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A B S T R A C T

Re-Identification is the problem of associating identities to detections of peo-
ple over a network of cameras. Occlusions, changes in illumination condi-
tions, different camera settings, view angles and pose, are visual contingen-
cies that contribute to make re-identification a challenging problem in video-
surveillance systems, specially in camera networks with non-overlapping fields
of view. A practical re-identification system requires several components: per-
son detection, feature extraction, classification and finally tracking across cam-
eras. For the evaluation and deployment of the algorithms, suitable datasets,
evaluation metrics and data presentation formats are needed.

In this work the re-identification problem is addressed in many perspec-
tives. We propose novel methods for (i) dealing with failures and errors in
detection; (ii) feature extraction using semantic body part segmentation; (iii)
classification using Multi-View optimization techniques; (iv) temporal inte-
gration by window-based classifiers; (v) evaluation and data presentation for
automated systems; (iv) and inter-camera tracking using a Multiple Hypoth-
esis Tracker. The presented methodologies are evaluated in several datasets,
including a novel high-definition dataset developed in-house, with applica-
tions to re-identification in camera networks.

With the aim of fully automating the re-identification procedure, it was pro-
posed the integration of pedestrian detection methods with the classification
stage of re-identification, and an evaluation of the issues arising from that
integration was performed. In particular a false positive class was trained to
tackle the false positives arising from the detection stage. For feature extrac-
tion, the effect of detecting and dividing the human body in semantically
valid parts, such as dividing by the waist, or legs, torso and head, was evalu-
ated. Extracting features from these local regions produces richer descriptors
of person’s appearance and increases recognition results consistently. For clas-
sification, a Multi-View semi-supervised optimization formulation was used,
which integrates in a principled way several features (called views). The stated
formulation allows for an optimal closed form solution which assures a fast
learning. The semi-supervised aspect of the algorithm is well suited to the re-
identification problem, where typically there are few labeled samples and a
large number of unlabeled samples. To enhance performance of any single-
frame classifier, a window-based wrapper for the classifier was proposed,
that filters classification results according to the temporal coherence of pedes-
trian appearances. Finally, for inter-camera tracking the Multiple Hypothesis
Tracker was used that keeps in memory multiple probable states of the world,
which allows the tracker to update its belief based on both past and new infor-
mation, being able to actually correct previous tracking association mistakes.

This work spans multiple facets of the video-surveillance problem, with a
strong focus on autonomy and usability, thus strongly contributing towards
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the wide applicability of re-identification systems in practical real-life scenar-
ios.

Key-words: Re-Identification, Pedestrian Detection, Camera Networks, Video
Surveillance, Inter-camera Tracking
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R E S U M O

Re-identificação consiste em fazer seguimento das pessoas entre cameras. É
um problema ainda em aberto devido à grande variabilidade da aparencia
das pessoas nas imagens de diferentes cameras (e até na mesma camera).
Oclusões, diferenças de iluminação, diferenças na pose, diferenças no balanço
das cores de cada camera, diferenças no ângulo de visionamento da camera
e às vezes mudança de roupa das pessoas, são tudo coisas que dificultam a
re-identificação.

É um problema interessante pois o número sempre crescente de cameras de
video-vigilância existentes hoje já ultrapassa a capacidade de monitorização
dos seguranças humanos. Não só é uma aplicação necessessária na segurança,
mas também potencia todo um leque de outras aplicações tais como espaços
inteligentes, video-jogos, pesquisa sobre as actividades das pessoas no dia-a-
dia.

Neste trabalho abordam-se todos os estágios da re-identificação, desde a
detecção de pedestres, passando pela classificação dos mesmos, e finalmente
fazendo seguimento entre cameras. Propôe-se um método de extração de
caracteristicas locais das pessoas baseado na detecção das partes do corpo.
Confirma-se que a extração local de características aumenta a performance
da re-identificação. Utiliza-se um classificador semi-supervisionado chamado
Multi-View para aproveitar o grande número de imagens não identificadas
que existe neste meio. Explora-se a coerência temporal das pessoas nas ima-
gens de video para aumentar a performance. Propõem-se estratégias para li-
dar com os problemas que advêm de se ter detecção automática de pedestres.
Tais como um filtro de detecções parciais e uma classe para a classificação
de falsos positivos. Propôe-se também metricas de avaliação do sistema inte-
grado para correctamente medir o impacto das falhas de detecção que não
são consideradas no estado-da-arte da re-identificação. Por fim apresenta-se
os resultados de uma forma inovadora que poupa no tempo de visionamento
do utilizador.

Testou-se os variados algoritmos em várias bases de dados de imagens.
Com este trabalho, de aplicação geral, espera-se que a re-identificação se torne
uma realidade prática num futuro próximo.

Palavras-chave: Re-Identificação, Detecção de Pedestres, Rede de Câmeras,
Video Vigilância, Seguimento entre Câmeras
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There is an uncertainty relationship between truth and clarity.

— Niels Bohr
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1
I N T R O D U C T I O N

In this work the problem of re-identification of people in camera networks
is addressed (see Figure 1). Given a set of pictures of previously identified
persons, a practical RE-ID system must locate and recognize such people in
the stream of images that flows from a camera network, past or present.

... Gallery
set

Probes

Figure 1: A typical re-identification algorithm is based on a gallery set: a database
that contains the persons to be re-identified at evaluation time. People de-
tected in other images (probes) are matched to such database with the intent
of recognizing their identities. Classically, re-identification algorithms are
evaluated with manually cropped probes. In this work, instead, we study
the effect of using an automatic pedestrian detector to propose probes.

Most works define re-identification as matching pedestrian images only
from different cameras with non-overlapping fields of view [19, 22, 74, 77, 26,
132, 85, 122]. Some works define re-identification allowing the matching to
happen also for images in the same camera [91, 69, 49, 108]. The problem also
has many manifestations in other application domains. For instance:

• In the field of tracking, a similar problem is known as “re-acquisition”
[76] when the aim is to associate a target (person) when it is temporarily
occluded during the tracking in a single camera view. However, in track-
ing the association is of targets in contiguous time and space, and the
more general re-identification can have the targets separated by large
time scales and image positions;

• In a human–robot interaction scenario, solving the re-identification prob-
lem can be considered as “non-cooperative target recognition” [70], where
the identity of the interlocutor is to be maintained, allowing the robot
to be continuously aware of the surrounding people;
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2 introduction

• In larger distributed spaces such as airport terminals and shopping
malls, re-identification is mostly considered as the task of “object as-
sociation” [54, 88] in a distributed multi-camera network, where the
goal is to keep track of an individual across different cameras with non-
overlapping field of views.

In this work, re-identification is defined as undeniably linked to an iden-
tification phase where the association of some images to identifying labels
was done through some proper high-confidence method, such as strong bio-
metrics (e.g., fingerprint, retinal scan, face recognition) or through the presen-
tation of an unique ID card, i.e., at a controlled entrance where those initial
images could be taken, or even by manually labeled after human inspection.
These identified images form a gallery, that are the basis against which the
non-labeled images called probes are re-identified.

Video surveillance cameras are now ubiquitous in most malls and in some
city streets as well (i.e., over half a million cameras in London [93]). Typ-
ically, these images are inspected by human operators to detect abnormal
events in the video streams. The classical application for RE-ID is then video
surveillance for security in large commercial spaces like shopping centers or
office buildings. Other applications of RE-ID lay in smart spaces, such as in-
telligent office buildings, which require the detection and identification of its
occupants in order to control the environment intelligently, e.g., change the
background music, illumination style and temperature given the rooms’ occu-
pants’ preferences. Re-identification algorithms also enable tracking systems
to link person’s trajectories across multiple cameras in a network. This ability
is essential to support research in several other fields, e.g., modeling activities,
mining physical social networks and human-robot interaction.

Most of the practical applications of a RE-ID system can be formulated by
the following three queries to the system (also listed in Table 1):

• “Q1: Who is X?” In this query the input is a bounding box (cropped im-
age) containing an unknown person (a probe sample X), and the output
should be the ID of the person as stored in the gallery;

• “Q2: Where is John?” In this query the input consists of the ID of the
desired person (John), video sequences, possibly from multiple cameras,
and the output are sub-sequences of the video-clips containing John;

• “Q3: Where else is X?” In this query the input is a bounding box contain-
ing a person, video sequences, possibly from multiple cameras, while
the output are sub-sequences of the video-clips containing the person
X.

To tackle the mentioned applications one possible architecture for re-identi-
fication is illustrated in Figure 2. It is composed of several stages:



introduction 3

Input Output

Q1 : Who is X (test sample) Bounding Box Person ID

Q2 : Where is John (train sample) John ID, Video Sequences Video-clips with John

Q3 : Where else is X (test sample) Bounding Box, Video Sequences Video-clips with X

Table 1: Typical Re-Identification questions to address: (Q1) Given a bounding box
containing a person output its ID; (Q2) Given a person ID, and some video
sequences where to search, output video-clips containing images of that per-
son; (Q3) Given a bounding box containing a person, and some video se-
quences where to look, output video-clips containing images of that same
person.

• People must be identified at some point before re-identification can be
enacted, either by some hard biometric sensor or some uniquely iden-
tifying card. Thus images of people are associated with their identifica-
tions creating a gallery of identified people (upper block in Figure 2).

1. People must be extracted from the camera views (in Figure 2b), either
by manual or automatic means;

2. Distinctive features need to be extracted from the individuals to discrim-
inate between them (in Figure 2c);

3. Individual detections are then matched against the gallery (also in Fig-
ure 2c); and finally

4. Re-identified individuals can be tracked over the camera network (in
Figure 2d).

Figure 2: A possible general architecture of the automated Re-Identification prob-
lem is presented here. It presents the major components used in a re-
identification system.
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1.1 challenges of re-id

Re-Identification is a challenging problem with several inherent difficulties.
A wide range of people’s body motion and poses, self-occlusions, occlusions
by others, and possibly even changing clothes make the recognition problem
already quite challenging by itself (see Figure 3). When the different opto-
electric characteristics of distinct cameras and the different possible viewing
angles and distances are taken into consideration, re-identification becomes
even more challenging. In fact, all this is known to cause images of the same
person to sometimes be more different than images from two separate people.

Figure 3: The problems of different camera color balance, different illumination, dif-
ferent camera angle, different pedestrian pose and different person attire
are illustrated in this figure. Between the two figures in the left one can
observe different illumination, color balance and pedestrian pose. Between
the right figure and the other two, it can be observed different clothes in
the designated pedestrian.

Another problem is that some features may not be usable in the whole
camera network, or even in certain locations of a camera view. Ideally, a hard
biometric feature such as face recognition would be the principal feature used
in re-identification. It has a high degree of reliability, but requires close-up im-
ages, frontal views and some user collaboration. Therefore, it cannot be used
in most common scenarios. Different features then have to be used in differ-
ent places, given the different sensors available and different geometry of the
view. In most locations today only cameras with moderate resolution are avail-
able, which limits the features that may be used to mostly color and texture.
Even motion is hard to use with uncooperative people in unconstrained en-
vironments. If higher definition cameras are available, or the geometry of the
space allows the cameras to be closer to the faces of the subjects, face recogni-
tion may be employed, and such hard biometrics can then lend confidence to
the “soft” biometrics of clothing color and texture that are used in the rest of
the cameras in the network.

A real system also requires automatic detection of the pedestrians which
leads to a host of issues such as false positive detections, unreliable bounding
boxes, and missed pedestrians – all issues that further hinder RE-ID. Another
issue that follows from the existence of false positives is the lack of confidence
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of the users in the system if it generates many false alarms. But when the sys-
tem is tuned to be more discretionary, rejecting detections that are considered
to be false alarms, some true detections will be discarded as well, leading
to an increase in missed detections. A re-identification system will have to
walk the fine line between false alarms and missed detections. Too many false
alarms or too many missed detections will lead to lack of confidence and thus
rejection of the system by the users. Another part of the system that is chal-
lenging to automate, is the creation and maintenance of the gallery. At the
current time, real-world systems mostly rely on human intervention to do or
at least verify changes to the gallery, which guarantees a strong identification
stage. An automated system will have to manage what was previous man-
ual human intervention. If in a office-space building, the system may have
the possibility of strong identification (by biometrics or identification card),
and then the issue of adding new people to the gallery can be trivial. In an
open-space like a shopping center, a re-identification system can help a hu-
man by automatically re-identifying persons in a gallery. However, since no
real possibility exists for strong identification, weaker methods must be used
to determine if each detection belongs to an existing person in the gallery, or
if this is a new subject to be added. This would be an enhancement over the
current human-managed systems in open-spaces, since at present, maintain-
ing a small gallery of persons of interest (e.g., known thieves) that is updated
very slowly (e.g., when new thefts happen) is what is currently available.

Another challenge lies in the interaction with the user, how to present re-
sults to the user, since human attention span is limited. Typically, re-identifi-
cation has been performed by human operators, that inspect the video feeds
to detect abnormal events and persons of interest. However, human attention
is limited and most often the human operators can not cope with the huge
amount of available information and many abnormal events and persons of
interest may pass unnoticed. This means the full potential of surveillance
systems today is still under-explored. Hence, the use of automatic person
re-identification methods to aid human operators focus their attention on tar-
gets of interest is essential. The simplest way is to present all the frames an
individual was re-identified in. A more sophisticated approach could be col-
lating the contiguous frames in time, and presenting short videos instead. If
the topology of the camera placements is available to the system, it can draw
a probable path an individual took, given the temporal constraints and the
re-identifications in each camera.

The evaluation and performance characterization of RE-ID systems requires
the creation of labeled datasets. Creating a dataset with images that contains
the diversity of situation that may arise in a practical scenario is an issue in it-
self, but they are of the utmost importance to properly benchmark algorithms
and drive the state-of-the-art to higher levels. A dataset needs to be challeng-
ing to properly test the algorithms and highlight their flaws and bottlenecks.
But, capturing video feeds in scenarios of interest and then manually labeling
all persons appearances in the captured images is a costly process. Further-
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more, carefully chosen benchmark metrics are required to properly compare
among different algorithms, specially when automatic detection is used.

1.2 this thesis

In this thesis, I address some of the current challenges in RE-ID systems and
contribute with novel approaches and algorithms beyond the state-of-the-art.

• The person appearance variability was approached, first by improv-
ing the feature extraction process with more relevant local features,
and second, by applying a state-of-the-art semi-supervised classifica-
tion algorithm to the problem of re-identification (see Figure 2c). Finally,
by an over-arching tracking algorithm that is able to correct past re-
identifications and thus ameliorate the issue of people changing clothes
(see Figure 2d).

• System automation was approached by defining an architecture for au-
tomated RE-ID. This architecture includes a pedestrian detection algo-
rithm to automate the detection part of the re-identification pipeline
(Figure 2b). However, such automation also introduces errors (unreliable
bounding boxes, false and missed detections) that were approached in
three ways: first, by a time-filter wrapper for the classifier that eliminates
spurious false positives and re-captures some missed detections; second,
by the development of a module tailored to address the remaining false
positives; and finally, by using a local feature extraction method that
ameliorates the issue of unreliable bounding boxes. Most of the work
in the literature assumes perfect detections and thus is unable to cope
with these issues.

• The issue of system output to the user was approached by presenting
the results as video clips instead of still images, so that the load to the
limited human span is reduced.

• The issue of algorithm evaluation was approached in two different ways.
First, by participating in the development of one of the most complete
and challenging dataset for re-identification to date. The dataset is larger
than most, and contains examples of many of the above mentioned is-
sues, such as many examples of high pedestrian appearance variability
due to different poses, viewing angles, and opto-electric camera charac-
teristics and even cloth changes. Second, more informative metrics were
applied to complement the standard metric used in most of the liter-
ature of re-identification. The standard metric does not highlight the
influence of false positives and missed detections, that must be taken
into account in automated systems.
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1.3 state-of-the-art and a taxonomy of re-identification sys-
tems

Current research activity on re-identification is mainly focused in two areas:
(a) the development of feature representation which properly discriminates
the identities of people, either by manual design or learning from the data
[57? , 73]; and (b) the development of matching methods [104, 131]. However,
to take RE-ID towards practical applications there are many other dimensions
of interest, such as generalization to different scenarios, the way data is pre-
sented to the user, the time span of applications, among others.

Following an extensive review of the literature, a more complete taxonomy
of the state-of-the-art was defined (see Table 2).

The main dimensions identified are described below:
Open vs Closed spaces: One of the dimensions of the taxonomy is how

persons are introduced on the gallery. If the space is closed, there exists a
controlled entry where good quality images can be taken and the identity of
each person is verified. Thus the gallery is created at an identification stage,
prior to re-identification, without any uncertainty in the person identity. For
open scenarios there is no controlled entry and the difficulty level rises, since
any number of new pedestrians may cross the system field of view and thus
the gallery must be maintained dynamically, adding or deleting new entries
as seems necessary at run-time. Errors in the gallery maintenance will be
another issue that will require attention. Only a few works have tackled the
open-space scenario, such as the pioneering work of Gong et al [88], where the
time delayed correlation between camera events is used to aid the matching
between two detections in different cameras. In the present thesis a closed
space scenario is considered.

Manual vs Automatic probe: Another dimension is the way probe images
are selected. Most algorithms in the literature assume it is a human operator
that draws a bounding box around a person in an image to query the sys-
tem for other instances of the same person, but an automatic methodology is
necessary for many real applications, for instance tracking. In the automatic
case, problems like detection failures (false positives or missed detections),
bounding box misalignment’s and partial occlusions must be taken into con-
sideration. Very few works approach the automatic probe case. This thesis
proposes ways to tackle some of the issues that arise from detection failures
[115, 48].

Single-shot vs Multi-shot: Another dimension that categorizes RE-ID algo-
rithms is the use of an in-camera tracker, in which case the query data consists
of more than one image per exemplar (multi-shot), otherwise only one image
will be available per sample (single-shot). This determines if the application
is single-shot or multi-shot. In this thesis results for the single-shot case are
presented. The theory and presented methods can be readily extended to
the multi-shot case. Note that, to the best of the author’s knowledge, works
that do Multi-Shot don’t actually use an in-camera tracker, but just assume
the human operator selects a sequence of contiguous bounding boxes of the
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same person in a time window (or if dealing with a pre-recorded dataset, the
manual annotations provided by the dataset).

Short-term vs Long-term: This dimension represents the time scale in which
RE-ID is computed, that is, the temporal validity of a match between gallery
and probe data. The methods presented in this thesis, as in most of related
work in the literature, are only able to tackle the short-term case (typically
under one day) because clothing color is the feature of election in the state-of-
the-art approaches, and clothing constancy can be expected only in the short
term. Note that except for the pioneering work of Nakajima et al. [98], that
purposely runs a RE-ID experiment over the course of a few days, up to my
knowledge no published work has tried to tackle the Long Term time scale.

Frame-based vs Video-based output: The type of output resulting from a
query (e.g., the queries in Table 1), can be composed of single frames or video-
clips, and this forms another dimension of the problem. When the output
must be checked by a human operator, less time would be spent analyzing a
short video (multiple frames) than analyzing each of the individual frames.
Therefore, a video-based output is proposed as a means to reduce the operator
overload. To the best of my knowledge, the existing works in the literature just
tackle the problem of determining the identity of the probe data, and so don’t
even provide frame output, only a classification for each probe sample.

This dimension of the taxonomy is not standard in the state-of-the-art since
it is related to user interaction issues, that are novel contributions presented
in this thesis, such as the type of output provided to a user. This contribution
brings RE-ID systems closer to actual applications in the real-world.

Probe Scenario Exemplar size Time scale Output

Manual Automatic Open Closed Single Multi Short Long Frame Video

[100, 52, 57, 58, 127, 9, 104, 44]
X × × X X × X × X ×[6, 126, 34, 131, 82, 73, 72, 8]

[78, 94, 83, 3, 46, 86, 116]

[60? , 25, 17, 18, 11, 90]
X × × X X X X × X ×

[129, 102, 120]

[121, 61, 118, 117, 111, 68, 10]
X × × X × X X × X ×

[62, 12]

Nakajima et al. [98] × X... × X × X X X X ×

Gilbert et al. [54] × X... X × × X X × X ×

Gong et al. [88] × X... X × X × X × X ×

Bak et al. [29] × X... × X × X X × X ×

[67, 95] × X... X × × X X × X ×

Dario Figueira et al. [115, 47] X X × X X × X × X ×

Dario Figueira et al. [48] X X × X X × X × X X

Table 2: A taxonomy of the state-of-the-art in RE-ID (see text for the definitions). Note
that all the works of other authors under the Automatic Probe generation
only actually do semi-automatic, using an automatic algorithm to detect
pedestrians which will have unreliable bounding-boxes but then manually
removing all false positives and not dealing with the missed detections. Also
note that many works only tackle the problem of determining the identity
of the probe data (instead of providing frame output), and they have been
classified in the Frame Output class since conceptually they can only show
the user the frames in the gallery database.
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Besides a couple of pioneering works [53, 88], that do correlation analysis
between camera events, and attempt to associate person apparitions in differ-
ent cameras together (instead of attempting to re-identify against a gallery)
most of the standard RE-ID methodologies in the literature only focus on an-
swering Q1 (see Table 1) and work under the assumption of a closed space
scenario (where the input bounding box is manually selected and the selected
person is present in the gallery). They work with manual annotations of a
“short” time scale (both under single and multi-shot approaches) as can be
seen in the first three lines of Table 2. The aim of this work is taking RE-ID sys-
tems to novel application levels, where question Q2 and Q3 (see Table 1) are
of practical relevance. By providing video-based output, instead of individual
frames, it becomes easier for the system operator to perform queries Q2 and
Q3 and obtain relevant results.

The work in this thesis, as indicated by the last couple of lines of Table 2,
encompasses the following dimensions of the proposed taxonomy: (i) both
manual annotation and automatic pedestrian detection for probe generation,
(ii) closed scenario, (iii) single-shot, without a in-camera tracker, (iv) within
the time-frame of a single day, and (v) providing both frame based output
and video-clip based output.

In this section the RE-ID problem was classified in several dimensions and
the works in the state-of-the-art were categorized into those dimensions. These
works will be mentioned again in the next chapters as relevant related work
for each of the proposed methods in this thesis.

1.4 contributions

In this work the problem of RE-ID is analyzed in several aspects. The work
contributes towards the automation of RE-ID systems through the integration
with PD algorithms. This integration must take into account the sources of
errors still present in current pedestrian detection systems (see contribution
1 below). Contributions to deal with high pedestrian variability are proposed
by enhancing the state-of-the-art in feature extraction and classification (see
contributions 2, 3 and 4 below). To alleviate the cognitive load of the RE-ID

operator in a practical surveillance system output is provided in the form
of small video-clips (see contribution 5 below). Finally, contributions to al-
gorithm evaluation were made through the development of a cutting edge
dataset, and the application of complimentary performance metrics (see con-
tribution 6). More concretely, the contributions are enumerated as follows:

1. Several problems arise when integrating PD with RE-ID. First, bound-
ing boxes detected by automatic methods are often misaligned with the
persons boundaries. By using body-part detectors [4] on the detection
windows this problem is alleviated (Section 3.1.1). Second, state-of-the
art automatic detection methods still produce frequent false positive de-
tections. By training a class for the typical false positives in a certain
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environment (Section 3.1.3) RE-ID quality can be significantly improved
(work developed in [115, 48]).

2. To tackle the high variability of human appearance, body-part detection
is also used in Section 3.2 (work developed in [44]). Body-part detection
is applied to the human bounding boxes for local and more relevant fea-
ture extraction (an extension of the works [4, 25]). Bounding-boxes are
thus divided in body parts, to be able to extract features from semanti-
cally meaningful local regions. This obviates the need for background
subtraction and comparative analysis show that it improves results con-
sistently with respect to many works in the state-of-the-art [104, 130, 73].

3. Also to tackle the high variability of human appearance, a state-of-the-
art classifier [105] was applied to re-identification, described in Sec-
tion 3.3.1 (developed in [46]). A semi-supervised Multi-View classifica-
tion algorithm is used to take advantage of all the unlabeled test data
and combine all extracted features. It has an optimal closed form solu-
tion that allows for fast learning. It copes well with small number of
training samples, and the semi-supervised aspect of it is well suited to
the re-identification problem, where it is common to have small train-
ing sets and large number of unlabeled samples. Results in Chapter 4

ground our assertion that this helps tackle pedestrian appearance vari-
ability.

4. To further enhance classification, in Section 3.3.2 a window-based classi-
fier was proposed (developed in [48]). It exploits the temporal coherence
of pedestrian appearances in each camera view, eliminating spurious
mis-classifications by filtering the output from any single-frame classi-
fier. Some missed detections of the detector are also recaptured, when
those missed detections fall between correct re-identifications.

5. The window-based classifier also naturally suggests that output be pro-
vided in the form of video-clips, which alleviate the cognitive load of
users that will review/validate the output (see Section 3.3.3 and [48]).
This is the case since evaluating a small video-clip of a person’s detec-
tions and re-identifications is much faster than doing the same for each
individual frame.

6. Another point of contribution, to deal with the challenge of algorithm
evaluation, was the participation in the development of one of the best
datasets for evaluation of re-identification algorithms (see [116, 47]).
This dataset contains many examples of the issues enumerated above,
such as high pedestrian appearance variability from multiple poses,
viewing angles, occlusions, opto-electric camera characteristics, and even
changing clothes. Additionally, as described in Section 4.4.1, this work
used metrics that complement the evaluation of RE-ID systems when
they are integrated with a PD algorithm (work also developed in [48]).
Metrics are proposed that assess the impact of false positives and missed
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detections in the overall system, and that complement the usual metric
employed by the RE-ID community (CMC curves).

1.5 work structure

Chapter 3 reviews the background and related work relevant to this thesis,
and Chapter 3 goes over the main work of this thesis:

1. in Section 3.1, an architecture for the integration of PD with RE-ID is pre-
sented and methods to address the issues that arise from that integration
are discussed;

2. in Section 3.2, the problem of extracting features for re-identification
from persons’ bounding boxes is addressed. It is proposed the devel-
opment of a semantic division of a pedestrian from where to extract
descriptive features;

3. in Section 3.3.1 it is proposed the use of a semi-supervised formulation
for classification, for RE-ID. The proposed method successfully fuses any
number of different features (Multi-View), and copes well with a small
number of training samples;

4. the enhancement of classification through the exploitation of the pedes-
trians’ temporal coherence in described in Section 3.3.2 that details the
window-based classifier;

5. the novelty of providing output as video-clips, to alleviate te users’ cog-
nitive load is presented in Section 3.3.3;

6. and finally, in Section 4.4.1 a novel metric is proposed to properly assess
the weight of false positives and missed detections in RE-ID.

In Chapter 4 all the results from the comparative work done over the years
is gathered. Finally in Chapter 5, conclusions are drawn, the possible future
work is discussed and a list of the published works is presented.

Finally, Appendix A describes a labeling software that was used and im-
proved on while helping in the creation of the HDA dataset [116]. Appendix B
describes in some detail work on metric learning developed during the early
years of this work but not central to the discussion.



2
B A C K G R O U N D A N D R E L AT E D W O R K

2.1 typical architecture for re-id

In this chapter the RE-ID problem is described in an overall perspective, taking
into account all the modules and functionality required for a high degree of
autonomy in video surveillance systems. One possible overall architecture of
an automated re-identification problem is presented in Figure 2. Every RE-ID

system is based on a gallery set and a probe. A gallery set is composed by
images or sequences of images from a person to be recognized across the
cameras of the network. The probe is an image of a person to be re-identified
against the gallery images.

A gallery set is either acquired off-line or online. In the off-line version
people are registered to be allowed to enter the space. In the online version the
gallery is updated as people enter and exit the system. In the online version
we can also distinguish between closed-spaces, where the gallery examples
are acquired at special access points in the camera network, and open-spaces,
where the gallery examples are acquired at any point.

Concerning the detection stage (Figure 2b), at runtime, persons are detected
from the camera network’s images. Detections are usually represented as
bounding-boxes around the persons’ images and can be obtained either by
the system’s operator manual intervention or automatically, by pedestrian de-
tection algorithms or background subtraction methods. The process of RE-ID

then consists in associating runtime person detections to the gallery exam-
ples. Analysis can be done at individual frames (single-shot) or with multiple
frames from tracks within the same camera (multi-shot). Analysis is typically
performed looking at several features extracted from the persons bounding
boxes, e.g., color, shape, texture, or motion. These features are then associated
to examples in the gallery through appropriate classifiers. Classifiers range
from as simple as NN to more complex supervised or semi-supervised meth-
ods. Finally the classified pedestrians are tracked throughout the camera net-
work exploiting as much as possible the constraints in the network topology
and human motions, e.g., via Multiple Hypothesis Tracking (MHT).

In the following section are described in more detail the most important
components necessary for real-world applications, which encompass some of
the challenges tackled in this thesis.

12
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2.2 components for re-id

2.2.1 Pedestrian Detection

Previous to enacting re-identification, pedestrians must be detected. Pedes-
trian Detection is a subject that has drawn much interest and is rich in the
literature. The work available ranges from part-based detectors, which explic-
itly model the articulation of the human body (see [43, 103]), to monolithic
detectors (see [31, 39, 20]), which associate one descriptor to one detection
window.

In the beginning of this work a target detection algorithm by Boult et al. [21]
was used to detect each pedestrian. But, given the difficulty of the pedestrian
detection problem, and the desire to use “clean” (perfect) detections, manu-
ally annotated people detections was later used for the majority of this work.
However, in the last stage of this thesis, an automatic pedestrian detection
algorithm [114] was used, to, as already mentioned, study the effects of using
not-perfect detections as input to the RE-ID algorithms. The issues were eval-
uated and some solutions to circumvent the errors were proposed [115, 48]
(further details in Section 3.1).

At this point an in-camera tracker can be used to associate detections pre-
vious to the classification. If one does so, many images will be available per
exemplar at the classification stage (multi-shot situation) allowing for more
features to be extracted, averaging out noise, or even automatically picking
images that seem to be the cleanest [120]. If no in-camera tracking is used,
only one image per exemplar is available (single-shot situation).

2.2.2 Features

To perform re-identification it is needed to have selective and consistent fea-
tures to be able to reliably distinguish different persons in a systematic way.
The issue of manually designing the features or learning from the data which
features are distinctive arises at this point. This is richly addressed in the lit-
erature (e.g., [9, 2, 17]). One can manually design/choose a feature (e.g., HSV

histograms) to be used, or have several feature channels and combine/weight
them in some fashion [42, 25], or attempt to determine for each test sample
which features best describes it (e.g., texture feature for a patterned shirt wear-
ing person) and then use that feature in the classification stage [81].

The well know color features Hue-Saturation-Value histogram (HSV) and
Lightness color-opponent histogram (Lab) have been the most widely used
features in recent work. This happens because the majority of works address
short term RE-ID scenarios where clothes color distribution is an important
feature. HSV’s color space is a more intuitive way to describe color than Red
Green and Blue color model (RGB). Lab’s color space was developed to be
more perceptually relevant since small changes in human color perception
match small changes in the Lab color space. Texture features like Local Binary
Patterns (LBP) [2], Maximum Response Filter Bank (MR8) [75, 109], Gabor fil-
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ters and Schmidt filters have also been used in re-identification [104], since
for some pedestrians with textured appearance texture features are more ap-
propriate than only color. LBP describes texture by means of patterns of rel-
ative brightness of pixels surrounding a central pixel. Gabor filters[50] were
designed to detect edges. They are the result of a complex exponential mod-
ulated by a Gaussian window and subjected to scaling and rotation. Schmidt
filters[110] are rotational invariant filters, designed to detect local maxima and
minima of brightness. MR8 collects a set of 36 “Gabor-like” texture filters tak-
ing the maximum over many of them in such a fashion that MR8 is reduced
to 6 edge detection texture filters invariant to rotation, plus 2 Schmidt-like
filters – one for detecting maxima and one for detecting minima of brightness.
Kovalev et al. [71] proposed the color co-occurrence correlogram. Hamboun
et al. [60] applied Speeded-Up Robust Features (SURF) to re-identification, and
Teixeira et al. [117] chose Scale Invariant Feature Transform (SIFT) to tackle
this matching problem. A review of the literature provides the impression
that texture is important for re-identification, but color still does the brunt of
the work when discrimination people’s appearance.

Of special note is Liu et al. [81] and Layne et al. [72]. Liu et al. employed
a dynamic feature selection, using the feature type that works best for each
kind of pedestrian clothes. The training set images are clustered based on the
feature type (color or texture) that best discriminates among exemplars. For
instance, the cluster of a texture feature contains people with very textured
clothes like checkered shirts and the cluster of a color feature contains peo-
ple with brightly colored clothes. Then at run-time, the incoming test image
is mapped to the closest cluster, and the image is described with the corre-
sponding feature. In that work only one feature vector per cluster is used,
containing the feature that work best for each cluster. Layne et al. trained se-
mantically human understandable attributes that are quite transferable across
datasets. While the absolute performance gains from these initial works are
not tremendous, the generalization properties they display are of great inter-
est.

2.2.3 Feature Extraction

Not only which features to extract are important, but also from where in a detec-
tion bounding box is an issue up for research. The simplest way is to extract
uniformly from the whole person image. When one realizes most images are
of upright people (denominated pedestrians) and that their appearance varies
most in the vertical dimension, a step further can be taken by dividing the
pedestrian in horizontal stripes and extracting features accordingly [104].

For feature extraction, other works can also be adopted, such as Feltzenswalb
[55] body-part detectors, or Pictorial Structures (PS) body part detectors [4].
Other works that don’t extract features from semantically valid image regions
usually divide the person detection bounding box in six horizontal stripes and
extract features accordingly [130, 104]. This does not provide the best results
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compared to body-part detection, but is still useful when comparing different
classification algorithms.

2.2.4 Classification

Once features have been extracted from the image and descriptors of the de-
tect people created, classification must be performed to associate the detection
to the persons’ information contained in the gallery. This is a rich field in the
literature where we find many works using NN by direct distance minimiza-
tion [79, 125, 100], while others use SVM or SVM-like approaches [8, 119, 104],
and many other different classifiers abound in the literature.

Some works have empirically integrated different feature types using weigh-
ted average to join the output of different features [42, 25]. Others have con-
catenated several feature types [131, 81, 129], and relied on the classifier to
exploit the information present on the different features.

The classification stage of RE-ID is rich with alternatives in the literature,
either through learning or by simple direct distance minimization ([56, 79,
106, 9, 100, 111]). Distinct from his peers, Zheng et al. [131] learns a relative
distance metric. Instead on focusing on minimizing the intra-class distance
and maximizing the inter-class distances, he computes a metric such that,
given triplets of images containing two images of one person and an image
of a different one, the distance between images of different people is greater
than the distance between images of a same person.

Still in the classification stage of re-identification, of special note is Tamar’s
work [8], that trains a SVM binary classifier to distinguish positive pairs (two
concatenated feature vectors from a pair of images of a same person) from
negative pairs (concatenated feature vectors of images pairs of different peo-
ple), with comparable results to the state of the art. Although the performance
is not significantly better than the other works in the state of the art, the
method warrants notice for being such a simple and successful application of
a known classifier.

In this thesis a classification approach that trains one classifier per feature
(called “view”) was applied [46]. This approach exploits the fact that some
features outperform the others in some parts of the training data. It uses this
higher performance to improve the re-identification performance of the other
feature types in those same parts of the data. It is also a semi-supervised tech-
nique, allowing the exploitation of the many unlabeled data usually present
in re-identification. In the next chapter it is demonstrated that this strategy
achieves higher classification performances than many state of the art classi-
fiers.

It is worth noting that given the high difficulty of the RE-ID problem in
general, the classifier algorithms rarely give binary hard classifications, but
instead output ranked lists or probability values for each gallery entry for
a given probe sample. This can later be exploited when applying temporal
filters and inter-camera tracking.
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2.2.5 Tracking

Finally after pedestrians have been detected and classified the final goal can
be accomplished: tracking people across the camera network.

At this level the topology of the network can be exploited. The map of the
network can be manually defined or learnt automatically [53]) to allow for
the exploitation of temporal constraints of pedestrian apparitions in different
cameras. Because a pedestrian can’t be in two cameras at the same time, the
tracking stage will disregard or even correct some mistakes of the classifica-
tion stage. Combining the tracking and classification stages will improve the
overall performance. However, the errors from the tracking stage must also
be deal with.

One baseline in tracking across multiple cameras is Maximum a Posteriori
Tracking [65] (defined in [14]). A few other RE-ID works have exploited the
temporal statistics of people moving from camera to camera [54, 88].

2.3 evaluation of re-id algorithms

2.3.1 Datasets

During the development and evaluation of RE-ID algorithms it is essential to
rely on a properly annotated dataset (a survey of the most relevant datasets
for RE-ID is done below). Datasets typically include the location and identity
of persons on the camera network images, annotated by humans, that can be
used as “ground truth” to evaluate the accuracy of the developed algorithms.
The minimum required is a dataset composed of cropped images of people
annotated with their respective identifications. If the dataset also makes avail-
able from which camera each image is provenient, it is possible to guarantee
that the gallery images come solely from some cameras and the probe im-
ages solely from other cameras. The availability of synchronized video data
instead of unordered frames allows the exploitation of temporal constraints to
reduce complexity in the classification stage [88]. As further developed in this
thesis, temporal constraints significantly improve the performance of RE-ID

algorithms. Also, an unique dataset was developed in-house that provides
synchronized video data [116]).

Datasets most commonly offer rectangular images of pedestrians cropped
from a bounding box. This raises the issue of unwanted background. Each
bounding box will contain some amount of background that it is assumed to
be uncorrelated with each persons’ appearance, and therefore unwanted. If
the dataset provides foreground masks, this issue is sidestepped. When the
video data is provided in the dataset, some kind of background subtraction
may be used prior to feature extraction. Otherwise, algorithms such as body-
part detection may still be applied and features may be extracted only from
these local regions in the pedestrian image. What was used in the course of
this work is detailed below in Section 2.2.1.
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Here it’s described several datasets that have been developed over the years,
and that will be used in this thesis experiments. Table 3 offers a comparison
of the datasets’ relevant parameters, and they are described in more detail
below:

ethz4reid
1 This dataset presented in [112] was created from the more gen-

eral ETHZ dataset [40]2. It is composed of cropped images from 3 video
sequences, captured by a single head-height moving camera. With more
than 7500 images of about 150 pedestrians, it provides the notable chal-
lenge of occlusions and illumination changes, while having very little
pose variation.

Figure 4: Sample images from the ETHZ dataset. It contains a lot of images of each
pedestrian from a single camera view at head level, in a city street.

viper
3 It presents the challenges of different poses, viewpoints and lighting

conditions. This dataset was presented in [58] in 2008. It remained one
of the most challenging single-shot dataset up until 2013 when the HDA
dataset [116] was released. It contains only 2 images of 632 people, each
in a different pose.

Figure 5: Sample images from the VIPeR dataset. It has only two images for each
pedestrian, from two distinct cameras, in an outdoors environment. Almost
all pairs have the respective pedestrian in different poses, facing different
directions with about a 90º different angle.

ilids4reid This dataset is composed by 476 images of 119 people. It was
presented in [127] and built from the iLIDS Multiple-Camera Tracking

1 ETHZ4REID downloadable at http://homepages.dcc.ufmg.br/~william/datasets.html
2 ETHZ downloadable at https://data.vision.ee.ethz.ch/cvl/aess/dataset/
3 VIPeR downloadable at http://vision.soe.ucsc.edu/node/178

http://homepages.dcc.ufmg.br/~william/datasets.html
https://data.vision.ee.ethz.ch/cvl/aess/dataset/
http://vision.soe.ucsc.edu/node/178
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Scenario, which was captured in a busy airport hall. The notable chal-
lenges it presents are the presence of occlusions and large illumination
changes.

Figure 6: Sample images from the iLIDS4REID dataset. It contains a few images of
each pedestrian from up to two different camera views in an airport.

caviar4reid This dataset was made with images extracted from the more
general CAVIAR dataset4. It was presented in [25], and it includes the
views of two cameras in a shopping center, with overlapping field of
view at 90◦ angle. It contains 10 images per camera per individual of
50 persons and 10 more images per person of 22 pedestrians that only
appear in one of the cameras.

Figure 7: Sample images from the CAVIAR4REID dataset. It contains a ten images of
each pedestrian from each camera, from up to two cameras in a shopping
center with very low resolution.

3dpes
5 This dataset was presented in [13], and was the first re-identification

dataset with more than 2 cameras. It contains images from 8 fixed cam-
eras with non-overlapping fields of view, of 200 different people, with a
small and variable number of detections per person (1000 in total).

prid2011
6 Created in co-operation with the Austrian Institute of Technol-

ogy, presented in [63], it gives us two camera views from above of pedes-
trians walking in the street. 200 pedestrians were captured by both cam-
eras, and over 700 other people were only captured by one or the other

4 CAVIAR downloadable at http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
5 3DPeS downloadable at http://www.openvisor.org/3dpes.asp
6 PRID2011 downloadable at http://lrs.icg.tugraz.at/datasets/prid/

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
http://www.openvisor.org/3dpes.asp
http://lrs.icg.tugraz.at/datasets/prid/
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Figure 8: Sample images from the 3DPeS dataset. It contains some images from up
to eight different camera views in a college campus environment.

camera. All pedestrians have at least 5 cropped images and some have
many more (up to 80).

Figure 9: Sample images of a single person from the PRID2011 dataset. It contains
many images of each pedestrian, from two camera views looking at a street
crossing.

ilids-ma
7 Two datasets were presented in [12], this one and iLIDS-AA. This

dataset contains 40 people, each with 42 manually annotated images,
was also recorded in an airport hall.

ilids-aa
7 This companion dataset, also presented in [12], is similar to iLIDS-

MA. It has a variable number of images for each of its 100 people (10500

in total). These images are not manually annotated, but instead cropped
with a background subtraction algorithm, yielding the notable challenge
of pedestrian detections with non-centered bounding boxes.

ilids-vid
8 This dataset was recently presented in [120] and was also built

from the iLIDS Multiple-Camera Tracking Scenario. It contains 43’800

cropped images of 300 people visible from two cameras.

7 iLIDS-MA and AA downloadable at http://www-sop.inria.fr/members/Slawomir.Bak/

gpEasy/DataSet

8 iLIDS-VID downloadable at http://www.eecs.qmul.ac.uk/~xz303/downloads_qmul_

iLIDS-VID_ReID_dataset.html

http://www-sop.inria.fr/members/Slawomir.Bak/gpEasy/DataSet
http://www-sop.inria.fr/members/Slawomir.Bak/gpEasy/DataSet
http://www.eecs.qmul.ac.uk/~xz303/downloads_qmul_iLIDS-VID_ReID_dataset.html
http://www.eecs.qmul.ac.uk/~xz303/downloads_qmul_iLIDS-VID_ReID_dataset.html
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Figure 10: Sample images of a single person from the iLIDS-MA dataset. It contains
many images of each pedestrian, from two camera views.

Figure 11: Sample images of a single person from the iLIDS-AA dataset. It contains
many images of each pedestrian, from two camera views in an airport,
with the notable challenge of automatically generated unreliable bounding
boxes.

hda
9 The most notable re-identification dataset, developed in Vislab-Lisbon
[116]. It is a dataset of 18 cameras with almost no overlapping fields
of view. It contains a large and variable number of detections per each
of its 85 persons (over 64’000 in total). With the notable characteristic
of including high-definition images from 11 of the 20 cameras – one 4

mega pixel camera (2560× 1600 resolution), and ten 1 mega pixel cam-
eras (1280× 800 resolution) – and one over-head camera. The presence
of harsh illumination changes, very large scale changes (due to the HD
cameras), severe occlusions, the fact that several subjects change clothes
from one view to the next (i.e., put on jackets), and the presence of one
over-head camera make it one of the most challenging re-identification
datasets up to date. The label set is very complete and includes pedes-
trians with large occlusions that no algorithm to date is able to detect,
but this provide a very complete and challenging benchmark set for the
current and yet to come person detection and re-identification systems.

9 You can request to download HDA at vislab.isr.ist.utl.pt/hda-dataset/

vislab.isr.ist.utl.pt/hda-dataset/
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Figure 12: Sample images of a single person from the iLIDS-VID dataset. It contains
many images of each pedestrian, from two camera views in an airport.

2.3.2 Evaluation Metrics

The standard metric for Re-Identification (RE-ID) evaluation is the Cumulative
Matching Characteristic curve (CMC), that shows how often, on average, the
correct person ID is included in the best r matches against the gallery set for
each probe image. However, since the CMC computes the average re-identification
rate for the probes evaluated, it ignores by design the Missed Detections (MDs)
introduced by the Pedestrian Detection (PD) algorithm. This implies that other
metrics should be used to complement the CMC when evaluating and inte-
grated detection and classification system.

In other fields such as object detection and tracking, precision and recall
metrics are used to evaluate the algorithms10. Recall encodes how many rele-
vant samples were recovered by the system. Precision encodes how many of
the recovered samples were relevant. In this work these metrics are adapted to
evaluate the integrated detection and classification system (see Section 4.4.1).

10 Such as in the iLIDS dataset’s user guide: http://www.siaonline.org/SiteAssets/Standards/
PerimeterSecurity/iLidsUserGuide.pdf

http://www.siaonline.org/SiteAssets/Standards/Perimeter Security/iLids User Guide.pdf
http://www.siaonline.org/SiteAssets/Standards/Perimeter Security/iLids User Guide.pdf
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Figure 13: Sample images from the HDA dataset. It contains many images of very
different scales, from VGA up to 4MPixel cameras. From up to thirteen
different camera views in a office space environment. It includes the no-
table challenge of changing apparel.
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Name #CA #SE #FR #BB #PE Max. Res. Main DC SV

Applications

ETHZ4REID [40] 1 0 0 8580 146 453×226 (C) RE-ID - -

VIPeR [58] 2 0 0 1264 632 128×48 (C) RE-ID X ×
iLIDS4REID [127] 2 0 0 476 119 304×153 (C) RE-ID × ×
CAVIAR4REID [25] 2 0 0 1220 72 384×288 RE-ID X ×
3DPeS [13] 8 0 0 605 199 280×141 (C) RE-ID × ×
PRID2011 [63] 2 0 0 94988 934 128×64 (C) RE-ID X ×
iLIDS-MA [12] 2 0 0 3680 40 589×294 (C) RE-ID X ×
iLIDS-AA [12] 2 0 0 10329 100 118×238 (C) RE-ID X ×
iLIDS-VID [120] 2 0 0 43800 300 128×64 (C) RE-ID X ×
HDA [116] 13 13 75207 64028 85 2560×1600 PD, RE-ID, X X

Tracking

Table 3: Main characteristics of the surveyed data sets. I compare the number of cam-
eras in the dataset (#CA), the number of video sequences (#SE), the number
of video frames (#FR), the number of person bounding box labels (#BB), the
number of person identity labels (#PE), the maximum video resolution avail-
able, and the main application envisaged for the data set. Data sets whose
number of video sequences is 0 are composed of independent photographies.
Data sets providing cropped images instead of full frames are indicated with
0 in the number of frames. In these cases the maximum resolution refers to
the size of the cropped images and is followed by symbol (C). None provide
foreground pixel masks. Finally it is noted if the dataset gives information
of from which camera each image is provenient under DC and if it gives
synchronization information between cameras (SV).
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R E - I D E N T I F I C AT I O N I N C A M E R A N E T W O R K S

This chapter presents the solutions developed during the thesis towards the
improvement of re-identification systems. First we look at the integration of
automatic pedestrian detectors [114, 55]) that hamper RE-ID, when both are in-
tegrated. with RE-ID algorithms. The following goal is to describe the advances
in descriptor extraction and features, proposed in this work. Afterwards, de-
scribe the advanced Multi-View classification algorithm. Finally, expound the
novel metrics proposed to properly access real-world RE-ID systems.

3.1 integration with pedestrian detector

For almost all Re-Identification (RE-ID) algorithms in the state of the art, the
data for the RE-ID problem is provided in the shape of hand-cropped Bounding
Box (BB), rather than in the shape of full image frames. Such BBs are centered
around fully visible, upright persons, and the focus of the RE-ID algorithms
is on the feature extraction and BB classification. This means standard RE-ID

state of the art works assume perfect pedestrian detection.
However, the purpose of an automated RE-ID system is that of re-identifying

people directly in images, without requiring manual intervention to produce
the BBs. [12] is one of the few works to have performed re-identification with
not-manually-cropped person images. Here the authors use a background
subtraction method to create the bounding boxes, but then manually pick
which BBs to use, only addressing the issue of unreliable bounding boxes, and
not the false positives and missed detections. Methods that actively integrate
pedestrian detection and re-identification, or works that propose metrics to
evaluate integrated RE-ID systems are even scarcer in the literature.

The works that relate the most with this part of this thesis are [95] and [67].
In [95], the system’s full flow (i.e., pedestrian detection and re-identification)
is presented with a transient gallery to tackle open scenarios. They use RGB-
D data, that with the current technology has a range limit of 5 meters, which
may be limiting in some environments, and only employ one camera, attempt-
ing to recognize the same pedestrian in several passes in front of the camera.
In [67] an approach that integrates PD and RE-ID is presented, using infrared
images from the CASIA Gait database [33].

However, in those works, the performance is evaluated on the overall sys-
tem, not being possible to ascertain the impact of integrating each constituent
part in the system. Furthermore, important issues such as how re-identification
performance is penalized when pedestrian detection or tracking failures exist
are not evaluated. One goal of this work is precisely to investigate how to en-
hance the link between pedestrian detection and re-identification algorithms
to improve the overall performance.

24
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Figure 14: The Person Classification block seen in Figure 2 is here expanded to high-
light the novelties to the proposed re-identification system architecture.
First, the bounding boxes provided by the pedestrian detection stage are
optionally processed by the Occlusion Filter (gray block on the left) that
discards occluded samples (samples under occlusion with over a threshold
of occlusion). Then, body-part detection is ran in the provided bounding
boxes (as can be seen just right of the Occlusion Filter) so features are
extracted from those local regions. The Single frame Classifier block repre-
sents any classification algorithm that takes features and classify them into
people classes. Here, the second gray block represents an additional class:
a class to model the false positive samples, can be used by the classifier.
This deals with the spurious false positive detections that inevitably ap-
pear with an automatic person detector. The window-based classifier (the
dashed line that encompasses the single frame classifier) then takes the
classifications, and if there are enough positive re-identifications in one
or more temporal windows, outputs a video-clip with the combination of
such windows.
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Integrating PD and RE-ID poses several challenges. Detecting people in im-
ages is a hard task, in fact even the best detectors in the state of the art are
subject to the production of at least two types of errors: False Positive (FP) and
Missed Detection (MD). Such errors have a direct impact on the performance
of the compounded system, that is, FPs generate BBs which are impossible for
the system to correctly classify as one of the persons in the galley set. MDs, on
the other hand, cause an individual to simply go undetected, and thus, un-
classified. Even the correctly detected persons may give rise to the following
difficulties: (1) the PD algorithm can generate a BB not centered around the
person or at a non-optimal scale – this might hinder the feature extraction
phase, prior to the classification, (2) the detected person may be partially oc-
cluded, yet again hampering feature extraction, and finally (3) there can be
the case of detecting people who are not part of the RE-ID gallery set, posing
an issue similar to that of FPs, i.e., there is no correct class that the system can
assign them.

This work focuses on the closed-space scenario (explained in Section 1.3)
while tackling the above mentioned difficulties. In the remainder of this sec-
tion several additional modules to the proposed RE-ID architecture (Figure 2)
are described. These modules, illustrated in Figure 14 solve some of the afore-
mentioned issues, such as (i) body-part detection to ameliorate the issue of
unreliable bounding boxes, (ii) a window-based classifier to filter the single-
frame classifier output thus reducing classification errors, (iii) collating the
output frames into short video-clips which reduces the operator’s attentional
load and also re-captures some missed detections, (iv) an occlusion filter to
deal with occluded detections, and (v) a false positive class to deal with non-
people detections.

3.1.1 Body-Part Detection for Feature Extraction Alignment

The issue of bounding box misalignment can be ameliorated by applying PS

[4] to detect body parts inside the BBs. Features will then be extracted from the
relevant image regions (the body-parts) even if the BB is not correctly centered
or scaled to the pedestrian (see Section 3.2 for more detail).

3.1.2 Occlusion Filter

This module was created in collaboration with colleagues [115], it is described
here for completeness.

As mentioned above, the RE-ID performance can be jeopardized by incorpo-
rating detections of occluded pedestrians. Therefore, the Occlusion Filter was
devised. It is a filtering block between the PD and the RE-ID modules (see Fig-
ure 14), with the intent of improving the RE-ID performance. The Occlusion
Filter uses geometrical reasoning to reject BBs which can harm the perfor-
mance of the RE-ID stage (BBs depicting partially occluded people). A Bound-
ing Box (BB) including a person appearing under partial occlusion generates
features different from a BB including the same person under full visibility
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(a) (b)

Figure 15: Example of body-part detection for feature extraction in two instances: (a)
a person appearing with full visibility and (b) under partial occlusion, with
detected bounding boxes overlap. The feature extraction on the occluded
person mistakenly extracts some features from the occluding pedestrian.

conditions. When the partial occlusion is caused by a second person standing
between the camera and the original person, the extracted features can be a
mixture of those generated by the two people, making the identity classifica-
tion especially hard (see illustration in Figure 15). For this reason, it would be
advantageous for the RE-ID module to receive only BBs depicting fully visible
people.

Though the visibility information is not available to the system, it can be
estimated quite accurately with a scene geometry reasoning: in a typical sce-
nario the camera’s perspective projection makes proximal pedestrians extend
to relatively lower regions of the image. Thus, the filter computes the over-
lap among all pairs of detections in one image and rejects the one in each
overlapping pair for which the lower side of the BB is higher (as illustrated in
Figure 16). Considering the mismatch between the shape of the pedestrians’
bodies and that of the BBs, it is clear that an overlap between BBs does not
always imply an overlap between the corresponding pedestrians’ projections
on the image. An overlap threshold for the filter is defined, considering as
overlapping only detections whose overlap is above such threshold. The im-
pact of the overlap threshold on the RE-ID performance was analyzed in [115],
where the optimal value of 30% was proposed.

3.1.3 False Positives Class

Another contribution of this work is to adapt the classification stage so that it
can deal with the FPs produced by the PD. The standard RE-ID module cannot
deal properly with FPs: each FP turns into a wrongly classified instance for
the RE-ID. Observing that the appearance of the FPs in a given scenario is
not completely random, but is worth modeling (see Figure 17), a FP class is
introduced for the RE-ID module. In these conditions, a correct output exists
for when a FP is presented on the RE-ID’s input: the FP class. This change
allows us to coherently evaluate the performance of the integrated system.
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Figure 16: An example of geometrical reasoning: two detection bounding boxes over-
lap. The comparison between the lower sides of the two bounding boxes
leads to the conclusion that the person marked with the red, dashed
bounding box is occluded by the person in the green, continuous bound-
ing box. Therefore the corresponding bounding box is rejected.

Figure 17: Example False Positive samples in the False Positive Class training set.

3.2 body-part detection for descriptor extraction

In the beginning of this work a background subtraction algorithm (LOTS [21])
was used to detect pedestrians, detect the foreground pixels, and thus extract
features from the pixels of each full body detection. A new method was then
proposed, extracting features from two body areas, separated by the waist of
the pedestrian (as illustrated in Figure 18b) that improved the performance of
re-identification [44] (results in Section 4.1). Later on Cheng et al. [25] verified
that applying PS [4] to further detect body parts (head, torso, 2 thighs, 2 fore-
legs) and extract features from those 6 separate areas further improves re-
identification results (results in Section 4.1).

My final contribution to the descriptor extraction part of the RE-ID prob-
lem consists of realizing that one thigh area is not usually distinguishable
from the other thigh area, nor is one fore-leg area normally different from the
other, and thus these twin areas should not be considered separately from
one another, and definitely should not be ordered (as was done in [25]). Thus,
I verified that not dividing each leg and fore-leg into separate and ordered
regions in the feature vector slightly increases RE-ID results (see Section 4.1 in
the next chapter).
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(a) Full-body
detection (1
Part).

(b) Example of
waist de-
tection and
division (2
Parts).

(c) Head,
torso, 2

thighs and
2 fore-legs
detection (6
Parts).

(d) Head,
torso,
thighs and
fore-legs
detection
(4 Parts).

Figure 18: Visual examples of the different ways one can extract descriptors from
a pedestrian detection. (18a) shows the baseline – full body feature ex-
traction; (18b) depicts detecting the waist of a pedestrian and extracting
features from the upper body and lower body separately [44]; (18c) illus-
trates Cheng et al. [25] work, which applies PS to detect body parts; (18d)
applies PS to detect body parts, then joins the detections of the separate
thighs in one region, the detection of the separate fore-legs in another re-
gion (this work). In the results chapter it will be shown that from (a) to (d)
the performance increases monotonically.

This also ameliorates the issue of bounding boxes not exactly centered
or not exactly scaled to the pedestrian size, as mentioned above (see Sec-
tion 3.1.1).

3.3 classification

This section describes the contributions put forth in the area of classification
for re-identification. First a semi-supervised multi-feature integration classi-
fication algorithm was adapted for RE-ID. Then a wrapper for single-frame
classification was developed to filter out spurious mis-classification and re-
capture some missed detections (see Section 3.3.2). Finally, some attention
was given to the concern of the operating user attentional load, by combining
single-frame output into small video-clips (see Section 3.3.3).

3.3.1 Multi-View Classification

This section is devoted to the presentation and discussion of Multi-View clas-
sification, a mathematical formulation to train a classifier integrating several
features [46]. Many features are only useful in parts of the data, e.g., texture
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features are mostly useful in pedestrian with textured clothes, and color fea-
tures are usually less useful in the pedestrian legs where the pants tend to
be of similar colors. Many features should be used to increase the ability to
discriminate between the numerous pedestrians, some very similar. This ne-
cessitates a good feature integration method, which is the focus of this section.

Multi-View is a semi-supervised algorithm. It is built to exploit both the in-
formation available in labeled and unlabeled samples, which is useful when
there are very few labeled samples as is common in the RE-ID problem. In the
absence of unlabeled data it acts as a supervised algorithm. In the supervised
object recognition field, multi-view is compared favorably with other works
[124, 27, 119] as shown in [105]. It has been successfully applied to the Object
Recognition and Bird Categorization problems [105], as well as to my previ-
ous work on the Re-Identification problem [46] (where the test samples were
used as unlabeled data).

While a regular classifier takes a feature vector and outputs one label for it,
Multi-View splits the data in several views, trains several classifiers from that
same data, and then fuses them. The core of Multi-View is the exploitation of
complementary information available on each view. The Multi-View formula-
tion assumes that each view is “sufficient” to train a “good” classifier (above
chance). It also assumes that the feature split in several views actually exists
and that the data in each view is conditionally independent. This implies that
the classifiers will perform differently on different parts of the data. These
classifiers (one per view) will be trained together, and joined to produce a
final better classifier. The data is separated in labeled and unlabeled samples.
Multi-View, during training, teaches all classifiers to correctly classify the la-
beled samples, and promotes concordance between the classifiers in all the
samples (labeled and unlabeled). Since the classifiers are assumed to be at
least “good”, this concordance is expected to agree more often on correct clas-
sifications that on incorrect ones, pushing all classifiers to be better than they
would be if trained alone.

In Multi-View, each view represents different facets of a given sample. They
can be different features (e.g., color, texture), or attributes (e.g., hair length,
gender, income level) of the sample, or they can be different inputs of the
same sample (i.e., several images taken from a same camera, or several images
taken from different cameras). They can be either vectors, matrices or sets;
of real numbers, integers, or other symbols1. In the results chapter of this
work, in most experiments, views represent feature vectors such as those in
Figure 22, extracted from the person descriptors described in Section 3.2. In

1 Lodhi et al. [87] describes how to construct kernels to compare strings. Kernel functions can
be defined over general sets, by assigning to each pair of elements (strings, graphs, images) an
‘inner product’ in a feature space. If ’inner product’ is clearly defined for the symbols in use,
any of the general purpose kernels can be used. One successfully used feature on strings is the
frequency of words (usually after removing stop-words and the inflection of words). E.g., in
[87] Lodhi’s feature space is the set of all (non-contiguous) substrings of k-symbols. The more
substrings two documents have in common, the more similar they are and the higher their
inner product.
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Figure 19: Overview of the proposed classification method. The features of each indi-
vidual are extracted from labeled and unlabeled images. Then, kernels are
computed for each feature and finally the multi-view classifier is trained.

one experiment of a Multi-Shot scenario, each view will represent one image.
In the rest of the text we’ll use the terms features and views interchangeably.

The pipeline of the proposed method is depicted in Figure 19. The feature
descriptors of each individual in the labeled and unlabeled sets are extracted
from detected body parts. Then, the similarity between the descriptors is
computed for each feature by mean of kernel operators (more detail below).
Multi-view learning consists in estimating the parameters of the classifiers
given the training set (see the following sections). Given a probe image, the
testing phase consists in computing the similarity of each descriptor with the
gallery samples and use the learned parameters to classify it.

3.3.1.1 Multi-View Learning

In this work, the multi-view learning framework [105] is applied to the re-
identification problem with the views corresponding to different types of fea-

Notation:
Ip: identity matrix of size p× p
⊗: Kronecker product
em: vector of ones of size m
C∗: Complex conjugate of C
Lower case letters for single numbers (e.g., number of views m).
Bold lower case letters for vectors (e.g., feature vector xji of view j of sample i).
Capital letters for matrices (e.g., combination operator C).
Bold capital letters for matrices of matrices (block matrices).
Caligraphic capital case letters for sets (e.g., feature set of the ith sample Xi).
Bold caligraphic capital case letters for sets of sets.
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ture vectors2 (color and textures) extracted from the images as indicated in
Section 3.2.

Suppose there is a training set {(Xi, yi)}
l
i=1 ∪ {Xi}

l+u
i=l+1, where Xi repre-

sents the set of m views represented by features vectors xji, j = 1 . . .m, ex-
tracted from the i-th image in the training set. These feature vectors are of
size Rdj , where dj is the dimension of view j. To each sample Xi corresponds
an identity label yi. The set on the left of the union symbol is called the la-
beled set with l samples, while the one on the right is called the unlabeled
set with u samples, in which the ground truth labels yi are not available. In
re-identification, the labeled set corresponds the gallery, and the unlabeled
set contains data acquired in the same conditions but without labels. If the
unlabeled set is not available, the method performs supervised learning. The
unlabeled data set has the purpose of providing more structure to the data,
which helps on the learning process.

Given that p is the number of identities in the re-identification problem,
each identity label yi, 1 6 i 6 l, has the form yi = [-1 · · · 1 · · · -1]T . It is a
vector of -1’s with a single 1 at the p-th location if Xi is in the p-th class.
Finally, the output of each classifier is a column vector in Rp.

Under a multi-view formulation, each of the m classifiers learned (one per
view) will have the following form:

fm(xmj ) =

l+u∑
i=1

km(xmj , xmi )ami ∈ Rp (1)

Here km is a kernel that induces a Reproducing Kernel Hilbert Space (RKHS)3

HK of functions fm, that receives two feature vectors of view m and outputs a
scalar (valid kernels listed in Section 3.3.1.3). ami are vectors in Rp of weights
to be learned. These vectors ami will weight each view of each training sample.

The view classifier outputs are then linearly combined. If the view classifier
outputs are concatenated in a long vector

f(Xi) = [f1(x1i )
T , . . . , fm(xmi )T ]T ∈Rp·m,

the linear combination can be represented in matrix form:

C = 1/m · [Ip . . . Ip] ∈Rp×p·m

Cf(X) =
1

m
(f1(x1) + · · ·+ fm(xm)) ∈Rp.

where C is the concatenation of m p-sized diagonal matrices with 1/m in the
diagonal.

2 Multi-view is an algorithm that can take any set of aspects of a sample as views, and in the
next chapter features extracted from a single image are used as views for many experiments.
For one multi-shot experiment different images of a same pedestrian are used as the source of
each view (Section 4.2.5).

3 see [7] for the definition and details on Reproducing Kernel Hilbert Spaces (RKHSs).
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Given the training set, re-identification under a multi-view formulation con-
sists of the following optimization problem based on the least square loss
function:

min
f∈HK

1

l

l∑
i=1

∥∥yi −Cf(Xi)
∥∥2+γA l+u∑

i=1

‖f(Xi)‖2+γI
l+u∑
i=1

m∑
j,k=1,j<k

∥∥∥fj(xji) − fk(xki )
∥∥∥2

(2)

where the regularization parameter γA must be strictly positive and γI > 0.
The first term of Equation 2 is the least square loss function that measures

the error between the final output Cf(Xi) for Xi with the given label yi, for
each i. The main difference with the standard least square optimization is
that this formulation combines the different views. In particular, if each input
instance X has many views, then f(X) represents the output values from all
the views. These values are combined by the operator C to give the final
output value.

The second summand is the standard RKHS regularization term. It exists to
minimize the classifiers parameters and therefore to improve its generaliza-
tion power. Intuitively, when there are "rare" samples, these samples correlate
very highly with some features that don’t necessarily have high predictive
power in general. If this generalization term was not present, those correla-
tions would cause the output to increase dramatically at those "rare" samples
leading to worse performance outside the training data. This is the effect of
overfitting.

The third summand is the multi-feature manifold regularization [105], which
performs consistency regularization across different views. It penalizes non-
consensus between the different classifiers. This is what promotes the concor-
dance between the classifiers in as much samples as possible. This is also the
reason Multi-View requires the assumption that each view is “sufficient” to
train a “good” classifier, so that most classifiers more often classify correctly
and thus push the remainder classifiers to better performance levels.

3.3.1.2 Solution to the optimization problem

Problem (2) is an instance of unconstrained quadratic optimization on the
classifier coefficients ami . It can be solved by finding the stationarity points of
(2). This can be achieved by solving for the points where the derivatives of (2)
equate to zero. This was done in [105], and I will re-do the derivation here for
completeness. Lets first rewrite (2) in matrix form to simplify the algebraic
derivation.

l+u∑
i=1

m∑
j,k=1,j<k

∥∥∥fj(xji) − fk(xki )
∥∥∥2 = l+u∑

i=1

f(Xi)TMf(Xi),
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for

M =


p×m− 1 −1 · · · −1

−1 p×m− 1 · · · −1
...

...
. . .

...

−1 −1 · · · p×m− 1

 ∈ Rp·m×p·m

and if all the f(Xi) are concatenated into a long vector ff

ff =
[
f(X1)T , . . . , f(Xl)T , . . . , f(Xl+u)T

]T ∈Rp·m·(l+u) (3)

then

l+u∑
i=1

f(Xi)TMf(Xi) = ffTMff

for M being a block matrix with blocks M in its diagonal:

M =


[M] [0] · · · [0]

[0] [M] · · · [0]
...

...
. . .

...

[0] [0] · · · [M]

 ∈ R(l+u)·p·m×(l+u)·p·m

The same ff defined in Equation 3 can be used to simplify the second term
thusly:

l+u∑
i=1

‖f(Xi)‖2 = ‖ff‖2

Finally, by concatenating all yi into one long y vector, with zeros in the
unlabeled samples respective positions

y =
[
yT1 , . . . , yTl , 0, . . . , 0

]T ∈Rp·(l+u)

and doing similarly for C

C = [[C] , . . . , [C] , [0] , . . . , [0]] ∈Rp×p·m·(l+u).

it is possible to write Equation 2 as

min
f∈HK

1

l
‖y − Cff‖2 + γA ‖ff‖2 + γIffTMff

Expanding the norms yields

min
f∈HK

1

l

(
yTy − yTCff − ffTCTy + ffTCTCff

)
+ γAff

Tff + γIff
TMff .
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Since yTCff and ffTCTy are scalar, they are equal to their transposed and thus

ffTCTy =
(
ffTCTy

)T
= yTCff

So, Equation 2 becomes:

min
f∈HK

1

l

(
yTy − 2yTCff + ffTCTCff

)
+ γAff

Tff + γIff
TMff (4)

Differentiating in order to ff yields

∂(yTy)
∂ff

= 0

∂(−2yTCff)

∂ff
= −2yTC

∂(ffTCTCff)

∂ff
= ffT (CTC + (CTC)T ) = ffT (CTC + CTC) = 2ffTCTC

∂(γAff
Tff)

∂ff
= 2γAff

T

∂(γIff
TMff)

∂ff
= γIff

T (M + MT )

Because M is symmetric MT = M, thus γIffT (M + MT ) = 2γIff
TM. Thus

differentiating Equation 4 and equating to zero yields

1

l
(−2yTC + 2ffTCTC) + 2γAff

T + 2γIff
TM = 0

which is equivalent to

1

l
ffTCTC + γAff

T + γIff
TM =

1

l
yTC

ffT
(
1

l
CTC + γAI+ γIM

)
=
1

l
yTC

(
1

l
CTC + γAI+ γIM

)T
ff =

1

l
CTy (5)

Now, given Equation 1, each view classifier fm can be written in matrix
form as follows:

fm(.) =
l+u∑
i=1

km (., xmi ) ami = Km(.)am ∈Rp

where

Km(.) =
[
km
(
., xm1

)
· Ip . . . km

(
., xml+u

)
· Ip
]

∈Rp×p·(l+u)
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and am is the concatenation of all the ami into a column vector

am =
[
am1 . . . a

m
l+u

]T ∈Rp·(l+u)

Then, the concatenation of each view classifier f(Xi) =
[
f1(x1i )

T , . . . , fm(xmi )T
]T

can be written in matrix form as follows

f(Xi) = [f1(x1i ), . . . , fm(xmi )]T = K(Xi)a ∈Rm·p

where K(Xi) is a block matrix with

K(Xi) =


[
K1(x1i )

]
[0] . . . [0]

[0]
[
K2(x2i )

]
. . . [0]

...
...

. . .
...

[0] [0] . . .
[
Km(xmi )

]

 ∈Rm·p×m·p·(l+u)

and a is the concatenation of all am into a single column vector

a =
[
a1 . . . am

]T ∈Rm·p·(l+u)

Finally, the concatenation of all the classifications for all samples ff can be
written in matrix form as:

KK =


K(X1)

...

K(Xl+u)

 ∈Rm·p·(l+u)×m·p·(l+u)

ff =
[
f(X1)T , . . . , f(Xl+u)T

]T
= KKa ∈Rm·p·(l+u)

Substituting this in Equation 5 yields(
1

l
CTC + γAI+ γIM

)T
KKa =

1

l
CTy

and solving for a

a =

((
1

l
CTC + γAI+ γIM

)T
KK

)−1
1

l
CTy (6)

Evaluation on a Test Sample. Once a is computed, the estimation of the
labels/identities of the t probe samples V = {V1 . . .Vt} can proceed (Vi is
a probe sample, analogous to the train samples Xi, and likewise it contains
m feature vectors vji extracted from the ith probe image). First, f(Vi) is com-
puted for each image, and the matrix ff(V) = [f(V1), . . . , f(Vt)]T ∈ Rm·p·t is
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composed, with f(Vi) the concatenation of all the view classifiers fm for probe
sample i:

fm(vmi ) =

l+u∑
j=1

km(vmi , xmj )amj ∈Rp

f(Vi) = [f1(v1i )
T , . . . , fm(vmi )T ]T ∈Rp·m,

Let KK(V) be the block matrix of the kernels applied to all probe samples:

KK(V) =


K(V1)

...

K(Vl+u)

 ∈Rm·p·t×m·p·(l+u)

then ff(V) can be directly computed by

ff(V) = [f(V1), . . . , f(Vt)]T = KK(V)a ∈Rm·p·t

For the i-th image of the p-th individual, C·f(Vi) represents the vector that
is as close as possible to (−1, . . . , 1, . . . ,−1), with 1 at the p-th location. The
identity of the i-th image can be estimated a-posteriori by taking the index
of the maximum value in the vector C·f(Vi). In the re-identification field it
is customary to output instead of a single identity, a ranked list of possible
identities. To create this list the second largest value in the C·f(Vi) vector is
selected for the second place in the list, and so forth until the p’th place in the
list.

During training, the weights a are learned such as to comply with the labels
of the labeled data samples and to promote concordance between classifiers.
If training is ran once per test sample, including the test sample in the unla-
beled data set, the a weight vector will be learned once per test sample. These
weights will change dynamically during testing: a dynamic classifier.

3.3.1.3 Kernels

Any positive definite kernel is a valid choice for use in the multi-view formu-
lation. A few kernels have been tested:

gaussian : k(t, x) = exp

(
−
‖t − x‖2

σ2

)

laplacian : k(t, x) = exp

(
−
|t − x|2

σ2

)

chi-square : k(t, x) = exp

−

∑ (ti−xi)
2

ti+xi

σ2


bhattacharyya : k(t, x) = exp

(
−

√
1−

∑√
ti · xi

σ2

)
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Any of the above listed kernels can be represented as follows:

k(t, x) = exp

(
−
D(t, x)
σ2

)
, where D(., .) is the distance in the numerator

of any of the four listed kernels. The respective σ parameter is estimated as
σ =

√
2 ·Dmed, where Dmed is the median distance of the distances D(., .) for

all pairs of samples in the training set. This is called a “median estimated
kernel bandwidth”.

The Chi-Square and Bhattacharrya distances are well suited for comparing
histogram features. In the results chapter this is confirmed. For the histogram
features used, performance was always better with these kernels.

3.3.2 Window-based Classifier

Here the window-based classifier is described. It exploits the temporal co-
herence of the pedestrian’s appearance in the video to increase performance.
It takes any single-frame classifier that gives a ranked output, and filters its
output.

Instead of providing output for each re-identification, it takes a temporal
window and only provides output for a given person if enough re-identi-
fications of a certain rank, of that person are present. This has the effect of
filtering out spurious wrong classifications, and recapturing some missed de-
tections and weak (high-rank) re-identifications when they happen between
correct strong re-identifications (low rank, lower than a threshold).

In the following, a definition of the main parameters involved in the window-
based classifier is provided. These parameters will then be used to tune the
operation of a RE-ID system:

• Rank (r): Given an ordered list of the matching scores (sorted in de-
scending order) of a probe sample against all gallery samples, rank de-
notes the largest index in the ordered list in which the correct match
for that sample may show up (see illustration in Figure 20). It can also
be used as a sensitivity parameter to set the algorithm operating point
(e.g., accepting re-identifications of high rank will improve recall and
decrease precision).

• Window size (w): This stands for the number of frames of the window
under consideration.

• Detection threshold (d): This variable controls the required minimum
number of re-identifications of rank r in a window of size w frames for
that window to be considered a positive re-identification window.

Therefore, a window ofw frames is considered a positive detection of a certain
person if it has at least d detections whose respective re-identifications of
that person are of rank r. Intuitively, for larger r a lot more re-identifications
will be accepted and thus less precision will ensue, but likely more recall.
For larger d, more concordant re-identifications are required to give output,
less output will be given, therefore precision will likely increase while recall
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Figure 20: Explanation of Rank. Matteo appears in the video and is detected twice.
He is matched against all pedestrians in the gallery set, and the clas-
sifier outputs an ordered list for each detection. Considering Rank1 re-
identifications to signal a positive re-identification, Matteo is only cor-
rectly re-identified once. Considering up to Rank3 Matteo is correctly re-
identified in both frames.

diminishes. Finally for larger w, there will be more chances for the requested
d re-identifications of rank r to be captured and thus recall will likely increase
at a cost of precision since so much more output in the form of video-size will
be given (confirmation of this intuition is given in Table 15).

Based on the parameters just introduced above, I propose using such triplet
of parameters T = (r,d,w), to tune the algorithm’s performance. For instance
one detection with a corresponding re-identification of Rank 1 (d=1 and r=1)
usually does not provide enough/reasonable confidence to justify giving out-
put to a human operator. In fact, given the low rank 1 re-identification rate
of the RE-ID algorithms in the literature (around 30%), it’s required to have
several rank 1 re-identifications of a pedestrian, in a short period of time, to
have a reasonable confidence that the pedestrian is indeed present. Therefore,
I studied the necessary rank r, size of window w and required number of
detections d to optimize performance of the tested classification algorithms,
and defined guidelines on how to change these parameters to improve some
particular aspects, e.g., precision vs recall (see Table 15 and Section 4.4.8 for
the results and discussion on this matter).

Although this procedure is similar to multi-shot (see Section 1.3), it requires
less information. In this work, window-based classification works with any
single-shot re-identification algorithm, and does not require an in-camera
tracker, contrary to the majority of the works that do multi-shot re-identifi-
cation.
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3.3.3 Clip-based Output

Video-clips that encapsulate frames with detections and RE-IDs of the person
of interest will be used as the output of the system in order to decrease the
attentional load of the user.

This proposal is supported by the following four reasons: (a) A single de-
tection and respective re-identification does not guarantee a high degree con-
fidence, therefore several of them are desirable to have higher confidence;
(b) Browsing a sequence frame by frame takes significantly more time than
observing a video with the same number of frames; (c) Pedestrian appearance
in frames is not independent, they almost always appear in several contigu-
ous frames. (d) The presence of motion traits in videos helps human operators
recognize and validate the re-identified pedestrians. Therefore, providing out-
put in the form of video-clips, encapsulating several positive detections and
RE-IDs of one given person, is well suited to address the above concerns.

One video-clip is generated for the union of all positive windows that over-
lap or are contiguous. In Figure 14 I show an example with window size equal
to 4 frames (w=4), minimum number of detections of 2 (d=2) and rank one
(r=1). The person appears in 4 frames and is only detected and re-identified
in two frames (the only two red bounding boxes). Note how, albeit only being
re-identified in 2 frames, the final output video-clip contains all 4 frames of
interest.

3.4 inter-camera tracking

State-of-the-art re-identification algorithms have poor rank 1 classification
rates (~30%). To raise the overall performance the re-identification stage is
integrated into a over-arching inter-camera tracking system that employs the
Multiple Hypothesis algorithm [6]. Adding the temporal dimension to the
problem, plus spatial constraints to the movement of pedestrians in the sys-
tem, makes the problem more tractable. Also adding this algorithm’s ability to
correct spurious mis-classifications of the past, makes the overall system even
able to disambiguate cases where pedestrians partially change their attire [6].

The Multiple Hypothesis Tracking (MHT) algorithm was adopted to imple-
ment the inter-camera tracking ability. This algorithm keeps multiple inter-
pretations of the current persons’ locations in the camera network using both
temporal and spacial constraints, taking into account the topology of the cam-
era network and the connectivity of the space. For instance, if a person was
detected in a certain camera, the likelihood that it is found in neighbor loca-
tions at neighbor times increases. This disambiguation capability allows for
the resolution of past mis-associations when more information is available.
The granularity of the detections is defined by coarse zones, usually one zone
for each camera. In other words, inter-camera tracking is done in a graph and
thus does not require precise incremental-locations, as needed for example
with (x,y) tracking in the field of view of a single camera. With a coarse reso-
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lution for tracking, missed detections are more tolerable, allowing the detector
to be tuned to significantly reduce false positives.

3.4.1 Multiple Hypothesis Tracking algorithm

In its original formulation, the MHT algorithm is used to track various tar-
gets over two or three dimensional spaces [107]. The algorithm continuously
maintains a set of hypotheses on the various possible states of the world. Each
hypothesis contains information on the existing targets, and their tracks. Each
has a probability of being correct. The system periodically receives new scans
containing data from the sensors. All the measurements in time k are denoted
by Zk, and the measurement l of time k is denoted by Zkl . Each measure-
ment corresponds to an observation, and is usually associated with a (x,y) or
(x,y, z) position in space and possibly other additional target features, such
as target size. Let Ωki denote the hypothesis i in scan k. Each hypothesis Ωki
contains a set Tki of existing targets ιTki (ι ∈ [1, ...,n] targets), the state estimate
for each target, the state estimate covariance, and the association ψki , between
the measurements Zk and the hypothesized targets Tki . Every hypothesis Ωki
is associated with a probability pki .

At each time instant k, the hypotheses Ωk−1 are used to produce the hy-
potheses Ωk. For each hypothesis Ωk−1j a new set of hypotheses is generated
jΩk which have Ωk−1j as parent (superscript j indicates hypothesis with par-
ent j). In the generation of the new set of hypotheses jΩk, each observation
Zkl is considered to be either a False Positive (FP), a New Target (NT), or a
detection of an existing target. However, an observation Zkl is only consid-
ered to have origin in a target ιTki of hypothesis Ωk−1j if it falls in the target’s
gate (area around target’s expected position) – which is calculated based on
the covariance of the state estimate. Furthermore, often each observation can
only be assigned to at most one target, and each target can only be assigned
to at most one observation (group tracking is addressed by Mucientes and
Burgard [97]). A target track is terminated if the target is not detected after t
time steps.

The probability of a new hypothesis jΩki given the parent hypothesis Ωk−1j

and the measurements Zk, is

jpki =
1

c
× PdNd × (1− Pd)

Nt−Nd × (PFP)
Nfp×

(PNT )
Nnt ×

∏
(Zkl ,ιTki )∈ψki

PZkl ,ιTki
× pk−1j

(7)

whereNd corresponds to the number of measurements andNt to the number
of targets in Ωk−1j ,Nfp is the number of false positives andNnt is the number
of new targets [107]. Furthermore, Pd is the probability of detecting a target,
PFP the probability of a measurement being a false positive, and PNT the
probably of detecting a new target. The probability of the parent hypothesis is
pk−1j , and PZkl ,ιTki

denotes the probability that measurement Zkl is a detection
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of target ιTki , which is usually calculated based on the target position estimate,
and the covariance of this estimate.

The algorithm generates a combinatorial explosion of hypotheses. This ex-
ponential growth of the number of hypotheses can be controlled by pruning
the hypotheses tree. Usual pruning strategies include limiting the number of
leaves, or the depth of the tree [15]. However, while generating the hypothe-
ses jΩk, for a single leaf (Ωk−1j ), the number of hypotheses to generate can
be too large to process in real time. For example, if there were 30 targets in
Ωk−1j , and Zk contains 30 measurements there will be 6.2× 1037 hypotheses
in jΩk (for more details on calculating the number of generated hypotheses
see Danchick and Newnam [32]). These hypotheses will eventually be pruned,
after the hypotheses for all leaves are generated, but the processing time and
memory space that the explicit enumeration of all these hypotheses consumes
is insupportable. A solution is to use an algorithm due to Murty to find the
ranked k-best assignments for the association in each leaf [30], instead of ex-
plicitly enumerating all the possible hypotheses. Clustering, which consists of
dividing the hypotheses tree into several trees taking advantage of the inde-
pendence between the tracks of some targets, can also be used to reduce the
processing requirements of MHT and increase its performance [107].

To implement the MHT algorithm, the Multiple Hypothesis Library was
used, described by Antunes et al. in [5]. This library already handles cluster-
ing, and provides pruning of the tree limiting both the tree depth and the
number of leaves. The Murty algorithm for finding the k-best assignments is
also implemented.

Below it is described the application of the MHT algorithm to the specific
problem of tracking on a multi-camera network with non-overlapping fields
of view, which is the most common case in video surveillance systems.

3.4.1.1 Graph representation

Let the tracking area be represented as a graph. Let G = (A,C) denote the
graph representing the tracking area, where A consists of a set of tracking
zones A = {z1, ..., zn} and C of a set of connections between zones. Thus,
(zi, zj) is an edge belonging to C if and only if zi and zj have a connection [99].
The topology of the graph can be manually defined or learned automatically
[54].

For our particular problem, each zone is associated with one camera, and
each camera is associated with one zone. Even though it is possible to divide
the field of view of a camera into different zones, which may be useful in
some specific situations, this possibility is not addressed in this work.

A possible scenario is presented in Figure 21 (a). Several cameras are spread
throughout the tracking area, and each camera monitors a division or part of
a division. The circles represent the zones in the graph and the dotted lines
the connections between them.
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(a) Floor map, cameras and zones graph

(b) Initial poses (c) Detections

(e) Hypothesis 1 (f) Hypothesis 2

Figure 21: Example of a tracking area and the zones graph. Each camera has a field
of view (gray area) which defines a single zone (a). Given an initial con-
figuration where two persons, A and B, are in zone 4 (b), and then two
target detections occur in zones 3 and 4 (c), one has various possibilities
of localization of the two targets. Assuming both detections are valid, and
related to the targets A and B, then one has two hypothesis, A in 3 and B
in 4 (d), or vice versa, B is in 3 and A is in 4.

Because the tracking area is a graph, each detection Zkl ∈ Zk is associated
with a zone z ∈ A, instead of (x,y) coordinates. Each detection also contains
a set of features which describe the detected target, which will now be dis-
cussed.

3.4.1.2 Tracking granularity

In the proposed approach, targets are tracked across multiple cameras, and
not locally, in the (x,y) field of view of each single camera. It would also
be possible to perform the tracking of the (x,y) position of targets in each
camera, which is the usual case for tracking.

Contrary to the fine (x,y) tracking, when tracking across zones, the require-
ments on the pedestrian detection performance can be reduced. This makes it
possible to use tighter thresholds for detection reducing the number of false
positives, but also the number of true positives as well. This would not be
possible if tracking was done in the field of view of a single camera, as the
reduction of true positives would result in many lost tracks. On the contrary,
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when tracking across cameras, it is not as necessary to have many detections
of the same target, in the same zone, in sequence.

There are some particular situations where finer grained tracking is neces-
sary. This may happen with cameras covering a large field of view, with high
resolution and several small targets. In this case, the field of view of the cam-
era may be divided into a grid of separate zones, in which case the proposed
solution is directly applicable. Furthermore, local tracking in each camera can
always be performed if necessary, in parallel with the proposed approach.

3.4.1.3 Integration with the MHT Algorithm

Each detection Zkl contains the state information about each target, which
includes the target identifier, the zone where the target is, the features that
describe the detected person, and the time of the target’s last detection.

The probability PZkl ,ιTki
of measurement Zkl being a detection of target ιTki

is calculated taking into consideration the zone where the target was, the
one where the measurement is taken, the features associated with the target,
and the ones associated with the measurement. For a detection Zkl and a
target ιTki , let hZ be the feature histograms associated with the detection, and
hT the feature histograms associated with the target. Also, let zD and zT be
respectively the zone associated with the detection and the zone where the
target was in the hypothesis Ωk−1j .

The probability PZkl ,ιTki
is calculated as:

PZkl ,ιTki
= PhZ,hT · PzD,zT (8)

The probability PhZ,hT depends on the difference between the histograms,
which can be calculated using the Hellinger’s distance:

B(hZ,hT ) =

√√√√1− m∑
i=1

√
(hZi · hTi ) (9)

where m is the number of bins in the color histograms. The Hellinger’s dis-
tance is then used to calculate PhZ,hT :

PhZ,hT =
(
1+ λ ·B(hZ,hT )

)−1
(10)

The probability PhZ,hT will be in the interval [ 1λ+1 , 1]. The value of λ should
be chosen to obtain the desired minimum value for probability PhZ,hT .

The probability PzD,zT is 1 when zD = zT . For other cases, there are several
manners in which PzD,zT can be calculated. In the simplest form, PzD,zT = c,
where c is a constant probability of transition between zones, when (zD, zT ) ∈
C (the zones have a connection), and PzD,zT = 0 when (zD, zT ) /∈ C. A more
flexible approach includes a probability transition matrix, M, such that Mzi,zj
contains the probability of transition between zones zi and zj, then PzD,zT =

MzD,zT when (zD, zT ) ∈ C. Gilbert and Bowden provide a method for the
automatic learning of M [54].
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The most complex case occurs when (zD, zT ) /∈ C and PzD,zT 6= 0 is re-
quired, that is, the target is detected in a zone which does not have a direct
connection with the one in which it was before, and a probability modeling
which does not simply assign 0 to PzD,zT is required. In this case, the person
crossed one or more zones without being detected. Therefore, there is not a
single path that he could have taken from zT to zD, but many possible paths.
Because it is impossible to determine exactly which of the possible paths was
taken, and no future information will help with this task, the path with the
greatest probability of being the correct one should be chosen. This path will
naturally correspond to the one that maximizes the product of the probabil-
ity of transition between all the zones in the path. This is the problem of
finding the shortest path in a graph, and is usually solved using the Dijkstra
algorithm. Fortunately, because the matrix M is constant over time, the short-
est paths between all the zones in the graph can be precomputed using the
Floyd-Warshall algorithm [28].

3.4.1.4 Entry zone

When the tracking area of interest is in the interior of a closed building or
sealed area it is possible to greatly improve the tracking results by defining
one or more entry/exit zones. In a closed building, new targets cannot appear
in all the tracking zones. Usually, there are a few entrances where the targets
can enter and leave the tracking area, which is the case with the example in
Figure 21. In the tracking area represented in the figure, a target track can only
initiate and terminate in zone 3. If this information is included in the tracker,
then detections in every other zone will only be attributed to either false
positives or existing targets, and targets in those zones will not be deleted,
even if they are not detected after a long period of time.
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Algorithm 1 Multiple Hypothesis algorithm

1: procedure Main

2: Pd ← prior for re-identification
3: PNT ← prior for new targets
4: PFP ← prior for false positives
5: Hypothesis set Ω0 ← empty
6: Notation:
7: Re-identifications set in time k : Zk

8: Re-identification l of time k : Zkl
9: Hypothesis i in time k : Ωki

10: hypothesis Ωki contains:
11: set Tki of existing targets ιTki (ι ∈ [1, ...,n] targets),
12: state estimate for each target,
13: state estimate covariance,
14: association ψki , between RE-IDs Zk and hypothesized targets Tki
15: probability of self pki .
16: loop
17: Zk ← re-identifications
18: if Only one re-identification in Zk then
19: for all hypothesis Ωk−1i do
20: Call algorithm by Murty [30] to find k-best hypothesis in-

stead of enumerating all possible hypotheses below
21: if RE-ID Zk1 in entry zone then . new target
22: Create iΩkj from Ωk−1i with added target

23: if RE-ID Zk1 not in entry zone then . new target with missed
detections before

24: Create iΩkj from Ωk−1i with added target
25: pkj given by shortest path between the entry zone and

current zone of target (path that maximizes transition probability between
all the zones in the path)

26: if RE-ID Zk1 not in gate of any Tki then
27: Create iΩkj from Ωk−1i with no change . FP

28: for all existing targets Tki do . positive re-identification
outside gate (missed detection before)

29: Create iΩkj with updated location of Tki
30: pkj given by shortest path between the two zones

(path that maximizes transition probability between the previous zone
of target and the current zone in the path)

31: if RE-ID Zk1 in gate of at least one Tki in Ωk−1i then
32: Create iΩkj from Ωk−1i with no change . FP

33: for all existing targets Tki do . positiveRE-IDs

34: Create iΩkj with updated location of Tki
35: for all existing targets Tki do
36: if Target Tki not detected in n time steps then
37: Delete target

38: elseif More than one re-identification in Zk then
39: Create hypothesis for all the combinations of the above enumer-

ated cases
40: Prune low probability hypotheses
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R E S U LT S

In this chapter we go over all the relevant results obtained. First the benefit
of the feature extraction process is evaluated in Section 4.1. Then the per-
formance of the Multi-View classifier is assessed in Section 4.2. Section 4.3
illustrates an example of the MHT algorithm in action. By the end of the chap-
ter in Section 4.4, results on the integration between Pedestrian Detection (PD)
and Re-Identification (RE-ID) are put forth.

4.1 descriptor extraction comparison

In this section, standard re-identification experiments were run. Standard
re-identification experiments consider manually segmented pedestrians, re-
identification in single frames and a closed space scenario (all persons de-
tected are in the gallery) and short-term time span (persons do not change
clothes). This to illustrate the benefits of the proposed descriptor extraction
method. These initial experiments were run in three datasets, with varying
combinations of features, use of equalization on the features, and NN classi-
fiers, for each of the four descriptor extraction methods.

4.1.1 Features used

The features employed were:

• Hue-Saturation-Value histogram (HSV)[59];

• Black-Value-Tint histogram (BVT) is a variant of HSV developed for [25].
It is constructed as follows: First, count all the black and near-black1

pixels (where the Hue and Saturation values are basically random) and
attribute them to one bin (the B of BVT, for Black pixels). Then for the
rest of the non-black pixels, make (1) a regular Value (gray-scale) his-
togram vector (the V of BVT, for Value histogram), and (2) a 2D his-
togram matrix from the Hue and Saturation values (the T of BVT, for
Tint histogram.).

• Lightness color-opponent histogram (Lab)[64];

• Maximum Response Filter Bank (MR8) histogram [75, 109];

• Local Binary Patterns (LBP) histogram [2].

Each feature when applied to a region of the image generates an histogram
of constant bin size for all experiments (illustrated in Figure 22).

1 Definition of "near-black": The value/grey-scale channel of the image is equalized and quan-
tized into ten bins. The "near-black" pixels are those that fall into the darkest bin of the ten.
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Figure 22: Different features represented by blocks are computed from the detected
parts {pi}

4
i=1.

4.1.2 Classifiers used

In these experiments more complex classifiers are not used because the objec-
tive is to test the descriptor classifiers only. The NN classifiers employed used
the following distances:

• Bhatt Hellinger’s distance: D(x, t) =

√√√√1− d∑
i=1

√
xi · ti ,

• ChiSq Chi-Squared distance: D(x, t) =
d∑
i=1

(ti − xi)
2

ti + xi
,

• Diffusion Diffusion distance [80],

• Euclidean Euclidean distance: D(x, t) =

√√√√ d∑
i=1

xi · ti

where x and t are normalized feature vectors of size d, obtained from the
concatenation of the several histograms represented in Figure 22. I.e., for HSV,
d = 120. When using these NN classifiers, (1st) features are extracted from all
images, (2nd) a distance matrix all-to-all is computed, and (3rd) the minimum
distance from each probe to all gallery images if found, to determine the
nearest-neighbor match for each probe image.

4.1.3 Datasets used

In these experiments the VIPeR, iLIDS4REID and 3DPeS datasets were used
(sample images in Figures 23, 24 and 25). These are well established datasets
used by most re-identification works in the literature. VIPeR contains 632

pairs of 128×64 images of 632 pedestrians, captured from two different cam-
eras. iLIDS4REID contains 476 images of 119 pedestrians, captured from up
to two different cameras inside an airport. 3DPeS contains 605 images of 199
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pedestrians, captured from up to eight different cameras on a college campus
environment.

For each experiment in each dataset, 100 runs were made, and the results
shown are the average of those 100 runs. For each run in the VIPeR dataset,
316 pedestrians were randomly selected, and one image of the pair was taken
at random to be the probe and the other to be in the gallery. For each run in
the iLIDS4REID or 3DPeS datasets, two images were randomly selected from
each pedestrian, one to be the probe and the other to be in the gallery.

Figure 23: Sample images from the VIPeR dataset. It has only two images for each
pedestrian, from two distinct cameras, in an outdoors environment. Al-
most all pairs have the respective pedestrian in different poses, facing dif-
ferent directions with about a 90º different angle.

Figure 24: Sample images from the iLIDS4REID dataset. It contains a few images of
each pedestrian from up to two different camera views in an airport.

Figure 25: Sample images from the 3DPeS dataset. It contains some images from up
to eight different camera views in a college campus environment.
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Dataset Feature Equalization Descriptor NN Rank1 (%) Rank5 (%) nAUC (%)

Extraction Classifier

VIPeR MR8 × 1 Part Euclidean 01.5 03.7 53.7

VIPeR MR8 × 2 Parts Euclidean 01.3 04.4 61.5

VIPeR MR8 × 6 Parts Euclidean 01.6 05.8 61.2

VIPeR MR8 × 4 Parts (proposed) Euclidean 01.4 05.8 61.5

VIPeR MR8 × 1 Part Diffusion 00.8 04.0 53.1

VIPeR MR8 × 2 Parts Diffusion 01.6 04.4 60.6

VIPeR MR8 × 6 Parts Diffusion 01.6 06.4 60.5

VIPeR MR8 × 4 Parts (proposed) Diffusion 01.8 06.6 61.3

VIPeR MR8 × 1 Part ChiSq 00.9 04.2 53.7

VIPeR MR8 × 2 Parts ChiSq 01.8 05.0 61.7

VIPeR MR8 × 6 Parts ChiSq 01.3 06.2 61.3

VIPeR MR8 × 4 Parts (proposed) ChiSq 02.0 06.5 62.1

VIPeR MR8 × 1 Part Bhatt 00.8 03.8 54.0

VIPeR MR8 × 2 Parts Bhatt 01.9 04.8 62.2

VIPeR MR8 × 6 Parts Bhatt 01.5 06.2 62.0

VIPeR MR8 × 4 Parts (proposed) Bhatt 02.0 06.6 62.7

VIPeR Lab × 1 Part Euclidean 05.2 13.2 73.0

VIPeR Lab × 2 Parts Euclidean 09.5 21.1 77.4

VIPeR Lab × 6 Parts Euclidean 10.5 21.9 78.1

VIPeR Lab × 4 Parts (proposed) Euclidean 11.2 21.8 78.2

VIPeR Lab × 1 Part Diffusion 05.3 13.4 73.5

VIPeR Lab × 2 Parts Diffusion 10.6 22.7 78.8

VIPeR Lab × 6 Parts Diffusion 11.5 24.4 80.0

VIPeR Lab × 4 Parts (proposed) Diffusion 12.0 25.4 79.8

VIPeR Lab × 1 Part ChiSq 06.6 16.4 74.3

VIPeR Lab × 2 Parts ChiSq 13.1 25.2 80.0

VIPeR Lab × 6 Parts ChiSq 12.9 26.3 80.7

VIPeR Lab × 4 Parts (proposed) ChiSq 13.0 27.2 80.8

VIPeR Lab × 1 Part Bhatt 07.2 16.8 74.3

VIPeR Lab × 2 Parts Bhatt 13.6 26.9 80.2

VIPeR Lab × 6 Parts Bhatt 13.1 26.8 80.7

VIPeR Lab × 4 Parts (proposed) Bhatt 13.6 28.6 80.8

Table 4: Results in the VIPeR dataset, for the MR8 and Lab features, with the Bhaat,
Chisq, Diffusion and Euclidean distances in the NN classifier. The best results
for the descriptor extraction method for each feature and classifier combina-
tion is shown underlined. Equalization indicates if histogram equalization
was applied to the dataset or not.

4.1.4 Results

For these experiments the standard RE-ID metric, the Cumulative Matching
Characteristic curve (CMC) was used. In Tables 4, 5, 6 and 7 it is reported the
first rank percentage, the fifth rank percentage and the normalized area under
the CMC. The results are coherent across almost all datasets, features and NN

classifiers tested. Dividing the body in 4 parts [head | torso | thighs | fore-
legs] (as shown in Figure 18d) for descriptor extraction outperforms in almost
all cases the other descriptor extraction methods. Also, detecting the 6 body
parts and treating them separately for the purpose of descriptor extraction
consistently surpasses just dividing the body in two parts (above-waist and
below-waist). Finally, the waist-division descriptor extraction method consis-
tently exceeds extracting features from the whole-body.
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Dataset Feature Equalization Descriptor NN Rank1 (%) Rank5 (%) nAUC (%)

Extraction Classifier

VIPeR HSV × 1 Part Euclidean 06.1 15.9 75.9

VIPeR HSV × 2 Parts Euclidean 10.8 23.7 80.5

VIPeR HSV × 6 Parts Euclidean 11.5 25.5 81.4

VIPeR HSV × 4 Parts (proposed) Euclidean 11.5 26.5 81.2

VIPeR HSV × 1 Part Diffusion 06.6 15.8 75.9

VIPeR HSV × 2 Parts Diffusion 11.3 25.6 81.6

VIPeR HSV × 6 Parts Diffusion 13.9 26.7 82.3

VIPeR HSV × 4 Parts (proposed) Diffusion 14.0 27.4 82.5

VIPeR HSV × 1 Part ChiSq 07.0 17.6 77.3

VIPeR HSV × 2 Parts ChiSq 12.3 27.5 82.5

VIPeR HSV × 6 Parts ChiSq 13.6 29.5 83.1

VIPeR HSV × 4 Parts (proposed) ChiSq 14.3 30.6 83.2

VIPeR HSV × 1 Part Bhatt 07.4 17.8 77.7

VIPeR HSV × 2 Parts Bhatt 12.4 27.4 83.1

VIPeR HSV × 6 Parts Bhatt 13.3 29.3 83.4

VIPeR HSV × 4 Parts (proposed) Bhatt 14.5 31.2 83.7

VIPeR BVT × 1 Part Euclidean 06.9 16.5 76.0

VIPeR BVT × 2 Parts Euclidean 09.3 22.6 80.4

VIPeR BVT × 6 Parts Euclidean 11.3 23.1 77.0

VIPeR BVT × 4 Parts (proposed) Euclidean 12.1 24.6 79.0

VIPeR BVT × 1 Part Diffusion 07.6 18.2 77.6

VIPeR BVT × 2 Parts Diffusion 13.0 27.7 82.7

VIPeR BVT × 6 Parts Diffusion 14.6 29.9 83.3

VIPeR BVT × 4 Parts (proposed) Diffusion 15.0 30.5 83.4

VIPeR BVT × 1 Part ChiSq 09.0 21.1 79.1

VIPeR BVT × 2 Parts ChiSq 14.6 31.8 83.7

VIPeR BVT × 6 Parts ChiSq 16.3 35.4 84.1

VIPeR BVT × 4 Parts (proposed) ChiSq 17.2 36.5 84.1

VIPeR BVT × 1 Part Bhatt 09.3 22.1 79.4

VIPeR BVT × 2 Parts Bhatt 15.2 32.7 84.1

VIPeR BVT × 6 Parts Bhatt 17.3 35.7 84.4

VIPeR BVT × 4 Parts (proposed) Bhatt 17.9 36.9 84.5

Table 5: Results in the VIPeR dataset, for the BVT and HSV features, with Bhaat, Chisq,
Diffusion and Euclidean distances in the NN classifier. The best results for
the descriptor extraction method for each feature and classifier combination
is shown underlined. Equalization indicates if histogram equalization was
applied to the dataset or not.

Another observable result is how BVT almost always outperforms the other
tested features, and how the Hellinger’s distance always beats the other tested
NN classifiers, all other factors the same.

4.1.5 Discussion

As expected, dividing the body in two parts (below the waist and above the
waist) provides more information and thus more discriminatory power over
extracting descriptors from the whole body regardless of body-location. Di-
viding the body further into six parts [head | torso | thigh | thigh | fore-leg
| fore-leg] further increases the resolution of the description extraction, thus
increasing the discriminatory power. By allowing the description extraction
to treat the head separately from the torso, and the shins separately from the
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Dataset Feature Equalization Descriptor NN Rank1 (%) Rank5 (%) nAUC (%)

Extraction Classifier

3DPeS HSV × 1 Part Diffusion 11.4 25.0 81.0

3DPeS HSV × 2 Parts Diffusion 18.7 39.4 85.8

3DPeS HSV × 6 Parts Diffusion 21.9 43.2 87.0

3DPeS HSV × 4 Parts (proposed) Diffusion 22.4 44.4 87.1

3DPeS HSV X 1 Part Diffusion 07.3 21.0 76.3

3DPeS HSV X 2 Parts Diffusion 15.0 34.1 84.1

3DPeS HSV X 6 Parts Diffusion 18.9 39.0 86.4

3DPeS HSV X 4 Parts (proposed) Diffusion 19.7 39.6 86.7

3DPeS HSV × 1 Part Euclidean 11.4 27.1 79.2

3DPeS HSV × 2 Parts Euclidean 17.4 37.9 84.2

3DPeS HSV × 6 Parts Euclidean 20.5 41.9 86.0

3DPeS HSV × 4 Parts (proposed) Euclidean 20.9 42.1 86.1

3DPeS HSV X 1 Part Euclidean 07.9 21.7 76.5

3DPeS HSV X 2 Parts Euclidean 15.7 34.4 83.9

3DPeS HSV X 6 Parts Euclidean 17.1 39.9 86.3

3DPeS HSV X 4 Parts (proposed) Euclidean 18.0 40.4 86.6

3DPeS HSV × 1 Part ChiSq 12.7 28.3 81.3

3DPeS HSV × 2 Parts ChiSq 19.8 41.4 85.8

3DPeS HSV × 6 Parts ChiSq 22.9 44.0 86.9

3DPeS HSV × 4 Parts (proposed) ChiSq 23.7 45.7 87.3

3DPeS HSV X 1 Part ChiSq 07.7 21.8 76.0

3DPeS HSV X 2 Parts ChiSq 15.4 35.0 84.4

3DPeS HSV X 6 Parts ChiSq 19.2 39.6 86.8

3DPeS HSV X 4 Parts (proposed) ChiSq 19.5 40.3 87.0

3DPeS HSV × 1 Part Bhatt 12.7 28.2 81.2

3DPeS HSV × 2 Parts Bhatt 21.0 43.4 85.5

3DPeS HSV × 6 Parts Bhatt 23.4 45.2 86.7

3DPeS HSV × 4 Parts (proposed) Bhatt 24.7 48.1 87.2

3DPeS HSV X 1 Part Bhatt 07.9 21.7 75.7

3DPeS HSV X 2 Parts Bhatt 16.1 34.4 83.7

3DPeS HSV X 6 Parts Bhatt 19.3 39.3 86.1

3DPeS HSV X 4 Parts (proposed) Bhatt 18.7 41.0 86.4

3DPeS BVT × 1 Part Bhatt 16.5 33.2 81.5

3DPeS BVT × 2 Parts Bhatt 22.4 44.2 85.5

3DPeS BVT × 6 Parts Bhatt 25.1 46.5 87.1

3DPeS BVT × 4 Parts (proposed) Bhatt 26.3 46.7 87.6

Table 6: Results in the 3DPeS dataset, with the HSV feature, applying histogram equal-
ization to the dataset’s images or not, for all four distances in the NN classifier.
Results show that BVT is the best single feature overall. The best results for
the descriptor extraction method for each feature and classifier combination
is shown underlined. Equalization indicates if histogram equalization was
applied to the dataset or not.
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Dataset Feature Equalization Descriptor NN Rank1 (%) Rank5 (%) nAUC (%)

Extraction Classifier

iLIDS4REID MR8 × 1 Part Bhatt 05.7 20.8 70.9

iLIDS4REID MR8 × 2 Parts Bhatt 09.2 24.5 72.0

iLIDS4REID MR8 × 6 Parts Bhatt 08.8 25.0 73.7

iLIDS4REID MR8 × 4 Parts (proposed) Bhatt 09.9 25.1 74.4

iLIDS4REID MR8 X 1 Part Bhatt 06.4 17.9 68.4

iLIDS4REID MR8 X 2 Parts Bhatt 10.1 26.4 73.2

iLIDS4REID MR8 X 6 Parts Bhatt 12.3 28.7 75.9

iLIDS4REID MR8 X 4 Parts (proposed) Bhatt 12.9 31.3 76.8

iLIDS4REID Lab × 1 Part Bhatt 14.3 32.8 78.0

iLIDS4REID Lab × 2 Parts Bhatt 20.3 38.6 81.2

iLIDS4REID Lab × 6 Parts Bhatt 21.8 44.8 82.3

iLIDS4REID Lab × 4 Parts (proposed) Bhatt 22.4 45.1 83.1

iLIDS4REID Lab X 1 Part Bhatt 09.8 21.9 73.0

iLIDS4REID Lab X 2 Parts Bhatt 14.5 31.6 79.5

iLIDS4REID Lab X 6 Parts Bhatt 18.2 38.5 81.9

iLIDS4REID Lab X 4 Parts (proposed) Bhatt 18.5 39.1 83.0

iLIDS4REID HSV × 1 Part Bhatt 13.9 31.9 77.1

iLIDS4REID HSV × 2 Parts Bhatt 20.0 37.7 80.9

iLIDS4REID HSV × 6 Parts Bhatt 22.2 42.2 81.9

iLIDS4REID HSV × 4 Parts (proposed) Bhatt 22.3 44.6 82.7

iLIDS4REID HSV X 1 Part Bhatt 09.7 25.6 74.2

iLIDS4REID HSV X 2 Parts Bhatt 15.4 31.3 80.0

iLIDS4REID HSV X 6 Parts Bhatt 19.3 39.2 81.8

iLIDS4REID HSV X 4 Parts (proposed) Bhatt 19.8 39.3 82.9

iLIDS4REID BVT × 1 Part Bhatt 22.2 43.8 80.1

iLIDS4REID BVT × 2 Parts Bhatt 21.3 40.0 80.7

iLIDS4REID BVT × 6 Parts Bhatt 25.5 48.2 85.4

iLIDS4REID BVT × 4 Parts (proposed) Bhatt 25.8 49.5 85.3

iLIDS4REID BVT X 1 Part Bhatt 10.3 22.1 71.2

iLIDS4REID BVT X 2 Parts Bhatt 14.3 28.8 76.2

iLIDS4REID BVT X 6 Parts Bhatt 16.8 32.5 80.0

iLIDS4REID BVT X 4 Parts (proposed) Bhatt 17.0 34.5 80.7

Table 7: Results in the iLIDS4REID dataset, with the BVT, HSV, Lab and MR8 features,
applying histogram equalization to each dataset or not, for the Bhatt distance
in the NN classifier. The best results for the descriptor extraction method for
each feature and classifier combination is shown underlined. Equalization
indicates if histogram equalization was applied to the dataset or not.

thighs, this enables features to be extracted from more local regions in the
persons body.

However, the body-part detection algorithm has no way of discriminating
the left thigh from the right thigh, or the left shin from the right shin, and if
one person is pictured from the back instead of from the front, the left-right
limb associations will be erroneous.

Therefore, joining the two thigh regions together, and the two fore-leg re-
gions together as well, improves results in the majority of cases.

Since the results are coherent across the tested datasets, features and NN

classifiers, “4 Parts” descriptor extraction is used in the other experiments
described in the rest of the chapter.
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Another conclusion that is confirmed with these results is that BVT is the
most discriminative color feature of the features tested, and that the Hellinger’s
distance is the most appropriate when using NN classification with the his-
togram vector features tested. For this reason, NN classification with BVT fea-
ture is used as a baseline in many experiments below.

4.2 multi-view

The following experiments cover several aspects of the Multi-View classifier.
All of the experiments in this Section, unless otherwise noted, are standard
RE-ID experiments (no pedestrian detection, single-shot, short term, closed sce-
nario – see Section 1.3 for the definitions), run with the “4 Parts” feature ex-
traction method (see Figure 18d), and using all the test samples as unlabeled
data.

4.2.1 Parameter Selection

Multi-View optimization has two parameters to be set, gA that weights the
standard RKHS regularization term, and gI that weights the multi-feature
manifold regularization term2. Each kernel also has a kernel bandwidth σ

parameter to be set.
The [gA,gI] parameter space was extensively sampled with the pattern

search algorithm [1] in the iLIDS4REID, ViPER and CAVIAR4REID datasets,
and the best choice for parameters gA and gI, according to the nAUC crite-
rion, across all datasets and features, was found to be 0.1 and 10−5 respec-
tively. Nevertheless, the parameters gA and gI can be optimized once per
dataset for increased performance in specific scenarios. In Table 8 the differ-
ence in performance from using standard parameters (gA = 0.1,gI = 10−5)
or optimized parameters is displayed. The kernel bandwidth σ is computed
on a per-view basis, a “median estimated kernel bandwidth”, as described in
Section 3.3.1.3.

Except when pointed otherwise the experiments below use gA = 0.1, gI =
10−5, and median estimated kernel bandwidth as parameters.

4.2.2 Multi-View vs Nearest-Neighbor

The experiments focused on Multi-View begin by illustrating how allowing
Multi-View to train separate classifiers for separate parts of a feature vector
(e.g., treating the B, the V and the T parts to the BVT feature vector separately)
can outperform applying NN classifier on the same feature vector.

2

min
f∈HK

1

l

l∑
i=1

∥∥yi −Cf(Xi)
∥∥2 + γA l+u∑

i=1

‖f(Xi)‖2 + γI
l+u∑
i=1

m∑
j,k=1,j<k

∥∥∥fj(xji) − fk(xki )
∥∥∥2
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Dataset Features gA gI Rank1 (%) Rank5 (%) nAUC

VIPeR LBP+MR8+Lab+HSV+BVT 1e− 05 0.1 19.59 40.76 92.34

LBP+MR8+Lab+HSV+BVT 1.9073e− 06 0.10342 19.62 40.89 92.35

iLIDS4REID LBP+MR8+Lab+HSV+BVT 1e− 05 0.1 30.76 50.59 86.43

LBP+MR8+Lab+HSV+BVT 1.9073e− 06 0.0012213 32.10 52.77 87.86

CAVIAR4REID LBP+MR8+Lab+HSV+BVT 1e− 05 0.1 06.40 31.60 72.61

LBP+MR8+Lab+HSV+BVT 8.0927e− 06 0.0039307 05.80 31.80 72.64

3DPeS LBP+MR8+Lab+HSV+BVT 1e− 05 0.1 21.86 43.32 89.13

LBP+MR8+Lab+HSV+BVT 0.00059174 0.0037018 23.27 45.93 89.78

Table 8: Results for standard parameters (gI = 0.1,gA = 10−5) and optimized param-
eters, in four datasets, with five views.

4.2.2.1 Features used

The features employed with the NN classifier were:

• Hue-Saturation-Value histogram (HSV)[59];

• Black-Value-Tint histogram (BVT) (Section 4.1.1).

With the Multi-View classifier, those features were decomposed into the fol-
lowing:

• The H part of the HSV feature.

• The S part of the HSV feature.

• The V part of the HSV feature.

• The BV part of the BVT feature.

• The T part of the BVT feature.

All experiments use “4 Parts” descriptor extraction.

4.2.2.2 Classifiers used

The NN classifiers employed used the following distances also used in the
previous experiment:

• BhattD Hellinger’s distance,

• ChiSqD Chi-Squared distance.

The Multi-View classifier (see Section 3.3.1) was also used, with the features
“BV” and “T” as views, and the Bhattacharyya kernel for one experiment,
and the features “H”, “S” and “V” as views, and the Chi-Squared kernel for
another experiment. Both experiments use parameters gI = 0.1, gA = 10−5

and median estimated kernel bandwidth.

• BhattK Bhattacharyya kernel: K(t, x) = exp

(
−

√
1−

∑√
ti · xi

σ2

)

• ChiSqK Chi-Square kernel: K(t, x) = exp

−

∑ (ti−xi)
2

ti+xi

σ2


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4.2.2.3 Datasets used

Figure 26: Sample images of a single person from the iLIDS-MA dataset. It contains
many images of each pedestrian, from two camera views.

In this experiment the iLIDS4REID and the iLIDS-MA datasets were used
(sample images in Figures 24 and 26). iLIDS4REID contains 476 images of
119 pedestrians, captured from up to two different cameras inside an airport.
iLIDS-MA contains 3680 images of 40 pedestrians also in the same airport as
iLIDS4REID.

For each experiment in each dataset, 10 runs were made, and the results
shown are the average of those 10 runs. For each run in the iLIDS4REID and
iLIDS-MA dataset, two images were randomly selected from each pedestrian,
one to be the probe and one to be in the gallery.
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Figure 27: Comparison between Multi-View and NN in the iLIDS4REID and the
iLIDS-MA datasets. Average results on 10 different data partitions are dis-
played. Multi-View outperforms NN on average and on each individual
partition. Results with the BV, T, H, S and V features are included as a
baseline.
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Run Dataset Features Equalization Descriptor Classifier Rank1 (%) Rank5 (%) nAUC (%)

Extraction

1
iLIDS4REID BVT × 4 Parts NN-BhattD 24.2 49.4 85.0

iLIDS4REID BV+T × 4 Parts MV-BhattK 29.1 49.8 86.6

2
iLIDS4REID BVT × 4 Parts NN-BhattD 25.3 49.0 85.6

iLIDS4REID BV+T × 4 Parts MV-BhattK 28.8 49.4 86.4

3
iLIDS4REID BVT × 4 Parts NN-BhattD 27.3 48.3 85.3

iLIDS4REID BV+T × 4 Parts MV-BhattK 29.3 48.5 86.1

4
iLIDS4REID BVT × 4 Parts NN-BhattD 25.1 50.2 85.3

iLIDS4REID BV+T × 4 Parts MV-BhattK 27.1 50.3 88.0

5
iLIDS4REID BVT × 4 Parts NN-BhattD 27.0 50.0 84.9

iLIDS4REID BV+T × 4 Parts MV-BhattK 27.7 50.1 87.5

6
iLIDS4REID BVT × 4 Parts NN-BhattD 26.2 49.7 85.8

iLIDS4REID BV+T × 4 Parts MV-BhattK 27.9 49.8 86.9

7
iLIDS4REID BVT × 4 Parts NN-BhattD 27.4 48.5 85.2

iLIDS4REID BV+T × 4 Parts MV-BhattK 30.7 48.8 86.1

8
iLIDS4REID BVT × 4 Parts NN-BhattD 24.3 50.7 84.9

iLIDS4REID BV+T × 4 Parts MV-BhattK 27.8 50.9 86.4

9
iLIDS4REID BVT × 4 Parts NN-BhattD 25.9 50.0 86.0

iLIDS4REID BV+T × 4 Parts MV-BhattK 28.7 50.1 86.6

10
iLIDS4REID BVT × 4 Parts NN-BhattD 25.0 49.4 85.2

iLIDS4REID BV+T × 4 Parts MV-BhattK 26.3 49.7 87.1

1
iLIDS-MA HSV X 4 Parts NN-ChiSqD 9.1 38.2 72.6

iLIDS-MA H+S+V X 4 Parts MV-ChiSqK 10.0 41.4 73.3

2
iLIDS-MA HSV X 4 Parts NN-ChiSqD 8.2 37.0 73.4

iLIDS-MA H+S+V X 4 Parts MV-ChiSqK 10.2 43.6 73.8

3
iLIDS-MA HSV X 4 Parts NN-ChiSqD 9.0 38.9 73.3

iLIDS-MA H+S+V X 4 Parts MV-ChiSqK 10.4 41.0 73.4

4
iLIDS-MA HSV X 4 Parts NN-ChiSqD 10.6 38.3 72.8

iLIDS-MA H+S+V X 4 Parts MV-ChiSqK 10.9 41.4 73.5

5
iLIDS-MA HSV X 4 Parts NN-ChiSqD 10.7 38.1 72.4

iLIDS-MA H+S+V X 4 Parts MV-ChiSqK 11.7 41.2 72.8

6
iLIDS-MA HSV X 4 Parts NN-ChiSqD 10.7 38.5 72.8

iLIDS-MA H+S+V X 4 Parts MV-ChiSqK 12.1 40.7 73.6

7
iLIDS-MA HSV X 4 Parts NN-ChiSqD 10.2 38.3 72.9

iLIDS-MA H+S+V X 4 Parts MV-ChiSqK 11.1 41.7 73.7

8
iLIDS-MA HSV X 4 Parts NN-ChiSqD 10.5 37.1 73.0

iLIDS-MA H+S+V X 4 Parts MV-ChiSqK 12.3 41.6 73.5

9
iLIDS-MA HSV X 4 Parts NN-ChiSqD 9.9 37.8 72.8

iLIDS-MA H+S+V X 4 Parts MV-ChiSqK 11.8 43.4 73.6

10
iLIDS-MA HSV X 4 Parts NN-ChiSqD 11.1 37.9 73.0

iLIDS-MA H+S+V X 4 Parts MV-ChiSqK 11.6 41.7 74.1

avg

iLIDS4REID BV × 4 Parts NN-BhattD 06.5 20.1 73.3

iLIDS4REID T × 4 Parts NN-BhattD 26.8 49.3 84.0

iLIDS4REID BVT × 4 Parts NN-BhattD 25.8 49.5 85.3

iLIDS4REID BV+T × 4 Parts MV-BhattK 28.3 49.7 86.8

iLIDS-MA H X 4 Parts NN-ChiSqD 08.2 27.5 65.5

iLIDS-MA S X 4 Parts NN-ChiSqD 06.8 27.8 65.3

iLIDS-MA V X 4 Parts NN-ChiSqD 09.0 36.2 72.2

iLIDS-MA HSV X 4 Parts NN-ChiSqD 10.0 38.0 72.9

iLIDS-MA H+S+V X 4 Parts MV-ChiSqK 11.2 41.8 73.5

Table 9: NN-BhattD and NN-ChiSqD indicate NN classifier with Hellinger’s distance
and Chi-Squared distance respectively. MV-BhattK and MV-ChiSqK indicate
the Multi-View classifier with Bhattacharyya and Chi-Squared kernel respec-
tively. The performance of BV, T, H, S and V is included to serve as a baseline,
to give a sense of the influence of each feature part.
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4.2.2.4 Evaluation Metric

For these experiments the standard RE-ID metric, the CMC was used. In the
figures and tables it is reported the first rank percentage, the fifth rank per-
centage and the normalized area under the CMC.

4.2.2.5 Results

The results in Table 9 and Figure 27 show that utilizing Multi-View to take
into account separate views of the features outperforms NN of the simple
concatenation of said features. Not only Multi-View outperforms NN on the
average of the 10 runs, it also outperforms on each individual run, indicating
a robust result.

4.2.3 Multi-View vs Single view (concatenation of features)

In the previous Section, the improved performance of Multi-View over NN

could be due to the kernel influence. To control for that, in this Section, Multi-
View with several features is compared with Multi-View with only one view
– the concatenation of the same several features into a single feature vector.

4.2.3.1 Features used

The features employed for Multi-View were:

• Local Binary Patterns (LBP) histogram [2].

• Maximum Response Filter Bank (MR8) histogram [75, 109];

• Lightness color-opponent histogram (Lab)[64];

• Hue-Saturation-Value histogram (HSV)[59];

• Black-Value-Tint histogram (BVT) (Section 4.1.1).

For single view, the following were used:

• [LBP-MR8] A concatenation of the LBP and MR8 feature vectors.

• [LBP-MR8-Lab] A concatenation of the LBP, MR8 and Lab feature vectors.

• [LBP-MR8-Lab-HSV] A concatenation of the LBP, MR8, Lab and HSV fea-
ture vectors.

• [LBP-MR8-Lab-HSV-BVT] A concatenation of the LBP, MR8, Lab, HSV

and BVT feature vectors.

All experiments use “4 Parts” descriptor extraction.

4.2.3.2 Classifiers used

The Multi-View classifier (see Section 3.3.1) was used, with the Bhattacharyya
kernel (see Section 3.3.1.3) with parameters gI = 0.1, gA = 10−5 and median
estimated sigmas, for all experiments.
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iLIDS4REID

Feature R=1 R=5 nAUC

SV

LBP 11.60 27.06 74.36

MR8 12.19 31.85 78.75

Lab 24.87 46.81 83.42

HSV 24.37 45.55 83.27

SV BVT 26.89 47.48 83.96

MV BV+T 28.31 49.74 86.80

SV [LBP-MR8] 13.70 34.87 79.85

MV LBP+MR8 19.92 38.49 81.26

SV [LBP-MR8-Lab] 22.86 44.96 86.40

MV LBP+MR8+Lab 26.72 50.08 86.96

SV [LBP-MR8-Lab-HSV] 25.55 47.82 86.70

MV LBP+MR8+Lab+HSV 29.50 50.34 86.81

SV [LBP-MR8-Lab-HSV-BVT] 25.88 48.40 86.13

MV LBP+MR8+Lab+HSV+BVT 30.76 50.59 86.43

Table 10: Results on the iLIDS4REID dataset, comparing the single vector feature con-
catenation and the multi-view learning with the respective features. “V”
signifies Single View, and “MV” indicates Multi-View. Results show that
Multi-View applied to the different features outperforms Multi-View ap-
plied to a single vector with the concatenation of features. Best scores are
underlined.

4.2.3.3 Datasets used

In these experiments the VIPeR and iLIDS4REID datasets were used. For each
experiment in each dataset, 10 runs were made, and the results shown are the
average of those 10 runs. For each run in the VIPeR dataset, 316 pedestrians
were randomly selected, and one image of the pair was taken at random to be
the probe and the other to be in the gallery. For each run in the iLIDS4REID
dataset, two images were randomly selected from each pedestrians, one to be
the probe and one to be in the gallery.

4.2.3.4 Evaluation Metric

For these experiments the standard RE-ID metric, the CMC was used. In the
tables it is reported the first rank percentage, the fifth rank percentage and
the normalized area under the CMC.

4.2.3.5 Results

The results expounded in Table 10 and Table 11 show that Multi-View per-
forms better when taking into account the separate features as separate views
instead of only using the concatenation of all the feature vectors as a single
view.
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VIPeR

Feature R=1 R=5 nAUC

SV

LBP 01.68 7.56 66.93

MR8 02.02 8.13 73.46

Lab 11.17 28.51 85.68

HSV 17.94 38.42 91.61

BVT 16.71 34.71 88.73

SV [LBP-MR8] 02.56 07.88 74.28

MV LBP+MR8 03.39 10.06 76.56

SV [LBP-MR8-Lab] 06.42 18.92 81.88

MV LBP+MR8+Lab 10.38 24.87 85.48

SV [LBP-MR8-Lab-HSV] 14.43 33.83 90.20

MV LBP+MR8+Lab+HSV 18.01 37.44 91.89

SV [LBP-MR8-Lab-HSV-BVT] 16.65 36.08 90.88

MV LBP+MR8+Lab+HSV+BVT 19.59 40.76 92.34

Table 11: Results on the VIPeR dataset, comparing single view and Multi-View. Best
scores underlined. LBP, MR8, Lab, HSV and BVT are provided for baseline
purposes.

4.2.4 Multi-View vs NN of Linear Combination of Features

Here it is explored how MultiView outperforms NN of the linear combination
of features. This work uses the NN results already present in [25], comparing
the use of the same features in a Multi-View architecture.

4.2.4.1 Features used

The features employed were:

• Maximally Stable Color Regions (MSCR) histogram [51].

• Black-Value-Tint histogram (BVT) (Section 4.1.1).

All experiments use “4 Parts” descriptor extraction.

4.2.4.2 Classifiers used

The NN classifier was employed with the following distance:

• Bhatt Hellinger’s distance: D(x, t) =

√√√√1− E∑
i=1

√
xi · ti .

The features BVT with MSCR are combined linearly such as in [25] Cheng et
al. First, the features are extracted from all images, then an all-to-all distance
matrix is computed for BVT (DBVT ) and another for MSCR (DMSCR). Then
these matrices are linearly combined as follows: D = 0.7DBVT + 0.3DMSCR
(the weights 0.7 and 0.3 were determined by exhaustive search). Then NN

classification is performed on top of the resulting distance matrix D, where
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(35.8% ; 57.8% ; 92.5%) MV BVT+MSCR

(19.3% ; 39.5% ; 85.8%) NN .7*BVT+.3*MSCR

(17.9% ; 36.9% ; 84.5%) NN BVT

(08.1% ; 21.1% ; 84.5%) NN MSCR

Figure 28: Comparison between Multi-View and NN of linear combination of features.
Results illustrated in the VIPeR dataset, with Bhattacharyya distance for
NN and kernel for Multi-View. BVT and MSCR are included for baseline
purposes.

the minimum distance from each probe to all gallery images if found, to
determine the nearest-neighbor match for each probe image.

The Multi-View classifier (see Section 3.3.1) was also used, combining the
same BVT and MSCR features. The Bhattacharyya kernel (see Section 3.3.1.3)
was used with parameters gI = 0.1, gA = 10−5 and median estimated sigmas,
for all experiments.

bhattacharyya kernel : K(t, x) = exp

(
−

√
1−

∑√
ti · xi

σ2

)

4.2.4.3 Datasets used

In these experiments the VIPeR dataset was used. For each experiment 10

runs were made, and the results shown are the average of those 10 runs. For
each run in the VIPeR dataset, 316 pedestrians were randomly selected, and
one image of the pair was taken at random to be the probe and the other to
be in the gallery.

4.2.4.4 Evaluation Metric

For these experiments the standard RE-ID metric, the CMC was used. In the
figure it is reported the first rank percentage, the fifth rank percentage and
the normalized area under the CMC.

4.2.4.5 Results

Figure 28 clearly shows that Multi-View is better able to integrate two features
than NN of the linear combination of them. It is not shown, but not only does
Multi-View outperform NN in the average of the 10 partition runs, but also on
each individual run.
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4.2.4.6 Discussion

This experiment suggests that MultiView effectively trains better classifiers for
each feature than nearest neighbor of the linear combination of each feature.
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(22.2% ; 53.8% ; 82.9%) Multi−shot HSV 10

(22.5% ; 54.0% ; 82.9%) Multi−shot HSV 9

(23.2% ; 54.2% ; 82.7%) Multi−shot HSV 8

(23.8% ; 51.5% ; 82.3%) Multi−shot HSV 7

(23.0% ; 51.8% ; 82.1%) Multi−shot HSV 6

(21.2% ; 48.8% ; 81.4%) Multi−shot HSV 5

(20.0% ; 50.5% ; 80.7%) Multi−shot HSV 4

(18.0% ; 47.2% ; 79.5%) Multi−shot HSV 3

(17.2% ; 42.5% ; 77.6%) Multi−shot HSV 2

(16.5% ; 41.8% ; 74.4%) Single−shot HSV

Figure 29: Using shots in a Multi-Shot scenario as views of Multi-View. Each line
represents a Multi-Shot with N shots and views, where each view is the
feature histogram of the person image in one shot. The rank 1, rank 5

and nAUC percentages are also displayed. This test was performed in the
iLIDS-MA dataset, with HSV feature, and the Bhattacharyya kernel.

R=1 R=5 nAUC

MFL

Multi-shot 10 22.25 53.75 82.94

Multi-shot 9 22.50 54.00 82.87

Multi-shot 8 23.25 54.25 82.66

Multi-shot 7 23.75 51.50 82.33

Multi-shot 6 23.00 51.75 82.09

Multi-shot 5 21.25 48.75 81.38

Multi-shot 4 20.00 50.50 80.66

Multi-shot 3 18.00 47.25 79.46

Multi-shot 2 17.25 42.50 77.56

SFL Single-shot 16.50 41.75 74.39

Table 12: Results on the iLIDS-MA dataset, comparing the performance level between
different number of “shots” as views in a multi-shot scenario. “SLF” signi-
fies Single Feature Learning, and “MFL” indicates Multi Feature Learning.

4.2.5 Views as any facet of a target

Here it is explored the hypothesis that multi-shot yields a superior re-identification
performance than single-shot, when using Multi-View classification. In this
case, each view represents the features extracted from a different image of a
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given pedestrian in a multi-shot scenario (where there are several images per
exemplar).

These are standard RE-ID experiments (no pedestrian detection, short term,
closed scenario – see Section 1.3), ran in multi-shot scenarios.

4.2.5.1 Features used

The feature employed was:

• Hue-Saturation-Value histogram (HSV)[59];

All experiments use “4 Parts” descriptor extraction, and each feature when
applied to a region of the image generate a histogram of constant bin size for
all experiments (illustrated in Figure 22).

4.2.5.2 Classifiers used

The Multi-View classifier (see Section 3.3.1) was used, with the Bhattacharyya
kernel (see Section 3.3.1.3) with parameters gI = 0.1, gA = 10−5 and median
estimated kernel bandwidth, for all experiments.

4.2.5.3 Datasets used

In this experiment the iLIDS-MA datasets was used (sample images in Fig-
ure 26). iLIDS-MA contains 3680 images of 40 pedestrians also in the same
airport as iLIDS4REID. It was at the time of the experiment, one of the few
datasets with more than 20 samples per pedestrian, such as to allow multi-
shot with 10 samples per exemplar.

There were 10 experiments, each with an increasing number of samples
per pedestrian, from 1 sample (single-shot case) up to 10 samples (multi-shot
cases). For each experiment, 10 runs were made, and the results shown are the
average of those 10 runs. For each run, where N was the number of samples
per pedestrian to be used, 2×N images were randomly selected from each
pedestrians, N to be the probes and N to be part of the gallery.

4.2.5.4 Evaluation Metric

For these experiments the standard RE-ID metric, the CMC was used. In the fig-
ure and table it is reported the first rank percentage, the fifth rank percentage
and the normalized area under the CMC.

4.2.5.5 Results

Each experiment depicted in Figure 29 and Table 12 represents a different
number of views, each view an additional image for each pedestrian sample.

In “Multi-shot 2”, each pedestrian has 2 images per sample (two images
for the gallery sample and 2 for the probe sample). In “Multi-shot 3”, each
person has 3 images per sample, and so on.

The experiment depicted in Figure 29 and Table 12 consistently obtains bet-
ter results when using multi-shot than single-shot, and using more samples
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consistently improves the nAUC performance, even if only slightly. As for
rank 1, using more samples improves results up to a point, after which it
stagnates.

4.2.5.6 Discussion

The experiment is one more indicator (of many e.g., [25, 42]) that multi-shot
yields a superior re-identification performance than single-shot, as is intuitive
since there are more images and therefore more information to be exploited. It
also adds to the many experiments where Multi-View successfully integrates
information from various sources. Concurrently it illustrates how with Multi-
View classification, each view need not be a feature, but may be any facet of
the given data samples – in this case, each view represents the information
extracted from an image of the given pedestrians in the multi-shot scenarios.

4.2.6 Comparison with other Re-Identification algorithms

Here experiments are carried out to compare the Multi-View classifiers with
other state-of-the-art techniques.

4.2.6.1 Features used

The features employed were:

bvt Black-Value-Tint histogram (BVT) (Section 4.1.1).

hsv Hue-Saturation-Value histogram (HSV)[59];

lab Lightness color-opponent histogram (Lab)[64];

mr8 Maximum Response Filter Bank (MR8) histogram [75, 109];

lbp Local Binary Patterns (LBP) [2].

All experiments use “6 Parts” descriptor extraction, and each feature when
applied to a region of the image generate a histogram of constant bin size for
all experiments (illustrated in Figure 22).

4.2.6.2 Classifiers used

The Multi-View classifier (see Section 3.3.1) was used for the single-frame clas-
sifier, with the Bhattacharyya kernel (see Section 3.3.1.3) for all experiments.

bhattacharyya kernel : K(t, x) = exp

(
−

√
1−

∑√
ti · xi

σ2

)

In Table 13, for the MFL experiments, the regularization parameters are set
to γI = 10−5 and γA = 0.1, the kernel parameters (σi) were estimated as
noted in Section 3.3.1.3. For the MFL opt. experiments the regularization pa-
rameters along with the kernel parameters were optimized using the pattern
search algorithm [1].
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4.2.6.3 Datasets used

Figure 30: Sample images from the CAVIAR4REID dataset. It contains a ten images of
each pedestrian from each camera, from up to two cameras in a shopping
center with very low resolution.

In these experiments the iLIDS4REID, the VIPeR, and the CAVIAR4REID
datasets were used (sample images in Figures 24, 23 and 30). CAVIAR4REID
contains 1220 images captures in a shopping center environment. It containst
10 images per camera, of two cameras, per individual of 50 persons, and 10

more images per person of 22 pedestrians that only appear in one of the
cameras.

Each dataset was randomly split 10 times in gallery and probe sets, and
the results shows the average of the results over the different trials. In these
experiments, the probe set is considered as unlabeled data.

4.2.6.4 Evaluation Metric

For these experiments the CMC was used as a metric. In the figures it is re-
ported the first rank percentage, the fifth rank percentage, the tenth rank
percentage, the twentieth rank percentage and the normalized area under the
CMC.

4.2.6.5 Results

The results presented in Table 13 show that Multi-View compares favourably
with several state-of-the-art algorithms. MFL opt. outperforms all the meth-
ods in terms of nAUC and almost all the reported points of the CMC. PS is
slightly better than MFL opt. in a few points: r = {10, 20} in VIPeR and r = 1
in CAVIAR4REID. In general, MFL opt. outperforms PS when considering
the overall statistics on the CMC, such as the nAUC.

4.2.7 Comparison with other Semi-Supervised Algorithm

Re-Identification is a field where there are often more unlabeled samples than
labeled ones. This suggests the use of semi-supervised algorithms to exploit
all this unlabeled data for increased performance.
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iLIDS

r = 1 r = 5 r = 10 r = 20 nAUC

SDALF [42] 28.49 48.21 57.28 68.26 84.99

PS [25] 27.39 52.27 60.92 71.85 87.08

[92] 25.97 43.27 55.97 67.31 83.14

[127] 24.00 43.50 54.00 66.00 −

MFL 30.76 50.59 58.74 70.42 86.44

MFL opt. 31.51 51.18 62.43 74.79 88.40

VIPeR

r = 1 r = 5 r = 10 r = 20 nAUC

SDALF [42] 19.87 38.89 49.36 65.72 92.24

PS [25] 21.17 42.66 56.90 72.82 93.51

RDC [128] 15.66 38.42 53.86 70.09 −

[82]+RankSVM [104] 15.73 37.66 51.17 66.27 −

[82]+RDC [128] 16.14 37.72 50.98 65.95 −

MFL 19.59 40.76 52.21 66.11 92.34

MFL opt. 22.53 44.40 55.92 70.70 93.75

CAVIAR4REID

r = 1 r = 5 r = 10 r = 20 nAUC

SDALF [42] 6.80 25.00 44.40 65.80 68.65

PS [25] 8.60 30.80 47.80 71.60 72.38

MFL 6.40 31.60 48.20 70.60 72.61

MFL opt. 8.20 35.20 53.20 74.00 74.39

Table 13: Results on iLIDS (top), VIPeR (middle) and CAVIAR4REID datasets (bot-
tom), comparing the Multi-View classifier with state of the art classifiers.
Best scores in bold, second best scores in italic.

The work in [86] used unlabeled images from a camera pair to to exploit
the geometry of the marginal distribution for obtaining robust sparse repre-
sentation. Another approach, that of [82], used unlabeled images to discover
clusters where some feature is more informative than all others, to then ex-
ploit this information in the test phase. Additionally, [83] uses unsupervised
clustering forests to propagate human input to the rest of the unlabeled sam-
ples. Recently, [89] explored the issue of very few labeled samples during the
training stage.

Here MultiView is compared with another semi-supervised algorithm in
the state of the art, the work of [24].

4.2.7.1 Features used

The features employed were:

• Hue-Saturation-Value histogram (HSV)[59];
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All experiments use “4 Parts” descriptor extraction, and each feature when
applied to a region of the image generate a histogram of constant bin size for
all experiments (illustrated in Figure 22).

4.2.7.2 Classifiers used

The Multi-View classifier (see Section 3.3.1) was used, with the Bhattacharyya
kernel (see Section 3.3.1.3) for all experiments.

Cabral’s et al. work [24] was chosen for this comparison because it is a
recent algorithm in the state of the art with competitive results, and more
importantly, the author provided the code on request. It provides matrix com-
pletion. Given specially constructed matrices with labels alongside features
set in columns for training, and similarly for the test samples, columns of fea-
tures but with unknowns in the position of the labels, the algorithm fills in
the label slots with the person classifications. The MC-Simplex algorithm de-
scribed in [23] was used. The parameters γ and λ were fine tuned in the range
γ ∈ [1, 30] , λ ∈

[
10−4, 102

]
, and the µ threshold was set to 10−9 as described

in [23].

4.2.7.3 Datasets used

In this experiment the iLIDS-MA datasets was used (sample images in Fig-
ure 26). iLIDS-MA contains 3680 images of 40 pedestrians also in the same
airport as iLIDS4REID. It was at the time of the experiment, one of the few
datasets with more than 20 samples per pedestrian, such as to allow multi-
shot with 10 samples per exemplar.

There was one experiment, with 10 samples (a multi-shot case). For each
experiment, 10 runs were made, and the results shown are the average of
those 10 runs. For each run, 20 images were randomly selected from each
pedestrians, 10 to be the probes and 10 to be part of the gallery.

4.2.7.4 Evaluation Metric

For these experiments the standard RE-ID metric, the CMC was used. In the
figures it is reported the first rank percentage, the fifth rank percentage and
the normalized area under the Cumulative Matching Characteristic curve.

4.2.7.5 Results

The experiment depicted in Figure 31 illustrates how there are successful semi-
supervised algorithms in other fields (i.e., Cabral’s et al. work in Image Cat-
egorization [24]) that Multi-View (and NN for that matter) outperform in the
re-identification field.
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(22.2% ; 53.8% ; 82.9%) Multi−View

(15.0% ; 39.8% ; 72.7%) RicCabral

(06.5% ; 21.0% ; 67.9%) NN

Figure 31: Comparison with another semi-supervised algorithm (Ricardo Cabral’s
Matrix Completion algorithm [24]). Tests run in the iLIDS-MA dataset,
with the HSV feature, in a multi-shot scenario with 10 shots. NN is included
as a baseline.

4.2.8 Discussion on the Theoretical Differences of Multi-View and State-of-the-Art
Algorithms

Multi-View learns weights for each sample and feature. The proposed Multi-
View formulation allows for each feature to have a different distance metric in
its kernel, but as is, these distance metrics must be set before optimization. On
the other hand, [101] optimizes over different distance metrics to find which
best fit each sample. In principle, Multi-View can be readily extended to also
learn weights for different distance metrics for each sample. The classifier def-
inition could be extended to not only do a weighted sum of a kernel response
for each training sample against the test sample, but to also include more
weighted sums of other kernels for each training sample.

[84] however, by adapting the feature weights on-the-fly for each probe sam-
ple is on a qualitatively different level. Multi-View is limited to a global out-
look, setting its weights during training instead of on-the-fly.

4.3 multiple hypotheses tracking

The problem of tracking people across a camera network is often addressed
with re-identification only, i.e., matching through the similarity between each
detection and each existing target. Few works actually use inter-camera track-
ing mechanisms. One such work, also in the context of tracking in camera
networks, is the work of Javed et al. [66], that uses a Maximum a Posteri-
ori (MAP) approach, similar to a global nearest neighbor’s association [15]. In
the conducted experiments here, the MHT algorithm in its standard implemen-
tation, is compared with an MHT implementation with only one leaf, which
is equivalent to the MAP approach (as defined by [15]). MAP considers all de-
tections and existing targets at each scan and chooses the best assignment.
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t = 1 t = 2 t = 3

(a) (b)

Ground truth

localiz. t = 1 t = 2 t = 3

Zone 1 A,B

Zone 2 A A

Zone 3 B

(c)

MAP

localiz. t = 1 t = 2 t = 3

Zone 1 A,B

Zone 2 B B

Zone 3 A

MHT

localiz. t = 1 t = 2 t = 3

Zone 1 A,B

Zone 2 B A

Zone 3 B

(d) (e)

Figure 32: Two people tracking with three non-overlapping cameras. Persons A and
B start in the field of view of Cam1, and then both move out. A puts
on a jacket and enters the field of view of Cam2. After some delay, B
enters in the field of view of Cam3 (a). Top, middle and bottom rows show
images acquired by Cam1, Cam2 and Cam3, respectively (b). Ground
truth localization of people (c), estimated localization using MAP (d) and
using the proposed MHT (e).

However, it does not account for the possibility that the assignment may be
erroneous [15].

4.3.1 Illustrative Example: Changing target

In this experiment, the tracking area includes three zones, z1, z2, and z3, cor-
responding to the fields of view of three cameras, Cam1, Cam2, and Cam3,
respectively (see Figure 32 (a)). Figure 32 (b) shows just three images for
each camera, but in fact there are many more intermediate images. The time
stamps, t = 1, t = 2, and t = 3, indicate relevant events, namely beginning
of experiment and appearance of novel objects in the cameras of the network.
The video frames captured by the three cameras are processed in order to
detect foreground objects and detected objects are characterized through HSV

color histograms, with 10 bins for each channel, as shown in Figure 22, with
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the 2 Part descriptor extraction that divides a person body in two by the waist
(Section 3.2).

In the beginning of the experiment two persons, A and B, are visible in
z1, and both walk away, leaving the field of view of Cam1. Then, A appears
in Cam2 and, shortly after, B appears in Cam3. The person A is initially
wearing white clothes, while B is wearing dark clothes (see the top-left image
in Figure 32 (b)). When A reappears in Cam2 he is wearing a dark jacket,
changing his color histogram significantly. With the jacket he becomes more
similar to B, as seen in Cam1, than with himself.

Tables (c), (d) and (e), in Figure 32, show the ground truth, the tracker pre-
dictions of MAP and MHT respectively. At t = 2, both MAP and MHT algorithms
make an incorrect association, placing B in z2. However, at t = 3, i.e., when B
later appears in Cam3 (z3), MHT is able to correct the prediction, and thus con-
cludes that A went to z2 and B went to z3, while MAP maintains the incorrect
association.

The rationale behind the correction of the MHT prediction is as follows. The
color description of the persons is not expected to change, therefore, hypothe-
ses in which the histograms change receive a probability penalization. This
penalization occurs via the PhZ,hT term of PZkl ,ιTki

. Assume now a simplifica-
tion with grey scale histograms having only one bin, which will be used to
give the reader the intuition of what is being calculated by the MHT algorithm
and why it is able to correct its previous decision. In all experiments, the tar-
gets’ gates are of size 1, thus the tracker assigns a probability of zero to the
possibility of a target crossing a zone undetected.

For simplicity let’s assume a histogram feature of a single bin. In Cam1,
assume that A has a “histogram” with a value of 0 in its single bin, and B a
“histogram” with a value of 1. When A appears in Cam2 he has a histogram
of 0.7. In the hypothesis according to which A is in z2, the total change in his-
tograms is of 0.7, but in the hypothesis which places B in z2, the total change
in histograms is only 0.3. Thus, at this point, B would always be placed in z2
by any algorithm. When B appears in Cam3, his histogram in that detection
is still 1. Because the target’s gate is 1, when one of the persons is in z2, the
algorithm will place the other person in z3, that is, in the hypothesis where A
is in z2, B will be placed in z3 (z3 is not in A’s gate), in the hypothesis where
B is in z2, A will be placed in z3.

The hypothesis which placed B in z2 has a total change in histograms of
0.3+ 1 = 1.3, but the hypothesis which correctly placed A in z2 has a total
change in histograms of only 0.7. Because greater change in histograms di-
rectly translates into lower probability of an hypothesis, the hypothesis which
placed A in z2 will now be selected as the best hypothesis, because it has a
total change in the histograms of only 0.7, versus 1.3 in the other hypothesis.

With MAP, person A would be incorrectly labeled as B in z2, and when B
really appeared in z3, the best assignment would be to incorrectly place A in
z3. Furthermore, if no tracking algorithm was used, then B could possibly be
assigned to the detection in z2, and also to the detection in z3.
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4.3.2 Simulation

A large tracking area is simulated, consisting of 57 zones, each zone contain-
ing a camera (depicted in Figure 33 (a)). During the simulation, 40 targets
move in the tracking area. Each target initially chooses a random zone and
walks there by the shortest path. Upon arrival, he repeats the same behavior,
indefinitely. Two sources of uncertainty are considered. One source of un-
certainty models camera noise, illumination changes, person pose and other
changes alike, as additive Gaussian noise in the targets’ histogram. The other
source of uncertainty models target detector reliability issues by deleting from
the simulation detections at a certain mis-detection rate.

Several simulations were run, with varying values of histogram noise and
mis-detection rates. Each simulation is comprised of 5000 scans, with 1 sec-
ond per scan, and the simulated people take 3 to 6 scans to move between
areas. The history of the tracks produced by each tracker is analyzed and the
average number of incorrect assignments per scan during the simulation is
used to measure the tracker’s performance. If a target ιTk−1 was assigned
an identifier i in scan k− 1 and an identifier j 6= i in scan k by the tracking
algorithm, then an assignment error occurred.

In Figure 33 (e), the performance of MHT and MAP are presented, with vary-
ing levels of noise added to the target’s histograms, for a percentage of misde-
tections of 15%. In figure 33 (f) the percentage of misdetections is varied, for
an added noise in the target’s histograms of 0.8.

Comparing the MHT’s performance with the MAP performance, MAP makes
the best assignment between measurements and targets at each scan but, as
it does not maintain multiple hypotheses on possible states of the world, it
cannot recover from past mistakes as well as MHT does. Therefore, MHT con-
sistently obtains better results than the MAP approach.

4.4 integrating pedestrian detection and re-id

This section presents an extensive evaluation of the proposed system for inte-
grating automatic pedestrian detection in RE-ID. The experimental evaluation
will give emphasis to the novelties presented in the framework, namely: (i) the
influence of the occlusion filter and the false positive class presented in Sec-
tion 3.1.2 and Section 3.1.3; (ii) the performance of our window-based RE-ID

classifier for all the combination of parameters (r,d,w) comparing against the
respective single-frame classifier (T=(r, 1, 1)).

4.4.1 Evaluation

The integration of PD and RE-ID generates more types of errors than the regular
RE-ID experiments, which necessitates additional metrics beyond the CMC for
a full evaluation. Here, the re-identification evaluation method utilized in this
section is presented.
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(a) Setup formed by 57 zones
and 40 targets

(b) Targets motion from
t = 819 to t = 820
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(c) Target distances from
t = 819 to t = 820

(d) Minimal distances from
t = 819 to t = 820
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Figure 33: Simulated experiment involving the tracking of 40 targets in a 57 zones
setup (a). All the targets can move to an adjacent node at each time step
(b). Distances 1− B(hZ,hT ) (Eq. 4.1.2) and the best matchings among all
targets are shown in (c) and (d) for the same time step indicated in (b).
Correct and incorrect histogram matchings are marked with blue dots and
red stars, respectively. Assessment of target and measurement associations,
using MAP and MHT considering noise in the observed histograms (e) or a
varying percentage of misdetections (f).
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Figure 34: Illustration of Precf and Recf metrics calculation. The pedestrian of interest
appears in 12 frames of this video. Each red bounding box indicates a
detection and re-identification of rank 1 of that pedestrian. In this example,
I set the minimum number of re-identifications to d=1 and the window
size to w=2. Given the detections and these parameters, the black brackets
below frames {2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18} indicate the 13 frames
that are shown as output of the system. From these 13 frames shown, 7 of
them truly contain the pedestrian of interest, therefore precision in frames
(Precf) is 7/13. From the 12 frames in which the pedestrian appears in
the video, only 7 are shown, thus recall in frames (Recf) is 7/12. Note how
although the detection and re-identification in frame 17 is erroneous (a false-
positive of the detector, and a lucky mis-classification of the re-identifier),
the corresponding video-clip shown does indeed contain the pedestrian of
interest, and thus is a positive video-clip and thus contributes positively
for the recall.

Figure 35: Visualization of the impact that different parameters have on the Precf and
Recf metrics, by comparison with the previous figure. In this example, I
set the minimum number of re-identifications d=2 and the window size
w=3. Given the detections and these parameters, the black brackets below
frames {2, 3, 4, 5} indicate the 4 frames that are shown as output of the sys-
tem. From these 4 frames shown, all 4 of them truly contain the pedestrian
of interest, therefore precision in frames (Precf) is 1. From the 12 frames in
which the pedestrian appears in the video, only 4 are shown, thus recall
in frames (Recf) is 4/12.

The standard metric for Re-Identification (RE-ID) evaluation is the Cumu-
lative Matching Characteristic curve (CMC), that shows how often, on av-
erage, the correct person ID is included in the best r matches against the
gallery, for each probe image. If ord(i) is defined as the number of correct re-
identifications at index i in the ordered list of all matches for a probe sample
against all classes in the gallery, then CMC is defined as:

CMC(r) =

r∑
i=1

#ord(i)
tp

, r ∈ [1, . . . , # of classes] (11)

where tp is the true positives of the detector, and thus the total number of
probes.

This means that when there are False Positive (FP) probes, without a FP

class, each FP contributes to the denominator of Equation 11 (see Equation 12)
in the CMC calculation, reducing every value of the CMC by the fraction of the
amount of FPs relative to the total of probes.

CMC ′(r) =
r∑
i=1

#ord(i)
tp+ FP

= CMC(r)
tp

tp+ FP
< CMC(r) (12)
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When there are MDs, if on average the samples missed are distributed pro-
portionally to ord(i), then the CMC does not change. This means that the CMC

does not penalize the Missed Detections (MDs) introduced by the Pedestrian
Detection (PD) algorithm. If there are MDs, there are less probes to be classified
(numerator) and the CMC values are divided by a smaller number of probes
(numerator).

CMC ′′(r) =
r∑
i=1

#ord(i) − #ord(i)MDs
tp

tp− MDs

=

r∑
i=1

#ord(i)(1− MDs
tp )

tp− tpMDs
tp

=

r∑
i=1

#ord(i)(1− MDs
tp )

tp(1− MDs
tp )

= CMC(r)

Therefore, to take into account both the MDs and FPs introduced by the
pedestrian detector, other metrics should be used to complement the perfor-
mance evaluation of a automatic Re-Identification (RE-ID) system.

In other fields such as object detection and tracking, precision and recall
metrics are used to evaluate the algorithms3. Here we take inspiration from
such examples and adapt precision and recall metrics to evaluate not only the
detection part but also the integrated RE-ID and PD system.

Let a certain query for a person i, i ∈ 1 · · ·P, result in Ni presented videos
vin, n ∈ 1 · · ·Ni. Let t(vin) be the total number of frames in the video, and
p(i, vin) be the number of frames actually containing person i. Finally, let
gt(i) be the correct number of frames where pedestrian i appears in the whole
sequence.

• Precision in frames (Precf): Number of frames shown that do contain
the pedestrian of interest over the total number of frames shown.

Precf =
1

P

P∑
i=1

∑Ni

n=1 p(i, v
i
n)∑Ni

n=1 t(v
i
n)

• Recall in frames (Recf): Number of frames shown that do contain the
pedestrian of interest over the correct total number of frames in which
the pedestrian appears.

Recf =
1

P

P∑
i=1

∑Ni

n=1 p(i, v
i
n)

gt(i)

See Figure 34 and Figure 35 for two illustrative examples and note the varia-
tion of the performance metrics in the same video for different d and w.

3 Such as in the iLIDS dataset’s user guide: http://www.siaonline.org/SiteAssets/Standards/
PerimeterSecurity/iLidsUserGuide.pdf

http://www.siaonline.org/SiteAssets/Standards/Perimeter Security/iLids User Guide.pdf
http://www.siaonline.org/SiteAssets/Standards/Perimeter Security/iLids User Guide.pdf
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To summarize, there are several metrics, and they may be combined in any
number of ways to provide a final performance measure. Recall penalizes
MDs and thus if the application absolutely requires to have the minimum pos-
sible of MDs (i.e., detecting strangers in a high-security research facility), recall
should be given higher weight. Precision penalizes FPs and thus if the applica-
tion favors not providing too much wrong output (i.e., video surveillance in a
shopping mall, where the confidence of the human operators in the system is
considered more important than the security level) then precision should have
more weight. Precision in frames also penalizes positive video-clips that only
have a few frames containing the pedestrian of interest, so it also accounts for
the attentional load put on the user.

One of the often utilized combined metric is the F-score defined below:

F-score = 2.
Precf.Recf

Precf + Recf
(13)

The F-score is the harmonic mean of Precf and Recf and is a classical way to
combine precision and recall.

4.4.2 Features used

The features employed were:

bvt Black-Value-Tint histogram (BVT) (Section 4.1.1).

hsv Hue-Saturation-Value histogram (HSV)[59];

lab Lightness color-opponent histogram (Lab)[64];

mr8 Maximum Response Filter Bank (MR8) histogram [75, 109];

lbp Local Binary Patterns (LBP) [2].

All experiments use “4 Parts” descriptor extraction, and each feature when
applied to a region of the image generate a histogram of constant bin size for
all experiments (illustrated in Figure 22).

4.4.3 Datasets used

In this final experiments the HDA dataset [116]4 was used (sample images
in Figure 36). This is one of the most challenging datasets available. It is the
only one up to this point that provides high-definition images. It provides the
largest amount of camera views. And provides plenty of challenging exam-
ples of varying illumination, occlusion and even changing clothes. It contains
over 64’000 images of 85 pedestrians, viewed from up to 13 camera views in
an office space scenario. Each video sequence acquired from each camera cor-
responds to 30 minutes of video during rush hour in our laboratory facilities.

A closed-space assumption is considered for the experimental setup (see
Section 1.3) and there is gallery samples for all the pedestrians in the video.

4 http://vislab.isr.ist.utl.pt/hda-dataset

http://vislab.isr.ist.utl.pt/hda-dataset
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Figure 36: Sample images from the HDA dataset. It contains many images of very
different scales, from VGA up to 4MPixel cameras. From up to thirteen
different camera views in a office space environment. It includes the no-
table challenge of changing apparel.

A set of images is collected before-hand and stored in a gallery associated
to their identities. Two disjoint sets are used for gallery and probes. More
specifically, the best5 images of 12 out of the 13 cameras sequences were se-
lected for the gallery, and the left-out sequence is used as a probe set. The
gallery is built by hand-picking one manually cropped bounding box image
for each pedestrian in the sequences that they appear, leading to a total of
230 cropped images for 76 pedestrians (roughly three images per pedestrian).
Having, on average, three high quality images for each individual is realistic
for a real-life controlled entry point – a few cameras can be set to point at the
entry point to capture high-quality images from distinct points of view.

The False Positive (FP) class (Section 3.1.3) is built with the detections from
the gallery sequences that have no overlap with any Ground Truth (GT) Bound-
ing Box (BB), for a total of 3972 detections in the FP class. In a realistic case,
the system could be set to work automatically by acquiring images early in

5 Best is here defined as images of pedestrians with full visibility and closest to the camera.
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the morning, when the building is known to be empty, collect all detections
of pedestrians, which will all be FPs, and construct the FP class.

The probe image sequence contains 1182 GT BBs, centered on 20 different
people. Such people are fully visible in 416 occurrences and appear occluded
in some degree by other BBs, or truncated by the image border, in 766 occa-
sions. Since three pedestrians who appear in the probe set are not present
in the gallery set, we remove their corresponding 85 appearances from the
probe set (leaving 1097 appearances). The remaining 17 individuals cross the
field of view of the probe camera 54 distinct times, therefore there are 54 GT

video-clips6. Figure 37 displays in blue the appearances throughout the video
of each of the 17 pedestrians.

4.4.3.1 Pedestrian Detection

In this work we used our implementation [114] of Dollár’s Fastest Pedes-
trian Detector in the West [38] (FPDW). Being FPDW a monolithic detector,
it is constrained to generate detections which lie completely inside the image
boundary. This naturally generates a detection set without persons truncated
by the image boundary, facilitating the RE-ID. This module outputs 1182 detec-
tions7 on the probe camera sequence. The initial detections are filtered based
on their size, removing the ones whose height is unreasonable given the ge-
ometric constraints of the scene (under 68 pixels). This rejects 159 detections
and allows 1023 of them pass. The three pedestrians who appear in the probe
set and are not present in the gallery set generate 59 detections which we
remove from the detections’ pool, since they violate the closed-space assump-
tion. This leads to the 964 elements that form the base set of detections, 155

of which are FPs. Figure 37 displays in green the detections throughout the
video of each of the 17 pedestrians.

4.4.4 Classifiers used

The Multi-View classifier (see Section 3.3.1) was used for the single-frame clas-
sifier, with the Bhattacharyya kernel (see Section 3.3.1.3) for all experiments.

bhattacharyya kernel : K(t, x) = exp

(
−

√
1−

∑√
ti · xi

σ2

)

4.4.4.1 Window-based Classifier with Clip-based Output

The output of the single-frame classifier is then filtered by the window-based
classifier, to then generate video clips of all the windows that are contiguous
or overlapping.

6 A GT video-clip is a sequence of contiguous frames where the pedestrian is present in the
camera field of view.

7 Notice that although it’s the same number as GT bounding boxes, this is a coincidence, and
that 155 of these 1182 detections are FP.



78 results

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0
1

4
0

0
1

6
0

0
1

8
0

0
0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

T
im

e
 (fra

m
e

)

Pedestrian ID

Figure
3

7:In
blue

dots
w

e
have

the
distribution

of
all

1
7

pedestrian
appearances

throughoutthe
probe

video
sequence.In

green
verticallines

w
e

have
allthe

detections
provided

by
the

PD
.



4.4 integrating pedestrian detection and re-id 79

Scenario GT Occ Filt FP class Dets MDs FPs

MANUALall 1 NA NA 1097 0 0

MANUALclean 1 ON GT NA 416 681 0

MANUALcleanhalf 1 ON GT NA 208 889 0

DIRECT 0 OFF OFF 964 288 155

FPCLASS 0 OFF ON 964 288 155

FPOCC30 0 ON 30% ON 854 362 119

Table 14: In this table we summarize the details of each scenario. GT indicates the
use of ground truth for detection in a scenario, namely the hand-labeled
BBs. When GT is set to 0 this means an automatic pedestrian detector is
being used for detections. NA indicates that the use of the Occlusion Fil-
ter (Occ Filt) or the FP class is not applicable to experiments with GT data.
The total number of detections and the amount of corresponding false pos-
itives which are passed to the RE-ID module are listed under Dets and FPs,
respectively. The total number of missed detections are listed under MDs.

4.4.5 Evaluation Metric

The necessary GT for evaluating the RE-ID task is obtained by processing the
original GT annotations, and the detections generated by the PD module. Each
detection is associated with the label of a person or the special label for the
FP class. The assignment is done associating each detection with the label of
the GT BB that has the most overlap with it. The Pascal VOC criterion [41] is
used to determine FPs: when the intersection between a detection BB and the
corresponding BB from the original GT is smaller than half the union of the
two, the detection is marked as a FP.

To perform the evaluation of all the window-based classifier with clip-based
output experiments the metrics described in the previous section are com-
puted: precision in frames (Precf) and recall in all frames (Recf). The Cumu-
lative Matching Characteristic curve (CMC) is also computed for the single-
frame classifier.

4.4.6 Experiments

Six scenarios were devised to illustrate the different aspects of the integrated
PD and RE-ID system.

For each scenario, all parameters of our window-based classifier were var-
ied, in the following range: r ∈ [1, 5], d ∈ [1, 20] and w ∈ [1, 1740], which
adds up to 174 000 experimental runs for each scenario. Note that d=1, w=1

corresponds to the single-frame classifier.
In scenario MANUALall RE-ID is performed on all pedestrian appearances

no matter how occluded or truncated they may be in the image. For all
pedestrians there are some frames in which they are significantly truncated
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Best T Precf Recf Med Med Med

(r, d, w) (%) (%) r d w

Precf (1, > 18, [18 20]) 100 6 5.7 1 13 16

Recf (5, 1, > 198) 6 0.9 100 5 1 248

Table 15: Triplets of parameters that maximize each metric separately, on the
MANUALall scenario (described in the text), along with their respective
metric values. The median value of each parameter for the 100 best triplets
for each metric is also shown. From this it’s observable that recall pulls for
large rank r and threshold d=1, while precision prefers rank r=1, large d
and pulls for the smallest possible window size w (w must always be > to
d).

(when they are entering or leaving the camera’s field of view). These instances
should be impossible for the RE-ID classifier to correctly classify, yet, this sce-
nario provides a meaningful baseline for recall because there are absolutely
no MDs. Note that this method of operation is not applicable in a real-world
situation, since it requires manual annotation of every person in the video
sequence.

In the MANUALclean scenario RE-ID is performed on the 416 GT BBs where
the pedestrians are fully visible, consistently with the modus operandi of the
state of the art. This means that the RE-ID module works with unoccluded
persons and BBs that are correctly centered and sized. Note that this method of
operation is also not applicable in a real-world situation, since it also requires
manual annotation of every person in the video sequence. This scenario is a
baseline for precision and accuracy.

In scenario MANUALcleanhalf RE-ID is performed in half the samples of
MANUALclean randomly selected. This scenario is devised to highlight the
effect of having many MDs, since only 208 of the total 1097 pedestrian appear-
ances are used.

Then, in scenario DIRECT the performance of the system is analyzed re-
sulting from the naive integration of the PD and RE-ID modules. Note that the
155 FPs generated by the detector will be impossible for the RE-ID to correctly
classify, since they do not have a respective class in the gallery.

Afterwards, in the FPCLASS scenario, ON the FP class is turned ON to
evaluate our approach to address detection false positives.

Finally, in scenario FPOCC30 the Occlusion Filter is turned ON with the
overlap threshold set to 30%. It has been determined in [115] that 30% is the
best value for this parameter in this dataset.

Table 14 summarizes the details of these six scenarios.
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4.4.7 Results

This section presents the results obtained with the proposed architecture, fol-
lowing the six scenarios described above in Section 4.4.6 and summarized in
Table 14. The results will be thoroughly discussed in the following section.

First, the CMC is computed for all six scenarios with the single-frame classi-
fier (Figure 38).

Then, it’s analyzed which combination of parameters maximize each metric
individually, on the MANUALall scenario. The set of 100 best combination
of parameters T=(r,d,w) is taken for each metric, and present the best and
the median value of each parameter for that set (Table 15).

Finally all the 174 000 experimental runs are computed for each of the six
scenarios. Table 16 summarizes the results for six considered scenarios.

In Figure 39, its plotted in the Precf vs Recf space, one point per combina-
tion of parameters (triplet T=(r,d,w)). Each point is colored with its respec-
tive F-score (from blue to dark red). Its also marked with a circle the point
corresponding to the T that maximizes the score defined in Equation 13, and
with a square the T that maximizes Equation 13 while setting d and w to 1

(the respective single-frame classifier).

F-score (%) Precf (%) Recf (%)

(1,5,10) (1,1*,1*) (1,5,10) (1,1*,1*) (1,5,10) (1,1*,1*)

MANUALall 33.5 26.7 36.2 27.1 31.3 26.3

MANUALclean 33.8 28.1 67.0 47.4 22.6 20.0

MANUALcleanhalf 19.2 15.5 77.4 44.6 10.9 09.4

DIRECT 34.6 25.6 39.5 27.5 30.8 23.9

FPCLASS 36.3 25.6 44.1 29.1 30.8 22.9

FPOCC30 38.9 27.0 53.8 34.3 30.4 22.2

Table 16: Results for three combination of parameters that provide the best results
overall, and under (1,1*,1*) results for the corresponding best single-frame
classifier (setting d=1 and w=1). The first conclusion is taken comparing
the (1,1*,1*) column with the others, where its visible that the improvement
provided by the window-based classifier is significant (reaching up to 11%
in the F-score). The second conclusion comes from comparing the F-score
values between different scenarios. The FPCLASS scenario consistently out-
performs the DIRECT scenario and FPOCC30 consistently outperforms the
other two. This supports the claims that adding a false positive class to the
classifier helps deal with the false positives of the pedestrian detector, and
that adding the occlusion filter to reject detections of occluded pedestrians
ultimately also helps the overall re-identification system. The final conclu-
sion comes from comparing MANUALclean with MANUALcleanhalf, where
the drastic drop in F-score due to the added MDs is clearly visible, while the
CMC does not account for this effect.
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Figure 38: Cumulative Matching Characteristic curves comparing the performance
of various configurations of the integrated Re-Identification system with
a single-frame classifier. For details on the scenario of each experiment
see Table 14. The three numbers for each line correspond to the first
rank, fifth rank and normalized area under the curve respectively. Note
how the MANUALcleanhalf’s CMC performance is roughly the same as the
MANUALclean’s, highlighting how MDs are not penalized by the CMC met-
ric.

4.4.8 Discussion

In this section it is discussed the results obtained by running the architecture
in the scenarios described above.

Table 15 shows which combinations of parameters T=(r,d,w) maximize each
metric separately in the MANUALall scenario. The triplets in the interval
T = (1,> 18, [18 20]) 8 maximize precision in frames. Rank r=1 and a large
number of required detections d, and the smallest possible w, causes the high-
est possible confidence in each “detection” and produces video-clips with the
least possible amount of false positives, thus optimizing precision. In this case,
the parameters are so strict that only two video-clips are produced as output,
and all frames of both video-clips contains their respective pedestrian, thus
reaching 100% precision in frames. On the opposite side, all triplets in the
interval T = (5, 1,> 198) maximize recall in frames. Large rank, which indi-
cates small confidence in each detection, combined with a small number of
required detections to present output, and a large window size w, causes the
window-based classifier to capture almost everything. Therefore it does not
miss any pedestrian appearance, and has 100% recall.

This experiment gives guidelines for the tuning of the parameters if one
wishes to give more importance to precision or recall, given the application.
If increased precision is desired, r should be reduced, d increased, while keep-
ing w small. If someone wishes to maximize recall, he should increase r, re-
duce d and increase w. Note that in this last case, the amount of data shown
to the operator is much larger, but a high-security application may require it.

8 Note that for a given T, w needs to be always greater or equal to d
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Now lets analyze Table 16 and compare the results between scenarios (rows)
and between experiments in each scenario (columns). The first and foremost
conclusion can be observed comparing the results for window-based classifi-
cation with single-frame classification (first column of each metric against the
column under T=(1,1*,1*)). Window-based classification consistently outper-
forms single-frame classification, in all experiments, under the F-score met-
ric defined in (13). This supports the claim that window-based classification
improves results overall. The second important conclusion comes from com-
paring F-score values of the different scenarios. FPOCC30 consistently outper-
forms FPCLASS which consistently outperforms the experiments under the
DIRECT scenario. This gives evidence that the proposed modules (FP class
and occlusion filter) help deal with some of the issues of integrating the PD

with RE-ID.
Let us now analyze each scenario individually. Scenario MANUALall is one

baseline, it has absolutely no MDs, thus it exhibits the best recall (see the first
line of Table 16). The precision is low, because many instances of pedestrian
appearances are truncated or occluded up to a point to make it difficult or
even impossible for the single-frame classifier to correctly classify with rank
r=1. This lowers the F-score and CMC performances.

Scenarios MANUALclean and MANUALcleanhalf other, complementary base-
lines. They sport the most number of MDs of all scenarios, thus exhibiting the
lowest recall values. On the other hand, because they pass only the “clean” de-
tections to the classifier, they achieve the lowest amount of mis-classifications
and thus the highest precision values. Note how the CMC plot reports very
good performances for both MANUALclean and MANUALcleanhalf (see Fig-
ure 38), while the F-score and recall values (see Table 16) clearly differentiate
between the two scenarios: MANUALcleanhalf achieves much worse F-score
and recall than MANUALclean, due to the much higher number of MDs in the
first scenario. These results show that the CMC plot is largely unaffected by
different numbers of MDs and that precision and recall statistics provide com-
plementary information to characterize the performance of integrated RE-ID

systems.
In the DIRECT scenario, the naive integration of the PD and RE-ID exhibits

the expected low performance (the lowest in Figure 38 and in F-score on
Table 16). However, the best triplets of parameters T=(r,d,w) are always low
rank9, in the region where the negative effect of not having a FP class is not
particularly noticeable/relevant (see the first points of Figure 38). This makes
results not that much worse than the rest of the scenarios. In the literature,
FPs are either not considered to the classification, or their influence in the
final performance is ignored. If indeed the FPs are considered, the CMC does
not reach 100% (see green curve in Figure 38).

In the FPCLASS scenario the RE-ID module is able to classify a fraction of the
FPs as such, therefore it exhibits better precision than DIRECT. The pedestri-
ans that are wrongly classified as FPs won’t decrease precision directly since

9 From the experiments conducted, it was observed that the best T always had rank r lower than
3.
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the system does not measure precision of the FP class. However, they will
decrease recall, because those instances are not recovered and shown to the
user. Nevertheless, the loss of recall by this fact, is largely compensated by the
improvement in precision in the window-based classifier results, and exper-
iments in the FPCLASS scenario consistently outperform ones conducted in
the DIRECT scenario, under the F-score metric. Note that, when comparing
the DIRECT experiment with this one, It is visible that the CMC over-penalizes
FPs. The area under the CMC is drastically smaller in the DIRECT experiment,
while the F-score is just mildly inferior. This supports the assertion that it is
of interest to complement the CMC with other metrics when integrating RE-ID

with PD.
Finally, in scenario FPOCC30 it is confirmed that this operation mode is the

best one. It consistently shows a better F-score performance, as well as preci-
sion. It is confirmed that applying the occlusion filter is a good compromise
between having some MDs from the rejected detections and having a good re-
identification performance, since it outperforms experiments from all other
scenarios.

In Figure 39, where it’s plotted all the 174 000 experimental runs for each
scenario, one point per experiment, it is demonstrated the effectiveness of
using a window-based classifier. All points in the figure indicates the per-
formance of window-based classifiers with different combination of parame-
ters, and the square indicates the performance of the respective single-frame
classifier (with the best r) in that scenario. In all the six sub-figures (sce-
narios), the square (single-frame classification) is always surpassed by many
possible window-base classifier parameter combinations. Also notice that the
FPOCC30 scenario exhibits the best compromise of precision and recall over-
all.

Of interest is also noting that for all experiments, the best 100 triplets in
F-score had all rank lower than 3. This suggests that only the lowest ranks
matter for practical applications of the window-based and single-frame clas-
sifiers.

4.4.8.1 Concluding Remarks

In summary, the most important observations are that:

1. Window-based classification consistently outperforms single-frame clas-
sification, in all experiments, under the F-score metric. This means that
window-based classification improves results overall.

2. The FPCLASS scenario outperforms the DIRECT scenario in both single-
frame and window-based classification, for both CMC and F-score metric.
This means that the FP class is an important module that should be used
when integrating PD algorithms into the RE-ID pipeline.

3. The FPOCC30 scenario outperforms the FPCLASS scenario in both single-
frame and window-based classification, for both CMC and F-score metric.
This means that the occlusion filter is an important module that should
be used when integrating PD algorithms into the RE-ID pipeline.



4.4 integrating pedestrian detection and re-id 85

4. The sharp drop in F-score for the MANUALcleanhalf scenario over the
MANUALclean scenario, while the CMC values remain mostly unchanged
illustrate how the CMC does not penalize MDs.

5. The sharp drop in the CMC for the DIRECT scenario over the FPCLASS
scenario, while the F-score is only a bit lower illustrate how the CMC

overpenalizes FPs.
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(a) Scenario MANUALall (b) Scenario MANUALclean

(c) Scenario MANUALcleanhalf (d) Scenario DIRECT

(e) Scenario FPCLASS (f) Scenario FPOCC30

Figure 39: Precision in frames versus recall in frames for all 174 000 combination of
parameters r, d and w, in all five scenarios detailed in Table 14. Each point
represents an experiment with a given combination of the parameters. Pre-
cision is displayed in the y axis, Recall in the x axis, and the respective
F-score defined in (13) colors each point (from blue to red). The circle
corresponds to the triplet T = (1, 5, 10) that is one that depicts the best
performance all around. The square represents the point that maximizes
(13) for d and w set to 1 (a single-frame classifier). By comparing the cir-
cle to the square, it is immediately evident that there is a large boost in
performance from using a window-based classifier.



5
C O N C L U S I O N S

Re-identification has many challenging issues that result from the high vari-
ability of the people’s appearance in the camera images due to different il-
lumination, different clothes, occlusions, postures and camera’s opto-electric
characteristics and perspective effects. Furthermore, a real re-identification
system requires automatic detection of the pedestrians which leads to several
other issues that hinder re-identification: false positives, missed detections,
unreliable bounding boxes, and detections of occluded pedestrians.

In this work the problem of re-identification was analyzed in a holistic fash-
ion. Despite a lot still has to be done for dealing with the high-variability
of person’s appearances, I was able to enhance the state-of-the-art both in
feature extraction and classification. For feature extraction, following recent
paradigms of part-based object representations, human detection was divided
in body parts, to be able to extract features from semantically meaningful lo-
cal regions. For classification a semi-supervised multi-view classification al-
gorithm was used, which copes well with a small number of training samples
and leverage unlabeled test data, whose sample size is often larger than the la-
beled test data. Moving towards the automation of re-identifications systems,
I looked into the problems arising from using pedestrian detection algorithm
for selecting image regions for re-identification. This brings problems due to
unreliable bounding boxes, false positive and false negative detections. By let-
ting body-part detection take care of the unreliability of detection bounding
boxes, since detecting body-part locations corrects misalignments in the per-
son detection; by training a false positive class to capture false positives of
the detector, these can be handled by the classifier which couldn’t before; by
using an occlusion filter to prune out some detections of occluded pedestri-
ans, re-identification performance increases, by removing hard to re-identify
samples; and by using a window-based classifier to exploit the temporal co-
herence of pedestrian appearances, it filters out some spurious false positives
and re-captures some missed detections. One other point of contribution was
the proper evaluation of re-identification systems by proposing metrics that
assess the impact of false positives and missed detections in the overall system
to complement the usual metric employed by the re-identification community
(CMC curves). Finally, classified pedestrians are tracked across cameras by
the state-of-the-art Multiple Hypothesis Tracker.

Both the advances in feature extraction and in the integration of auto-
matic detection with re-identification are general enough to be able to be
applied to virtually any work in the literature. I expect these contributions
to be widely used and boost research in integrated pedestrian detector and
re-identification systems, bringing them closer to reality.
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5.1 future work

Finally we discuss possible future avenues of work towards real-life applica-
tion in person re-identification problems.

This thesis illustrated how Multi-View consistently improves re-identification
performance over the other tested methods. However, many other degrees of
freedom in the multi-view formulation are still open. In this section we pro-
vide a few points worth exploring for eventual performance gains.

To make the solution to the problem closed form, we averaged the estimated
labels for each view via the matrix C. Optimization can be attempted not only
over the function space – that yields the functions that project the feature
space into the label space – but also over the C matrix (that integrates the
contributions from each feature).

Also, it is assumed from the results that each single feature classifier train-
ed during Multi-View is better than the same single feature classifier when
trained alone alone, but still inside the multi-view framework. Nevertheless
it would be interesting to run experiments that make this explicit.

In [113] they allow for one parameter per view in the regularization terms
that govern the approximation error (γ1||f1||2H1 + γ2||f

2||2
H2

). To reduce the num-
ber of free parameters here it was opted for only one γA for all views (γA||f||2K).
It would be interesting to study the effect of having one parameter per view
to govern the approximation error, to see if further performance gains can be
attained.

Finally, another avenue of interesting research is the analysis of how the
parameters (r,d,w) of the window-based classifier vary given different base
accuracy of the used single-frame classifier. What will be a good base value
for those parameters for any classifier, or how should they be tuned given an
expected accuracy of the single-frame classifier.

5.2 published works

In the beginning of this thesis the issue of detecting and separately classifying
people and robots was explored [45, 96], under the context of a multi-robot
and camera test network [16].

Then, a new dataset (HDA dataset) was developed, from where to detect
pedestrians [116] and benchmark algorithms. Following [116], and directly
relevant to this thesis, an extension to the HDA dataset was proposed [47],
termed herein HDA+, that added evaluation software specially tailored for
re-identification. Both the dataset1 and software2 are available online.

Afterwards, [115] proposes and analyzes the use of a PD algorithm to pro-
vide detections to the RE-ID stage and [48] further extends the analysis with
evaluation metrics that take into account the problems introduced by the non-
ideal nature of automatic pedestrian detectors (Sections 3.1, 3.3.2 and 3.3.3).

1 You may request to download the HDA dataset at vislab.isr.ist.utl.pt/hda-dataset/
2 You can download the evaluation software and extras directly at github.com/

vislab-tecnico-lisboa/hda_code

vislab.isr.ist.utl.pt/hda-dataset/
github.com/vislab-tecnico-lisboa/hda_code
github.com/vislab-tecnico-lisboa/hda_code
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Further on, a semantic division of a pedestrian detection from where to ex-
tract descriptive features was developed [44] (Sections 3.1.1 and 3.2). After
several baselines for re-identification were implemented and tested, I focused
on a semi-supervised formulation for classification, that successfully fuses
any number of different features – Multi-View [46] (Section 3.3.1). Finally,
the re-identification work was integrated into a overarching tracking system
that allows the correction of mistaken classifications, i.e., when people change
clothes – the Multiple Hypothesis Tracker [6] (Section 3.4).





A
A P P E N D I X D ATA L A B E L L E R

We made good use of Dollár’s annotation tool [36, 35, 37]. But it was insufi-
cient for our needs, therefor we improved upon it (improvement described in
Figure 40)1.

Figure 40: Note the small button on the top left of the panel - that is our addition.
After having a video loaded, and a labeling file open, one click of that
button extracts all detections into a separate folder: crops every detection
from every frame, names them with the respective label and frame number,
and stores them into a preteremined folder.

The challenge of improving this data labeling tool is well summarized in
the very comments by the original author (Dollár) at the beginning of the
code:

% The code below is fairly complex and poorly documented.

% Please do not email me with question about how it works.

A more extended summary would describe the lack of indentation and the
use of lines of code like this:

for i=1:5, pLf.btn(i)=uic(pLf.h,btnPr{:},o4,’CData’,icn5{i}); end

1 The improved version of the annotation tool is available on request.
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B
A P P E N D I X X I N G M E T R I C L E A R N I N G

In this appendix we describe in more detail the metric learning algorithm by
Xing. Xing et al. [123] wishes to learn a metric of the following form:

dML(x,y) = ||x− y| |A =
√
(x− y)TA(x− y),

b.1 definitions :

• Data = {x1, . . . , xN} ∈ RN×d

• dij ∈ Rd : dij = xi − xj

• S: set of similar pairs.

• D: set of dissimilar pairs.

b.2 diagonal a

In the simpler case where the goal is only to learn a diagonal matrix, the
optimization can be simplified into the simpler form below:

min
A

∑
(i,j)∈S

∥∥xi − xj∥∥2A =

=
∑

(i,j)∈S

dij
T
Adij =

∑
(i,j)∈S

d∑
k=1

dij
2

k Akk =

=
∑

(i,j)∈S

wT · [dij21 dij
2

2 . . . d
ij2

d]
T

= wT
∑

(i,j)∈S

[dij
2

1 d
ij2

2 . . . d
ij2

d]
T (14)

s.t.
∑

(i,j)∈D

∥∥xi − xj∥∥A =
∑

(i,j)∈D

√
wT · [dij21 dij

2
2 . . . d

ij2
d]
T > t (15)

A > 0 (16)

where w = [A11 A22 . . . Add]
T .
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b.3 full a

When optimizing over the full matrix A, Xing posed the problem in the fol-
lowing way:

max
A

∑
(i,j)∈D

∥∥xi − xj∥∥A =
∑

(i,j)∈D

√
dij
T
Adij (17)

s.t.
∑

(i,j)∈S

∥∥xi − xj∥∥2A =
∑

(i,j)∈S

dij
T
Adij 6 t (18)

A > 0 (19)

Note that restriction (18) can be rewritten as wTa 6 t, considering and taking
advantage of:

t =

d∑
k=1

∑
(i,j)∈S

d
ij
k d
ij
k /1000 =

∑
(i,j)∈S

∥∥dij∥∥2
2
/1000

a =
[
A11 A12 . . . A1d A21 . . . Add

]T
Wkl =

∑
(i,j)∈S

d
ij
k · d

ij
l

w =
∑

(i,j)∈S

[
d
ij
1 d
ij
1 d

ij
1 d
ij
2 . . . d

ij
1 d
ij
d d

ij
2 d
ij
1 . . . d

ij
dd
ij
d

]T
w1 = w/ ‖w‖ , t1 = t/ ‖w‖

where t is a scalar, a is the unrolled matrix of A, w is also an unrolled matrix,
but of W ∈ Rd×d, and w1 is the normalization of w.

b.4 implementing in cvx

This optimization problem can now be easily implemented in MATlab with
CVX’s optimization toolbox1 as follows:

A = eye(d,d)*0.1;

t = w’ * unroll(A)/100;

cvx_begin

cvx_quiet(false);

variable a(length(unroll(A)));

maximize(sum(sqrt(data_diff_unrolled*a)))

subject to

w*a <= t*ones(ts_dim,1);

A>= 0

cvx_end

1 http://cvxr.com/cvx/

http://cvxr.com/cvx/
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b.5 speeded-up code by xing

The speeded-up code of the initial problem (Section B.3) by Xing goes like
this2:

1. Given an A (initial, or resulting from a previous full iteration), the code
iterates between obeying each constraint, until it gets to an A that obeys
both:

a) Given restriction (18) rewritten form wTa 6 t, take wTa, and com-
pare it with t. If greater than t then step once in the direction of
w1: a = a+ (t1−w1T · a) ·w1, where t1 = t/ ‖w‖;

b) Satisfying restriction (19) is done simply by setting the negative
eigenvalues of the resulting A to 0;

2. If both constraints are satisfied, then step in the gradient ascent of (17),
and yield an A;

3. Return to step 1 if minimum not reached.

One trick used to speed up convergence is to not only compute the gradient
of the objective function, but also compute the gradient of constraint (18), and
then, taking from the objective function’s gradient, only the orthogonal part
to the constraint’s gradient, taking a step in a direction that also ‘minimizes’
the disruption of constraint (18).

2 the matlab code of the speeded up version by Xing is available on request.
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