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Abstract—Humanoid robots have complex kinematic chains
that are difficult to model with the precision required to reach
and/or grasp objects properly. In this paper we propose a GPU-
enabled vision based 3D hand pose estimation method that
runs during robotic reaching tasks to calibrate in real time the
kinematic chain of the robot arm. This is achieved by combining:
i) proprioceptive and visual sensing; and ii) a kinematic and
computer graphics model of the system. We use proprioceptive
input to create visual hypotheses about the hand appearance in
the image using a 3D CAD model inside the game engine from
Unity Technologies. These hypotheses are compared with the
actual visual input using particle filter techniques. The outcome
of this processing is the best hypothesis for the hand pose and a
set of joint offsets to calibrate the arm. We tested our approach
in a simulation environment and verified that the angular error is
reduced 3 times and the position error about 12 times comparing
with the non-calibrated case (proprioception only). The used
GPU implementation techniques ensures a performance 2.5 times
faster than performing the computations on the CPU.

Index Terms—humanoid robot, robotic-hand pose estimation,
robot self-calibration, 3D model based tracking, GPU, reaching.

I. INTRODUCTION

Everyday tasks like grasping an object with precision or
push an electrical plug into a socket are quite simple for
humans that make these activities in an daily basis but com-
plex and challenging for autonomous robots to perform. A
correct kinematic model of the limb structure is of paramount
importance when performing such complex tasks, particularly
of the arms and hands in order to properly grasp and manip-
ulate objects. Although an accurate analytical model of the
kinematic chain of a humanoid arm with several degrees of
freedom can be difficult to obtain due to hard-to-model aspects
(e.g. elasticity) and changes that might occur over time (e.g.
unalignment of a joint rotation axis), estimating the hand pose
error and re-calibrating the model is fundamental in every
robotic platform.

From studies with humans we know that five-months-old
children use vision to correct the hand position and orientation
during the movement [1], with performance that improves
during development [2]. With the intention of speeding up
the reaching process, real time reaching and grasping tasks in
robots are performed, normally, without any visual feedback
control approach [3] [4]. Nevertheless, if the robot’s internal
model is not accurate enough, grasping will not be successful.

The computational effort needed to estimate the hand pose
using the visual sensors is the bottleneck for the systems: the

Fig. 1: The iCub humanoid robot imagining hypotheses of his
hand pose.

usage of the GPU for these computer vision purposes can be
one of the solutions.

In the last years these techniques have been used to speed-
up well-known computer vision algorithms, as Canny-Edge
detection [5] or image segmentation procedures [6]. Some
authors state that it is possible to achieve a speed-up of almost
10 times [7] in high level computer vision algorithms, when
more conservative ones, in a wider perspective, claim for 2.5
times in average [8].

In this paper our goal is to focus on the implementations
procedures on the GPU and use its capabilities to improve
the robotic-hand pose estimation in real-time and reduce the
error on the end-effector near the vicinity of the object. The
calibration procedure will improve the actual internal model
of the robot, the iKin kinematic model [9] provided within the
YARP/iCub software framework, adapting it during reaching
movements in order to cope with the modeling inaccuracies.

The rest of the paper is organized as follows. In Section
II we report the related work in robotics and we highlight
our contribution more specifically. Then in Section III we
formalize the problem, while in Section IV we provide the
details of our proposed solution. In Section V we account the
implementation details as well as the robotic platform used.
Finally, in Section VI we present the experimental results, and
in Section VII we draw our conclusions and sketch future
work.

II. RELATED WORK

The detection and tracking of the robot hand in its visual
system are fundamental components of our method. Diversi-
fied approaches for vision-based hand pose estimation have



been proposed by a few authors [10]. The following two
cited authors aim to estimate the hand pose in an arbitrary
configuration. In [11] they propose to track the human hand
using a colored glove to simplify the hand detection and them
search efficiently for a correspondence pose in a database of
examples. The human hand is divided into different segments
in [12]. They estimate the 26-DOF of the human hand model
using a GPU implementation to speed-up the algorithm and
run it in quasi-real time using a skin color segmentation and
edge maps within a Particle Swarm Optimization. Unlike these
approaches, at each time step we have an initial estimation of
the hand pose based in the robot forward kinematics which
helps to reduce the problem in a local search method. In
[13] they propose the estimation of the hand in a predefined
pose, thus reducing the problem to a 6D search. The usage
of image moments allows them to compute analytically the
translation therefore seeking the hand orientation in a 3D
database. Machine learning techniques were also applied to
this estimation problem. The Cartesian Genetic Programming
method was used by [14] to learn from visual examples how
to detect the robot hand inside an image. Moreover, another
machine learning method (Online Multiple Instance Learning)
was used in [15] for this hand detection, thus exploiting
the incoming information from the encoders and visual optic
flow labelling automatically the training images. The previous
methods only estimate the hand position inside the image
discarding its angular orientation. The 26-DOF of the human
hand model was tracked by [16] utilizing real 3D sensory data.
The second purpose of our method is to calibrate the eye-
head-arm-hand kinematic chain of a humanoid robot. Several
authors suggested solutions for this problem, as reviewed in
[17] including offline and online learning. The method used
by [18] requires 5 minutes of data acquired during specific
robotic movements with a special marker in the robot wrist.
It optimizes offline some parameters of the kinematic chain
(angle offsets and elasticity) of a upper humanoid torso using
non-linear least squares. An online solution has been studied
by [19], [20] which adapted the kinematic chain using markers
as well. In [21] they decomposed the kinematic chain into
smaller segments. They proposed an offline and online learning
solution without using markers. The research in [22] is also
based on a marker-free correction of the robot kinematics using
RGB-D data. The eye-hand coordination problem was studied
in [23] and [24]. In [23] they use a particle filter framework
and the visual and proprioceptive sensors to improve an a
priori knowledge of the kinematic chain. In [24] the calibration
is performed with several ellipsoid movements in a predefined
hand-pose. They track the tip of the index finger using the 3D
calibrated stereo system and employ optimization techniques
to learn the mapping function between the two reference
frames.

A. Our contribution

Automatic calibration of the robot kinematic chain and
hand pose estimation are a fundamental topic for autonomous
robots. In this paper we propose a GPU implementation of a

robotic hand pose estimation method within a particle filter
framework. Our objective is to achieve a faster and real time
implementation of the method for the iCub arm. We upload
the incoming proprioceptive information from the robot to
a computer graphics visual simulator. The rendering engine
generates a series of images with possible hypothesis of
the hand appearance around the nominal pose indicated by
the proprioceptive information. These hypothetical images are
then compared with the real image coming from the robot
cameras to approximate the real pose. Both the hypotheses
rendering and image comparisons are done in the GPU using
a combination of the Unityr Game engine and OpenCV GPU
functions, to decrease the latency between the CPU/GPU data
transfer.

III. PROBLEM STATEMENT

Our goal is to estimate the hand pose in the eye reference
frame in order to do an online calibration of the kinematic
chain of a humanoid robotic arm. We follow the theoretical
approach presented in [23].

A. State Model

The internal model’s learning consists in estimating the joint
offsets (β) of the angles in the kinematic chain defined as:

β = θ − θr + η (1)

where θ is the value read by the encoders, θr the real value of
the joint position, β is a systematic offset, and η a zero mean
Gaussian noise with covariance Q, η ∼ N (0,Q).

The state vector for the system is composed of the offsets
in the arm joints. We do not include offset errors in the eye-
head kinematic chain to reduce the complexity of the problem.
Instead, we have a calibrated head chain using the procedure
defined in [25].

The offsets in Equation (1) define the state vector of an
unobserved Markov process as β = [β1 β2 β3 β4 β5 β6 β7]

T

where βi is the offset in joint i of the arm. We assume an initial
distribution p(β0) and a known state transition distribution
p(βt+1|βt). To allow for small changes in β we introduce a
state transition noise w and model the system state transition
model as: βt+1 = βt +w, here w ∼ N (0,K) is a zero mean
Gaussian noise with a given covariance K = σ2

sI7, where σs
is the standard deviation.

B. Observation Model

Our humanoid robot has two sources of information, the
head and arm’s encoders and the cameras on the eyeballs. We
use images from the cameras as the state’s observation (y) and
define the measurement probability as:

p(yt|βt,θt) (2)

where yt is the concatenation of the values from the two
images, left and right and θt the encoders values at time t.

From our Unityr iCub simulator, as depicted in Figure 2,
we can obtain two predicted images, ŷ, feeding the visual
simulator with the encoder readings and the state vector β.



Fig. 2: Image generation at Unityr iCub simulator.

We compute the probability in Eq.(2) using the Hammoude
metric (dHMD) [26] as a distance metric between the predicted
and the real images silhouettes. Since the Hammoude distance
has a range between [0 1], we assume a likelihood model as:

p(yt|βt,θt) ∝ 1− dHMD(yt, f(θ,β)) (3)

We need to underline that redundancy in the joint angles
may lead to different states (β) with the same final pose.
Therefore, the estimated β will be just one set of offsets that
can explain our pose in the images.

IV. OUR APPROACH

In our approach we will use a Particle Filter as the one
defined in [27] and [23]. Under the Markov assumption
(See Sec. III-A) we can compute recursively the a posteri-
ori distribution p(βt|y1:t,θ1:t) using the previous estimation
p(βt−1|y1:t−1,θ1:t−1) and the observation model in Eq.(2).

The four stages of our particle filter are:
1) Prediction - we use the state transition equation defined

before
2) Observation - the predicted images ŷ are generated using

the visual simulator and compared with the real ones
3) Update - the likelihood (See Eq. (3)) is used to re-weight

the particles.
4) Re-sampling - the particles are sampled according to

their weight. We use the systematic re-sampling method
[28] to guarantee that a particle with a weight greater
than 1/n is always re-sampled, where n is the number
of particles.

Although the state is represented at each time step as
a distribution approximated by the particles, for evaluation
purposes we must compute our best state’s value guess. For
this purpose, we use a kernel density estimation to smooth
the weight of the particles according to the information of
neighbor particles and choose the particle with the highest
weight as defined in [23].

V. IMPLEMENTATION

A. The robotic platform

The iCub (see Figure 1) is a humanoid robot for research in
artificial intelligence and human cognition. It has 53 motors
that move the legs, waist, head, arms and hands and it has an
average size of a 3 years old child. It was developed in the
context of the EU project RobotCub (2004-2010) and subse-
quently adopted by more than 25 laboratories worldwide. Its

Fig. 3: General Work Flow of the our approach using a
simulator to generate hypotheses.

stereo vision system (cameras in the eyeballs), proprioception
(motor encoders), touch (tactile fingertips and artificial skin)
and vestibular sensing (IMU on top of the head) are important
characteristics to be able to study autonomy in humanoid
robots.

B. General flowchart

The proposed algorithm uses a new developed iCub simu-
lator within Unityr which works with CPU and GPU compu-
tation. In Figure 3 we can see the work flow of one iteration
of our method from a wide perspective. Four entities are
present: Real Robot (1), Main Program (2), Simulator (3) and
Estimated Offsets (4) and three communications procedures
( I), II) and III) ). In this paper we will focus on the
communication channel II) and the implementation of the
Main Program (2) and the Simulator (3).

The Main Program is responsible for the generation of the
particles that sends to the Simulator through communication
II) via the YARP middleware: the offsets (β), the encoders
readings (θ) and the segmented images from the Real Robot
(y). The predicted images (ŷ) are generated inside the Simu-
lator using the iCub Kinematics and appearance model. Then
the predicted images are compared to the real image and
the likelihood computed via our observation model (See Sec.
III-B).

The simulator generates images on the GPU memory and
in order to compare the images in the main program we have
two possibilities: “download” the generated images from the
GPU to CPU memory and compare them in CPU, or compare
them inside the GPU uploading the real image. In this work
we choose to compare the images in GPU, thereby decreasing
the computational effort of the algorithm. In Figure 4 we
see in more detail the CPU/GPU inter-operation and the data
structures that are shared and sent between the two processing
units.

The CPU is used to communicate with the robot receiving
the data from the cameras and encoders the particles’ gener-
ation according to our filtering approach. The main bulk of
data generation and evaluation is carried out at the GPU level
by means of parallel processing, using the OpenGL, OpenCV
and CUDA libraries. This interoperability will be explained in
Sec. V-D.



Fig. 4: Scheme showing the operations made in CPU, GPU and at the robot level where n is the number of particles.

In section VI-C we compare the possible ways to branch the
algorithm. We will benchmark the time needed to generate the
images (frame rate) and how many particles we can evaluate
in one second (particle rate).

C. Details on the Unityr iCub Simulator
Unityr has a built-in physics engine and we can use it to

affect objects with gravity, forces and torques. We decide to
turn physics off to increase the speed of image generation.
Our intention was to develop a geometric simulator capable
to generate several images per second in a desired pose.

Unityr software is able to generate approximately 1000
frames per second (FPS). In spite of the high theoretical frame
rate, the actual one will depend on the rendered scene (number
of objects) and the GPU’s specifications (number of cores).

The iCub CAD model was imported inside Unityr using a
hierarchical tree. This tree consist in the relationship between
the several objects of the robot. For instance, the fingers are
coupled with the robot’s hand thus if the hand moves the
fingers will move along and update their absolute position in
the world, maintaining the relative pose in the hand reference
frame.

Another aspect used to increase the generation’s speed was
the batching method within the Unityr software. In order to
be able to use this feature we define all the objects in the arm
with the same material, decreasing the draw calls in the game
engine. On average, and due to the high number of different
objects of the iCub body, we reduce in half the number of
draw calls, from 500 to 250.

The cameras in the eyeballs of our platform were defined
using the intrinsic parameters of the real cameras. In computer
graphics, normally, we change the Field Of View (FOV) of the
camera instead of the focal length. Using some trigonometry
we calculate the horizontal field of view (FOVh) as:

FOVh = 2 · tan−1

(
W

2f

)
(4)

where, W is the width of the projection plane and f the focal
length.

D. Interoperability between Libraries

The observation model computation in a GPU fashion way
was possible due to the integration between Unityr, OpenGL,
OpenCV and CUDA libraries. We use the Unityr software
in OpenGL mode to render the scene into render texture
structures and get their native/hardware pointer within the
GPU memory. We initialized n render textures and generated
n different scenes according to the n particles received from
the particle filter.

The OpenCV library, in particularly, the GPU-accelerated
Computer Vision module has some image processing functions
as well as matrices and per-element operations. Using some
of these functions it was possible to implement our likelihood
metric on the GPU, for instance the gpu::subtract func-
tion and the bitwise operator.

The CUDA programming language of NVIDIA was also
used to convert the OpenGL render texture with the scenes
from Unityr to the GpuMat structure of the OpenCV library.

VI. RESULTS

In this section we will present our experimental results
showing: i) automatic calibration ii) generalization of the
method iii) fast computation. In the first section we add
artificial joint offsets in the arm kinematic chain and compare
the results with the non-calibrated case. We use our filter with
200 particles initially sampled using a Normal distribution
with σ = 5.0◦. In the second point, we show how our
method generalizes in different arm poses. We compare to
other solutions in which the kinematic error is encapsulated
as a roto-translational matrix (as proposed in other works)
instead of joint offsets. Finally, we stress the benefits of using
the GPU for the implementation of our method.



Frames
1 50 100 150 200

Angular Error [◦] 12.05 5.616 4.65 2.02 2.58
Position Error [mm] 7.88 7.26 4.16 2.61 1.19

TABLE I: Mean and Variance of the final orientation and
position errors over several experiments (different initial and
final position).

With Filter Without filter
Mean Std Dev Mean Std Dev

Angular Error [◦] 4.5495 2.032 14.01 1.65
Position Error [mm] 3.3357 1.5163 42.67 5.47

TABLE II: Mean and Variance of the final orientation and
position errors over several experiments (different initial and
final position).

A. Simulation experiments

In the simulation experiments we add offsets in the arm
kinematic chain of the iCub simulator. The joints offsets have
the same order of magnitude of the real robot. In order to
illustrate the convergence of the filter in Table I we show the
position and angular errors at same steps of the algorithm.

We perform several reaching tasks with different initial and
final hand positions. In Table II it can be seen the mean and
standard deviation of the results and we compare them with
the non-calibrated case non calibrated (βi = 0). The errors are
in the final pose after the reaching movement was performed.

B. Generalization

Our approach uses offsets in the joints to estimate the error
in the final pose. Another hypothesis is to estimate the error
transformation matrix defined as:

Terr = T̂r · T−1
enc (5)

where, T̂r is the estimation of the real transformation and Tenc
the transformation defined by the encoders joints. The Terr will
be the transformation to apply in the end-effector to correct
the final pose of the hand.

In [29] the utilization of the transformation matrix method
was chosen to estimate the error in the head chain. In order to
compare the two methods, we ran our approach with a given
set of artificial joint offsets to a final position. In this final
position, the estimated matrix T̂r using the joint offsets (our
method) or the matrix Terr is the same, therefore the errors are
equal.

We tested the two approaches in five different positions (See
Figure 5) to argue about the generalization after learning the
errors. For this purpose, we maintain the initial offsets in the
joints and: i) apply the transformation Terr ii) add the estimated
joint offsets.

In the Table III we can see the final errors in these new
positions between T̂r and the ground truth transformation. Our
method is better in all the cases of the generalization, apart for
a few ones in which the orientation error is bigger (position 2
and 5). The position error is always better using the estimated
joint offsets.

(a) Final training Pose (b) Testing pose 1 (c) Testing pose 2

(d) Testing pose 3 (e) Testing pose 4 (f) Testing pose 5

Fig. 5: Training in a trajectory with a final pose and testing in
different poses. The position and orientation of the hand are
very distinct.

Angular Error [◦] Position Error [mm]
Joint offset End-effector Joint offset End-effector

Position 1 2.5602 3.8892 2.2221 4.9162
Position 2 4.7247 3.9889 9.6751 13.3802
Position 3 2.3720 4.3778 4.1777 10.4285
Position 4 4.0699 8.6078 6.4442 7.6157
Position 5 3.8914 0.8117 8.5436 16.1736

TABLE III: Differences between the end-effector Transforma-
tion and joint offset methods. The position error is better in
all the cases with the joint offsets method.

C. Comparison between CPU and GPU methodologies

The algorithm’s implementation on the GPU was one of
the main focus of this work. In order to evaluate our effort we
compare three different methodologies: CPU, CPU/GPU and
GPU. In Table IV we can see the computational efficiency
of the different options in terms of particle rate (particles
evaluated per second) and Frame rate (frames generated per
second on the visual simulator). The first methodology uses the
previous iCub simulator to generate the hypotheses and com-
pare them in the CPU using C++ language. In the CPU/GPU
we use the Unityr iCub simulator to generate images and
“download” them into the CPU to perform the comparison.
The GPU method is our proposed approach; we generate and
compare the images inside the GPU.

In the last two methods (CPU/GPU and GPU), despite te
fact that the same visual simulator is used, we can see that the
particle rate is better when the image comparison is made at
a GPU level. This increasing speed can be justified due to the
fact that we don’t have to copy all the n generated images (n
- particles) into the CPU. The only memory copied from the
GPU to the CPU, as can be seen in Figure 4, is the likelihood
vector computed by the comparison between the uploaded real
image and the generated hypotheses.

With these results we can argue that the division into CPU
and GPU presented before is the best way to branch the
algorithm in order to increase the computational speed.



CPU CPU/GPU GPU
Particle Rate ∼ 30 ∼ 100 ∼ 250
Frame Rate ∼ 50 ∼ 200 ∼ 600

TABLE IV: Comparison between the three different possible
methodologies. We can see the better performance using only
the GPU.

VII. CONCLUSIONS AND FUTURE WORK

We presented a method to estimate the pose of a robotic
hand, based on a particle filter and GPU framework. We
obtained good results comparing with the non calibrated case,
decreasing 3 times the angular error and 12 times the position
error. Our approach of using offsets was compared, for a
generalization purpose, with a matrix transformation error
method. In the five trial positions, the position error of the
hand was always better using offsets in the joints.

The GPU implementation increased the speed of the algo-
rithm 2.5 times making possible to evaluate more incoming
images per second.

As future work we plan to continue improving the speed of
the algorithm implementing the particle filter framework at the
GPU architecture and using more than one iCub model inside
Unityr. If we could generate more hypotheses in real time
we could evaluate more images from our robotic platform.

The segmentation procedure can be also improved to cope
with more complex backgrounds. On one hand, this aspect
could be achieved using a 3D vision system based on the
stereo calibrated cameras in the iCub eyeballs. On the other
hand, an edge-based comparison could circumvent some of
the problems of segmentation in cluttered backgrounds.
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