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Abstract— Accurate dynamic models can be very difficult to
compute analytically for complex robots; moreover, using a pre-
computed fixed model does not allow to cope with unexpected
changes in the system. An interesting alternative solution is to
learn such models from data, and keep them up-to-date through
online adaptation. In this paper we consider the problem
of learning the robot inverse dynamic model under dynam-
ically varying contexts: the robot learns incrementally and
autonomously the model under different conditions, represented
by the manipulation of objects of different weights, that change
the dynamics of the system. The inverse dynamic mapping is
modeled as a multi-valued function, in which different outputs
for the same input query are related to different dynamic
contexts (i.e. different manipulated objects). The mapping is
estimated using IMLE, a recent online learning algorithm
for multi-valued regression, and used for Computed Torque
control. No information is given about the context switch during
either learning or control, nor any assumption is made about
the kind of variation in the dynamics imposed by a new
contexts. Experimental results with the iCub humanoid robot
are provided.

I. INTRODUCTION AND RELATED WORK

Adaptation and flexibility are two major requirements for
modern robots, both for their application in industry and
in more unstructured environment (e.g. homes). From a
control theory point of view, exploiting a dynamic model
for control leads to better performance (e.g. in terms of
accuracy, compliance, energy efficiency) with respect to
model-free approaches. However, as robots become more
and more complex, computing accurate analytical models
is turning more and more difficult, due to the presence
of hard-to-model phenomena (e.g. actuator nonlinearities,
deformation of soft or elastic components, complex mass
distributions); an alternative solution, which is becoming
increasingly popular during the recent years, is to estimate
these models from data using machine learning methods (see
[1], [2] for two recent surveys). In addition, many robotic
tasks involve handling and manipulation of different objects,
which makes the environment and the mappings to be learned
non-stationary. For instance, the dynamics of a robot arm
changes during the manipulation of different objects due to
the variation of the load of the end-effector. This problem is
known as learning and control under varying contexts, where
an unobserved context variable changes the mapping that has
to be learned and used for the control.
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Fig. 1. The iCub robot holding a 33cl plastic bottle filled with water.

Looking at the literature of human studies, it can be no-
ticed how subjects involved in motor learning and motor
adaptation tasks may take many movements to achieve a
good performance in a novel context characterized by a
kinematic [3] or dynamic [4] perturbation. However, once the
perturbation is removed, re-adaptation to the original context
(i.e. a context that has been experienced, and therefore
learned, for a lifetime) is often much faster. This might
suggest that learning to operate in a new context requires
the creation of a new model, whereas re-adaptation can
be interpreted as a switching back to a previously learned
model. Further evidence is provided by specific work on re-
adaptation: during repeated presentation of a kinematic [5]
or dynamic [6] perturbation the subjects adapt increasingly
rapidly, suggesting that a model of the perturbated context
is incrementally learned through motor experience, and it is
recalled as soon as the context appears.

Therefore, a promising approach to obtain similar adaptation
capabilities in robots is to keep a set of context-specific
models that describe the robot model for each different
context. Three critical issues arise when learning multiple
models for robot control. The first issue is i) how to identify
the correct number of models to use, without any problem
specific a-priori information. The other two issues are ii)
how to estimate the current context, given that the correct
number of models to use is known, and iii) how to use such
estimation for either controlling the robot or further training
the models.

A number of solutions has been proposed in the recent years.
The early work on adaptive control of Narendra [7] considers
that a proper number of models is given a-priori, already
trained and showing good performance for each context.



The MOSAIC architecture [8]-[10], on the other hand, as-
sumes that some perceptual cues are available that can guide
a correct context estimation in the early learning process,
that can in turn successfully assign the perceived data points
to a predefined number of models. This, however, can be
a quite optimistic assumption, as not only the number of
models must be known beforehand but also a very domain
specific information must be gathered to build the functions
relating perceptual cues to specific contexts.

Finally, the approach presented in [11] claims the ability
to deal with continuous varying contexts. However, their
assumption of an explicit latent context variable brings some
problems when the current context needs to be inferred for
training purposes: in the continuous case they need to resort
to two models previously trained using context labeled data
before they are able to generalize to unseen contexts, while in
the discrete case a bootstrap, based on a EM procedure over
a batch of unlabeled data points, is required when no trained
models exist yet. Moreover, they make specific assumptions
about the kind of variation they expect to occur in the
dynamic model — the method only holds under changes
in the mass of the object being manipulated.

In this paper we propose a different approach, by directly
modeling the map to be learned as an unknown multi-valued
function, a multimap that can assign different solutions for
the same query input point: in such scheme, each branch
of the multimap represents the relation from an input vector
to an output vector, for a specific unknown context. This
multi-valued function is learned from sensory data using the
Infinite Mixture of Linear Experts (IMLE) algorithm [12],
a recent incremental learning algorithm that is particularly
suited for these kind of multi-valued functions. This algo-
rithm describes the map to be learned as a collection of
local linear models that can coexist in similar input locations,
thus potentially producing multi-valued estimates for the
output corresponding to a particular input query point: the
most important mechanisms of this algorithm are detailed in
Section II. Using a single IMLE multi-valued model for the
discrete context estimation problem has some tremendous
advantages over the previous approaches to discrete varying
context and control. On one hand, there is no need to
maintain a bank of single-valued function approximation
models, since IMLE produces a discrete set of solutions
for each input query point; the number and values for this
set of solutions depend on the specific input query location
and the information gathered so far by the algorithm. This
also avoids the need to define or estimate in advance the
number of single-valued models to use. Secondly, the IMLE
training process, based on the EM algorithm, automatically
and transparently assigns responsibilities to each of the local
models for each training point, with no need to explicitly
maintain an estimate for the hidden context variable. This
even allows for the existence of a different number of
contexts in different locations of the input space.

In a recent work [13] we exploited the IMLE algorithm
to learn the kinematic model of two different humanoid
robots for eye-hand coordination and goal-directed reaching

in different kinematic contexts (represented by the use of
different tools).

In this work we aim to extend those results to the dynamic
case, as we want to learn the inverse dynamics of the
arm of the iCub humanoid robot [14] in different dynamic
contexts (i.e. while the robot is holding different objects, as
in Figure 1); details of the robotic platform are provided
in Section IIl. A few approaches have been proposed in
the literature for learning inverse dynamics for control, both
in simulation [15], [16] and with real manipulators [17].
The main peculiarity of our approach with respect to all
previous works is that the learned model is multi-valued,
hence allowing control in different dynamic contexts.

The learned model is employed to control the robot move-
ments through the Computed Torque method, as described
in Section IV, switching dynamically between the different
contexts as soon as they appear. No information is conveyed
to the algorithm whenever the context changes; moreover, no
assumptions are made about the kind of dynamic variation
that the new context is introducing. The results are shown
in Section V: although preliminary, these results suggest that
we can apply this very general approach to efficiently learn
the robot dynamic model under varying dynamic contexts,
and exploit such learned model to control the system with
powerful methods such as Computed Torque.

II. THE IMLE ALGORITHM

The IMLE algorithm [12] is a probabilistic algorithm that
uses a generalized expectation-maximization (EM) procedure
to update its parameters, fitting an infinite mixture of linear
experts to an online stream of training data (z;,x;), where
z; € R? denotes an input point and x; € R denotes the
corresponding output. Its only assumptions about the training
data nature is that it can be approximated by a mixture of
local linear models: in this way, multi-valued functions can
be learned, as the different branches of the multimap can be
approximated by different linear models sharing the same
input region. This even makes possible the generation of
inverse predictions, as reported for instance in [18], [19].
Each expert has an input region where the linear approxima-
tion from input to output holds, here denoted as activation
region, defined by a Gaussian distribution in the input space.
For each expert, another Gaussian distribution is used to
model the output noise that affects the linear model. These
distributions, together with the parameters that define the
linear relation and some other parameters that govern some
prior distributions, needed for regularization, must be learned
online resorting only to training data. Also, resource alloca-
tion is automatically done in this training phase, activating
more experts to the mixture as they are needed.

Given the current mixture state, a set of multi-valued pre-
dictions is obtained by the IMLE algorithm by clustering
the individual experts predictions for a given input query,
taking into account the uncertainties on these predictions
and their responsibility for the input query, as given by the
corresponding activation regions.

More details on the algorithm are available in [12].



III. THE ROBOTIC PLATFORM

In this work we apply our learning and control approach
to the iCub robot [14]. The robot is equipped with a 6-
axis force/torque sensor placed at the bottom of each arm
kinematic chain (i.e. just below the shoulder), that can
be used to estimate the torques experienced on the arm
joints, by aligning its measures to an analytical model of
the system dynamics, as described in [20]. Therefore, since
torque sensors on the individual joints are not available, we
use this sensor to measure the torque at the joints. Joints
positions are measured from incremental encoders mounted
on the motors; joints velocities and accelerations are derived
from the measured positions using a least-squares algorithm
based on an adaptive window, that varies according to the
smoothness of the position signal [21].

For the experiments described in this paper we actuate 4
DOFs of the iCub right arm, namely:

. q=[0sp Osy Osr 0.7 € R
where 0y, 05, 05, are the shoulder pitch, yaw and roll rota-
tions (elevation/depression, adduction/abduction and rotation
of the arm) and 6. is the elbow flexion/extension. We will
denote the measured joints torques as 777 € R*. The robot
joints limits are defined in Table L.

rightarm

qmln 7800 OO OO 200

qmar 0° 80° 80°  80°
TABLE 1

JOINTS LIMITS OF THE RIGHT ARM OF THE ICUB ROBOT.

IV. MODEL BASED CONTROL
A. Computed Torque control

The idea of Computed Torque control is that a dynamics
model of the system can be exploited to compute the required
joints torques to realize desired joints trajectories [22], [23].
An analytical model can be obtained analyzing the physical
properties (e.g. CAD data or direct measurements) of the
system and then deriving its equation of motion, on the basis
of some assumptions. For instance, if we make the rigid
bodies assumption, we can model the robot dynamics as:

T=M(q)q+ F(q,q),

where q, g, q are the vectors of joint positions, velocities and
accelerations of the robot, 7 is the vector of joint torques,
M (q) is the inertia matrix of the robot, and F(q,q) are
all the forces acting on the system (e.g. Coriolis forces,
centripetal force, gravity, friction).

In this paper we propose to learn such model from online
gathered data, without making any previous assumption
about the system. We therefore learn a general mapping of
this form:

IV.1)

7= f(a,q,4d). (IV.2)

The control input u is in our case the vector of joint

torques given as motor command; this can be computed in
different ways depending on the control method. Typically,
u should be computed so to allow the robot to track a
desired trajectory. As in this case we are considering a
control problem in joint space, the desired trajectory will be
provided as desired joint angles, velocities and accelerations.
One possibility to compute u is the so called Feedforward
Nonlinear Control approach [23], in which the control input
is chosen as:

u = M(qq)da + F(qa,da) + Ky (da — @) + Kp(qa — q),
Iv.3)

where qg, 4q, Qg denote desired joint angles, velocities and

accelerations. A proper choice of K, and K, is proven to

bring the tracking error to zero [23].

Using the mapping in Eq. IV.2, the control input becomes:

u = f(qq4,94,da) + Ko(qa —q) + Kp(qa —q). (IV4)

B. Trajectory tracking using learned multi-valued models

Given a set of predictions (i.e. a multi-valued prediction)
for an input point, how to choose the one that corresponds
to the current (but hidden!) context? One possibility is to
represent the hidden context as a latent variable and to use
the sequence of observations to estimate it online (as in [11]).
This, however, requires the number of hidden contexts to be
known, and also requires the existence of a set of distinct
sensorimotor maps, one for each context. Instead, what we do
here is to i) sample the input space between the last observed
point (q,q, §, 7):—1 and the point for which a prediction is
desired (qq, Qq, 44, 7d)t » i1) make multi-valued predictions
for each point, that include the local derivatives, iii) find a
smooth trajectory of the predictions from the last observed to
the desired point (see Figure 2). This procedure produces a
prediction that shares the same context with the most recently
observed data point.
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Fig. 2. Enforcing coherence of prediction contexts. Left: given only the
last observed data point it is not easy to understand which multi-valued
prediction to use. Right: by sampling predictions between the most recent
observation and the new input query, a prediction sharing the same context
as the previous observation can be found.

V. EXPERIMENTAL RESULTS

We report here results obtained with the iCub humanoid
robot. In Section V-A we show how the robot is able to learn
a multi-valued mapping that encodes the dynamics of the
right arm in different contexts, represented by the presence
of different loads on the arm. Then, in Section V-B we



demonstrate that the learned mapping can be used to control
the arm with the Computed Torque method; in particular, the
robot performs a gravity compensation task while holding
objects of different weights.

A. Estimation of multi-valued dynamics

The robot performs first a motor babbling phase in which
it moves the right arm to random reference configurations
in the joint space using a low-level joint position control,
spanning the whole joints space within the limits defined
in Table I. Training points, consisting of joint positions,
velocities and accelerations [q q q] and respective joint
torques Tpr, are gathered at a sampling rate of SHz and
presented to the online learning algorithm. In the beginning
the robot moves without any object in the hand, exploring
1200 random arm configurations and training the network
with about 20000 points (first context, c¢g). Then, it moves
again to the same 1200 arm configurations while holding
a small water bottle (see Figure 1), of the approximate
weight of 350gr (second context, ci). Then, it moves to
other 1200 random configurations, training the network with
about 20000 more points. The online estimation of the model
is tested with respect to different test sets of 4000 samples
that have been acquired before the motor babbling, for each
different context. We compute the Root Mean Square Error
(RMSE) of the estimation, where the error is defined as the

difference between the estimated torque, 7 = f(q, q, q), and
the measured one.

Figure 3 shows the estimation performance of IMLE. The x-
axis of each plot (i.e. training samples) is divided into three
parts of equal length: 20000 training samples of context cg,
then 20000 of c;, then other 20000 of cy. In the top plot it
can be seen how the RMSE with respect to test points of
co is reduced during the first part; then, during the second
part also the estimation error with respect to test points
of ¢; is reduced (i.e. context c; is learned as well). The
estimation error with respect to cy reaches a steady state,
as it remains constant during further training in the third
part. The plot in the middle reveals that the number of linear
experts increases during learning of contexts ¢y and c;, and
then remains constant during further training. Finally, the
bottom plot displays the average number of solutions found
during testing: while before experiencing context c; IMLE
always finds only one solution (i.e. the solution that explains
context cy), after some training points of c¢; are acquired
the solutions become always two, and this holds even when
further training samples of ¢y are provided.

To prove that learning of one context does not affect the
estimation of another, in Figure 4 we display the RMSE
during the all learning sequence (divided in three equal parts,
like in Figure 3: ¢y, then ¢, then ¢ again) with respect to test
sets of 4000 samples each that belong to a specific context:
co in the top plot and c; in the bottom plot. It is clear from
the top plot how training with points of context ¢; does not
affect the estimation of ¢, as the RMSE remains reasonably
low during the second and third part of the plot; the dual
effect can be seen in the bottom plot.
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Fig. 3. From top to bottom: estimation error with respect to the test set of
the relative context, number of linear experts created and average number
of solutions, during online learning of the robot dynamics experiencing
different contexts, cg from 0 to 20000, ¢; from 20000 to 40000, ¢g from
40000 to 60000.
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Fig. 4. Estimation error with respect to the test set of a specific context:
top image, test set of context co, bottom image, test set of context cj.

B. Gravity compensation control

We present here control results related to the gravity
compensation task. The task is to keep the arm in position,
hence generating the appropriate joint torques to counter-
act gravity. With respect to the Computed Torque control
framework introduced in Section IV, and in particular to the
Feedforward Nonlinear Control approach that we described,
this means that the task is to track a desired joints trajectory
that is defined as: q4 = q (i.e. the current joints position),
d¢ = 0, g4 = 0 (i.e. no velocity and no acceleration).
We tested the controller to keep the arm in three different
test configurations, namely q'* = [-60 50 30 55|, q'? =



[-50 60 40 65], q'* = [—40 40 20 45|, for about ten
seconds for each configuration; the hand was either empty
(i.e. context cg) or grasping the bottle (i.e. context c;).

Figure 5 and Figure 6 show the results for context cg. As
it can be see in Figure 5, the arm is kept in the desired
configurations by the controller, as the position of each of the
four arm joints (solid blue line) tracks the desired reference
(dashed red line). Figure 6 displays how the torque of each
joint (solid blue line) follows the desired torque estimated
by the learned mapping, 74 = f(qq,dq,dy) (dashed red
line), due to the application of the control input, u =

f(qa, da, da) + Ky (4a — @) + K, (qa — q) (thin solid green
line).
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Fig. 5. Measured (solid blue line) and desired (dashed red line) joint
position during gravity compensation control with context cg, for each joint
of the right arm.

Figure 7 and Figure 8 display the results for context c;.
As shown in Figure 5, the arm is kept close to the desired
configurations; however, the performance of the controller
when the robot is grasping the bottle (i.e. context c1) is worst
than in the previous case (i.e. context cgp). It can be noticed
from Figure 8 how the controller is generating much bigger
torques in order to compensate for the position and velocity
errors. As a result, the arm is able to counteract the force of
gravity (i.e. it does not fall down), but with not negligible
oscillations that were not present in the previous case. Nev-
ertheless, this problem is not related to the model estimation
performed by IMLE, as the accuracy of the estimation is the
same for both contexts, as proven by the results shown in
Section V-A. On the contrary, the oscillations are caused by
the current implementation of the low-level torque control
on the iCub. Indeed, our investigations show that when a
relatively high load is added on the hand (e.g. context ci,
robot grasping a bottle) the controller is not able to follow the
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Fig. 6. Measured (solid blue line) and desired (dashed red line) joint torque
during gravity compensation control with context cg, for each joint of the
right arm. The controller output (thin solid green line) is also plotted.

torque reference accurately, especially in the three coupled
joints of the shoulder. A new version of the controller, that
includes friction compensation and a better computation of
the shoulder joints decoupling, will be released soon by the
iCub software developers, and it will allow accurate control
also with high loads.
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Fig. 7. Measured (solid blue line) and desired (dashed red line) joint
position during gravity compensation control with context c1, for each joint
of the right arm.



Measured and desired joints torque (and control input)
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Fig. 8. Measured (solid blue line) and desired (dashed red line) joint torque
during gravity compensation control with context c1, for each joint of the
right arm. The controller output (thin solid green line) is also plotted.

VI. CONCLUSIONS AND FUTURE WORK

We presented a novel approach to learn incrementally the
dynamic model of a robot in different dynamic contexts. We
do not make any assumption about the kinematics and dy-
namics of the system, about the number of different contexts
that will be experienced, and about how these contexts will
change the system dynamics. Also, context switch is not
signaled to the learning algorithm: the multi-valued mapping
is estimated from an online stream of unlabeled data.

We report results obtained on a real robotic platform, the
iCub humanoid robot, in which we accurately estimate a
multi-valued model of the arm dynamics in two different
contexts: the arm without any additional load (empty hand)
and while the hand is grasping a 33cl bottle filled with
water. Then, we provide preliminary results on the use of
such learned model for Computed Torque control under
the different contexts, in particular for the case of gravity
compensation (i.e. keeping the arm in position while coun-
teracting the force of gravity).

Although the model estimation is equally accurate for both
contexts, the controller performs better with one of the
contexts, with respect to the other: this is related to the
current implementation of the iCub low-level torque control,
that cannot deal very efficiently with high loads.

Therefore, the next step is to test our system with an
improved version of such controller, that is going to be
released soon, and to use the learned model for tracking
more complex trajectories than the simple one we used in
the reported experiments.
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