PY ;X and Q Y ;X are the joint
probability distributions of pðx; yÞ and qðx; yÞ with L�K size,
respectively. Using the above formulation and similarly to (22)
the standard gradient is given by

∇D¼ ½�1 I� TX;Y 1 ð24Þ
where TX;Y is given by

TY ;X ¼ pY jX○ðlog PY ;X� log Q Y ;XÞ ð25Þ
and PY ;X given by

PY ;X ¼ PYjX○1 p>
X ð26Þ

with 1 a L� 1 vector and ○ a elementwise product.
Recall that to compute the natural gradient, we have to

compute the matrix G1 that is given in (12).
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Fig. 2. Optimization of the K�L divergence DðpjjqÞ using the standard (left) and natural (right) gradient where p is assumed to be jointly distributed.

Fig. 3. (a) Scenario of the campus in Barcelona, (b) homography of the image in (a) superimposed with the homography of the trajectories. Each color refers to a different
activity (see text). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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In this example the PY ;X , PY ;X have dimensions set to 3�2
(i.e. K¼2, L¼3). Fig. 2 shows the evolution of the parameters for
standard (left) and the proposed natural (right) gradient. It can be
seen that the cost DðpjjqÞ does not converge to zero since there is
no distribution p(x) such that pðxÞpðyjxÞ ¼ qðx; yÞ, as was the case in
the first example.

6.2. Trajectory classification

This section presents an example that is related to the gen-
erative model of vector fields presented in Section 4. More
specifically, we use the proposed natural gradient for estimating
the switching probabilities in the generative model, as detailed
in Section 5.1.

In the trajectory classification context, we assume that we have a
predefined number of activities and that we have a subset of
trajectories from each of these activity classes, X1;…;XA, where A
is the admissible number of activities. For each activity class a, we
denote the corresponding fields as θa ¼ ðT a;Ba;ΣaÞ, with a¼1,…,A.
In the example presented, several activity classes share some of the
vector fields. However, the switching probabilities, i.e. the transi-
tions among the motion models within a trajectory, are specific and
different for each activity. In this section we will illustrate the
usefulness of the proposed approach to tackle the above task. Also,
we provide a comparison with an efficient method for projection
onto the probabilistic simplex proposed in [22].

6.2.1. Real data
This section reports the performance of the proposed approach

to pedestrian activity classification in the context of far-field
surveillance scenarios. The images were obtained from a network
camera located at the campus of the Universitat Politécnica de
Catalunya (UPC) Barcelona. After several hours of recording, we
observed that the pedestrians performed common paths in the
scenario. Thus, it was possible to collect the most common
trajectories and organize them into several classes.

Before estimating the parameters of the generative model for
the activities, i.e. ΘðaÞ

K ¼ ðT ;BðaÞ;ΣÞ, we pre-processed all the trajec-
tories computing the homography. The reason behind is that the
vector fields obtained in this way are more distinguishable being
more easily to estimate. Fig. 3(a) shows an image of the scenario of
the campus considered in the experiments. Fig. 3(b) shows the
corresponding homography of the previous image, as well as the
homography of the trajectories considered in the scenario.

Before applying the proposed model to estimate a set of motion
fields, we need to extract the trajectories from the video sequences
by tracking the pedestrians. For that purpose, we used the Lehigh

omnidirectional tracking system (LOTS) [25] to detect regions,
followed by region association. Region association works as
follows: a pair of regions ðAt ;Btþ1Þ detected in consecutive frames
is associated if Btþ1 is the only region in the second frame that
overlaps (above a given threshold) with At and vice versa. This can
be interpreted as mutual favorite pairing. If the obtained asso-
ciated trajectories have some small gaps, we manually edit to
correct wrong or missing connections. The trajectories are then
projected onto a view orthogonal to the ground plane (the so
called bird's eye view) to enforce viewpoint invariance. This is
done using a projective transformation (homography) from the
image onto a plane parallel to the ground. The number of the
trajectories are 270 for the scenario considered.

The trajectory classes are organized as follows: walking and
stepping up the stairs (red), walking along (green), crossing and
stepping up the stairs (yellow), pass diagonally up (magenta) and
turning the Campus (cyan). Recall that, as above mentioned, this is
a difficult example since the motions (i.e. vector fields) are similar
among classes. Only the transitions may contain specific informa-
tion regarding each class-type of trajectories. Precisely the goal of
the natural gradient, that is accurately estimate the switching
probabilities, a crucial information contained in the trajectories to
achieve a good performance at classifying human activities from
trajectories.

The experimental evaluation conducted is different from [1]. In
the previous work we considered a separate validation or selection
set to determine the best model order. Also, we did not considered
the variability of the solution regarding different initializations of
the EM. Thus, the following issues are taken into consideration in
this paper:

� Number of motion fields: To determine the appropriate number
of vector fields, we varied the number of motion models in the
interval KAf1;…;6g. The best model order is chosen such that
maximizes the performance classification accuracy.

� Initializations of the EM: Given the variability of the EM
estimates with the initializations, we perform eight different
initialization of the EM (i.e. eight runs of the EM), to obtain the
statistics of the results.

� Cross validation: Since the number of trajectories cannot be
indefinitely generated, we perform a 5-fold cross validation to
obtain the performance evaluation. These splitting between the
training and test sets is done randomly, but guaranteeing
roughly balanced sets in terms of classes.

� Range of the step size η: we considered the range of this
parameter ηAf1� 10�3;…;1� 10�9g and present the final
statistics for the best value η for which both approaches exhibit
higher accuracy in the trajectory classification.
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Fig. 4. Comparison of the two methodologies (a) using the projection simplex and (b) varying the step size η and the number of motion fields K.
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Summarizing the procedure: for each number of motion fields
KAf1;…;6g we perform the classification, for eight runs of the EM
in each fold FAf1;…;5g in which we take the best run. We repeat
this procedure for each value of the step size η to obtain the
statistics. Recall that with the above procedure, we are assuming
that all the activities share the same vector fields, i.e. the class
specific models are ΘðaÞ

K ¼ ðT ;BðaÞ;ΣÞ, for aAf1;…;Ag, where only
the switching matrices differ among the classes, and K is the
number of (shared) vector fields.

Fig. 4 discriminates the accuracy in terms of trajectory classi-
fication among the considered classes varying the number of
motion models for the ranges of K. The best values of the step-
size are shown for both of the methodologies. We illustrate the
results for the best initialization of the EM in the folds. Results
concerning the use of K¼1 are not shown, since both methodol-
ogies do not provide acceptable performance. This happens since
one single model does not suffice to represent the variability of the
motions present in the activities of the scenario.

Fig. 4 clearly shows that both approaches (i.e. using the natural
gradient and the projection simplex) are remarkably competitive
providing high accuracy rates.

We also compute the running time figures of both methods for
computing the switching matrix. In the test conditions, we used
the best step size η for each method as shown in Fig. 4.1 We
perform two experiments varying the number of motion fields.
More specifically, the experiments comprise K¼2 and K¼6,
corresponding to the less and most expensive computational
scenarios, respectively. Thus, for the first situation (K¼2) we
obtained t 	 0:13 s. for the projection simplex and t 	 0:04 s. for
the natural gradient. For the second experiment (K¼6) we
obtained t 	 0:35 s. for the projection simplex and t 	 0:08 s. for
the proposed approach. One of the reasons for the fastest compu-
tation of the proposed approach is that we no longer perform the
projection to estimate the transition matrix. These running time
figures are obtained in the M-step and only for the computation of
B.2 These results support our claims in the Introduction, where we
state that the Fisher metric exhibits faster convergence behaving
as a Newton method.

From the results obtained in Fig. 4 we conclude that the natural
gradient exhibits better stability in the results when varying the
number of motion fields in terms of both classification accuracy
and covariance assigned to these scores. Notice however that the
results provided in Fig. 4 are obtained when sharing the motion
fields among different type of trajectory classes, not exploring all
the capabilities of the framework proposed herein. This means
that the number of the motion fields is the same for all the activity
classes. Another possibility is to assume that each trajectory-class
has its own complexity, meaning that each activity may require a
different number of vector fields, thus having a different complex-
ity. Under this scenario, the model for each activity/class is
independently estimated from the subset of the training data from
that class, i.e. we independently learn class-specific models.
Although, this approximation is more complex, since it requires
different classification for each motion model configurations, still
it is possible to be explored. Also note that in the proposed
approach the step-size is fixed. A different strategy is to have
variable step-size which can also enhance the capabilities of the
framework.

7. Conclusions

We presented a natural gradient approach applied to the
optimization of the Kullback Leibler (K�L) divergence. The above
methodology contrasts with traditional approaches, in the sense
that the probabilities do not lie on a simplex probability mesh, but
considered as points in the manifold instead. Simulation results
have shown that the proposed method converges faster and
attained better accuracy comparing with the standard gradient
method. Also, it has been shown that this framework is suited to
estimate space varying switching probabilities in the generative
model in the context of human activity recognition in far field
surveillance settings. The results shown allow us to conclude that
the proposed algorithm compares favorably with sate of the art
methods applied in this new context of application. Further work
will include some of the directions mentioned in the previous
section that allow to enlarge the framework both in terms of
practical and theoretical contexts.
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