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2D Segmentation Using a Robust Active
Shape Model With the EM Algorithm
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Abstract— Statistical shape models have been extensively used
in a wide range of applications due to their effectiveness in
providing prior shape information for object segmentation
problems. The most popular method is the active shape
model (ASM). However, accurately fitting the shape model to an
object boundary under a cluttered environment is a challenging
task. Under such assumptions, the model is often attracted
toward invalid observations (outliers), leading to meaningless
estimates of the object boundary. In this paper, we propose a
novel algorithm that improves the robustness of ASM in the
presence of outliers. The proposed framework assumes that both
type of observations (valid observations and outliers) are detected
in the image. A new strategy is devised for treating the data in
different ways, depending on the observations being considered
as valid or invalid. The proposed algorithm assigns a different
weight to each observation. The shape parameters are recursively
updated using the expectation-maximization method, allowing a
correct and robust fit of the shape model to the object boundary
in the image. Two estimation criteria are considered: 1) the
maximum likelihood criterion and 2) the maximum a posteriori
criterion that use priors for the unknown parameters. The
methods are tested with synthetic and real images, comprising
medical images of the heart and image sequences of the lips.
The results are promising and show that this approach is robust
in the presence of outliers, leading to a significant improvement
over the standard ASM and other state-of-the-art methods.

Index Terms—Image segmentation,
expectation-maximization algorithms.

I. INTRODUCTION

BJECT segmentation remains a complex task that is
Orequired in a large spectrum of applications. Statistical
shape models (SSM) have had an important part in the
development of sophisticated segmentation methods, due to
their ability to capture prior information about the shape of
the object. However, the estimation of the model parameters
is often hampered by the presence of noisy observations [1].
This paper proposes a novel Bayesian framework approach
for the estimation of the model parameters that allows for a
reliable and robust segmentation of the object in the presence
of outliers.

The most popular SSM is the Active Shape Model (ASM)
method, proposed by Cootes et al. [2]. It consists of

active shape model,
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characterizing the shape of an object by learning the mean
shape and its most significant modes of deformation from
training data. In this method, the contour of an object is
characterized by the parameters of a pose transformation and
by the deformation parameters. This provides a simple and
effective way of modeling the shape space of the object,
and preventing unpredictable or unexpected segmentations.

Fitting the learned model to the boundary of an object in
an image comprises two steps: 1) searching for observation
points located on the object’s boundary in the image, and
2) estimating the model parameters (pose and deformation
parameters) based on those observations. The ASM method
assumes the distribution of residuals between the model
and the observations is Gaussian. However, in most real
applications this is not true (e.g., ultrasound images of the
heart have a significant level of multiplicative noise) and the
least squares method used to estimate the parameters may lead
to poor segmentations in the presence of outliers [3]. One
approach that has been used to overcome this limitation is to
improve the boundary detection method [4]-[9]. By reducing
the number of outliers detected, these works are able to
improve the accuracy of the segmentations. An alternative
approach is to use an estimation method that is able to deal
with the presence of outliers.

This paper focuses on the second type of approach and
proposes a new method for estimating the shape model para-
meters that is robust in the presence of outliers. The algorithm
assumes that some of the observation points are outliers and
takes this into account when estimating the parameters.

The paper is organized as follows. Section II presents
an overview of the state of the art. Section III formalizes
the problem, and the proposed framework is described
in Sections IV-V. The experimental setup and statistical
results are shown in Section VI-VII, as well as a comparison
with state of the art works. Finally, Section VIII concludes
the paper.

II. STATE OF THE ART

The standard ASM estimates the shape model parame-
ters under the assumption that all the observation points
belong to the object boundary. In most applications, this
is not true and, consequently, the segmentations obtained
in the presence of noisy observations are often poor. This
drawback of the ASM method caused subsequent works
to propose alternative ways of estimating the shape model
parameters [1], [9]-[12].

Most works consider multiple candidates for the location of
each model point. This makes the algorithm less dependent on
the accuracy of the boundary detection method and increases
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the probability that the true object boundary is among the
detected observation points. Then, the estimation of the
model parameters is accomplished by simultaneously selecting
the subset of observation points that maximizes a specific
objective function, which typically promotes i) segmentations
along points with specific image features, e.g., edge points
(located along an image edge), and ii) segmentations with
shapes similar to those observed in the training set.

Different approaches have been used to accomplish this.
Wang and Staib [10], for instance, use the gradient descent
method to obtain the model parameters that maximize the
posterior probability, which includes a prior about the para-
meters learned from a training set and the likelihood of
each pixel location. Similarly, Cootes et al. [9] proposes an
algorithm for maximizing the overall quality of fit between
the shape model and the image, based on a random forest
regressor that evaluates the quality of fit of the image pixels
around each model point. However, these two methods do not
explicitly account for the presence of outliers. Instead, they
rely on the objective function (posterior probability/overall
quality of fit) to guide the model toward the true object
boundary.

Few works have proposed to deal with outliers explicitly.
For instance, the approach used in [11] is based on the Robust
Point Matching (RPM) algorithm [13]. The RPM algorithm
pairs observation points with model points, and the points that
are left unpaired are considered outliers and disregarded in the
estimation of the parameters. Rogers and Graham [1], on the
other hand, tests two types of approaches: 1) M-estimators,
which weight the observation points based on some criteria,
and 2) random sampling strategies (e.g., the Random Sample
Consensus (RANSAC) algorithm [14]) to determine the best
subset of observation points to be used in the estimation of
the shape model parameters. Lekadir et al. [12] proposes to
determine which observation points are outliers using a local
shape dissimilarity metric. This metric is based on the distance
between pairs of model points. Observation points that do not
respect the local shape of the object are treated as outliers.
A disadvantage of this approach is that only one observation
point is allowed for each model point.

We propose a new method for estimating the model
parameters using a Bayesian approach that assigns each
observation a different weight based on the probabil-
ity of that observation belonging to the object boundary.
The main difference between [1] and our work is the
following: in [1], the weights are obtained using an heuristic
strategy (see [l, eq. (10)]) designed by Huber [15]; we
propose a principled and well founded way to automatically
determine these weights in a probabilistic framework. Since
outliers often receive low probabilities, their influence in
the parameter estimation is reduced, making the method
robust in the presence of outliers. A similar approach
has been previously used in [16] for the estimation of a
Snake model [17]. However, a drawback in [16] is that
the Snake model can assume unexpected shapes, since is
does not use prior information about the object shape. The
following sections describe the problem and the proposed
methodology.
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Fig. 1. Example of the detection of observation points. The blue line
corresponds to the model; the dashed cyan lines correspond to the search
lines; and the red dots correspond to the detected observation points.

III. PROBLEM FORMULATION

Given an image I, we wish to approximate the boundary
of an object of interest by a sequence of 2D points,
X = (xlT, ...,XNT)T, where x € R?VX1 xi = (xi,xé)T are
the coordinates of i-th point and N is the number of points
in the sequence. The contour model adopted in this paper is
shape model, which uses prior information about the shape of

the object.
The estimation of the shape model is based on a train-
ing set D = {(I,x) j}‘jzll, containing the training images

Ij : Q — [0,255] and the respective annotations X; (training
shapes), where € stands for the image lattice. The shape model
is learned in a two step procedure [2]: 1) align all the training
shapes x;, with j = 1,..,|D| and 2) perform a Principal
Component Analysis (PCA) to find the modes of variation.
Every contour in the shape space can be approximately defined
by the average contour x = (X' T, ..., x¥ T)T e R?M*!  with
%' € R2, deformed by a linear combination of the K main
modes of variation D € RZV*K | Jeading to

X >~ X + Db, (1

where the vector b € RX*! contains the deformation

coefficients. Accordingly, the i-th model point is described by
x' ~ %' + Db, )

where D' € R>*X is a matrix containing the lines of D
associated to the i-th model point.

It will be assumed that the shape model undergoes a global
(pose) transformation T and each transformed point, X, is
given by

X =T

. i
Lo [ ]
ar ai Xy 15
=Ax' +t
=AE +D'b) +t. 3)

To segment a new image, we have to determine the best
model parameters. For this we need an initial estimate of the
contour configuration, X. A set of observation points is then
extracted from the image in the vicinity of each model point X'.
These observations should ideally be located at the boundary
of the object of interest. In this work, the object boundary is
searched along lines orthogonal to the contour at each model
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point, as shown in Fig. 1. In each search line, the observation
points were detected using the match filter for edges (see [18]
Section 5.2), which was originally proposed in the context
of object tracking. Other search methods can be used instead
(e.g., searching within a region around each model point,
as in [9]). This allows us to obtain set of observation points
Y = {y7,j=1,.., M'} located in the vicinity of the model
point X. In general, M’ # M/ for i # j. It is important to
remark that many of the observations contained in the set Y’
do not belong to the object boundary and should be consid-
ered as outliers. Unfortunately, we do not know, beforehand,
which observation points are valid (truly belonging to the
object boundary) or invalid (outliers). To tackle this issue, we
consider two possible sensor-observation models and assign a
binary label K e {0, 1} to the observation point, yij , where
ki =1, if yU is considered valid, and k" = 0 otherwise. The
label probabilities, po = p(k'/ =0) and p; = p(k'/ = 1) are
also unknown, i.e., they also need to be estimated.

The model described so far comprises three sets of
parameters: 1) global transformation parameters (a, t), 2) local
deformation parameters b, and 3) the label probabilities

= (po, p1). In the following, we will denote the set of
all parameters by ® = (#,p), with § = (a,t,b) where
a=(aj,ay) and t = (¢1, 1p).

Let us consider the j-th observation point de%ected in the
vicinity of the i-th model point, y"/ = (yij Y5 ) , and let k%
be the corresponding model label assigned to y”. Assuming

that the observation y”/ is valid (k" = 1) the following sensor
model is considered

“)

where V' ~ N(0, X)) is a zero mean white Gaussian
noise with diagonal covariance matrix X', estimated from the
training set. Combining (3) and (4) yields
yij — T(Xi)+vi
= AE +D'b) +t+ V.

ylj =% +Vl,

(5)

It follows that the probability of y”/ being a valid observation
is given by

p (yij (6)

where N (-; u, X) denotes a normal distribution with mean
and covariance matrix X. On the other hand, it will be
assumed that the the observation point y”/ with label k% = 0
(i.e., outlier) follows a uniform distribution within a validation
gate Vi in the vicinity of X', and

p (v )

Given the probabilistic model used to represent the data,
we wish to estimate the model parameters (global transforma-
tion (a,t) and deformation coefficients b) needed to fit the
shape model to the observation points, Y = {y”/} extracted
from the image. Ideally, we would like to know the binary
labels K = {k'/} associated to each observation points y*/,
but this information is not available. Therefore, K is an
unobserved (hidden) set of labels. The class-conditional

K =1) =N (v/; AR + D'b) +1, T7),

ki = o) = U(Vg).
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generative model is thus obtained by marginalizing with
respect to the missing label sequence, as follows

pYI®)= > p(Y.K|O)
Ke{0,1}M

®)

N

where M = > M' is the total number (often large) of detected
i=1

observations.

IV. EXPECTATION MAXIMIZATION FRAMEWORK

The estimation of the model parameters by maximization
of (8) would require taking into account all possible
combinations of K, which is infeasible. In fact, it is not
possible to obtain a closed form expression nor to ana-
Iytically optimize it. This difficulty is circumvented by
searching for a sub-optimal solution using the Expectation-
Maximization (EM) method [19]. The EM method iteratively
updates the transformation and deformation parameters by
maximizing an auxiliary function, Q (@ @(,)) where @(,) is
the most recent estimate of the unknown parameters. In this
work, two approaches will be described: A. maximizing the
expectation of the likelihood function, which leads to the
maximum likelihood (ML) estimate; and B. maximizing
the expectation of the joint probability function, which leads to
the maximum a posteriori (MAP) estimate. These two
approaches are detailed next.

A. Maximum Likelihood Estimation

In the ML framework, the complete log-likelihood of a set
of observation points Y and labels K is given by

L(Y.K, ©) = log p (Y,K|®)
= log (p (YK, ©) p (K)). €

Assuming conditional independence between observations, the
previous equation can be factorized as follows

L(Y.K, ©) = log ﬁﬁ p(y/[k7.©) p (k)

i=1j=1
ki @) +logp (k"f),

N M
(10

= ZZlogp (yij

i=1 j=1

where p (k') is the probability of the label k" that depends
on whether the observation y*/ belongs to the object boundary
or is an outlier, i.e., p; or po, respectively.

The EM algorithm comprises the two following steps:
1) the E-step, in which we update the expectation of the
log-likelihood by computing the probability of each
observation, based on a previous estimate of the parameters;
and 2) the M-step, in which we update the parameters by
maximizing the expectation obtained in the E-step. These steps
are detailed in the following subsections.

E-Step: Let @(,) = @1, b, P)) be the estimates of the
model parameters at iteration 7. Given a set of observa-
tions, Y, and the most recent estimates, we can define the
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auxiliary function Qwm (©; @(,)) as the expected value of the
log-likelihood function

owmL (©; @(1))
= Ex [L(Y. K, ©)]Y, 8]
N M

=" > Ex [log p(y" | K7, ©) +log pk)|Y, B |
i=1 j=1

N M

= ZZZPW’ =11y, 0

i=1 j=11=0
x [log py¥ | KT = 1,0) +log pk'i =1)]
N M

—ZZw (logp(’

i=1 j=I

k7 =0, 0) + log po)

+wl (logp (y"f' (11)

kK = 1,0) +logp1),

where w;j,l € {0,1} denotes the confidence degree of
observation y”, given by

wf = p (K =1)y7,8)
X ﬁl(l) )4 (ylj}klj = 1,’0\(0)
iy N (¥ A& +DB) + 80, T)  (12)

w(l)j = p( ki :O’yij,@(t)>

(% PO(,) U (Vii) (13)

such that w§ + w? = 1. These weights correspond to the
probability of the labels assigned to the observation y*/ being
kiU = 1 and k% = 0, respectively, given the current model
estimate.

M-Step: Given the most recent estimates of the unknown
parameters at iteration ¢, @(,) =@t b, P) (), the M-step aims
to solve the following optimization problem

@(z+1) = argm(gx OowmL (©; @(z))- (14)
This is done by taking the derivative of Qwm(9; @(t)) with
respect to each parameter and equating to zero. We simplify
this step by sequentially updating the transformation and
deformation parameters, as follows: 1) compute a1y and

t(t+1), assuming b = b(t) fixed; then 2) compute b(,+1)
assuming both a = a4y and t = t(,+1) fixed; and finally,
3) update the probabilities of each model P(;). These
three steps can be solved using standard matrix calculus as
will be described next.

1) Update of the Transformation Parameters: Let

= (], x)T =X +Di§(,), i=1,..., N, be the deformed
shape according to the current estimate of the deformation
parameters, ﬁ(,). The optimization of equation (14) with
respect to the transformation parameters, t = (f1,1)"
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and a = (a1, a») ", yields the following equations
—QML(® ®(z)) =0
= > > wix s (—y” + X + t(t+1)) =0
i=1 j=1
o (15)
QML(® ®(r)) =0
N M .
— ZZw” > ( X a(z+1)+t(z+1)> 0, (6)
i=1 j=1
where

i i
X = [xl. ﬂ%}
1 1
X XN

Combining (15) and (16) leads to the following linear system
of equations

N M . 1. ) L
Zzwlj |:XIT211 1Xz XITEII 1:| I:a(t+l):|
I i~y i t
i=1 j=1 X X (t+1)
N M .y
L g
i=1 j=1 y

The transformation parameters are updated by solving (17).
This can be interpreted as a weighted least squares solution to
the alignment of two sets of points (the observation points {y”/ }
and the corresponding model points {x')}. This estimation
of the transformation parameters differs from the standard
ASM [2] in the following:

1) There is no restriction on the number of observation
points detected in the vicinity of each model point, M‘,
whereas in the standard ASM, M’ = 1; and

2) Each observation point has a specific weight, ! in the
estimation, as opposed to a constant weight of 1 in the
standard ASM.

The first difference means that more observation points can
be detected, thus reducing the importance of the boundary
detection method and increasing the chance of detecting the
true object boundary. As for the latter, since outliers often
receive lower values of wllj than the valid observations, the
update of the transformation parameters will be less influenced
by the presence of outliers.

2) Update of the Deformation Parameters: Once the trans-
formation parameters

a —a fh
A(H_l) _[ aj &\1 :|(t+1)’ t(t = |:t :|(t+l)

have been updated using (17), we maximize Qv (O; @(,))
in (11) with respect to b, leading to

N M

D D w!D AL Ap D [ bay

im1 j=1
you ~T !
ZZWUD Az (yu —A(,+1)i’—t(,+1))
i=1 j=1

(18)
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Note that the deformation parameters obtained by solving (18)
may correspond to an unexpected shape. Therefore we adopt
the additional step proposed in [2]. We want the Mahalanobis
distance, d, to be lower than a specific threshold, dpax,

19)

where i;l denotes the /-th component of B(t+1), and A; is
the eigenvalue associated to the /-th deformation mode. The
threshold is chosen so that most of the shapes in the training
set satisfy (19) (a typical value is dmax = 3). If 3(,+1) does
not satisfy (19), we rescale it to the closest acceptable shape
as follows

o~ —~ d .
b1y < b(m)% if d > diax. (20)

3) Update of the Models Probabilities: Finally, the esti-
mates of the probabilities of each model, po, pi(,), are
updated. Maximizing OmL(0®; ©(;)) with respect to po, pi
yields

N M! i N M! i
2. Wy 2. Wy
=R i=1j=1 i=1j=1
Plesy = v p ="
> > wi +wf > M
i=1j=1 i=1
POty = 1 = Plysny- 21
N

where >’ M is the total number of detected observation
i=1
points.

B. Maximum a Posteriori Estimation

The estimation of the model parameters by the MAP method
is done in a similar way. However, instead of using the
complete log-likelihood, this approach uses the complete log-
joint probability, which can be expressed as

P(Y,K, ©) =log p(Y, K, ©)

= log(p(Y, K|©) p(©))
= log p (YK, ®) + log p (K) + log p(a, t)
+ log p(b) + log p(p) (22)

The first two terms are the same as in (10); the remaining
terms are the prior probabilities for the transformation
parameters, (a,t), deformation parameters, b, and sensor
probabilities, p. As previously, the EM algorithm is used
to estimate the model parameters by maximizing the
expectation of (22).

The prior for the deformation parameters b is obtained
from the PCA method (used to learn the shape model), which
assumes they are normally distributed with zero mean

p(b) =N (b; 0, 2") — cpexp (—%bTEb_lb), (23)

where cp is a normalization constant, and sPisa K x K
diagonal matrix whose entries are the eigenvalues
2}} = J;, obtained by the PCA method. This prior
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assigns higher probability to shapes that are similar to the
average shape in the training set, i.e., not too deformed.

Regarding the transformation parameters, in this work we
will use non-informative priors to define the prior term p(a, t).
Although we assume that we have no prior information about
the transformation parameters, these priors can be useful in
many applications. For instance, in tracking problems where
we want to segment a particular frame f, priors can be
included using the results obtained in the previous frame f—1,
to ensure a smooth pose update throughout the frames and
also to guide the segmentation when the observations do not
provide enough evidence of the location of the object.

Non-informative priors, pioneered by Jeffreys [20], [21],
are a class of probability density functions capable of
expressing ignorance about the model parameters. Rather
than describing a priori beliefs, they should be viewed as
a way of letting the data “dominate”, while staying inside a
Bayesian framework [22].

For our particular problem, and since the transformation
parameters, a = (aj, az)T and t = (71, tz)T, can be assumed
to be independent, the prior can be factorized as p(a)p(t).
The Jeffreys’ priors for parameters a and t are given by
(see Appendix A for details)

IZ(a)| = ca
IZ(O] = ct.

(24)
(25)

p(a) «
p(t)

where Z(-) is the Fisher information matrix, and ¢, and c¢ are
constants that do not depend on the parameters a and t, which
means p(a) and p(t) are both uniformly distributed in RZ.

For the sensor probabilities, we also adopt the standard
non-informative Jeffreys’ prior,

p(p) x VIZ(p)| = cp (26)
where ¢y is a constant that does not depend on p.
Replacing the priors (23)-(26) in (22) yields
P(Y, K, ©) = log p (YK, ©) + log p(K)
+logca + logct + log cp + log cp
1 -

_Eszb ', 27)
Assuming independence between the observations, we
can write

N

Mi
P, K, 0) = z Z log p (yij

i=1 j=1

ki, @) +log p (kij)
yC- %sz"‘lb, (28)

where C = logca + logcg + logcp + logcp is a constant.
E-Step: Given an estimate of the model parameters, ),
and a set of observation points, Y, the expectation of (28) is
Omar (©: O()) = Ex [P(Y.K, ©)|Y, 8]
N M

=Ex | > logp (v

i=1 j=1

ki, @) +log p (kij)

| B
+C— Eszb ', (29)
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where the first term in the expectation is given in (11).
Therefore,

N N 1 _
Omap (©; () = OmL (©: O()) + C — EbTEb 'b. (30)

The constant C can be discarded since it does not change
the outcome of the maximization step. On the other hand, the
last term will affect the output of the deformation parameters
estimation and it appears “naturally” in this formulation due
to the prior for b.

M-Step: The maximization of Qmap (@; @(,)) in (30)
with respect to the model parameters is similar to the
ML estimation. As previously mentioned, because we use
non-informative priors for the transformation parameters and
sensor probabilities, the only difference to the ML estimation
is in the case of the deformation parameters b. The updates
will be detailed in the following steps.

1) Update of the Transformation Parameters: Since the
prior terms in (30) do not depend on the transformation
parameters, (a,t), these parameters are updated by
solving (17), as in the previous section.

2) Update of the Deformation Parameters: Maximizing (30)
with respect to the deformation parameters, b, yields an
additional term, due to the Gaussian prior in (23). The update
is achieved by solving

N M!
=P D wi!D A )= AgD' | by
i=1 j=1
N M - 1
= Zzw’{D’ AT 42 (yl’—A(z+1)i’—t(z+1)),
i=1 j=1

€19

where the term LI “pulls” the coefficients of B(,H) closer
to zero. This means that the algorithm will try to keep the
deformation coefficients low, which guarantees that shape of
the segmentation is similar to the shapes in the training set.

3) Update of the Model Probabilities: The derivative
of (30) with respect to the model probabilities, pg and p1,
yields the same results as in the ML estimation case, which
means the model probabilities are updated using (21).

C. Relation With Karush-Kuhn-Tucker (KKT) Conditions

The KKT conditions can be used to add inequality
constraints to an unconstrained optimization problem. This is a
generalization of the Lagrange multipliers, which allow adding
equality constraints to the solution.

Consider the update of the deformation parameters in the
ML approach. The additional step in (20) aims at finding
the estimate b that satisfies the condition in (19). This
can be viewed as an inequality constraint on the solution
of the optimization problem in (14). Formally, we wish to
find

b1 = arg max Ow (©; ©))

subject to bTEbilb < d>

max-*

(32)

2597

The KKT conditions allow us to obtain the solution to this
problem by finding the value of b that satisfies the following
equation

VoML (©; ©()) — uVhg(b) =0 (33)

where 4 > 0 is a constant - a KKT multiplier, and
g) = bTxb'p — d?, is the inequality constraint in (19).
This leads to the solution
N M
U Ebil + Z z wij,uDiTK(TH_l) Ei_l/A\(l‘+])Di B(,+1)
N Mil_l j=1
= ZzwijDiTK(TrJrl)Ei_l (yij - K(t+1)’_‘i _?(t+1))
i=1 j=1
(34)

This means that the MAP estimation of the deformation
parameters in (31) is a particular case of (34), for 4 = 1.

D. Comparison Between the ML and the MAP Approaches

In this work, the difference between the ML and the
MAP approaches lies in the estimation of the deformation
parameters. The ML formulation uses an additional step (20)
that shrinks the estimate of the deformation parameters in
order to guarantee that the obtained shape is acceptable [2]
(i.e., not over-deformed). This is required because the objective
function Qmr (@; @(,)) defined in (11), does not contain
any (prior) information about the expected estimates of the
deformation parameters. Without that constraint the resulting
estimates could lead to shapes significantly different from
those found in the training set. On the other hand, in the
MAP formulation, the objective function Qmap (@; @(,)),
defined in (30), includes a constraint on the deformation para-
meters due to the prior p(b). This constraint is obtained in a
more natural and principled way and “pushes” the coefficients
of b to zero, thus inducing a shrinkage effect similar to the
one in (20). Furthermore, in the ML formulation, the shrinkage
step in (20) scales all the components of b uniformly, disre-
garding the importance of each mode of variation, whereas in
the MAP estimation the shrinkage effect is weighted by the
covariance matrix P (recall (31)), which means it depends
on the eigenvalue of each deformation mode.

V. ALGORITHM OVERVIEW

The algorithm described in the previous sections can be
summarized as follows. Given initial estimates of @(,:0), the
shape model parameters are iteratively updated by:

1) Searching for observation points in the vicinity of the

model; N

2) Computing the observation probabilities wllj
using (12) and (13) (E-step);

3) Updating the transformation parameters ai,as,ti,t
using (17) (M-step);

4) Updating the deformation parameters b using
(18) and (20) in the ML case, or (31) in the MAP case
(M-step); and

5) Updating the model probabilities py and pp using (21)
(M-step).

ij
and w
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This process is repeated until no significant changes
are observed in the contour. This algorithm will be
denoted as Expectation-Maximization Robust Active Shape
Model (EM-RASM).

VI. EXPERIMENTAL SETUP

The evaluation of the EM-RASM method is divided in two
types of experiments: 1) using synthetic data, which illustrates
the different behavior of the proposed method compared to the
standard ASM used, see [2], [5], [23]-[26]; and 2) using real
images for two different applications.

The experiments using synthetic data provide evidence of
the superiority of the EM-RASM over the standard ASM
using two example images.

Regarding the experiments using real images, the first
application is the segmentation of the left ventricle (LV) in
ultrasound images. This is a complex problem due to the
presence of multiplicative noise in the images, which lead
to the detection of many outliers. The second application is
the segmentation of the lip in face images from the Cohn-
Kanade (CK+) database [27]. In the latter, the accuracy of
the proposed method is compared to two other state of the art
methods: the Adaptive Snakes (AS), proposed in [16]; and the
combination of ASM with RANSAC, proposed in [1]. The
first method (AS) also uses the EM algorithm to deal with
outliers, but the contour of the object is free, meaning that
neither a priori shape information nor training is provided
to the Snake model. This means that the method is a purely
bottom-up approach, and that the segmentation may have
an unexpected shape. The second method uses an ASM to
describe the contour and the RANSAC method to determine
which observation points are outliers.

The proposed method requires an initial guess of the model
parameters. In all the tests performed, the model was initial-
ized with the average shape X (i.e., b = 0). The initial guess
for the transformation parameters was obtained by aligning
the average shape X with a contour obtained by human input
using standard least squares method. In all the tests showed in
the next section, the initial guess for the models probabilities
was po = p1 = 0.5. We found no evidence suggesting that
the initial values for these probabilities significantly changed
the output of the algorithm.

The segmentations were evaluated by comparing the
obtained contours with the true object boundary (ground
truth). The accuracy of the segmentations were quantitatively
determined using the Dice coefficient [28].

VII. RESULTS
A. Synthetic Images

The performance of the EM-RASM method was evaluated
in two synthetic images. These images consist of two different
corrupted versions of a binary image of a rectangle, with
intensity value 1 inside the rectangle and O outside. In the first
example, the binary image was corrupted by white Gaussian
noise with zero mean and variance anzoise = 0.5 (see Fig. 2 on
the top left). In the second example, the rectangle image was

corrupted by black regions (see Fig. 2 on the top right).

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 8, AUGUST 2015

Fig. 2. Segmentation of a rectangle image: (top left) corrupted by white

Gaussian noise with variance zrfmse = 0.5; and (top right) corrupted by black

regions. The ground truth segmentation is shown in dashed green. Each row
shows an example using a different initial guess (left column) and the final
segmentation using the standard ASM (middle column) and the EM-RASM
(right column). The red dots correspond to the detected observation points in
the last iteration.

We wish to retrieve the correct location of the rectangle
given an initial guess. However, in the corrupted versions of
the image, additional observation points will be detected on
edges that do not belong to the rectangle boundary, which
means the set of observation points will be noisy. In these
examples, the results using the ML and MAP estimation
methods were very similar. For the sake of clarity in the
presentation, we show only the results using the ML method.

The shape model was learned using synthetic data generated
by adding random Gaussian perturbations to the true
object boundary X. More specifically, each training example
x € R2¥X1 is a realization of

x=X+e, e~N(@O, 02D (35)

where oin = 2 is the standard deviation imposed on the
synthetic model points. Since the Gaussian noise is isotropic
and identical for all model points, we do not expect the shape
model to identify any significant modes of variation.

Fig. 2 shows the output of the proposed algorithm and
the output of the standard ASM for different initial guesses.
In the first example, the standard ASM was unable to cope
with the outliers and, consequently, it did not fit the rectangle
boundary accurately. The EM-RASM, on the other hand, was
able to accurately segment the rectangle despite the detection
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Fig. 3. Segmentation of the left ventricle in ultrasound images.
Each row shows one example, where the green dashed line shows the
ground truth (left column); the blue lines correspond to the estimated
segmentation using the standard ASM (mid column) and the proposed
algorithm (ML) (right column); and the red dots represent the detected
observations in the last iteration.

of many outliers (note the large number of red dots in the
images that do not lie along the rectangle edges). In the second
synthetic example, the gradient associated to the edges of the
black regions is stronger than the one associated to the edges of
the rectangle. Consequently, some of the detected observation
points are outliers. The figure shows that the presence of these
outliers causes the standard ASM to be unable to correctly
segment the image, since it tries to fit all the observation
points simultaneously (including outliers). The EM-RASM,
on the other hand, is able to accurately segment the rectangle
and disregard the outliers. The last row in the figure shows
an example in which neither the standard ASM nor the
EM-RASM were able to segment the rectangle. This was due
to a poor initialization of the model parameters, as shown by
the initial guess on the left column.

B. Real Images - Left Ventricle Segmentation

We applied the EM-RASM method to the segmentation
of the left ventricle in 2D ultrasound image sequences. The
dataset is composed of five 2D sequences (five different
patients), each with 16-20 frames, for a total of 87 images.

The shape model was trained using manual medical
annotations of the left ventricle contours (ground truth). Each
training example was obtained by resampling, in arc-length,
the medical contours with a fixed number of points from the
bottom left to the apex (top) and from the bottom right to
the apex. We tested the proposed algorithm and the standard
ASM using a leave-one-sequence-out cross validation strategy.

In each test sequence, the initial guess for the transformation
parameters was obtained by aligning the average contour X
with a contour obtained by human input using the standard
least squares method. A different human input contour was
used in each test sequence, and the resulting initial guess
was used in all the frames of the sequence (i.e., we did not
propagate the contours from one frame to the next).

Fig. 3 shows two examples with the segmentation obtained
with EM-RASM (using the ML approach) and with the
standard ASM. Note that a large number of the detected
observations (red dots) are outliers. The figure shows that
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Fig. 4. Statistical results for the segmentation of: (left) the LV in ultrasound
images; and (right) the lip in face images and comparison with state of the
art methods.

the EM-RASM performed better than the standard ASM and
was able to fit the LV boundary, whereas the accuracy of the
segmentation obtained using the standard ASM was hampered
by the outliers.

Statistical results are presented in Fig. 4 (left). The results
show that the ML and the MAP approach perform similarly
and that they lead to a significant improvement in accuracy
over the standard ASM.

C. Comparison With State of the Art - Lip Segmentation

We will use the example of the lip segmentation problem
to compare the performance of the proposed method with
two other state of the art methods: the Adaptive Snakes,
proposed in [16], and the combination of ASM and RANSAC,
proposed in [1]. The first method uses the Snake model to
describe the contours and estimates the model parameters
using an outlier model and the EM algorithm (similarly to the
approach proposed in this work), whereas the second method
uses a shape model and estimates the model parameters using
the RANSAC method.

The dataset consists of four sequences of face images. These
sequences were acquired from the neutral expression samples
of the Cohn-Kanade expression database [27], each with
10-20 frames, for a total of 58 images. The training shapes
were obtained by resampling, in arc-length, the lip contours
provided in the database so that the number of points in the
lower lip and the number of points in the upper lip were the
same in all the contours. As in the previous case, the shape
model was trained using a leave-one-sequence-out cross
validation strategy. The initial guess for the transformation
parameters for each test sequence was obtained by aligning
the average contour X with a contour obtained by human
input. The same initial guess was used in all the frames of
the test sequence.

Fig. 5 shows two examples of the segmentations obtained
with EM-RASM (using the ML approach) and with the stan-
dard ASM. It is possible to see that the ability to detect more
than one observation point for each search line increases the
probability of detecting the true object boundary, particularly
if that boundary is not associated with a strong edge (e.g., in
Fig. 5 second and third rows). On the other hand, despite the
consequent increase in the number of outliers, the proposed
approach was able to fit the valid observations. This does not
happen in the standard ASM, in which the obtained contour
was misguided by the outliers. However, if the number of
outliers is small, both methods perform similarly.
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Fig. 5. Segmentation of the lip in face images. Each row shows a different
example, where the green dashed line shows the ground truth (left column);
the blue lines correspond to the estimated segmentation using the standard
ASM (mid column) and the proposed algorithm (ML) (right column); and the
red dots represent the detected observations in the last iteration.

Fig. 4 (right) shows the statistical evaluation of the segmen-
tation accuracy. As in the previous segmentation problem, the
proposed method outperforms the standard ASM. These results
also show that the proposed method achieves a better accuracy
than the two other state of the art methods. The RANSAC
approach proposed in [1] also performs significantly better
than the standard ASM and has a performance similar to the
proposed method in some sequences. On the other hand, the
method proposed in [16] (AS) has a performance similar to
the ASM, but note that the AS does not use shape information
obtained in a training stage. Finally, it is also possible to see
that the ML and the MAP approaches achieve a very similar
performance.

VIII. CONCLUSION

This paper combines active shape models (ASM) with
robust estimation of the model pose and deformation using
an outlier model. The estimation of the model parameters is
achieved using the EM method, which weights each observa-
tion point by the probability of that point belonging to the
object boundary. We show that this approach is robust in the
presence of outliers and is able to overcome this limitation of
the standard ASM, both in synthetic and real images.

Future work should focus on extending the proposed
framework to more reliable observations. For instance, using
other (application-specific) feature detection methods may
lead to better results by decreasing the number of outliers
detected. Furthermore, edge points along the same image
edge often belong to the same object in the image. This can
be used to improve the computation of the weights associated
to the observations.

APPENDIX
The Jeffreys’ prior [29] is a non-informative prior that can

be used to express ignorance about some model parameter
o. € R". The Jeffreys’ prior is defined by

p(a) « /det (Z(a)),

where Z(a) is the Fisher information matrix introduced by
Fisher [30]. Its best known use is in the Cramer-Rao (lower)
bound (see [31], [32], or [33])).

(36)
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The coefficients of Z(a) are given by

Ey [52 logp(YIa):|’

T(0):: = —
(a)l] da;oa

(37
where p (Y|a) is the likelihood of a set of observations Y,
given the model parameter «.

Now consider the problem described in Section III. The
log-likelihood of a set of observation points Y is given by!

N M
log p (Y|a, t) = ZZlog/\/ (yij; AX' +t, Zi).
i=1 j=1

After straightforward manipulations, the Fisher information
matrix for each of the transformation parameters, a and t, is
given by

N M
T =-> > X'z 'x (38)
i=1 j=1
N M -
It =-> >z, (39)
i=1 j=1
This leads to the following Jeffreys’ priors
N M T
p@ o VIZ@l = ||[-D.> X' SiTIX =¢, (40)
\ i=1 j=1
N Mi
PO o VIZO = ||-D > 27 =q, (41)
\ i=1 j=1

which do not depend on the transformation parameters a and t.
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