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Abstract— The 3D segmentation of endocardium of the left
ventricle (LV) in cardiac MRI volumes is a challenging problem
due to the intrinsic properties of this image modality. Typically,
the object shape and position are estimated to fit the observed
features collected from the images. The difficulty inherent to
the LV segmentation in MRI is that the images contain outliers
(i.e., observations not belonging to the LV border) due to the
presence of other structures. This paper proposes a robust
approach based on the Active Shape Model (ASM) that is able
to circumvent the above problem. More specifically, the ASM
will be guided by probabilistic data association filtering (PDAF)
of strokes (i.e. line segments) computed in the neighborhood
of the shape model. Thus, the proposed approach, termed
herein as ASM-PDAF, will perform the following main steps: 1)
edge detection (low-level features) in the vicinity of the shape
model; 2) edge grouping (mid-level features) to obtain potential
LV strokes; and 3) filtering using a PDAF framework (high-
level features) to update the ASM. Experimental results on a
public cardiac MRI database show that the proposed approach
outperforms previous literature research.

I. INTRODUCTION

The 3D segmentation of the endocardium of the left
ventricle (LV) in cardiac MRI is a challenging problem [1]. A
popular approach relies on the use of a shape model, namely,
the Active Shape Model (ASM). This model is guided by im-
age observation (or feature) points, computed in each slice of
the MRI volume, in the attempt to provide a fairly good LV
segmentation. However, if the observations are not located
at the LV boundary (i.e., they are outliers), the ASM model
is not able to fit the true boundary, providing misleading
results. This paper proposes a robust ASM algorithm that
is able to deal with outliers, inspired in the probabilistic
data association filter (PDAF) [2]. This methodology has
proved to be competitive in several contexts, e.g., in lip and
vehicle tracking [3], LV tracking in ultrasound (US) images
[4], or other medical applications [5]. The advantage of the
proposed approach over these methods is the use of a shape
model guided by PDAF, instead of a generic deformable
model with no shape prior that may provide unpredictable
shape estimates.

The ASM-PDAF formulation is based on two key con-
cepts. First, it does not rely on single observation points
(low-level features). Instead, mid-level features (strokes) are
computed by grouping observation points into strokes. Sec-
ond, two labels (valid/invalid) are assigned for each stroke.
Since the stroke labels are unknown a priori, we have to
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consider all possible combinations of valid/invalid labels -
a termed as a data interpretation. A confidence degree is
assigned to each data interpretation, called data association
probabilities, that determines its influence in the estimation
of the segmentation, thus all the data interpretations con-
tribute to segmenting the LV with different weights. This
allows for a robust segmentation when the image contains
outliers.

Previous methods have been proposed to deal with out-
liers, e.g., by using random sampling methods [6], or ap-
plying the Robust Point Matching algorithm [7]. Similar to
our work, a recently new method was proposed in [8], based
on the Expectation-Maximization algorithm, which assumes
that each observation point may be an outlier. Although this
approach shows improvements in the segmentation accuracy
over the previous methods, it does not take advantage of all
the information available about the points extracted from the
volume slices. The method proposed in this paper addresses
the segmentation in a similar way to [8], but explores a
different approach to define the observation model that is
based on PDAF.

II. ROBUST ACTIVE SHAPE MODEL

The Active Shape Model (ASM) method is based on the
assumption that the shape of an object can be learned from
a dataset of labeled volumes. Therefore, the segmentation of
a test volume can be defined by the mean shape and a linear
combination of the main modes of deformation contained
in the dataset. In the LV segmentation problem, the MRI
volumes are characterized by having a low resolution along
the third dimension and with a variable number of slices.
Consequently, it is not easy to learn a 3D shape model. We
use the approach proposed in [9] to define the 3D shape
model as a function of the slice position and to learn the
mean shape and the main modes of deformation.

Let x(sm) ∈ R2N×1 be the model at the m-th slice,
defined by N points. The position of the i-th model point is
given by

xi(sm) = A(xi(sm) +Di(sm)b(sm)) + t, (1)

where xi(sm) is the i-th point in the mean shape, Di(sm)
is a 2×K matrix with the K main modes of deformation of
the i-th model point, b(sm) is a vector with the deformation
coefficients, and

A =

[
a1 −a2
a2 a1

]
, t =

[
t1

t2

]
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Fig. 1. Extraction of strokes from a volume slice, in this particular case the second slice s2 is considered. (Left) detection of edge points (in white) along
lines (in yellow) orthogonal to the contour model (in red); (middle) edge points linked to form strokes (each having a different color); (right) zoom in of
the 7th stroke (yellow).

are parameters of a global transformation that scales, rotates
and translates the shape model.

Given a test volume, the segmentation of the LV is ob-
tained by determining the global transformation parameters,
θ = {a, t}, and deformation coefficients, b(sm), such that
x(sm) fits the LV border in all slices, m = 1, . . . , S.
Consequently, the first step of the segmentation is to locate
LV border in the volume slices. Several approaches may be
used for this purpose. In this work, we will assume that
the LV border is located along edges on the volume slices.
Thus, for each slice, we perform the edge detection method
described in [10], which consists of detecting edge points
along search lines orthogonal to the contour model (see Fig.
1 left). Then, we group the edge points to form strokes (see
Fig. 1 middle). Unfortunately, some of the detected strokes
are outliers (i.e., they do not belong to the LV border) and
should not be taken into account when computing the model
parameters. This means that segmentation method must be
able to simultaneously estimate the segmentation and identify
which strokes are reliable. The proposed formulation is able
to tackle these two challenges, as will be detailed in the
following sections.

A. Observation Model
Suppose that an initial guess for the location of the LV

border is available, i.e., the model parameters at t = 0,
Θ(t0) = {a, t, b(s1), . . . , b(sm)}(t0), are known.

The observation model is based on strokes, obtained using
the Mutual Favorite Paring algorithm [11], which groups
edge points into line segments based on a distance criterion.
An example is shown in Fig. 1 (left to middle), where, from
a set of 40 edge points (left), nine strokes are formed (right),
significantly reducing the complexity of the observation
model.

Formally, for a particular slice s, let Y (s) =
{Y 1(s), . . . ,Y L(s)} denote a set of L strokes, where

Y i(s) =
[
yi1(s)>, . . . ,yiMi

(s)>
]>
∈ R2Mi×1 is the i-

th stroke, and yij(s) is the j-th edge point in that stroke.

Also, let Xi(s) =
[
xi1(s)>, . . . ,xiMi

(s)>
]

be the model
associated to stroke Y i(s), such that yij(s) is detected along
a search line passing through, xij(s) (see Fig. 1 right).
The goal of the segmentation algorithm is to fit the shape
model to the valid strokes, i.e., to the strokes located on
the LV border. Finally, let Ii(s) = {0, 1} be a binary
label assigned to the i-th stroke Y i(s) at slice s, where
Ii(s) = 1 means it is valid, and Ii(s) = 0 means it is
invalid (outlier). We do not know which strokes are valid,
i.e., the labels I1(s), . . . , IL(s) are unknown. Consequently,
a total of 2L possible combinations of valid/invalid strokes
(henceforth denote as data interpretations) have to be taken
into consideration. However, not all the strokes can be
simultaneously considered as valid. If two strokes, say Y 1(s)
and Y 2(s), overlap with respect to the shape model, the
data interpretations considering I1(s) = I2(s) = 1 have
to be disregarded, because they cannot be both located at
the LV border. For instance, in Fig. 1 right, the yellow
and green strokes cannot be simultaneously considered valid.
This reduces the number of possible data interpretations.

The LV border is given by a particular interpretation, say
I?(s) = {I1?(s), . . . , IL

?
(s)}. We define the probability of

Y (s) as

p (Y (s) | Θ, I?(s)) =
L∏

i=1

[
Ii

?
(s) 1− Ii?(s)

] [N (Y i(s);Xi(s),Σi(s)
)

U(VXi(s))

]
,

(2)

where N (·;µ,Σ) is a Gaussian distribution with mean µ and
covariance Σ, and U(VCi(s)x(s)) is a uniform distribution in
the vicinity of Xi(s). This means that the valid strokes are
generated by adding a Gaussian perturbation to the LV bor-
der, and that the outliers are generated with equal probability
within a validation gate (i.e. the length of the orthogonal
lines) around the LV border. However, we do not know
I?(s), which means we have to simultaneously determine
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Fig. 2. Example of data interpretations on a particular slice of the MRI volume: (left) the detected strokes, each with a different color (the white line
corresponds to the current model estimate), and each of the following images show the most likely interpretations (higher probability, wk(sm)).

the model parameters and the interpretation I?(s). In this
work, this is achieved using the Expectation-Maximization
(EM) algorithm [12] that we detail next.

B. Expectation-Maximization

Let Y = {Y (s1), . . . ,Y (sS)} be the set of strokes
detected in all the slices in the volume. Also, let I =
{I(s1), . . . , I(sS)} be the corresponding interpretations. Ide-
ally, the model parameters would be estimated by solving the
following problem

arg max
Θ,I
P (Y , I,Θ) , (3)

where P (Y , I,Θ) is the log-posterior probability, which is
defined by

P (Y , I,Θ) =

S∑
m=1

log p (Y (sm),Θ, I(sm)) , (4)

assuming that the label combinations for each volume slice
are statistically independent. The problem formulated in (4)
is infeasible, because it involves a marginalization over a
large number of possible interpretations. The EM algorithm
allows the computation of a suboptimal solution to this
problem, in which the labels, I1(sm), . . . , IL(sm), m =
1, . . . , S, are hidden variables of the model (i.e., they are
not observed).

The EM algorithm finds the model parameters by iterating
between two steps: 1) the E-step, in which the expectation
of P(Y , I,Θ) is computed; and 2) the M-step, in which the
model parameters are updated by maximizing the expectation
obtained in the E-step. These steps are explained below.

1) E-step: Let Θ̂(t) denote the current estimate of the
model parameters, for iteration t, where Θ̂(0) is the initial
guess for these parameters. At each iteration, a new set of
strokes, Y , is extracted from the volume. We define the
auxiliary function

Q
(
Θ; Θ̂(t)

)
= EI

[
P(Y , I,Θ)

∣∣∣Y , Θ̂(t)

]
, (5)

where EI [·] denotes the expectation over all possible com-
binations of labels, i.e. the data interpretations. This leads

to

Q
(
Θ; Θ̂(t)

)
=

S∑
m=1

∑
k

wk(sm) log p (Y (sm),Θ, Ik(sm)) ,

(6)
where, for each slice m, Ik(sm) =

[
I1k(sm), . . . , ILk (sm)

]
is

the k-th possible interpretation, wk(sm) is the probability of
Ik(sm), given by

wk(sm) = p
(
Ik(sm)

∣∣∣Y (sm), Θ̂(t)

)
∝ p

(
Y (sm)

∣∣∣Θ̂(t), Ik(sm)
)
p
(
Ik(sm)

∣∣∣Θ̂(t)

)
,(7)

such that
∑
k

wIk(s) = 1, and

p (Y (sm),Θ, Ik(sm)) =

p (Y (sm)|Θ, Ik(sm)) p (Ik(sm)|Θ) p(Θ). (8)

The first term in (8) is given by (2) and p(Θ) is a prior
on the model parameters. In this work, we assume that
all the interpretations are equally probable a priori, i.e.,
p (Ik(sm)|Θ) is a constant. Figure 2 shows an example
slice, depicting the detected strokes (left) and the three
interpretations with higher probability.

2) M-step: In this step, the model parameters are updated
by solving the following optimization problem

Θ̂(t+1) = arg max
Θ

Q
(
Θ; Θ̂(t)

)
. (9)

We simplify this step by maximizing first with respect
to the transformation parameters, a, t, and only then for
b(s1), . . . , b(sS). The update equations are obtained by
straightforward derivatives operations, similar to ones in [8].

The method described above will be denoted as Active
Shape Model with Probabilistic Data Association Filtering
(ASM-PDAF).

III. RESULTS

The proposed method was evaluated on a public cardiac
MRI dataset [13], which contains 33 sequences of healthy
and diseased patients. Each sequence has 20 volumes at
different phases covering one complete cardiac cycle. The
volumes have a variable number of slices, ranging from 8-
15, and the spacing between slices range from 6 to 13 mm.
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Each volume slice is an image with 256×256 pixels and with
a resolution of 0.93−1.64 mm. The dataset also provides a
manual segmentation of the LV that will be used as ground
truth.

The shape model was learned using a leave-one-sequence-
out scheme, which means that in order to segment the
volumes of one particular sequence, the shape model was
learned using all the remaining 32 sequences. The segmen-
tations were evaluated using the Dice coefficient [14], dDice,
and the average minimum distance between the segmentation
and the ground truth, dAV.

The shape model was initialized using b(0)(sm) = 0,
m = 1, . . . , S and a(0) = [1 0]>, i.e., using the mean shape
(undeformed) with no scaling and no rotation. The translation
parameters, t(0), were obtained by manually providing a
point in the center of the LV. Figure 3 shows examples of
the obtained segmentations.

In order to show the benefits of the proposed approach,
the results were compared with a previous approach, called
EM-RASM [8], that considers individual edge points as
observation points. Statistical results are shown in Table III
for this method and for ASM-PDAF. It is possible to see that
the proposed method outperforms the previous one.

TABLE I
COMPARISON OF THE RESULTS WITH A PREVIOUS METHOD.

EM-RASM [8] ASM-PDAF
dDice 78.9 (21.4) 81.1 (15.9)
dAV 2.05 (2.56) 1.6 (1.5)

IV. CONCLUSIONS

This paper proposes a robust approach to determine the
parameters of a shape model based on the Active Shape
Model (ASM) and the probabilistic data association filter
(PDAF) for segmenting the LV, called ASM-PDAF. The
method relies on strokes extracted from the volume slices, by
performing: 1) an edge detection step (low-level features) in
the vicinity of the shape model; and 2) an edge grouping
step (mid-level features) to obtain potential LV strokes.
Then, these strokes are filtered by using a PDAF framework
(high-level features). The results show that the proposed
approach outperforms a previous state-of-the-art approach
(EM-RASM).
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