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Manifold Learning for Object Tracking With
Multiple Nonlinear Models

Jacinto C. Nascimento, Member, IEEE, Jorge G. Silva, Jorge S. Marques, and João M. Lemos

Abstract— This paper presents a novel manifold learning
algorithm for high-dimensional data sets. The scope of the
application focuses on the problem of motion tracking in video
sequences. The framework presented is twofold. First, it is
assumed that the samples are time ordered, providing valuable
information that is not presented in the current methodolo-
gies. Second, the manifold topology comprises multiple charts,
which contrasts to the most current methods that assume one
single chart, being overly restrictive. The proposed algorithm,
Gaussian process multiple local models (GP–MLM), can deal
with arbitrary manifold topology by decomposing the manifold
into multiple local models that are probabilistic combined using
Gaussian process regression. In addition, the paper presents a
multiple filter architecture where standard filtering techniques
are integrated within the GP–MLM. The proposed approach
exhibits comparable performance of state-of-the-art trackers,
namely multiple model data association and deep belief networks,
and compares favorably with Gaussian process latent variable
models. Extensive experiments are presented using real video
data, including a publicly available database of lip sequences
and left ventricle ultrasound images, in which the GP–MLM
achieves state of the art results.

Index Terms— Manifold learning, multiple dynamics, tangent
bundle, tracking.

I. INTRODUCTION

THE proliferation of very large sets of high-dimensional
data poses an increasing challenge in terms of both

computational complexity and of generalization ability of
automated learning procedures. There is a need for algorithms
capable of reducing the data dimensionality while preserv-
ing relevant information. The scope of application is vast,
e.g. in computer vision, scene reconstruction from multiple
views [1] and modeling dynamic textures in natural images
[2]; computer graphics, surface reconstruction from 3D point
clouds [3]; multimedia, image retrieval and browsing [4];
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bioinformatics, discovering patterns in gene expression data
[5], [6].

This paper proposes a new algorithm - GP–MLM, applied
to the problem of motion tracking in video sequences. The
emphasis in motion tracking means that, unlike most manifold
learning methods, the observations are assumed to be time-
ordered. The proposed methodology addresses the problem
of estimating unknown dynamics on an unknown manifold,
from noisy observations. As a particular case, it can also be
used for the more narrow purpose of manifold learning without
dynamics.

This leads to the simultaneous estimation of a nonlinear
observation model and a nonlinear dynamical system - a
nonlinear system identification type of problem, which has
received some attention [2], [7], [8], but seldom in the context
of manifolds, with a few recent exceptions [9]. While this
problem is ill-posed (see e.g. [2]), it can be advantageous to
exploit information that is common to both subproblems: the
velocity vectors. Moreover, purely from a manifold learning
point of view, GP–MLM addresses some limitations of exist-
ing methods, namely: (i) it is not limited to a simple coordinate
chart - it can deal with arbitrary manifold topology through
multiple local models; (ii) it provides a computationally effi-
cient way to partition the manifold into multiple regions and
compute the corresponding local parameterizations; (iii) it
offers a principled way of combining the estimates from the
multiple local models by using Gaussian process regression to
compute the corresponding likelihoods.

The paper is organized as follows: Section II defines
the problem formulation. Section III reviews relevant prior
work. Section IV describes GP-MLM in the static case,
including: estimation of intrinsic dimensionality and tangent
subspaces, using local geometric and velocity information;
soft partitioning of the manifold into patches; and a non-
parametric, sparse and nonlinear regression procedure learn-
ing the charts. Section V extends GP-MLM to the dynam-
ical case, presenting methods for system identification and
establishing a multiple filter bank architecture for state esti-
mation that integrates geometry and dynamics. Experimen-
tal results are presented in Section VI, including synthetic
examples and extended number of real video sequences. It
is shown that our method can retrieve the contours pro-
vided by established trackers such as the MMDA (Multiple
Model Data Association) [10] and by the DBN (Deep Belief
Network) [11], [12], which are used as ground truth, and
compares favorably with other manifold methods such as
GPLVM [13], [14].
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A shorter version of this work appears in [15], but in this
paper we provide a more comprehensive literature review,
explanations, and a much extended experimental evaluation.

II. PROBLEM STATEMENT

The GP-MLM is based on the tangent bundle concept.
The Tangent bundle [16] of an n-dimensional manifold M is
another manifold, T (M), whose intrinsic dimension is 2n
and whose members are the points of M and their tangent
vectors. That is:

T (M) = {
(y, v) : y ∈ M, v ∈ Ty(M)

}
(1)

where Ty(M) is the tangent space of M at y. It is readily
apparent that Ty(M) is the set of possible velocity vectors
of trajectories in M through y. Therefore, any dynamic
system defined in M must induce trajectories where both the
velocities and their points of application belong to T (M). Any
particular function f(y) = v, which given a point of application
y provides a velocity vector v ∈ Ty(M), is called a section
of T (M). Another, better known designation is vector field.

Now, let y0:T −1 ≡ {yt , t = 0, . . . , T − 1}, with discrete
t and yt ∈ R

m , be a discrete, vector-valued time series,
henceforth called a trajectory, eventually obtained by sampling
a continuous process. Let Y ≡ {y0:Tl−1, l = 1, . . . , L} be a set
of L trajectories. It is assumed that, apart from observation
noise, the trajectories in Y lie close to an unknown manifold
M of intrinsic dimension n (also unknown) embedded in R

m ,
with n < m. Therefore, one or more lower dimensional repre-
sentations Xi of the original set Y can be found, where each
Xi ≡ {x0:Tl−1,i , l = 1, . . . , L} represents all the trajectories in
i -local coordinates, with xt,i ∈ R

n . Being assumed compact,
M can be charted by an atlas with p charts, where p is
unknown, and each Xi corresponds to one of the charts.

The goal is to estimate M and identify the dynamics in the
lower dimensional coordinates given by the charts of M. It
is assumed that the trajectories are generated by one or more
discrete state space models of the form:

xt,i = fi (xt−1,i) + ωt,i (2)

yt,i = hi (xt,i) + νt,i (3)

where ωt,i and ν t,i are random variables with unknown
distributions. Here, hi is the i th parametrization being used
around yt , that therefore can be obtained as the inverse of the
appropriate chart gi found in the manifold learning step, and
fi is a vector field that defines the dynamics. Note that, in
the limit as the sampling frequency increases, fi (gi (y)) must
belong to the tangent space of M at y, Ty(M), while xi

must belong to the parametric domain of hi and, as such,
xi ∈ R

n . Note also that, due to observation noise and model
uncertainty, the observations will not, in general, lie exactly on
the manifold. In summary, the problem can be formulated as:

• Given Y , find an approximation of T (M) or, more
precisely, find the intrinsic dimension n, build a partition
into p patches (p must also be estimated), estimate
the p charts gi and their domains Pi , obtain the lower
dimensional trajectories Xi ;

Fig. 1. Manifold M associated with a collection of one-to-one continuous
invertible functions gi : Pi → Ui (the charts) where Pi ⊂ M are the patches.

• Given Y and the estimate of T (M), estimate dynamical
functions fi ;

• Given a new observation y, and assuming each patch
Pi is defined by parameters θ i , estimate the conditional
probabilities P(θ i |y) so that the local models can be
combined through a partition of unity.

If this can be done, then the geometrical and dynamical infor-
mation are captured and most of the stated objectives can be
satisfied. Of course, this is an ill-posed problem. Assumptions
such as the smoothness of f and g, the reconstructibility
of the state x from the observations and restrictions to the
distributions of ω and/or ν must be considered in order to
make the problem tractable Fig. 1 shows an illustration.

III. PRIOR WORK

A. Spectral and Probabilistic Methods—Relationship
With Kernels

Several manifold learning algorithms have emerged in
recent years, mainly concerned with nonlinear dimension-
ality reduction, which is closely related to the problem of
feature extraction [17]. Other work in the field includes,
on one hand, probabilistic methods such as the Generative
Topographic Mapping (GTM) [18], Gaussian process related
algorithms, such as Gaussian Process Latent Variable Models
(GP-LVM) [13], [14] and Gaussian Process Dynamical Models
(GPDM) [7]; on the other hand, graph spectral methods such
as ISOMAP [19], Locally Linear Embedding (LLE) [20],
Laplacian [21] and Hessian Eigenmaps [22], as well as
Semi-Definite Embedding [23]–[25].

Spectral methods are closely related to spectral cluster-
ing [26], which is a technique for clustering and graph
partitioning. The name “spectral” stems from the fact that
these methods compute the eigen-spectrum (eigenvalues and
corresponding orthonormal basis of eigenvectors) of an appro-
priately constructed square matrix of either similarities of
dissimilarities between all training points. This matrix is, in
turn, obtained from a graph over the data samples. The details
of constructing the graph and, subsequently, the (dis)similarity
matrix depend on the specific algorithm. Typically, and
depending on the method, either the top or the bottom
eigenvectors give the new coordinates of the training points
in low dimensional space. ISOMAP, LLE, Laplacian/Hessian
Eigenmaps and SDE are spectral methods.
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Probabilistic methods, on the other hand, focus on opti-
mizing quantities, such as marginal likelihoods, that depend
on probability density functions of the data, Y given the
low dimensional representations, X and the mapping between
them, which usually depends on parameters θ . Examples
include GTM and GPLVM. Within this framework, it is
possible to start from the density p(Y|X , θ) and do one of two
things: integrating out X and optimizing p(Y|θ) as a function
of θ , like GTM, or integrating out θ and optimizing p(Y|X )
with respect to X , which is done in GP-LVM.

An alternative classification of existing algorithms as either
local or global is also possible, as in [27]. Global methods
attempt to parameterize the manifold in a way that preserves
distances (measured on the manifold) between all points,
nearby or faraway. The definition of “nearby” and “faraway”
varies from one specific algorithm to another. For example,
ISOMAP is a global method. On the other hand, some other
methods, such as LLE, focus mostly on preserving the dis-
tances between nearby points - these are local methods. Such
algorithms rely on the divide-and-conquer approach, turning
one difficult problem into many easier ones. It is, however,
more common to adopt the spectral/probabilistic division.

One common trend to both types of methods is that they
can be thought of as kernel methods. Spectral algorithms
construct symmetrical similarity/dissimilarity matrices that
can be transformed into kernels, while probabilistic methods
(namely those based on Gaussian processes) assume a priori
covariance matrices, that are valid Mercer kernels. In other
words, spectral methods can be used to learn kernel matrices,
that can then be used either for performing kernel PCA
(KPCA) [28], as previously noted in [28], or else as covariance
matrices by probabilistic methods, e.g. Gaussian processes,
often with better results than, e.g., the standard Gaussian
kernel. A thorough reinterpretation of graph spectral methods
as kernel PCA can be found in [29].

B. Charting and Topology

Most existing manifold learning methods assume that the
manifold can be modeled using a single coordinate patch, i.e.
only one mapping Y −→ X , an assumption that fails for man-
ifolds with topologies as simple as a sphere, that must be cov-
ered by more than one chart, i.e. an atlas. Furthermore, graph
spectral methods usually do not provide a continuous descrip-
tion - they yield a point-to-point correspondence between
observations in high dimensional space and their lower dimen-
sional representations, which means that additional processing
is required if one intends to perform an out-of-sample exten-
sion. Only a few methods attempt to deal with multiple charts.
In [9], [30], and [31], the manifold is modeled as a mixture
of local linear hyperplanes (i.e., factor analyzers), while we
use instead a mixture of nonlinear GP regressors. In [32], a
mapping from high-dimensional observations to latent states
is estimated, but not the inverse. In [33], a manifold tracking
method is used for learning nonlinear motion manifolds in
the recovery of 3D body pose, although it does not address the
case when significant dynamics changes are observed in the
video sequence (i.e., multiple dynamics). Other methods that,
like ours, are based on Gaussian Processes include [7], [34].

However, [7] assumes one single chart and a priori fixed latent
dimensionality, while [34] encourages certain topologies in a
top-down manner, based on prior knowledge. In summary, our
proposed method explicitly utilizes the manifold assumption,
avoids the need to perform alignment of multiple local
coordinate systems and maintains topological flexibility.

Regarding estimation of the number p of local models,
in [30] multiple linear hyperplanes are combined – one for
each observation, which can be problematic. A more parsi-
monious model, based on a Gaussian mixture model learned
through Expectation–Maximization (EM), is proposed in [35],
where the number of charts is estimated and an asymptotic
analysis is also presented for the Gaussian mixture case.
More recently, [31] uses a Dirichlet process model in order
to nonparametrically learn the number of components in a
mixture of linear factor analyzers. We use a soft-clustering
procedure that employs subspace angles [36] as an intra-
cluster similarity criterion.

C. Intrinsic Dimension

Estimating the intrinsic dimension n remains a challenge.
On one hand, it is an inherently local problem, in the sense
that one should attempt to find n such that R

n is a good
approximation of the data in a neighborhood of each y. On
the other hand, a global consensus must be found regarding
the value of n. Due to noise, irregular sampling and border
effects, local estimates may be wrong. The most common
method [37], [38] for estimating n is based on local PCA,
relying on a threshold to select significant eigenvalues λi of
the local covariance matrix

Sy j = 1

|By j ,ε | − 1

∑

yk∈By j ,ε

(yk − μBy j ,ε
)(yk − μBy j ,ε

)T , (4)

in an ε-radius neighborhood By j ,ε around y j . The mean of the
neighborhood is μBy j ,ε

, which does not necessarily coincide
with y j , since this may be noisy. The cardinality |By j ,ε | is
the number of points in the neighborhood. The number of
significant λi is an estimate of n. Naturally, the unknown scale
parameter ε strongly influences the method. Indeed, this is the
case with all currently available intrinsic dimension estimation
procedures.

Other algorithms are based on different approaches, such
as vector quantization, maximum likelihood under a Poisson
model, finding the correlation dimension or the ratio of growth
of the number of nearest neighbors versus the neighborhood
size (see [39], [40] and the references therein). With either
type of algorithms, for high levels of noise, and particularly
for a high (> 5 − 6) intrinsic dimensionality, it is unlikely
that the estimate will be very accurate or stable. For example,
applying the eigenvalue algorithm described in [37] to gene
expression data [6], the estimated intrinsic dimensionality
varies in the interval 15-25, which indicates high variance.
Bias is also a problem with most methods, as pointed out
in [40]. Hence, dimensionality estimation continues to be a
challenging problem, although some promising advances have
recently been made using multiscale approaches [41].
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D. Landmark Selection

The complexity of most manifold learning algorithms is, in
general, dependent not only on the dimensionality but also on
the number of observations, N . An important example is the
ISOMAP, where the computational cost is O(N2), which has
motivated the L-ISOMAP variant [27] that uses a randomly
chosen subset of the points as landmarks (L is for Landmark).
Besides the issue of complexity, sparse models also tend
to have better generalization capability. Therefore, it can be
advantageous to employ sparse regression techniques when
estimating the charts.

E. The Dynamical Case

Manifold learning for the dynamical case has not yet
received much attention, although some related work does
exist, namely [8], that presents an EM algorithm for simultane-
ous estimation of the hidden states and the unknown dynamics,
based on an Extended Kalman Filtering (EKF) formulation
and Radial Basis Function (RBF) fitting. The problem is not,
however, formulated in terms of manifolds, and no consider-
ation is given to issues of dimensionality reduction. A similar
approach, related to the problem of modeling dynamical tex-
tures in Computer Vision, is given in [2]. Here, a linear autore-
gressive dynamical model is used in low-dimensional space,
after performing dimensionality reduction. The hidden states
and the parameters of the AR model are estimated, once again,
using EM. The differences to [8] are: (i) dimensionality reduc-
tion is explicitly considered, albeit limited to standard tech-
niques such as PCA and wavelet decomposition - the problem
is also not formulated in terms of manifold learning; (ii) more
stringent conditions are imposed on the dynamics, which are
not only restricted to be linear but also to follow a controllable
canonical form. The only way that nonlinear systems can be
handled by this technique is through unloading any nonlin-
earity to the dimensionality reduction step. For the purpose
of modeling dynamical textures, this still yields good results,
since it is shown that the probability density of the state per-
turbation is more critical for realistic results than the dynamic
update function itself. It is also shown that this density should
be non-Gaussian. An exponential family is used in this case.

In control literature, [42] have proposed a procedure
designed for hybrid systems, using a piecewise ARX (AutoRe-
gressive with eXogenous inputs) model formulation. For each
region of the input space, an ARX model must be estimated.
Estimation of the unknown discrete subsystem evolution is
cast as a classification problem, for which a Bayesian-inspired
algorithm is proposed. The relevant probability density func-
tions are approximated by using particle filtering. However, the
number of regions is assumed known. A hard partitioning is
used, assuming linear separability of the regions (although by
using a weighing function the case of non-linearly separable
regions is addressed). Also, like [2], within each region
the ARX formulation is linear. Dimensionality reduction is
not considered. Nevertheless, there are interesting parallels
between a trajectory crossing multiple patches of a manifold
and a system switching between multiple modes in a hybrid
system formulation.

Fig. 2. Using robust estimation to improve the tangent subspaces. Left to
right: noisy spiral data; least squares estimates; RANSAC estimates.

IV. GP-MLM ALGORITHM

A. Intrinsic Dimension

In the spirit of [37], GP-MLM addresses the problem
of dimensionality estimation by automatically finding the
“knee” of the eigenvalues λ1, . . . , λm using local PCA, but
in GP-MLM this is done for all ε-local neighborhoods By j ,ε

around each data point y j . For each neighborhood, the eigen-
value immediately before the greatest drop in value should
correspond to the intrinsic dimension, estimated by n̂ j ≡
arg maxi=1,...,m−1 |λi+1 − λi |. The global estimate is

n̂ = median j=1,...,N (̂n j ). (5)

The median – which is more robust than the mean – for all
eigenvalue plots is therefore used as the estimate of n. The
advantage of this approach is that it takes advantage of the
potentially large number of local PCA neighborhoods.

Temporal information is also used to improve the estimates
of the tangent subspaces. It is possible to use the first differ-
ences

�yt = yt − yt−1, (6)

together with the observations yt for performing local PCA,
by augmenting By j ,ε with μBy j ,ε

+�yk, for k = 1, . . . , |By j ,ε |,
with the neighborhood centers μBy j ,ε

given by the sample
means

μBy j ,ε
= 1

|By j ,ε |
∑

yk∈By j ,ε

yk . (7)

Note that the velocities (of which the �yt are rough estimates),
applied at the neighborhood centers, must live on the corre-
sponding tangent subspaces. This leads to an effective increase
in the number of available points at each neighborhood, from
|By j ,ε | points to 2|By j ,ε | (or 2|By j ,ε | − 1 if either the first or
last �yt can not be computed).

The quality of the tangent subspace estimates is crucial to
the success of GP-MLM. One of the main factors affecting the
reliability of the tangent subspaces, in the presence of noise,
is the neighborhood size. A too small radius will lead to poor
tangent subspace estimates due to an insufficient amount of
points, while a too large radius will, on the other hand, lead
to the inclusion of points from different folds, due to curvature.
To gain some tolerance to this effect, it is possible to use a
robust statistics approach. In Fig. 2, an example involving a
1D spiral embedded in R

2 is shown. The noise standard
deviation is σ = 0.1 and the neighborhood size is set to
k = 60, i.e. the 60 nearest neighbors are used. With unmodified
least squares, near the outer arm of the spiral, it can be seen
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that the tangent subspaces are affected by points from the
inner fold. On the other hand, with robust estimation – in
this case the RANSAC algorithm [43] – this phenomenon dis-
appears. Other possible robust algorithms include MINPRAN
or NAPSAC [44].

B. Charts

A manifold with arbitrary topology requires, in general,
more than one chart, i.e. an atlas. At this stage, an estimate
n̂ of the intrinsic dimension is available. The tangent bundle
TM can, if approximated by some finite set of n̂-dimensional
tangent linear hyperplanes, form a convenient collection of
local parametric domains upon which to map the manifold
points. This section describes how to partition M into overlap-
ping patches P1, . . . ,Pp; how to find p corresponding tangent
hyperplanes; and how to estimate mappings back and forth
between the patches and the hyperplanes. First, it is important
to find a partition that facilitates subsequent estimation of the
mappings. For that, it would be convenient if a simple projec-
tion operation could allow a one-to-one mapping between each
hyperplane and the corresponding manifold patch. Fortunately,
this can be ensured by controlling the curvature within each
region for which purpose the concept of principal angles is
used. The q principal angles between subspaces spanned by
the columns u and v of some generic matrices A and B,
respectively, are defined, as in [36], by

cos θk = |ukAT Bvk |
‖Auk‖‖Bvk‖ (8)

with k = 1, . . . , q = dim(A) = dim(B) and, for k > 1,
subject to recursively defined constraints for uk and vk , the
k-th columns of A and B:

uT
i AT Av = vT

i BT Bvk (9)

for i = 1, 2, . . . , k −1. For the manifold partitioning problem,
the matrices A and B correspond to the matrices Vi and V j of
column eigenvectors found by local PCA on neighborhoods i
and j . The intended one-to-one behavior can be achieved by
not allowing the maximum principal angle between tangent
subspaces (obtained according to the procedure in IV-A) to
vary more than a set threshold τ . The exact value of τ is not
critical, as long as it is below π

2 . An efficient algorithm for
the computation of the principal angles, that also circumvents
numerical problems for small angles, is given in [36]. The
maximum of θk is used as GP-MLM’s intra-patch similarity
measure.

Patches are found by an agglomerative soft clustering proce-
dure, i.e. region growing. Each patch grows by appending all
neighboring (within an ε radius) points where the normal sub-
space does not deviate, in maximum principal angle, more than
a set threshold from the tangent subspace at the initial seed.
Any specific data point may belong to more than one patch.
The pseudo-code in Algorithm 1 illustrates the procedure.

The final result is a covering of M by a finite number,
p, of overlapping patches. Within each patch, the tangent
subspaces do not deviate more than τ from the tangent
subspace at the seed, and the distance test ensures that each
patch is a connected set. Subsequently, we find the best fitting

Algorithm 1 Region Growing

hyperplane for each patch using PCA, providing local coordi-
nate systems for different manifold regions. The best hyper-
plane for the entire patch, in a least squares sense, is spanned
by the n largest eigenvectors returned by patch-wide PCA,
where n is estimated by the procedure in IV-A. Each patch
is thus associated to an hyperplane, and the collection of
hyperplanes approximates the tangent bundle. Thus, PCA must
be performed twice: first with local scope, in tight neighbor-
hoods Bx,ε around each point, so that the principal angles
can be controlled within the patch during the partitioning
procedure; and second, for all patch members, in order to
find an overall hyperplane for charting and the corresponding
coordinate system. If SPi is the covariance of the points in
Pi , i.e.

SPi = 1

|Pi | − 1

∑

yk∈Pi

(yk − μPi
)(yk − μPi

)T , (10)

then, by performing the eigendecomposition

SPi = VPi DPi V
T
Pi

, (11)

where VPi is the matrix whose columns are the eigenvectors
of SPi and DPi = diag(λ1, . . . , λm), an orthonormal basis
is found in the columns of VPi . Note that the patch mean
μPi

does not, in general, coincide with the patch seed. The
added computational burden of patch-wide PCA is negligible,
compared to that of local PCA.

An important remark is that GP-MLM does not guarantee
that the number of patches is minimal - in fact, the followed
approach usually leads to an overestimation of the number
of patches needed to cover a manifold. On the other hand,
it should also be noted that, since the principal angles only
need to be computed between the data and the seeds, and not
between all pairs of data points, the overall complexity of the
partitioning algorithm is not quadratic in N , but rather it is
O(N p).

C. Gaussian Process Regression

Using the coordinate systems found above, and since there
are no folds in any patch (thanks to the angular restriction),
the regression problem associated with the charts is signifi-
cantly simplified. From the previously obtained partition of
the dataset into patches Pi , with i = 1, . . . , p, it is now
intended to estimate the charts gi (y). Let a particular training
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point y, belonging to patch Pi , be denoted y = [y1 . . . ym]T ,
where y j , j = 1, . . . , m refers to the j th coordinate. Recall
that a matrix VPi of eigenvectors and a mean vector μPi

are available. Projecting y onto the subspace spanned by
VPi yields the i th local representation xi . This can be done
according to

x̃i = VT
Pi

(y − μPi
) (12)

in which the intermediate quantity x̃i simply corresponds to
y in a new coordinate system with origin at μPi

and versors
given by the columns of VPi ; the following step is

xi = [x̃i,1 . . . x̃i,n ]T = gi (y) (13)

where xi denotes a truncated version of x̃i using only the first
n components. This is the chart. The inverse mapping, that is,
the parameterization hi (xi ) follows the expression

hi (xi) = VPi

[
x1 . . . xn h̃i (xi )

]� + μi (14)

in which h̃i must be estimated. The remaining m − n com-
ponents of x̃i could have been set to zero, which would yield
a piecewise linear approximation of M. Since, however, they
are approximated by h̃i (xi ), the curvature, and thus the non-
linear character of the manifold, is preserved. In the i th local
coordinates, the parameterization is

xi → [xi h̃i (xi )]T . (15)

It is now necessary to estimate h̃. Among the large variety
of existing nonlinear regression techniques, Gaussian process
regression offers the feature of allowing the analytical compu-
tation of posterior probability densities in data space. For a par-
ticular m − n-dimensional vector x̃i , consider an independent
Gaussian process for each scalar component x̃ j , dropping the
j subscript of the j th coordinate for conciseness – the exposi-
tion will proceed, without loss of generality, as if m − n = 1.
The regression problem is that of estimating functions h̃i in
the model

x̃ (m)
k,i ≈ h̃i (xk,i ), (16)

where k = 1, . . . , |Pi |. It is assumed that h̃i admits a Gaussian
process prior [45]

h̃i ∼ GP(0, k(·, ·)) (17)

with mean function zero and covariance function k(·, ·).
When conditioned on the data z̃ = {x̃ (m)

k,i }k=1:|Pi | and
X = {xk,i }k=1:|Pi |, the posterior for h̃i is

p(h̃i (xk,i )|z, X) = N (K(xk,i , X)K(X, X)−1z,

K(xk,i , xk,i ) − K(xk,i , X)K(X, X)−1K(X, xk,i)). (18)

Note that z is a vector of size |Pi |, X is a matrix of size
n ×|Pi | and K (A, B) denotes the matrix resulting from evalu-
ating the covariance function k(·, ·) between rows of A and B.

For the covariance function k(·, ·), we choose the Gaussian
radial basis function (RBF) defined by

k(xk, xl) = θ1 exp(− 1

2θ2
‖xk − xl‖2) + δklθ3 (19)

Fig. 3. Left: points on a Möbius strip. Right: patch seeds (red circles) and
charts (grey surfaces). GP-MLM can handle non-orientable manifolds.

and optimize the hyperparameters θ = (θ1, θ2, θ3) by maxi-
mizing the marginal likelihood, as proposed in [45].

As an example of the results from partitioning and regres-
sion see Fig. 3, which shows a Möbius strip, a non-orientable
manifold, i.e., a manifold where there is no uniquely defined
normal vector field. This fact poses no problem to GP-MLM.

D. Conditional Densities from Gaussian Process Regression

An important issue that must be faced is that of estimating
the conditional densities from Gaussian process regression.
Since the latent variable is x ∈ R

n and the function being
estimated is h̃(x) ∈ R

m−n , it can be seen that the pairs for
regression in GP-MLM are not (x, y), but rather (x, h̃(x)). In
consequence, the conditional density returned from Gaussian
process regression is in fact p(̃h(x)|x, θi), which has Lebesgue
measure in R

m−n , and not in R
m . That is, only the density of

the orthogonal component of y, conditioned on the tangent
component, and on the patch, is returned in local coordinates.
This is equivalent to p(̃h(x)|x, θi).

In order to tackle with this issue and compute poste-
rior probabilities for the patches, i.e. P(θi |y), the likelihood
p(y|θi) can be expressed in a way that accounts for the tangent
and orthogonal components as follows

p(y|θi) = p

([
x

h̃(x)

] ∣
∣∣ x, θi

)
p(x|θi) (20)

However, the term p(x|θi) is not possible to compute. Still,
an estimate of how likely some x is, given the patch P ,
can be obtained. Recall that, the pdf p(̃h(x)|x) is highly
peaked in regions where there are many training points, and
flat in empty regions. If we take the peak of this pdf, then
q(x, θi) = max p(h̃(x)|x, θi) can be used as a surrogate for
p(x|θi). While q(x, θi) is not a pdf (i.e., not normalized), it
will be assumed that

q(x, θi) ∝ p(x|θi) (21)

and the desired posterior can be approximated by

P(θi |y) = p(y|θi)P(θi )
∑P

j=1 p(y|θ j )P(θ j )

≈ p(̃h|x, θi )q(x, θi)P(θi )
∑P

j=1 p(̃h|θ j )q(x, θ j )P(θ j )
. (22)

V. DYNAMICAL LEARNING

This section extends GP–MLM to deal with the simultane-
ous identification of the data manifold and dynamics in the
lower dimensional space. We take advantage of the manifold
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model in two ways: (i) although the charting process does not
necessarily yield the state vector, it provides low dimensional
observables, making it easier to identify the dynamics and esti-
mate the true state; (ii) the filtered trajectories are restricted to
remain on the estimated manifold, making the tracking process
more robust against gross outliers in observation space.

Estimating the dynamics f , the observation model h and the
state vector xt from the data yt are ill-posed inverse problems.
Indeed, there is a large number of combinations that can
“explain” the data sequence. Our approach is to start from the
state model given by (2,3) and assume that, in the observation
equation, h is fixed and given by the manifold model found
by GP–MLM. We adopt a two-stage procedure:

• Identification of the dynamics f ;
• Estimation of the state xt , given all the information up to

t , i.e., y0:t
The first subproblem is called system identification in control
literature, and is solved offline, whilst the second is the state
estimation that we now explain.

A. System Identification

We assume that the training trajectories have been mapped
to low dimensional points xt,i in patch Pi , at instant t .

For each i , we form training pairs (xt−1, xt ). The subscript
i has been dropped for conciseness, since it will be assumed
that the trajectory segment remains on patch i . This is no
loss of generality, since in the case when the original high
dimensional {yt }t=0:T−1 crosses patches i and j (or more), this
simply results in multiple trajectory segments, {xt,i}t=0:Ti−1
and {xt, j }t=0:Tj −1, that can be treated separately and which
count towards the dynamics in patch Pi and P j respectively.

The regression procedure aims at finding the best fi that
maps xt−1 to xt in patch Pi , given the corresponding set Xi of
trajectory segments pertaining to Pi . The generative model is

xt,i = fi (xt−1,i) + ωt,i . (23)

In the case when the dynamics are linear, and dropping
the i subscript, (23) turns into xt = Axt−1 + ωt , with A a
n ×n matrix. When, additionally, the ωt are iid and Gaussian,
then this is a thoroughly studied case. Identification consists
of estimating A from the pairs (xt−1, xt ), that can be done by
the Least Mean Squares method.

When f is not a linear function of x, then we propose
a nonparametric approach, again based on Gaussian process
regression using the RBF kernel (19).

As in the geometrical step, but now with training
pairs (xt−1, xt ) arranged in matrices �, X defined as
X = [

x1, . . . , xT −1
]
, � = [

x0, . . . , xT −2
]
, the regression pro-

cedure yields, for any new x

t−1, Gaussian conditional densities

p(x̂ (i)
t |x


t−1,�, ξ (i)) = N (μ
x (i)

t
, σ 2

x (i)
t

), for all i = 1, . . . , n

components of x̂t and with ξ (i) ∈ R
(T−1) equal to the i -th

column of XT .

B. State Estimation

The second subproblem is the causal estimation of the
state, or filtering. One should incorporate all the available

information, namely from the previous time steps, into a
probabilistic reasoning. In this paper, we include experimental
evaluations using Kalman filtering (linear and Gaussian case)
and particle filtering (nonlinear and non Gaussian case) using
sequential importance resampling [47].

Note that GP–MLM is a multiple-model framework in the
sense that one filter per patch is used. Moreover, we use
different dynamics, different observation models as well as
different coordinate systems. This means that procedures for
transferring the state between patches and for combining the
local estimates are required. Fig. 4 illustrates how this is
accomplished.

To do this, we make use of the predictive variance from
each local GP in order to compute patch posterior probabilities
(mixture weights) inexpensively, i.e., we set

P(θi |x,Yt ) ∝ p(x|θi ,Yt ). (24)

The mixture weights provides by the block G take the different
dynamics into account. Two different strategies are tested: a
“winner-take-all” rule, where only the output of the model with
the highest posterior probability is used, and a “blending” rule,
where the weighted average using all models is computed.

Notice that the term blending also arises in the state estimate
tracking formulations. For instance the JPDAF [46] uses
notion of the combined innovation, computed over the several
detected measurements detected at a given time instant as
the weighted sum of the individual innovations, that is, this
formulation weights the influence of the various candidate
measurements.

VI. RESULT

This section presents an experimental evaluation of the
proposed method in several data sequences. We consider four
main situations: (i) an example containing a sequence of a
bouncing ball; (i i) two ultrasound sequences of the left ventri-
cle (LV); (i i i) 10 lip sequences including speaking and singing
cases. In the LV and lip (speaking and singing cases), we use
two state-of-the-art trackers (the MMDA and DBN trackers)1

as a way to automatically provide the ground-truth. Also, we
provide an objective evaluation for all data sequences.

A. Bouncing Ball Sequence

A sequence of a bouncing ball (termed here as
BouncingBall) containing 180 frames is used. To represent
the boundary of the ball, 20 contour points are used, which
would require a total 3600 manual clicks, if we were to obtain
ground truth by hand. In this example, the MMDA is used
to automatically produce the ground truth. The state vector
x ∈ �D , with D = 2, meaning that it contains the rigid
parameters for the translation.

Fig. 5(a) shows the overlapped ball positions provided
by the MMDA throughout the ball motion. The ball
motion is as follows. First, the ball moves in a up-down
motion [Fig. 5(b) and (c)], followed by (right-left) dynamics
[Fig. 5(d) and (e)]. In this example, the motion is fully

1We refer to the interested reader to [10]–[12] for a more in depth review.
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Fig. 4. Block diagram of the mixture architecture for combining the local dynamic models.

Fig. 5. MMDA tracked results for the sequence BouncingBall: (a) over-
lapped ball positions throughout the sequence, (b) up and (c) down motion
dynamics; left (d) right (e) motion dynamics. The ball was thrown three times
in (b), (c), and four times in (d), (e).

described by four dynamics. Here, the ball was thrown three
consecutive times in the up-down motions, followed by another
four times in the left-right motions.

From the successive ball positions shown in Fig. 5, it
becomes clear that the projection onto the image plane of
the ball is not a manifold, because the trajectories of the ball
self-intersect. As such, one should avoid the use of simple x−y
coordinates of the object. Instead, if one takes not only the
positions but also the velocities, more specifically, instead of
representing y = [x, y]T , one considers the observation vector
y = [ẋ, ẏ, x, y]T , that is, the vertical velocity and vertical
position, then the self intersection disappears and the closed
curve becomes once again a manifold.

The resulting 4D vectors are then used as input for the GP-
MLM algorithm, and a manifold model is then estimated. In
this example, the algorithm found the intrinsic dimension of
one with 10 estimated patches.

Table I shows the error for three identification strategies,
namely, 1st and 2nd order linear dynamical model and GP
non-linear dynamical model. It is shown that the GP 1st order
exhibits the best performance in both examples.

TABLE I

MEAN SQUARE ERROR (MSE) ON Boucing Ball SEQUENCE USING

THREE DIFFERENT STRATEGIES: LINEAR 1ST AND 2ND

ORDER MODELS AND A NON-LINEAR GP MODEL

The next section provides an extended comparison between
the Kalman Filter (KF) and particle filter (PF) using the
“blending” (BLD) and “winner-take-all” (WTA) rules.

B. Ultrasound Sequences of the LV

The second example consists of two ultrasound images
sequences (heart1 and heart2 sequences). In this section
we present results from the two trackers, MMDA [10] and
DBN [11], [12], which allow to testify the performance of the
GP-MLM when several ground-truth (i.e., inputs) are provided
to the algorithm.

Two LV sequences from two patients are used in these
tests. Their length (in frames) is: 490 (26 cardiac cycles),
470 (19 cardiac cycles) frames; 20 points of a quadratic
B-spline are used to describe the contour of the LV.

In these examples, the heart motion is described by two
main dynamics: an expansion motion that occurs in the dias-
tole phase, and a contraction motion that characterizes the
systole phase. In this study we go further in the attempt to
find which is the best technique (i.e., KF vs PF; WTA vs BLD
rules); at the same time we hope to demonstrate the superiority
of the non-linear GP 1st order model as in the previous
example. To attain this goal an objective evaluation between
the trackers contour estimates (taken as reference contours)
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TABLE II

MSE FOR THE THREE IDENTIFICATION STRATEGIES: LINEAR 1ST AND

2ND ORDER MODELS AND A NON-LINEAR GP MODEL:

(a) MMDA AND (b) DBN TRACKERS

and the GP-MLM estimates is provided; several metrics
proposed in the literature for contours comparison are
used.

These experiments are conducted as follows. From the
ground truth contours automatically provided (by MMDA or
DBN tracker) we take 30% of the frames for each case (e.g.
each sequence) for training purposes. This allow us to identify
the object dynamics (see Section V-B), i.e. first and second
order linear models as well as non-linear GP dynamical model.
In the test stage, we apply the filtering techniques (e.g. using
KF or PF) taking the best patch response (WTA rule) or joining
all the patches estimates (BLD rule).

Table II lists the MSE for both trackers and for the three
identification strategies for each patch found by the GP-MLM.
Most of the time, in both sequences, and from both ground
truth trackers, the GP consistently provides the best results
comparing with the remaining strategies.

Table III shows the results obtained using different com-
binations of filters vs. rules. It can be seen that the particle
filtering2 with the “blending” rule provides the best results for
both sequences and trackers.

1) Objective Evaluation: To evaluate the performance of
the algorithm we compare the contour estimates provided by
both the MMDA and DBN trackers (i.e., the ground truth or
reference contours) and the GP-MLM estimates. Five error
metrics were used in these tests: (i) Hammoude metric [48]
(dHMD); (i i) Average metric (dAV); (i i i) Hausdorff metric
(cf. [49]) (dHDF); iv) Mean Sum of Squared metric (dMSSD)
(cf. [50]) (v) Mean Absolute metric (dMAD) (cf. [51]); and
(vi) Average Perpendicular metric (dAVP) (used in MICCAI
challenge).3

2In all experiments we used a number of 500 particles.
3We do not give analytical details concerning the above metrics, since they

are classical and commonly used metrics for contour comparison (ie, easily
found elsewhere).

TABLE III

MSE USING TWO ALGORITHMS: KALMAN FILTER AND PARTICLE

FILTER. THE RESULTS ARE SHOWN FOR “BLENDING” AND

“WINNER-TAKE-ALL” RULES: (a) MMDA AND

(b) DBN TRACKERS

Fig. 6. GP–MLM tracking estimates (yellow line), superimposed with
MMDA in red line (top row) and with the DBN in red line (bottom row)
taken as gold contours. Sequence heart1 and heart2 are shown in four right
and four left images, respectively, (each column in the figure corresponds to
the same frame).

Table IV shows the fidelity in the representation of the
LV contour obtained in the two US sequences. The input
sets (contours) for each metric is the output of the GP-MLM
and the contours (ground truth) provided by MMDA or DBN
trackers. These values correspond to the mean values of the
metrics described above. From Table IV we conclude that,
in both sequences, the best tracking performance is obtained
when the particle filtering with the “blending” rule is used.
Although, the blending rule with particle filter provides the
best results, we stress that, for these examples, GP-MLM
tracking performance is indeed remarkable for both techniques
and rules (see the small and similar values obtained for all
metrics). Fig. 6 shows some images illustrating the contour
estimates of the GP-MLM, overlapped with the ground-truth
of the trackers.

C. Lip Tracking

This section illustrates the GP–MLM performance in lip
tracking. We present results of the proposed approach in two
different data sets.

Comparing to the LV example, the nonrigid object (lip
boundary) exhibits a higher variability in the shape, specially
when a person is singing.
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TABLE IV

MSE FOR THE TWO LV US SEQUENCES, USING TWO ALGORITHMS: KALMAN FILTERING AND PARTICLE FILTERING. THE RESULTS

ARE SHOWN FOR “BLENDING” (BLD) AND “WINNER-TAKE-ALL” (WTA) RULES. THE METRICS ARE SHOWN FOR

THE GROUND TRUTH OF THE MMDA AND THE DBN TRACKERS

Fig. 7. GP–MLM tracking estimates for seven speaking sequences shown
in red. The results are shown with the MMDA ground truth in green.

From this point on, and to avoid an exponential growth of
the results, we present the results using the particle filtering
with the blending rule (other alternatives are, of course,
possible to use as previously illustrated). In the following,
the training and testing mechanism follows a leave-one-out
strategy.

Fig. 7 shows in red dots the GP–MLM estimates overlapped
with the MMDA ground truth.4

Table V (top) shows the results obtained for the speaking
case, which are consistent to the previous case. Recall that
the Hammoude metric (XOR pixel wise operation between the
ground truth and the manifold estimates) is always below 15%.
Comparing to the results obtained for the singing sequences
(see bottom of the Table V), we see that a small decrease on
this metric, and the small increase of the metrics which penal-
izes maximum local distances are obtained. This is somehow
expected, since in this case, a large and sudden changes in
the lip boundary may in close frames of the sequence. For
instance, in Fig. 8 the 1st , 2nd columns and the 3rd and 4th
columns shows closed (consecutive or two frames difference)

4Here we do not show the results obtained when the DBN is used since
visually they are very quite similar

TABLE V

AVERAGE DISTANCES ERROR AND METRICS OBTAINED USING THE

GP–MLM, FOR SPEAKING SEQUENCES (TOP) AND SINGING

SEQUENCES (BOTTOM)

Fig. 8. GP–MLM tracking estimates (red dots) for three singing sequences
shown in red dots. The comparison is illustrated with the MMDA ground-truth
(green dots).

frames in the sequence. These correspond to difficult situations
where the GP–MLM is able to produce remarkable results.
Notice that, the Hammoude metric error remains in the same
range, despite the larger shape variations in the singing lip
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Fig. 9. Hammoude (top) and average (bottom) metrics provided by the
GPMLM (left) and GPLVM (right). The x-labels from speak-1 to speak-7,
corresponds to the sequences shown in Fig. 7 from the top to the bottom row,
respectively. The x-labels from sing-1 to sing-3, correspond to the sequences
shown in Fig. 8, from top to bottom row, respectively.

sequences (see top and bottom panel of the Table V). To our
knowledge this is the first low-dimensional tracker capable of
coping with large shape deformation in the deformable model.

VII. COMPARISON TO THE STATE-OF-THE-ART

In this section we include a comparison with the GP-LVM
method originally proposed in [14].5 A quantitative com-
parison between the GPMLM and GPLVM using the lips
sequences shown in Section VI-C and the metrics detailed
in Sec. VI-B.1 is conducted.

A. GPLVM

As in the GPMLM, the GPLVM is based on Gaussian
process regression. Although, unlike the general formulation of
the regression problems, in which the training pairs {xn, yn},
with xn ∈ R

q and yn ∈ R
m , are available and a mapping

function f such that yn = f(xn) is sought, in the GPLVM
framework the positions xn are initially unknown and should
be estimated along with the mapping from xn to yn . Thus,
instead of marginalizing over latent variables x to find the
linear mapping (like PCA), the GPLVM marginalizes over
mapping functions and then optimize the latent positions xn .

To perform a comparison with the GPLVM in the context of
tracking, we follow the work proposed by R. Urtasun and her
colleagues [53], where a dynamic MAP estimation framework
based on a GPLVM using a independent image-based tracker
is used (we refer to the reader [53] for an in depth review).

Fig. 9, shows the results of the two manifold learning
algorithms for tracking the lip sequences. The top and bottom
rows of the figure show the results concerning the Hammoude
and average metrics, respectively. As previously, this metric

5The code is available from the authors at http://www.cs.man.ac.uk/∼
neill/gplvm/

is computed between the GP-MLM contour estimates with
the output of the MMDA (taken as the ground-truth); and
the GPLVM estimates with the MMDA. From this figure,
we conclude that both algorithms perform quite well in this
problem exhibiting comparable results. We see that for the
speak sequences the range of the two metrics are the same
(the best values alternate between the two methods). Recall
however that, for sequences having a higher deformation (see
the results in the singing sequences) the GP-MLM compares
favorably. We see that in the case of singing sequences the
GPLVM provides higher results, i.e. dHMD > 0.2 and dAV
slightly above 5 pixels.

VIII. CONCLUSION

A novel method for manifold learning has been proposed.
The framework employs a local and probabilistic approach to
learn a geometrical model of the manifold and thus reduce the
dimensionality of the data. The GP-MLM uses the Gaussian
process regression as a way to find continuous patches. The
decomposition of the patches renders GP-MLM more flexible
when dealing to arbitrary topology. A framework is proposed
for probabilistically combining the local patch estimates, based
on the output of Gaussian process regression.

Dynamical system identification and recursive state estima-
tion are tackled by using the multiple local models returned
by the manifold learning step. Identification is accomplished
via Gaussian process regression. A filter bank architecture
(which uses the learned dynamics) was also developed, both
for Kalman and particle filters. A systematic comparative eval-
uation in several sequences was conducted, combining both
filtering techniques with different gating strategies. The experi-
mental evaluation provided demonstrates that quite remarkable
and competitive results are achieved.
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