
UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Learning and Sensorimotor Coordination of

Anthropomorphic Robotic Systems

Bruno Duarte Damas

Supervisor: Doctor José Alberto Santos-Victor

Thesis approved in public session to obtain the PhD Degree in
Electrical and Computer Engineering

Jury final classification: Pass with Distinction

Jury

Chairperson: Chairman of the IST Scientific Board

Members of the Committee:

Doctor Aude Billard
Doctor Sethu Vijayakumar
Doctor Mário Alexandre Teles de Figueiredo
Doctor José Alberto Rosado dos Santos-Victor
Doctor Alexandre José Malheiro Bernardino

2014

UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Learning and Sensorimotor Coordination of

Anthropomorphic Robotic Systems

Bruno Duarte Damas

Supervisor: Doctor José Alberto Santos-Victor

Thesis approved in public session to obtain the PhD Degree in
Electrical and Computer Engineering

Jury final classification: Pass with Distinction

Jury

Chairperson: Chairman of the IST Scientific Board

Members of the Committee:

Doctor Aude Billard, Full Professor, École Polytechnique Fédérale de Lausanne,
Switzerland

Doctor Sethu Vijayakumar, Professor, The University of Edinburgh, Scotland, UK

Doctor Mário Alexandre Teles de Figueiredo, Professor Catedrático do Instituto Su-
perior Técnico, da Universidade de Lisboa

Doctor José Alberto Rosado dos Santos-Victor, Professor Catedrático do Instituto
Superior Técnico, da Universidade de Lisboa

Doctor Alexandre José Malheiro Bernardino, Professor Auxiliar do Instituto Superior
Técnico, da Universidade de Lisboa

2014

Para a Rita, para a Laura e para a Júlia.

Resumo

Em robótica, conhecer a maneira como as acções influenciam o ambiente e o estado do
robot é um requisito fundamental para uma verdadeira autonomia. Contudo, à medida
que os robots vão ficando mais complexos, com um grande esforço de investigação direc-
cionado para robots humanóides com um elevado número de juntas controladas, as suas
relações sensório-motoras tornam-se mais difíceis de modelar, conduzindo a situações onde
um modelo analítico já não é capaz de fornecer aproximações precisas aos mecanismos
robóticos subjacentes. Nesses casos, o recurso a técnicas de aprendizagem artificial pode
ser a única maneira de dotar esses sistemas de uma representação fidedigna dos seus mapas
sensório-motores.

Esta tese apresenta um mecanismo de aprendizagem computacional, em tempo real,
para a estimação de relações genéricas de entrada-saída a partir de um fluxo contínuo de
informação. Tal mecanismo é essencial em robots autónomos, onde, de uma forma biologi-
camente plausível, o robot continuamente aprende e se adapta à medida que interage com
o meio ambiente, e onde a experiência adquirida é imediatamente colocada em uso para
melhorar a execução das tarefas correntes. O método de aprendizagem proposto é baseado
numa abordagem de expectativa-maximização (expectation-maximization) que visa ajus-
tar uma mistura infinita de peritos lineares a um fluxo de amostras obtidas em tempo real.
Este modelo probabilístico consegue escolher eficientemente o número de peritos que são
atribuídos à mistura, desta forma efectivamente controlando a complexidade do modelo
resultante. Daqui resulta um algoritmo de aprendizagem incremental e de tempo real, que
efectua uma regressão não-linear multivariada numa saída também multivariada, onde a
função a aprender é aproximada por uma relação linear na região de influência de cada
perito, e que tem a capacidade de activar novos peritos conforme necessário. Uma carac-
terística distintiva do método proposto é a sua capacidade para lidar com multi-funções,
isto é, relações um-para-muitos que naturalmente surgem em alguns domínios da robótica
e da visão computacional, recorrendo para isso a um modelo generativo Bayesiano para
as predições fornecidas por cada um dos peritos da mistura; como consequência, este
método consegue proporcionar relações directas e inversas a partir de um mesmo modelo
previamente aprendido.

O modelo sensório-motor aprendido pelo algoritmo proposto apresenta uma grande
flexibilidade na maneira como pode ser usado para o controlo de estruturas cinemáti-

v

vi

cas genéricas: pode ser usado para lidar com mapas sensório-motores tradicionalmente
caracterizados por serem difíceis de aprender, como é por exemplo o problema da cin-
emática inversa ou os modelos onde surgem mudanças súbitas e não assinaladas de con-
texto sensório-motor; nesses casos, uma predição multimodal é absolutamente necessária
e justificada. O algoritmo proposto foi testado intensivamente em simulação, e a sua
aplicação ao controlo de braços robóticos foi validada experimentalmente, recorrendo a
dois robots humanóides.

Abstract

In robotics, knowing how actions affect the environment and the robot state is a fun-
damental requirement for autonomy. However, as robots become more complex, with a
large research effort put in humanoid robots with a high number of controlled joints, their
sensorimotor relations become more difficult to understand, leading to situations where
analytical models fail to provide accurate approximations of the underlying robotic mech-
anisms. In such cases, resorting to machine learning techniques may be the only way to
give these systems a reliable representation of their sensorimotor maps.

This thesis presents a computational learning mechanism for estimation of generic
input-output relations from a continuous stream of sensorimotor data in a real-time,
online fashion. This is a mandatory requirement for autonomous robots, where, in a
biologically plausible way, the robot continuously learns and adapts as it interacts with
the surrounding environment, and where the acquired experience is immediately used
for improving the execution of the current robot task. The proposed learning method
is based on a generalized expectation-maximization approach to fit an infinite mixture
of linear experts to an online stream of data samples. This probabilistic model can effi-
ciently choose the number of experts that are allocated to the mixture, this way effectively
controlling the complexity of the resulting model. The result is an incremental, online
and localized learning algorithm that performs nonlinear, multivariate regression on mul-
tivariate outputs by approximating the target function by a linear relation within each
expert input domain, and that can allocate new experts as needed. A distinctive feature
of the proposed method is the ability to learn multi-valued functions, i.e., one-to-many
mappings that naturally arise in some robotic and computer vision domains, using an
approach based on a Bayesian generative model for the predictions provided by each of
the mixture experts; as a consequence, this method is able to directly provide forward
and inverse relations from the same learned mixture model.

The sensorimotor model learned using the proposed algorithm exhibits a large flexi-
bility in the way it can be used for control of generic kinematic structures: it can be used
to cope with traditionally difficult to learn sensorimotor maps arising, for instance, in
inverse kinematics or in sudden, unsignaled changes of sensorimotor contexts, where the
need for multi-valued prediction is fully justified. The proposed learning algorithm has
been thoroughly tested in simulation, and its application to control of robotic limbs has

vii

viii

been experimentally validated on two humanoid robots.

Agradecimentos

A minha primeira palavra de agradecimento vai para o meu orientador, prof. José Santos-
Victor, pelo apoio, pelo constante incentivo ao desenvolvimento da minha autonomia e,
principalmente, por me ter acolhido de forma tão calorosa no Vislab: neste laboratório
encontrei um ambiente e um companheirismo notáveis a todos os níveis, que muito miti-
garam a solidão que inevitavelmente resulta do abraçar a tarefa gigante em que consiste
a elaboração de uma tese de doutoramento. Obrigado pois aos meus colegas e amigos do
Vislab: Manuel, Ricardo, Plínio, Ravin, Luka, Matteo, Nuno, Alex, entre tantos outros,
pelo apoio e pelas discussões e ideias trocadas ao longo destes anos. Em particular, uma
palavra de agradecimento para o Lorenzo, pela colaboração profícua iniciada há alguns
anos e que ainda hoje se mantém.

Não posso também deixar de referir o apoio dada pela Escola Superior de Tecnolo-
gia do Instituto Politécnico de Setúbal, que me possibilitou o desenvolvimento do meu
trabalho doutoral em paralelo com as minhas actividades docentes; em particular, quero
dirigir o meu agradecimento a todos os colegas e amigos do Departamento de Sistemas e
Informática, com quem trabalho há já tantos anos nesta escola.

Quero também agradecer aos membros do júri da minha defesa de tese por todas as
sugestões feitas e correcções pertinentes indicadas, agradecendo particularmente aos pro-
fessores Sethu Vijayakumar e Aude Billard por terem tido a amabilidade de se deslocarem
propositadamente a Lisboa para assistir à defesa da minha tese.

Mas a palavra maior de gratidão vai para a Rita, pela forma como me conseguiu aturar
nos últimos anos: a sua paciência foi mais do que infinita.

ix

Contents

Resumo v

Abstract vii

Agradecimentos ix

Contents xi

List of Figures xv

List of Tables xix

1 Introduction 1

1.1 Motivation . 1

1.2 Sensorimotor Learning in Robotics . 3
1.2.1 The Curse of Dimensionality . 4
1.2.2 Computational Complexity . 5

1.2.3 Uncertainty . 6
1.2.4 Model Complexity . 6
1.2.5 Redundancy and Multi-Valued Relations 7

1.2.6 Adaptation to Changing Environments 9
1.3 Objectives and Contributions . 10
1.4 Dissertation Outline . 13

2 Sensorimotor Model Learning 15

2.1 Internal Models for Sensorimotor Coordination 18
2.1.1 Forward Models . 19

2.1.2 Inverse Models . 21
2.2 Learning Methods for Sensorimotor Models 25

2.2.1 Linear Regression . 29
2.2.2 Memory Based Methods . 33

2.2.3 Adaptive Basis Expansions and Neural Networks 36

xi

CONTENTS xii

2.2.4 Gaussian Process Regression and Kernel Machines 43

2.2.5 Unsupervised Learning Approaches 47

2.2.6 Mixtures of Experts . 51

2.3 Discussion . 55

3 The Infinite Mixture of Linear Experts 57

3.1 Probabilistic Model . 58

3.2 Training . 62

3.2.1 E-Step . 63

3.2.2 M-Step . 65

3.2.3 Computational Complexity . 73

3.3 Prediction . 74

3.3.1 Conditional Probability Distribution and Forward Prediction 74

3.3.2 Conditional Generative Probabilistic Model 77

3.3.3 Generative Model Statistical Validation 81

3.3.4 Multi-valued Prediction . 82

3.3.5 Inverse Prediction . 83

3.3.6 Jacobian Prediction . 85

3.3.7 Computational Complexity . 86

3.4 Active Uncertainty Reduction . 87

3.5 Discussion . 91

4 Experimental Evaluation 93

4.1 Single-valued Function Approximation . 94

4.1.1 Toy Example, R1 7→ R
1 . 96

4.1.2 Cross Function, R2 7→ R
1 . 97

4.1.3 The PUMA 560 Serial Robot, R6 7→ R
3 101

4.1.4 The SARCOS Inverse Dynamics Dataset, R21 7→ R
7 104

4.2 Multi-valued Function Approximation . 107

4.2.1 Synthetic Datasets . 108

4.2.2 iCub Inverse Dynamics Learning Under Different Loads, R12 7→ R
4 . 113

4.3 Inverse Prediction . 115

4.3.1 PUMA 560 Serial Robot, R3 7→ R
3 116

4.3.2 Parallel 3-RPR Robot, R3 7→ R
3 . 117

4.3.3 PUMA 560 Serial Robot, R2 7→ R
1 118

4.4 Active Learning . 121

4.5 Discussion . 128

CONTENTS xiii

5 Sensorimotor Coordination 129

5.1 Robotic Model Based Control . 129
5.1.1 Static Control . 130
5.1.2 Velocity Control . 131
5.1.3 Acceleration Control . 135

5.2 Open and Closed-Loop Control Using IMLE 138
5.2.1 Closed Loop Position Tracking . 139
5.2.2 Open Loop Trajectory Planning . 139
5.2.3 Experimental Evaluation . 141

5.3 Learning and Control of Switched Systems Using IMLE 146
5.3.1 Experimental Results: iCub Simulator 151
5.3.2 Experimental Results: Kobian . 158
5.3.3 Visual-motor Coordination . 160
5.3.4 Visually Guided Reaching . 163

5.4 Discussion . 164

6 Discussion and Concluding Remarks 169

Appendices 173

A IMLE Posterior Distributions 175

B IMLE Prediction Derivatives 179

C IMLE Uncertainty Reduction 183

D Software 189

D.1 IMLE Class Interface . 189
D.1.1 Constructors . 191
D.1.2 Parameter handling, serialization and state display 192
D.1.3 Train and Predict . 193

D.2 YARP Module . 195
D.2.1 Data Port . 195
D.2.2 Query Port . 195

Bibliography 197

List of Figures

1.1 Training data arising from switching sensorimotor contexts implicitly de-
fines a multi-valued relation to be learned 8

1.2 Learning a forward and an inverse relation. 8
1.3 The inverse kinematics learning problem. 9
1.4 The redundancy problem. 9

2.1 The direct modelling approach applied to inverse model learning. 21
2.2 The feedback error learning approach to inverse modelling. 22
2.3 The distal learning approach to inverse modelling. 23
2.4 The MOSAIC architecture. 24
2.5 The bias/variance trade-off. 28
2.6 The Bayesian Ockam’s Razor. 29
2.7 The linear model fitting a training dataset. 30
2.8 Locally weighted learning fitting of a set of noisy training data. 35
2.9 Network diagram for a feed-forward neural network with a single hidden

layer. 38
2.10 Diagram for a reservoir computing network. 40
2.11 Associative network diagram. 42
2.12 Random samples drawn from a Gaussian process. 43
2.13 Random samples drawn from the posterior Gaussian process. 45
2.14 Gaussian mixture model for supervised learning. 50
2.15 Modelling of a multi-valued relation by a mixture of three experts. 54

3.1 A schematic representation of the parameters of an individual expert in
the IMLE model. 59

3.2 Graphical model representing the infinite mixture of linear experts. 61
3.3 Forward conditional probability distributions. 76
3.4 Multivariate linear regression graphical model. 77
3.5 Single-valued prediction graphical model. 79
3.6 Multi-valued prediction graphical model. 80
3.7 Inverse prediction graphical model. 84

xv

LIST OF FIGURES xvi

4.1 IMLE univariate single-valued prediction. 96
4.2 IMLE univariate single-valued prediction with training data missing be-

tween 0.4 and 0.6. 97

4.3 Target function and a sample of the training data. 98
4.4 Reconstructed cross function. 99

4.5 Learning curves for the single-valued Cross 2D function 100
4.6 Learning curves for the PUMA dataset, for a typical parameter configuration.103
4.7 Effect of parameters variation on approximation error and number of local

models created. 104

4.8 Training data coming from a very simple multi-valued learning example. . 108
4.9 Reconstructing the relation shown in Figure 4.8 using four distinct learning

algorithms. 109
4.10 Multi-valued toy example suggested by Shizawa (1996). 109

4.11 Multi-valued prediction of the S-shaped function. 110
4.12 IMLE prediction using the toy example suggested by Lee and Lee (2001). . 111

4.13 Discontinuous target function to learn. 112
4.14 Reconstruction of a discontinuous target function using a single and multi-

valued learner. 112
4.15 The iCub robot holding a water bottle: this changes its inverse dynamics

relation. 113

4.16 iCub inverse dynamics learning curves. 115
4.17 Frequency of the number of solutions found by IMLE inverse prediction for

the PUMA 560 problem. 116
4.18 A parallel 3-RPR robot geometric scheme. 117

4.19 The PUMA kinematic function from R
2 to R

1. 119
4.20 Contour plot describing the inverse kinematics of the PUMA robot. 119
4.21 Inverse prediction provided by the IMLE model, for different values of αmulti.120

4.22 Some training data generated from the triangle target function. 122
4.23 Evolution of output variance and expected prediction variance reduction

as a function of x. 122

4.24 Input space trajectories as training is performed — initial stage. 123
4.25 Input space trajectories as training is performed — final stage. 124
4.26 Percentage of time spent in a particular input region. 124

4.27 The evolution of the variance reduction measure as the IMLE model is
trained. 125

4.28 2D grid representing the percentage of time spent in a particular input
location. 126

4.29 Learning curves for the PUMA 560 active learning example (R2 7→ R
1). . . 126

4.30 Learning curves for the PUMA 560 active learning example (R3 7→ R
3). . . 127

LIST OF FIGURES xvii

5.1 A snapshot of the iCub Simulator used in the experiments. 142
5.2 Online Learning and Trajectory Following: open-loop (left) and closed-loop

(right). 144
5.3 Average error and jerk over the square-like trajectory, for different sensor

noise levels. 146
5.4 Trajectory following after the learning phase, for several noise levels: open-

loop (left) and closed-loop (right). 147
5.5 Position profiles for the first joint, as the robot executes the task with a

high level of sensor noise. 148
5.6 Simulating an end-effector position sensor fault. 148
5.7 Snapshots of the iCub Simulator grabbing the two different tools used in

the experiments. 151
5.8 Forward kinematic prediction error with a switching context. 152
5.9 Task space test trajectory. Training sequence: T1. Testing context: S1

(hand). 154
5.10 Task space test trajectory. Training sequence: T1 7→ T2. Testing context:

S2 (stick tool). 155
5.11 Task space test trajectory. Training sequence: T1 7→ T2. Testing context:

S1 (hand). 155
5.12 Task space test trajectory using IMLE. Training sequence: T1 7→ T2 7→ T1. 156
5.13 Task space test trajectory using IMLE in online mode. 157
5.14 Task space test trajectory. Training sequence: T1 7→ T2 7→ T1 7→ T3.

Testing context: S3 (L-shaped tool). 157
5.15 Task space test trajectory. Training sequence: T1 7→ T2 7→ T1 7→ T3 7→ T1.

Testing context: S3 (L-shaped tool). 158
5.16 The Kobian humanoid robot. 159
5.17 The Kobian humanoid robot with the flexible rubber tool. 159
5.18 Prediction RMSE during Kobian motor babbling. 162
5.19 STAR pattern used in the Kobian experiments. 162
5.20 End-effector visual position error during the arm-head coordination exper-

iment. 163
5.21 End-effector visual position during the visually guided reaching experiment. 164
5.22 End-effector visual position as a function of time. 165
5.23 Actuated arm joints positions as a function of time. 166

List of Tables

4.1 Final RMSE, number of models and spent CPU time for the Cross experi-
ment. 100

4.2 Results on the PUMA dataset for IMLE, LWPR and GPR learning algo-
rithms: final RMSE, number of models and spent CPU time. 102

4.3 Prediction performance on the SARCOS dataset. 106
4.4 Forward and inverse prediction performance results on the PUMA 560 kine-

matic map. 116
4.5 Forward and inverse prediction performance results on the parallel 3-RPR

robot kinematic map. 118
4.6 Number of inverse solutions found by the IMLE algorithm for the R

2 7→ R
1

PUMA kinematic function, for different values of αmulti. 120

5.1 Joints limits of the iCub robot simulator. 142
5.2 Joints limits of the Kobian robot. 160

xix

Chapter 1

Introduction

1.1 Motivation

The last decades have presented a remarkable growth of the field of robotics: there has
been a huge increase in the complexity of available robots, with current humanoid robots,
consisting of tens of independently actuated joints and equipped with a multitude of
different sensors, taking their first steps towards mimicking human behaviour. To tackle
such highly complex robotic mechanisms, more sophisticated methods were developed to
control these robots, to make them execute the desired tasks.

However, as robots complexity increases, building the analytical models for their sen-

sorimotor relations, relating their actions to corresponding sensory feedback, needed for
movement control, turns out to be more and more difficult and time-consuming. This is
a direct consequence of the large number of degrees of freedom of the current humanoid
robots, which can make the task of deriving closed form expressions for robot kinematics
and dynamics impractical. More important, it may be difficult to accurately measure
some physical parameters like friction, and the existence of highly nonlinear physical
interactions, such as actuator unmodelled nonlinearities, backlash, time drifts in the kine-
matic and dynamic characteristics of the robot, produced by material wear, calibration
errors in cameras used for end-effector tracking, soft or deformable parts and unmodelled
mass distributions, among other effects, make the task of obtaining adequate and accurate
models for such kind of systems infeasible (Peters and Schaal, 2006). In this context, sen-
sorimotor relations coming from interactions with objects and the external environment
are even more difficult to model with sufficient precision.

An alternative to hand-made models of the robot sensorimotor relations, based on
human insights into physics and laws of motion, is to learn such models directly from
the information coming from the robot sensors, during its operation and interaction with
the environment. For a variety of reasons, this is a very attractive approach: first, the
complexity of the underlying robotic interactions can be more efficiently acquired through
learning, since the model is directly estimated from sensory feedback. This converts

1

1.1. MOTIVATION 2

the problem of accurately modelling every physical interaction to the broader problem
of choosing an appropriate form and complexity for the learning mechanism that can
efficiently represent the underlying physical model structure, as suggested by the acquired
data. This way, difficult or even unknown physical interactions can be approximated by
the learned model. Secondly, it is not needed to predict every possible scenario for the
robot and environment evolution and to program the robot accordingly, since, during
operation, the learning algorithm will ideally build its internal model based on the robot
experiences and sensory feedback, that can in turn be used for controlling it. Finally,
it is worth of notice that by endowing a robot with efficient learning capabilities almost
no outside intervention is required for its operation: this is a fundamental aspect of true
autonomy. As a side consequence, some unexpected, different ways of performing the
required tasks may emerge during the learning process, not predicted by human design
or engineering.

Robotic sensorimotor learning can be regarded at various levels, depending on how
robot perceptions and actions are defined. At a higher level a soccer playing humanoid
robot, for instance, may want to decide from a set of possible actions like dribbling a ball
forward, passing it to a team-mate or shooting it to the goal. In this case, perceptions
may consist of players positions and velocities, as well as the robot own localization and
direction of movement. Deciding how to act or make a plan based on previous experience
then typically will resort to Artificial Intelligence (AI) techniques like decision tree learning
or reinforcement learning. On the other side, at a much lower level, the same robot may
wish to know what commands should send to its motors in order to, say, advance the right
leg while maintaining its balance. This is the realm of statistical learning methods like
nonlinear regression or density estimation of real-valued quantities. This idea of adaptive
robotic systems that respond to environment changes and that can use the past experience
to continuously improve their performance has its origins in the field of cybernetics, back
in the mid of the twentieth century.

Of course, learning of basic sensorimotor skills must first be achieved before a robot
can learn and make plans at a higher level. This hierarchy, with its different levels of
relations to learn, has a close relationship to a human developmental perspective, where,
for instance, basic reaching and grasping skills must be properly acquired before a baby
can learn to manipulate objects. This developmental paradigm assumes a newborn to
be endowed with a genetically programmed core set of reflexes, and that the ability to
solve and learn various tasks is built upon previously acquired simpler skills, learned at
precedent behavioural stages (Payne and Isaacs, 2001).

This dissertation will focus on a low level perspective of sensorimotor learning, where
basic relations between the robot motor commands and the consequently perceived envi-
ronmental changes are to be efficiently learned and employed, in a flexible way, for sub-
sequent control. In this context, the type of information to be inferred from the learned

CHAPTER 1. INTRODUCTION 3

model will have a decisive impact on the structure of the computational model used for
learning. A sensorimotor model can be viewed as a causal relation that associates, in a
stochastic manner, a current robot perceived state st and an action at to a consequent
state st+1, i.e., a mapping (st,at) 7→ st+1. Such forward model can be used to predict
consequences of actions; this is the case, for instance, of the forward kinematics model of
a robotic mechanism, that is described by a map q 7→ x, relating robot joint positions to
a corresponding end-effector task space posture. In this case, the action at corresponds
to the vector of joints positions q, while the current robot state st is irrelevant for this
model. Another view of the forward kinematics takes the form (q,∇q) 7→ ∇x, where
small changes on the end-effector task space posture are taken as a consequence of vary-
ing the joints positions in a given robot configuration. This formulation is useful from a
control point of view, since it shows how changes in actuation values reflect in the robot
state.

However, most of the times a control perspective is more interested in obtaining the
actions at that will drive the robot or the environment from state st to a new state
st+1. This information can be directly obtained if an inverse model is used, providing a
mapping (st, st+1) 7→ at. Examples of such formulation include the inverse dynamics and
the inverse kinematics models used in robotics. In the former case a relation (q, q̇, q̈) 7→ u

is sought, where, in current robot state (q, q̇), a motor command u is provided that will
provoke a desired change in the robot state, represented by q̈. In the latter example,
a static relation x 7→ q is modelled, giving joint positions q that will lead to a desired
end-effector task space posture. As in the forward kinematics case, the static relation
represented by the inverse kinematics model does not explicitly need the current robot
state.

The work described in this dissertation puts a strong emphasis in the problem of
learning these kind of sensorimotor models in a fast and flexible manner, with the minimal
human intervention. The application of these models to a robotic framework, where they
are to be used for control and acting, imposes severe constraints in the learning algorithm
that are usually not present in other domains, as described in the next section.

1.2 Sensorimotor Learning in Robotics

To the casual reader it may come with some surprise that the task of learning robotic
sensorimotor relations, using them for controlling the movements of the robot, is still a
difficult and not completely solved problem: after all, from a human point of view, it
is a trivial task to move, for instance, our right arm to reach and pick a cup of coffee
laying in the table in front of us. It cannot be forgotten, however, that each of us took
months of continuous learning, during the first years of our existence, to be able to perform
these kind of reaching and manipulation operations in a seamless and effortless way —

1.2. SENSORIMOTOR LEARNING IN ROBOTICS 4

watching a few months old baby trying to accomplish the same kind of tasks is sufficient
to make evident the difficulties that may arise when these sensorimotor relations are not
yet completely learned. The human brain is the ultimate learning machine, and if years
of training are required to become proficient at playing tennis or a musical instrument,
we cannot expect our efforts towards the building of robots that can autonomously learn
their basic sensorimotor maps to be without some slings and arrows.

There are many difficulties, introduced by the need for autonomous operation of a
robot, that a competent learning algorithm must be capable of dealing with, specially if
a large time span — eventually the full lifetime of the robot — is aimed for; such issues
are identified and discussed in the following sections.

1.2.1 The Curse of Dimensionality

High dimensional spaces suffer from what is usually known as the “curse of dimensionality”
(Bellman, 1957): given an input space with dimension d, the number of sample points
needed to cover this space with the same detail and resolution grows exponentially with
the increase of the number of dimensions of this space. This phenomenon can be easily
understood if a hypercube is used to represent the input space: in this case, if k regularly
spaced points are used along each direction of the input space to partition the input,
the data grid thus obtained has a total of kd points. This poses severe problems for
the learning algorithm, since statistical distributions describing the sensorimotor data
will need a prohibitive number of training samples to be properly estimated. On the
other hand, fully exploring these high dimensional spaces in a robotic context takes an
exponential operation time: for large values of d, this can easily surpass the expected
lifetime of the robot.

Deeply related to the aforementioned curse of dimensionality, a direct and non intu-
itive consequence of high dimensional spaces is the fact that most of the data density
becomes concentrated near the boundaries of the input space, making it more difficult
for a learning algorithm to make predictions, as there is the need to extrapolate from
the acquired data instead of interpolating between them. Taking the example presented
by Hastie, Tibshirani, and Friedman (2009), if N data points uniformly distributed in a
p-dimensional unit ball are considered, the median distance from the ball centre to the
closest data point is given by (1 − 0.51/N)1/d: for N = 500 and d = 10, this results in
a value of 0.52, which means that more than half of the data points are closer to the
boundary of the space than to the origin of the unit ball; for d = 20, this value rises to
0.72.

This also has important consequences for probability distributions describing this input
space: as dimension d increases the probability mass ceases to become concentrated in
the centre of the distribution, moving away to the distribution tails. As an illustrative
example of this phenomenon, it is a well known fact that, for a multivariate Normal

CHAPTER 1. INTRODUCTION 5

distribution with mean µ and variance Σ, the squared Mahalanobis distance to µ, given
by (x − µ)TΣ−1(x − µ), follows a chi-squared distribution with d degrees of freedom.
Using this distribution, for Σ = σ2I and d = 1, this means that ‖x − µ‖ < 3σ with 0.997
probability, i.e., the distance of a random point x to the distribution centre µ will almost
always be lower than 3 standard deviations, with most probability density located near µ;
for d = 10 the same probability lowers to 0.468, and if d = 20 is considered a probability
of 0.017 is obtained, meaning that almost all probability density has been pushed towards
the distribution tails. As a consequence, the notions of dispersion and concentration
associated with these probability distributions start to lose their usual connotation as the
space dimension increases.

Altogether, as the input dimension increases, the notion of locality starts to break, as
the average difference between the distance to the closest and furthest data points goes
to zero: this means that all data points are approximately at the same distance from
each other, destroying the notion of neighbourhood. This has a dramatic impact on most
learning algorithms, as they usually rely on some sort of distance or similarity measure
between training points.

1.2.2 Computational Complexity

Integrating a learning algorithm in an autonomous robotic platform imposes a careful
management of the computational resources available to the learning tasks. Ideally, the
learning mechanism should be able to process the information acquired by the robot
during its normal operation. Altogether, the following is usually required:

• Learning must be performed online. This means that, when a decision must be
made resorting to the computational model learned so far, not all training data has
yet been presented to the algorithm. This is clearly a fundamental requirement for
the learning algorithm if autonomous operation is necessary for the robot, where
the update of the sensorimotor model is performed while simultaneously using it for
control, in opposition to the offline processing of the data after all the acquisition
experiments take place.

• As a consequence of the previous item, learning must be done in a real-time manner,
taking into account the robot computational resources and the desired control rate.
The learning method must have an update algorithm that can process training points
at least as fast as they are acquired, and must provide predictions hastily enough to
pace with the control sampling rate.

• A scenario where the learned model is potentially used during the lifetime of a
robot results in the necessity of an incremental learning scheme, where, due to
the real-time requisite described above, not all training points can be stored in

1.2. SENSORIMOTOR LEARNING IN ROBOTICS 6

memory. Some learning methods maintain a fixed size subset of the training data,
choosing at each learning iteration which point to discard, in order to maintain the
most representative data. An alternative to this sparsity based approach is to keep
in memory a set of quantities that can summarize the training data seen so far,
for instance a set of sufficient statistics under a statistical generative model or the
current parameters of an artificial neural network.

1.2.3 Uncertainty

Data coming from robotic applications is noisy, and a machine learning algorithm must be
able to deal with the randomness in the training data. Among other desirable properties,
a learning mechanism should be able to correctly infer the amount of output noise present
in different regions of its input space, and should also be robust enough with respect to
the presence of possible outliers in the acquired data.

The uncertainty presented in the input part of the training data must also be taken
into account: in general, its probability distribution is not known in advance and some
learning algorithms can be particularly sensitive to temporal shifts of these distributions.
This happens, for instance, when, instead of randomly sampling data from the whole input
space, the training process is focused in particular regions of this space, as naturally occurs
when learning is performed online, or when data comes from a stream of sequential samples
coming from robot sensors and actuators. In these cases, a degradation of the prediction
performance of some learning algorithms can occur over input regions not visited for a
long period, a phenomenon known as negative interference (Atkeson, Moore, and Schaal,
1997a).

In a robotic learning context, there is the possibility of deciding where to sample the
next training point: this research field is known as active learning, where the emphasis
is put in efficiently learning a given relation without wasting resources needed for the
acquisition of the training set. This is a particularly useful mechanism when learning
online some sensorimotor maps: a reasonable approach consists in choosing an input
point to sample that is believed to decrease the global prediction error the most. Since
the true value of the relation to learn is not known, this usually amounts to picking
an input point that, together with the corresponding observed output, is expected to
reduce the prediction variance the most (Settles, 2009), according to the bias-variance
decomposition of the prediction error, further detailed in Section 2.2.

1.2.4 Model Complexity

Choosing an appropriate structure complexity for the learning model is a crucial step that
can dramatically influence the resulting prediction error. Such complexity can appear in
many forms in different learning models, like the number of layers and units in an artificial

CHAPTER 1. INTRODUCTION 7

neural network, the number of components of a mixture model or the characteristic input
length-scale in kernel regression, to name just a few examples. The learned model will
exhibit a large bias when this complexity is chosen to be lower than what would be needed
to properly represent the training data. If, on the other hand, the structure complexity
for the learner is too high, the resulting model will overfit the data: as a consequence,
predictions will have a large variance across different training sets. In both cases, the
prediction error on an independent testing set will increase, a phenomenon known as the
bias/variance trade-off (Geman, Bienenstock, and Doursat, 1992).

In robotic applications, an automatic learning of the correct model complexity is highly
desired, as it avoids the need for human insights about the nature of the sensorimotor
map being learned; keeping the model simple enough is necessary to save the computa-
tional resources needed for learning and prediction. Automatic adjustment of the model
complexity also permits the correct learning of different regions of the input space with
potentially different structural complexities. However, estimation of the correct model
complexity for a set of training data is still a difficult problem, specially when an online
learning scheme is desired.

1.2.5 Redundancy and Multi-Valued Relations

The particular structure of the sensorimotor models needed for controlling a robot in-
troduces some difficulties that generally don’t arise in typical applications of nonlinear
regression algorithms: learning the forward kinematics model of a robotic manipulator,
for instance, can usually be easily done resorting to modern function approximation algo-
rithms. However, when controlling the manipulator, it may be more interesting to learn
its inverse model, that predicts which joint angles q should be used to reach a given end-
effector posture. It turns out that normally there isn’t a unique solution for this problem,
as most robotic manipulators can achieve the same task space posture using different joint
space configurations. These kinematics inverse models can be represented by multi-valued
functions, i.e., one-to-many relations also known as multifunctions or multimaps. Further-
more, some mechanisms can exhibit multi-valued sensorimotor relations even for forward
models: this happens for instance in parallel robotic devices (Merlet, 2006). Another
situation of interest is the presence of hidden variables that can change the sensorimotor
data that is presented to a learning algorithm during the training phase: a classical ex-
ample is the effect that an unsignaled change of the load at the robot end-effector may
have over its dynamical relation. As a consequence, since the learning algorithm is not
aware of such changes of the sensorimotor context, the training data set appears to have
been generated from a multi-valued relation from inputs to outputs, consisting of different
function branches, one for each context value, as depicted in Figure 1.1.

Trying to directly learn such multi-valued models using standard regression algorithms
is condemned to an utter failure, as these methods are not prepared to learn these kind

1.2. SENSORIMOTOR LEARNING IN ROBOTICS 8

X
1

X
2

Y

Figure 1.1: Training data arising from switching sensorimotor contexts implicitly defines a multi-
valued relation to be learned

of relations; instead, they will usually average the different solutions to the problem, as
shown in Figure 1.2, where a Gaussian process (Rasmussen and Williams, 2006), a widely
used nonlinear function approximation method, is used to learn a forward and inverse
probabilistic model from the same training data. This averaging may have catastrophic

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

Input

O
ut

pu
t

(a) Forward relation.

−1.5 −1 −0.5 0 0.5 1 1.5
0

2

4

6

8

10

Output

In
pu

t

(b) Inverse relation.

Figure 1.2: Learning a forward and an inverse relation using a Gaussian process. To left is the
learned forward model: training data is depicted by crosses, the learned conditional expectation
is given by a solid line and the uncertainty interval (one standard deviation) is represented by
the two dashed lines. The inverse model, learned using the same training points (with the input
and output roles reversed) is shown in the right figure.

consequences, since the space of solutions for these sensorimotor mappings normally is not
a convex set: averaging distinct solutions will not generate a valid solution for the learning
problem. This situation is depicted in Figure 1.3, where it can be seen that averaging
two valid inverse kinematics solutions will not produce a valid inverse solution for the
kinematics problem. Additionally, when the robot is redundant, having more actuated

CHAPTER 1. INTRODUCTION 9

(a)

A

B

C

(b)

Figure 1.3: The inverse kinematics learning problem: (a) A 3 degrees of freedom planar manip-
ulator; (b) Configurations A and B produce the same end-effector position, but their average,
labelled C, does not.

degrees of freedom than the dimensionality of the task space, the space of solutions for the
inverse kinematics problem is continuous, with dimension equal to the difference between
the dimensionality of the joints and task space, as shown in Figure 1.4, and the inverse
model can no longer be represented by a multi-valued relation.

Figure 1.4: The redundancy problem: the task space is one dimensional, corresponding to
vertical position of the end-effector (depicted by a dotted line), and since the robot has a higher
number of controlled joints, there is a continuum of solutions to this inverse kinematics problem.

Altogether, these complex forward and inverse models, needed for robot control, are
perhaps some of the most challenging problems a learning algorithm can face, and the
reason why standard machine learning techniques are not yet trivially used in every robotic
application.

1.2.6 Adaptation to Changing Environments

In many situations, robotic environments are not stationary: this means that there may
exist slow drifts in the sensorimotor relations being learned, that must be accounted for
to prevent the learning model from getting biased by old data. Such adaptation to these
slow-varying relations can be done in different ways, according to the internal structure of

1.3. OBJECTIVES AND CONTRIBUTIONS 10

the learning model: some algorithms introduce some sort of time decay in their internal
models, for instance in their internal parameters or sufficient statistics. Other methods,
based on the storage of a subset of training data as an accurate representation of the
underlying model, may show a higher propensity to discard old data in favour of recently
acquired training points.

Other robotic tasks, however, involving for instance handling and manipulation of dif-
ferent objects, cause abrupt changes in the environment and the mappings to be learned.
The kinematics mapping from robot joint angles to end-effector position, for instance,
changes whenever different tools are used; another classical example is the change in the
robot dynamics due to the variation of the load of the end-effector. This is known as
learning under varying contexts, where an unobserved context variable changes the map
to be learned. Such context can generally be a discrete variable, corresponding to the case
where only a finite, albeit unknown, number of different contexts exist, or continuous, in-
dicating a smooth change on the mapping to learn. The most straightforward answer to
this problem is to use the same form of adaptation that is used for slow drifts of the sen-
sorimotor maps: of course, it is terribly inefficient to relearn the complete mapping every
time the context changes, specially when there is an effective chance that a previously
learned context may be presented again to the robot. As an alternative, the learning
algorithm should keep enough information in its internal model to be able to successfully
represent the robot model and to make accurate predictions under environment context
switching.

1.3 Objectives and Contributions

This dissertation provides a statistical learning framework specially suited for use in au-
tonomous robotic applications, in the context of generic sensorimotor maps estimation
and consequent use for control purposes. That means, in the first place, that such learn-
ing mechanism must be able to stand online operation in a real-time environment; the
deep desire for an extended robot autonomy also implies that almost no information about
the model to learn will be available. This discards the use of parametric models like those
used for learning a body schema (Bongard, Zykov, and Lipson, 2006; Sturm, Plagemann,
and Burgard, 2008; Hersch, Sauser, and Billard, 2008), where a given kinematic structure
is assumed and the focus is put on estimating the parameters that describe such model.
This latter approach has some evident advantages, as a fixed sensorimotor structure is
generally easier to learn; however, one one side, parametric models increase the effort put
on modelling the robot; on the other side, as stated earlier, they cannot take into account
unmodelled or hard to describe effects and interactions, and thus potentially limit the
performance of the resulting model.

The proposed learning framework builds upon the mixture of experts concept (Jacobs,

CHAPTER 1. INTRODUCTION 11

Jordan, et al., 1991) to provide a learning algorithm that can satisfactorily deal with the
challenges posed by many robotic control architectures. At its core, a mixture of experts
follows a divide and conquer strategy: the input space is softly partitioned among experts,
and each expert approximates the map to be learned only within a localized region of the
input space. This localized learning approach can be used to approximate multi-valued
functions, as long as interference between experts sharing the same regions of the input
space is avoided: this can overcome one of the main difficulties that arise when learning
some forward and inverse sensorimotor models of robots.

A large number of mixtures of experts architectures have been proposed in the last two
decades, from mixtures of neural networks (Bishop, 1994) to the more recent mixtures
of Gaussian processes (Rasmussen and Ghahramani, 2002). Among these, the mixture
of linear models (Xu, Jordan, and Hinton, 1995), where each expert approximates the
map to learn by a linear relation from inputs to outputs, has some properties that make
its use particularly compelling in robotic applications. Its simple structure makes possi-
ble to derive simple algorithms that can efficiently update the mixture whenever a new
training point arrives, or to quickly provide estimates whenever required. This is a funda-
mental requirement for online, real-time learning. Also, the linear nature of the relation
to be approximated by each expert makes it possible to easily invert this relation: as a
consequence, inverse predictions can be obtained from the learned mixture. This is an
enormous advantage and greatly increases the learned model flexibility, as it can now be
used to predict both forward and inverse sensorimotor models from the same computa-
tional structure.

This dissertation presents a generative statistical model for the mixture of linear ex-
perts architecture that takes into account the partitioning of the input space and the
linear relation within each expert input domain. Additionally, some convenient prior and
hyper-prior distributions for the mixture parameters are introduced, to allow the mixture
to autonomously estimate some nuisance parameters that define the mixture complexity,
like the input length-scale or the output noise of the relation to learn.

Training resorts to an online and incremental version of a generalized expectation-
maximization procedure that can efficiently process new data points as they are acquired.
Adjusting the overall model complexity, in particular the number of experts assigned
to the mixture, does not adopt a fully Bayesian scheme: although sound and formally
elegant, such approach could hopelessly compromise the algorithm real-time capabilities;
instead, an automatic model selection, resorting to a complexity penalization criterion, is
used. The resulting mixture, as it will be discussed in detail in Chapter 3, can be viewed
as an infinite mixture where, at a given time, only a finite subset of its components are
active, effectively contributing to this mixture. For this reason, this probabilistic model
was coined the Infinite Mixture of Linear Experts (IMLE) model.

A learned computational model for a sensorimotor relation only has some use if a

1.3. OBJECTIVES AND CONTRIBUTIONS 12

prediction mechanism is also provided. Here, the critical issue is to avoid the blending of
distinct prediction solutions when the relation exhibits a multi-valued nature, either for
forward or inverse prediction. One of the contributions of this dissertation is a mechanism
for the prediction stage that can automatically identify and obtain the correct set of
solutions for a given query, using the mixture of linear experts learned so far. This multi-
valued prediction scheme can be used to obtain forward and inverse predictions for a given
input or output query, respectively; in fact, the same reasoning used to obtain a set of
multi-valued inverse predictions can be employed for prediction over an arbitrary subset
of variables belonging to the joint input-output space, as a function of a query consisting
of the remaining variables of this space. Besides such predictions, the IMLE model can
also provide uncertainties associated with each prediction; it can also calculate the local
estimated Jacobian at any query point, and it also makes available an estimate of the
prediction variance reduction that is expected if a particular location of the input space is
sampled to provide a new training point for the IMLE model — this way, active learning
schemes can be implemented that can supposedly lead to a more principled exploration
of the input space.

The sensorimotor models learned using the algorithm proposed in this dissertation
exhibit a large flexibility in the way they can be used for control of generic kinematic
and dynamic structures: they can be used to cope with traditionally difficult to learn
sensorimotor maps, like the ones that arise, for instance, in inverse kinematics. It is
proposed in this dissertation a practical application of such learned kinematics model
to an end-effector position tracking problem, where the predicted Jacobian is used for
closed-loop control and the inverse predictions, provided by the same model, contribute
the information needed for planning a trajectory in an open-loop control mode. In this
way, both open and closed-loop control schemes can be readily applied using the same
learned sensorimotor model. The online capabilities of the proposed learning algorithm
even dismiss the need for a previously learned model, as learning can be performed online
during the robot operation.

Another contribution of this dissertation is related to the existence of non-observable
sensory variables that can produce sudden, unsignaled changes on a robotic sensorimo-
tor context, thus effectively changing the sensorimotor relation, as viewed from a robot
perspective. This is another robotic domain where learning is traditionally difficult: the
fact that different sensorimotor relations, resulting from different hidden contexts, can be
interpreted as a single relation with multi-valued outputs, allows a straightforward use of
the IMLE algorithm to learn these robotic sensorimotor maps.

With all these ideas in mind, the thesis herein defended is that this specially devel-

oped learning framework is a feasible and efficient way of learning, in an online fashion,

generic robotic sensorimotor maps, that provides a large flexibility in the way it can be

used for controlling a robot and that, additionally, also achieves a prediction accuracy at

CHAPTER 1. INTRODUCTION 13

least comparable to competing online sensorimotor learning algorithms, while providing

additional prediction features that cannot be found in these other approaches.
Previous publications related to the work presented here include (Damas and Santos-

Victor, 2012) and (Damas and Santos-Victor, 2013), where the multi-valued online learn-
ing algorithm here described was firstly introduced. Experimental validation on humanoid
robotic platforms was performed in collaboration with Lorenzo Jamone: the use of the
IMLE model for simultaneous open and closed-loop control of the position of the hand of
an anthropomorphic robot arm is reported in (Damas, Jamone, and Santos-Victor, 2013),
while its success in dealing with multi-valued relations arising in sensorimotor maps with
hidden context switches is described in (Jamone, Damas, et al., 2013b) and (Jamone,
Damas, et al., 2013a).

1.4 Dissertation Outline

This dissertation is organized as follows:

• Chapter 2 describes the sensorimotor learning problem in detail, discussing how a
sensorimotor model can be used for control. A review of the major machine learning
techniques is also presented, making reference to the strengths of each approach
and equally mentioning their main limitations in a real-time and demanding robotic
sensorimotor learning context.

• Chapter 3 presents the IMLE probabilistic model, together with an online algorithm
to train it in an efficient manner. A prediction method for obtaining a set of multi-
valued solutions from the learned mixture, either in forward or inverse prediction, is
also discussed in this chapter, and analytical expressions for the prediction Jacobian
and the estimate for the prediction uncertainty reduction are derived in it.

• Chapter 4 provides an extensive experimental evaluation of the IMLE algorithm
with respect to single and multi-valued prediction, comparing its performance, in an
online setting, to other state-of-the-art function approximation algorithms.

• Chapter 5 considers the application of the IMLE model to sensorimotor learning and
control of robotic devices. It is shown how the IMLE model can be used to learn a
sensorimotor relation in an online fashion, and how it can be used to simultaneously
provide forward and inverse predictions. It is also shown in this chapter how the
IMLE model deals with switching of hidden contexts in a robotic learning and control
setting.

• Finally, Chapter 6 concludes this dissertation, presenting a summary of contributions
presented in this dissertation and pointing directions of future work.

Chapter 2

Sensorimotor Model Learning

“Few would deny that the most powerful

statistical tool is graph paper.”

Geoffrey Watson, 1964, Smooth Regression

Analysis

It is hard to conceive intelligent behaviour without movement: every interaction with
the world, like the simple act of grabbing some object, but also more sophisticated com-
munication mechanisms like speech or writing, requires the capability to change the en-
vironment, which can only be accomplished by some sort of motion commands (Wolpert,
Ghahramani, and Flanagan, 2001).

Sensory information about the environment and the agent state, be it a robot or a hu-
man being, is also fundamental: under this perspective, such information can be regarded
as the necessary input of an information processing system that converts this sensory
feedback into motor commands that can, in turn, be used to change the environment.
Some neurological findings even point out that a constant flux of information, coming
from proprioceptive sensors in the human body, is perhaps a fundamental requirement
for the human consciousness (Damásio, 1999).

The first attempts to build intelligent machines, however, put the emphasis on symbolic

15

16

computation, somewhat neglecting the essential role of the body and the capability to
generate movement in the creation of intelligent behaviour. In the golden era of symbolic
artificial intelligence (AI), in the second half of the twentieth century, the advent of the
Turing machine (Turing, 1937) lead to the creation of the first computers, which enabled
a practical attempt to create an artificial mind. These were times of great expectations,
and prominent artificial intelligence scientists like John McCarthy, Marvin Minsky, Allen
Newell and Herbert Simon, among many others, had the firm belief that twenty years,
back then, would be sufficient to be able to replicate a human brain (Russell and Norvig,
1995).

It turned out that this symbolic approach was overly optimistic in its intents, and by
the eighties it was suffering from a steady decline. Some philosophers and scientists were
strong critics of the pure symbolic manipulation approach to the building of an intelligent
mind, like John Searle (Searle, 1980), Rodney Brooks (Brooks, 1990) and Hubert Dreyfus
(Dreyfus, 1992). One of the major criticisms was that symbolic reasoning draw a clear
distinction between body and mind, a duality coming back from the work of Descartes
and that was no longer supported by modern philosophy, psychology or recent neurology
findings.

In the same time, different approaches to artificial intelligence came to light or were
revived, like the connectionism or behavioural robotics, that took an information pro-
cessing approach to artificial intelligence that did not rely on symbolic manipulation.
Connectionism, for instance, believes that intelligent behaviour emerges as a result of
interconnected networks of simpler components (Hinton, McClelland, and Rumelhart,
1986; Hinton, 1991): although not new, this concept underwent a renewal with the re-
discovery of the backpropagation algorithm, that revived the neural networks model first
suggested by McCulloch and Pitts (1943). The field of behavioural robotics also con-
siders intelligence to be a quality that emerges from the interaction of simple processes
taking information from sensors and converting it to actions performed by the robot on
the environment (Brooks, 1991). A particular example of this view is the subsumption

architecture (Brooks, 1986; Brooks, 1991): here intelligent behaviour emerges from a hi-
erarchical architecture of simple behaviour modules, where higher level modules perform
more abstract tasks and control the lower layers. These and other approaches can be
viewed under the broader concept of cybernetics, a interdisciplinary field that studies
regulatory systems: under this paradigm there is a kind of symbiotic relation between
the concepts of intelligence and motor capabilities. Without movement, intelligence has
no means of expressing itself; without intelligence, the motor machinery of a biological or
artificial system lacks the capability to generate autonomous behaviour, a fundamental
requisite in demanding and permanently evolving environments.

A concept that is central to intelligent behaviour is that of an internal model. To be

CHAPTER 2. SENSORIMOTOR MODEL LEARNING 17

able to achieve its desired goals and complete some given tasks, a biological or artificial
brain must necessarily have some kind of internal representation of how does a motor
command influence the environment, that is able to make predictions and to anticipate
the consequences of its actions (Ghahramani, 2013). Without internal models for the
consequences of actions, as perceived by the sensory system, an artificial or biological
brain cannot hope to achieve more than mere random movements.

Even when a system apparently does not have an internal representation of its senso-
rimotor model, there is always some kind of information that is used to guide the system
while it interacts with the environment, that can be interpreted as an implicit model
for this interaction: it may consist, for instance, in genetically transmitted information
encoding basic movement abilities, fitted by natural evolution over millions of years, or,
for artificial systems, in empirical knowledge, provided by a human expert, on how should
an artificial system act in order to perform the desired tasks.

Nevertheless, implicit models have only a very limited capability to represent the rich-
ness of the complex environments an intelligent system interacts with. Higher autonomy
and superior intelligence are related to the ability to generate more complex behaviours,
which in turn depends on the representation capabilities of the internal models used in this
process. Also, the environment dynamics may show a large variability and may change
unpredictably over the time, a situation a hard-coded internal model cannot easily cope
with.

Adaptive internal models, that build and change, over the time, their representation
of the influence of the robot actions on the surroundings and its own state, are therefore
required to endow a robot with a high level of autonomy, that allows the improvement of
its response performance in face of unpredicted situations.

Of course, robotic sensorimotor learning can be regarded at various levels, depending
on how robot perceptions, actions and goals are defined. In general, basic, low-level
sensorimotor skills must first be properly acquired before a robot can learn more complex
tasks. Newborn infants, for instance, must first learn how to reach objects before being
able to grasp them, and only then can they start learning how to manipulate these objects,
a learning process that takes place during their first months of life (Payne and Isaacs,
2001). This developmental perspective, where learning and the ability to solve complex
tasks is acquired during different stages of the human development, and where the learning
of new tasks builds upon previously acquired skills, as been adopted in artificial systems
under the developmental robotics paradigm (Asada, MacDorman, et al., 2001; Lungarella,
Metta, et al., 2003; Lopes and Santos-Victor, 2007; Asada, Hosoda, et al., 2009).

As stated in Chapter 1, this dissertation main focus is the learning of low-level sen-
sorimotor models, that relate the robot motor commands to the perceived environmental
changes. These models are essential in a hierarchical architecture, and allow higher cog-
nitive processes to internally simulate actions and predict its consequences. This is a

2.1. INTERNAL MODELS FOR SENSORIMOTOR COORDINATION 18

simulation perspective of the internal sensorimotor models. Second, the question of how
to generate movement to achieve a certain goal, in terms of the environment state, needs
also to be addressed. This can be viewed as a control perspective, where the sensorimotor
models are used to generate desired motions, as required by higher cognitive abilities.

The next sections will discuss these two different perspectives, from the point of mod-
elling and learning. Section 2.1 will first address the kind of models that are required for
simulation and control, pointing out the main issues that may arise when learning such
models. Then, in Section 2.2, a review of several machine learning techniques that can
be useful for the adaptation of these internal models is provided, highlighting the major
strengths and limitations of these methods in robotic sensorimotor learning contexts.

2.1 Internal Models for Sensorimotor Coordination

Let the robot state, st, be defined as a vector that summarizes all the relevant information
regarding the environment and the robot, needed to accomplish some task, at a given time
instant t. This state is usually obtained resorting to proprioceptive and exteroceptive
sensors, that convey information regarding the robot and external environment condition.
While sometimes the robot state may consist of raw sensor data, many times some kind of
processing and feature extraction is needed to provide this information. This is the case
of signals coming from vision or audio sensors: using such raw data directly for real-time
robot control, due to its complexity and high dimensionality, is in principle condemned
to failure. In such cases, preprocessing of the sensor information is an essential requisite,
in order to obtain a minimal set of features that are relevant to the task the robot is
supposed to accomplish. These features can be, for instance, the position and velocity of
tracked subjects in a video sequence coming from robot cameras, such as objects, humans
or the robot own end-effector, or the segmentation into known phonemes of a perceived
speech. Extracting relevant information from raw sensory data is a large research subject
on its own that will not be addressed in this dissertation: here it will be simply assumed
the existence of a state vector st, without regarding how it was actually obtained.

Also, an action vector at must be defined, containing the set of commands a robot can
issue at time t, that can potentially modify its state. These commands can correspond
to physical quantities driving the robot actuators, like the input voltages of DC motors
actuating the robot joints, but can also be high level actions like, for instance, a request
to move the robot end-effector to a given position in the Cartesian space or a request to
grab an object. In these cases the robot will need another kind of mechanisms to translate
these actions to low level actuator commands. As a low level actuation is assumed in this
dissertation, the action vector will be represented by a vector of real values (as opposed to
symbolic actions, usually represented by a finite enumeration of possible discrete actions).

CHAPTER 2. SENSORIMOTOR MODEL LEARNING 19

2.1.1 Forward Models

A sensorimotor model is a robot internal model for the way its actions influence the
environment. This model implicitly defines a causal relation from actions to environment
changes, that can be naturally represented by the following forward model:

st+1 = f(at, st) . (2.1)

This forward model allows the robot to predict the consequences of its actions: given a
current state st, this model predicts the state at a consequent instant st+1 as a consequence
of performing action at. Although a discrete time model is adopted in the following
discussion, it is easy to extend all the considerations made to a continuous time model,
by replacing the state at the next time step in equation (2.1) by the time derivative of
the state. Note also that, as stated in the previous discussion, it is assumed in this model
that the state is completely observable. If this was not the case, equation (2.1) would
have to be extended with the observation model

yt = h(st) ,

where yt would correspond to the observed variables, while the unobserved full state st

would have to be estimated from samples st and at. The state estimation issue will not
be further considered in this dissertation: in the remaining of this chapter it will always
be assumed a full access to the system state, i.e., that yt = st.

This internal forward model may be represented by a deterministic relation. Some-
times, however, due to the stochastic nature of the environment, due to the presence of
sensor noise or to the existence of an incomplete state vector, where some hidden variables
also influence the evolution of the environment, it may be more convenient to represent
the forward model by a stochastic relation: in this case, instead of a single deterministic
value, equation (2.1) represents a probability density function over the possible values of
st+1.

The state vector st can be understood as the context under which the action at is
performed. For dynamical systems the information conveyed by this state vector is es-
sential, since to predict its evolution both the current action and the past history of the
system, summarized in st, are required. On the other hand, static forward models, like the
forward kinematics of a robot, do not need any contextual information: in this situation
equation (2.1) can simply be written as st+1 = f(at).

Learning forward models can usually be done in a straightforward manner by resorting
to standard supervised learning techniques, where the input data is given by x = (at, st)
and the corresponding output is y = st+1; the task is then to learn the relation y = f(x)
from training examples (xi,yi); this is known as a direct modelling approach (Jordan and

2.1. INTERNAL MODELS FOR SENSORIMOTOR COORDINATION 20

Wolpert, 1999).

Since the true forward model is ordinarily a single-valued function, assigning a single
consequence y for every possible input x, most function approximation methods can in
principle be applied to build an internal model of the forward relation. There are however
some exceptions: the forward kinematic model of a parallel manipulator, for instance,
typically exhibits multiple possible solutions for the same configuration of the actuator
variables (Merlet, 2006). To exactly know the position of the end-effector, for a given
joint configuration, some additional information about the evolution of the robot state
is required. In a broader perspective, multi-modality on the forward model may occur
whenever some relevant information about the robot or environment is not taken into
consideration in the internal state representation st. This makes the learning of the
forward model a much more difficult task, as many learning algorithms are not prepared
to deal with multi-valued outputs. All these issues will be covered in detail in the next
section.

Forward models are used to make predictions about the evolution of the environment
and to anticipate the outcomes of actions. This can be used, for instance, to replace
actual sensory feedback in noisy and time delayed systems, to cancel the sensory effects of
the movement of the robot sensors or to provide expected actions outcomes that can be
used for planning (Miall and Wolpert, 1996; Wolpert, Ghahramani, and Flanagan, 2001).
To control a robot, if only a finite set of discrete actions exist, the forward model can be
used to choose the action at that will drive the current robot state closest to the desired
state. This dissertation, however, is primarily concerned with continuous actions: in this
case, a controller can exploit a forward model by considering the variation on the output
that a change of the action vector induces, i.e., by taking the derivative of the output
st+1 with respect to the action vector at. This quantity is known as the Jacobian of the
transformation represented by the forward model and has an extensive set of applications
on robotic domains. On a kinematic level, for instance, the Jacobian of the forward
model can be inverted to provide the variation on the joint quantities that would produce
a desired change in the position of the end-effector. This concept is the basis for resolved

motion rate control (RMRC) (Whitney, 1969), a form of robotic control scheme that acts
at a velocity level in the joint and task spaces. This and other control schemes will be
further detailed in Chapter 5.

Resolved motion rate control performs a local inversion of the linearized forward model
at the current state st (Whitney, 1969; Salaün, Padois, and Sigaud, 2010). The forward
kinematics is usually a highly nonlinear function: consequently, such inversion cannot
be used to move directly to the desired task space position, and the command vector
at must be permanently updated as the state vector st evolves. Since a controller, in a
broad perspective, needs to choose an action that will lead to a desired state, it is natural
that, instead of locally inverting a forward model, an inverse model of the environment is

CHAPTER 2. SENSORIMOTOR MODEL LEARNING 21

instead considered, as will be discussed next.

2.1.2 Inverse Models

An inverse sensorimotor model is represented by the relation

at = f−1(st+1, st) ; (2.2)

this is the same model as the forward model presented in equation (2.1), with the roles
of at and st+1 reversed, and thus can be seen as a transformation from a desired next
state sd = st+1 to motor controls at. For open-loop control systems, inverse models are
fundamental, as they provide a way to convert desired states to corresponding motor
commands that will lead to such states, without relying in any kind of sensory feedback.

Some sensorimotor forward models can be described by injective functions, and thus
the corresponding inverse models are still proper functions: this happens, for instance, in
forward and inverse dynamics models. In this case the direct modelling method can be
readily applied to control (Miller, 1987; Kuperstein, 1988), as illustrated in Figure 2.1.
Nevertheless, learning inverse models is in general a more difficult task than learning

Model

Robot
Feedback

Controller

Figure 2.1: The direct modelling approach applied to inverse model learning, used together with
a feedback controller. Figure taken from (Nguyen-Tuong and Peters, 2011b).

forward models, due to the model redundancy or the many-to-one characteristic of the
forward mapping. As a consequence, the inverse model is not a proper function, and thus
it cannot be adequately learned resorting to the direct modelling approach, where the
training points consist of inputs xt = (st, st+1) and outputs yt = at — note the reversed
roles of st+1 and at, when compared to forward model learning.

Feedback error learning uses an external feedback controller to guide the inverse model
learning process (Kawato, Furukawa, and Suzuki, 1987). Contrary to direct modelling,
learning has to be done online, during the operation of the robot. The actual motor
commands sent to the robot are the sum of the feedback controller output and at, the

2.1. INTERNAL MODELS FOR SENSORIMOTOR COORDINATION 22

current output of the inverse model, as depicted in Figure 2.2. The fundamental point of

Model

Robot
Feedback

Controller

Figure 2.2: The feedback error learning approach to inverse modelling. Figure taken from
(Nguyen-Tuong and Peters, 2011b).

feedback error learning is that the output of the feedback controller provides an error signal
that is used to adjust the internal parameters of the inverse model: this can be interpreted
as providing the commands that are sent to the robot as targets, or desired responses,
for the inverse model. In such situation the output of the external feedback controller
corresponds to the prediction error made by the inverse model, i.e., the difference between
the actual motor commands at and ât, the current output of the inverse model: as learning
proceeds the inverse model output converges to the desired robot commands and the
feedback error goes to zero. This means that, after the learning process has converged,
the inverse model effectively replaces the feedback controller, which nevertheless can still
be used to compensate unwanted external disturbances.

Feedback error learning is goal-oriented, as opposed to direct modelling. This means
that the learning process is influenced by the desired state for the robot: the difference be-
tween this state and the actual state is used to guide the learning process via the feedback
controller, thus choosing and learning a specific solution for the inverse model. Another
goal oriented approach is known as distal supervised learning (Jordan and Rumelhart,
1992): here, the multi-modality of the output of the inverse model is circumvented by the
use of a previously trained internal forward model of the robot. This forward model is
used in a composite controller, where the output of the inverse model being learned feeds
the already trained forward model. In this way, the input of the composite controller is
the next step desired state sd, while its output is the state predicted by the forward model,
ŝt, as illustrated in Figure 2.3. During training the forward model is kept fixed, and only
the inverse model is adapted using the performance error, the difference between desired
and actual observed states. The key point here is that the composite controller should
behave as an identity system, mapping desired states into actual robot states: since only
the inverse model is allowed to adapt, in the end the inverse model generates inputs at

that will drive the robot state to the desired values.

CHAPTER 2. SENSORIMOTOR MODEL LEARNING 23

Inverse

Model

Robot
Feedback

Controller

Forward

Model

Figure 2.3: The distal learning approach to inverse modelling. Figure taken from (Nguyen-Tuong
and Peters, 2011b).

Even if an imperfect forward model is used, the inverse controller in a distal learning
scheme is able to track accurately the desired robot states, as its adaptation is made
resorting to the performance error, not taking the output of the learned forward model
into account. In spite of that, the existence of an approximate forward model, learned
from training data, is still crucial for obtaining the inverse model, as it provides the
information about how a variation of the action at can change the robot state — this is
essential to accomplish a successful adaptation of the inverse model (Jordan and Wolpert,
1999). As feedback error learning, the distal learning approach is only able to find a
single solution for the inverse model, that depends on the adaptation process and the
particular temporal sequence of training data. If a particular type of inverse model is
sought, additional penalty terms can be added to the cost function being minimized by
the learner (Jordan, 1992).

Besides the feedback error and distal learning approaches, other learning algorithms
also have goal-oriented procedures to find a way around the ill-posedness and multi-
modality nature of the inverse model. These methods only find a single solution for
the inverse problem, and redundancy resolution is usually achieved by introducing some
kind of penalty on the cost function used to train the model. This technique is used,
for instance, in learning inverse kinematics models (D’Souza, Vijayakumar, and Schaal,
2001) or to learn internal models of the full operational space mappings (Peters and
Schaal, 2008).

Finally, another type of architecture uses the mixture of experts concept, described in
detail in Section 2.2.6, to introduce a modular approach to the inverse model learning.
This model, termed modular selection and identification for control (MOSAIC) by Wolpert
and Kawato (1998), consists of a set of inverse models paired with corresponding forward
models. The action at provided by the global model is given by a subset of the inverse
models set, according to the prediction error made by the corresponding forward model:

2.1. INTERNAL MODELS FOR SENSORIMOTOR COORDINATION 24

the better a forward model is at predicting the current state of the robot, the more
importance has the associated inverse model, as given by the responsibility signal of the
forward model. This formulation allows, for the same desired robot output, the existence
of different predictions made by the model, according to the specific current context.
The responsibility signal is also used during learning, to assign training samples to the
paired models that are more likely to correspond to the current context. The MOSAIC
model has a strong inspiration on internal models of the human brain (Wolpert, Miall,
and Kawato, 1998), and a training procedure and some simple example applications have
been demonstrated in the work of Haruno, Wolpert, and Kawato (2001). Its architecture
is shown in Figure 2.4.

Figure 2.4: The MOSAIC architecture. Figure taken from (Wolpert and Kawato, 1998).

An interesting aspect of inverse model learning is that it must resort to direct modelling
algorithms to train some of its components, even if these strategies were initially developed
to avoid the direct use of this technique to the inverse model learning problem. As a
consequence, direct modelling approaches, that make use, in a typical regression context,
of input-output training data (xi,yi) to adapt the internal models, are essential to both
forward and inverse model learning. Learning such models can be done using a large
variety of procedures, as it will be described in the next section.

CHAPTER 2. SENSORIMOTOR MODEL LEARNING 25

2.2 Learning Methods for Sensorimotor Models

In a regression setting, a supervised learning algorithm can be seen as a function mapping a
training set D = {(xi,yi)}Ni=1 to an estimate, or a probability distribution, of an unknown
relation y = f(x). This estimate can be subsequently used to provide predictions at input
locations different from the training data: such ability to generalize beyond the training
data is a characteristic of every learning algorithm.

In order to perform output generalization at unseen inputs, a learning algorithm must
adopt, implicitly or explicitly, a preference that favors some classes of functions, known
as the inductive bias of a learning algorithm (Mitchell, 1997). Linear regression (Sec-
tion 2.2.1), for instance, strongly restricts the function to estimate by considering it to be
a member of the class of linear functions; Gaussian process regression (Section 2.2.4), on
the other hand, assumes a correlation between outputs yi that depends on the distance
between corresponding inputs xi, according to some distance metric. The success and
good generalization error of a learning algorithm crucially depends on its inductive bias
doing a good job approximating the structure and the regularities of the true function to
be learned. Without any restriction on the class of possible true functions, responsible for
generating the observed training set D, a learning algorithm has no means of choosing a
plausible outcome y at a new input x, and its performance with respect to generalization
error will be equal to every other algorithm, including random prediction, a situation
coined as the no free lunch theorem by Wolpert (1996).

Learning algorithms can roughly be divided into parametric and nonparametric models
of the training data. In the first class a specific structure is assumed for the function to
approximate, governed by a finite set of parameters: this structure can be though of as
the inductive bias of the learning algorithm. Given these parameters — or their current
probability distributions — a prediction can be performed without the need to resort to
the training data. The linear regression model (Section 2.2.1) and adaptive expansions of
a fixed number of basis (Section 2.2.3) are two examples of parametric learning models.

Nonparametric models, on the other hand, do not impose any particular structure to
the function being approximated: they can be seen as possessing an infinite number of
parameters, and typically depend on the full training dataset D to perform predictions
(Ghahramani, 2013). Memory based learning (Section 2.2.2) and kernel machines (Sec-
tion 2.2.4) fall in this class of learning methods, where the inductive bias is usually set by
defining a structure for the kernel that represents the covariance between output samples
or, in memory based learning, the distance metrics that measure the influence of training
points in the prediction.

A third class of learning algorithms consists of parametric models whose structure
is not completely defined a priori: while still assuming a parametric structure for the
function to be learned, that structure itself (e.g. number of components in a mixture

2.2. LEARNING METHODS FOR SENSORIMOTOR MODELS 26

model or number of basis functions in adaptive basis expansions) is allowed to adapt
during the learning process; they can still be interpreted as parametric, but taking a
further step that extends the class of functions they are able to represent and somewhat
putting them a bit closer to nonparametric approaches.

Parametric algorithms have a set of parameters that are adjusted to make their pre-
dictions closely match the provided training examples. This can be done for instance by
risk minimization, by defining a loss function over the prediction errors produced by the
algorithm and choosing the parameters that minimize such loss. A probabilistic approach
considers instead the maximization of the likelihood of the training data, where the pa-
rameters of the model are chosen to maximize the plausibility of the training data given
the current probabilistic model: this is known as maximum likelihood (ML) inference, and
the prediction distribution at a query point xq is given by

p(y|xq,D) = p(y|xq, Θ̂) , (2.3)

where Θ̂ is the value of the parameter vector that maximizes p(D|Θ), the likelihood of
the training dataset given the parameter vector Θ.

A closely related training method treats the parameters as random variables, seeking
the parameter values that maximize their posterior distribution after seeing the training
data, a training process that is known as maximum a posteriori (MAP) inference. The
prediction distribution for MAP inference is still given by equation (2.3), but now Θ̂

corresponds to the value that maximizes the posterior distribution of Θ, p(Θ|D).

Finally, a full Bayesian approach to the training procedure uses the full a posteri-

ori distributions for the parameters in the prediction phase — as opposed to the use of
point estimates of the parameters, as in MAP inference. This takes into consideration
the uncertainty in the parameters values, and the bias introduced by the priors for these
parameters helps guarding against overfitting. Using this inference technique, a predic-
tion distribution at a query point xq is obtained through marginalization on the model
parameter vector Θ, according to

p(y|xq,D) =
∫

p(y|xq,Θ)p(Θ|D)dΘ . (2.4)

As for nonparametric models, their training phase usually consists, due to the inherent
lack of parameters, in automatically making choices about the quantities that define the
inductive bias introduced in the learning process, responsible for the overall complexity of
the learned model. Such quantities of interest can be, for instance, the penalty parameter
of smoothing splines or, for kernel based methods like memory based learning and ker-
nel machines, the hyperparameters of the kernel functions that define the characteristic

CHAPTER 2. SENSORIMOTOR MODEL LEARNING 27

input length-scale and/or the output noise of the function to learn. Parametric methods
with varying structure, on the other hand, often have the need to autonomously adjust
the complexity of the underlying function: an emblematic example is the choice of the
number of components in a mixture model (Section 2.2.6).

The more complex a model is the better it will fit the training data, as the function
space generated by the learning algorithm is less constricted. However, most of the times
the error in an independent test set will start to increase when the model complexity is
increased too much: this is known as overfitting, an undesired phenomenon that occurs
when a learning algorithm specializes too much on the training data. As the complexity
of the model increases there is a larger set of hypothesis for the function that generated
the training data, and the learning algorithm will be able to pick the ones that provide the
best approximating error, thus reducing its bias over the training set. Nonetheless, the
variance of the learning algorithm, measured over all possible training sets, will increase,
as it reflects the sensitivity of the resulting approximated function to a particular choice of
D. This can increase the prediction error at a random test point xq, due to the following
well-known decomposition of the prediction error into learner bias and variance:

E[(f̂(xq) − f(xq))2

︸ ︷︷ ︸

squared error

] = (E[f̂(xq)] − f(xq))2

︸ ︷︷ ︸

bias2

+E[(f̂(xq) − E[f̂(xq))2]
︸ ︷︷ ︸

variance

. (2.5)

Here f(xq) is the true function value at xq while f̂(xq) is the learner prediction;
expectations are taken over all possible training sets. While increasing the complexity
of the learning algorithm helps reducing its learning bias, the variance nonetheless will
get larger and start to dominate the bias term, increasing the overall expected prediction
squared error. This behaviour, depicted in Figure 2.5, is known as the bias/variance

trade-off (Geman, Bienenstock, and Doursat, 1992), and learning algorithms try to set
their complexity in such a way that an optimal balance between bias and variance is
found, resulting in a low generalization error in an independent test set.

Unfortunately, the variance of a learner cannot be assessed based on the training error
alone: for this reason a number of techniques were developed to estimate the generalization
error of a learning algorithm from the training data:

Cross Validation randomly splits the training set in two parts, one for training the
learning algorithm and the other for assessing the generalization error. Training is
then repeated, with another portion of the data used for the validation set, until
all data is cycled and all points are used once as validation data (Stone, 1974).
The average prediction error on the validation set is then a good estimate of the
true generalization error, and can be used to perform model selection or choosing
a parameter from a discrete set of possible values. In the extreme case where only

2.2. LEARNING METHODS FOR SENSORIMOTOR MODELS 28

High B ias

Low Var iance

Low B ias

High Var iance

P
re
d
ic
ti
o
n
E
rr
o
r

Model Complexity

Training Sample

Test Sample

Low High

Figure 2.5: The bias/variance trade-off. Figure taken from (Hastie, Tibshirani, and Friedman,
2009).

a sample, out of a training set with M points, is used at a time to evaluate the
out-sample error, the training procedure has to be repeated M times: this is known
as leave-one-out cross-validation.

Bayesian Evidence takes advantage of the fact that a more complex probabilistic model
m will spread its predictive probability mass over a larger set of possible hypothesis
for the underlying function, thus reducing its probability density for a single pa-
rameter value (Ghahramani, 2013). Evidence is also known as marginal likelihood
due to the fact that the quantity p(D) is used for model comparison, where the pa-
rameters Θ are marginalized out. Evidence maximization automatically provides a
bias-variance trade-off, since it tends to penalize more complex models by assigning
them less probability, as represented in Figure 2.6. This phenomenon is known as
the Bayesian Occam’s razor, where the simplest models that fit the training data
well are chosen (MacKay, 2003).

Penalty Methods impose, during training, a penalty that discourages overly complex
models. The Akaike information criterion (AIC) (Akaike, 1974) introduces a penalty
that linearly grows with the number of independent parameters of a model, based on
a information-theoretical approach that resembles the entropy maximization princi-
ple in thermodynamics. The Bayesian information criterion (BIC) (Schwarz, 1978)
tends to inflict a heavier penalty on complex models when compared to AIC, and
it is derived as an approximation to the Bayesian evidence described above. Other
methods take an approach based on information and theory of coding to derive ex-
pressions for the penalty, like the minimum description length (MDL) (Rissanen,
1978), that can be shown to have a strong link to BIC (Hastie, Tibshirani, and

CHAPTER 2. SENSORIMOTOR MODEL LEARNING 29

too simple

too complex

‘just right’

all possible datasets of size n

P
(D

|m
)

D

Figure 2.6: The Bayesian Ockam’s Razor. Figure taken from (Ghahramani, 2013).

Friedman, 2009), and the minimum message length (Wallace and Boulton, 1968).

The remaining of this section will attempt to provide a short review of some techniques
used for regression and function approximation, with a special focus on the issues that
may have more impact in a robotics sensorimotor learning context.

2.2.1 Linear Regression

Perhaps one of the most simple methods for function approximation is the linear re-
gression model, that assumes a scalar output y to be related to an input vector x =
[x1, x2, · · · , xd]T according to a linear relation, corrupted with noise ε:

y = β0 +
d∑

k=1

βkxk + ε . (2.6)

In this linear regression problem an estimate for the unknown regression coefficients
βk is sought that correctly explains the training data (xi, yi), for i = 1 . . .N . Although
a scalar output y is considered in the following text, the linear regression model can be
easily extended to multivariate outputs. Figure 2.7 illustrates the linear regression model
concept. Assuming a zero mean, i.i.d. Gaussian model for the noise, the likelihood of the
training set can be written as

p(y|X,β) =
N∏

i=1

p(yi|xi,β) ∼ N (XTβ, σ2
nI) , (2.7)

where X is a (d + 1) × N matrix whose columns correspond to the training points xi,
augmented with an initial element equal to 1, y is a vector collecting the targets yi and

2.2. LEARNING METHODS FOR SENSORIMOTOR MODELS 30

x
2x

1

y

Figure 2.7: The linear regression model fits a hyperplane that minimizes the sum of squared
approximation errors of the training data.

β is the (d+ 1)-dimensional vector of regression coefficients βk, for 0 ≤ k ≤ d.

With some algebraic manipulation, the likelihood in equation (2.7) can be arranged
as a Gaussian distribution in the regression vector β, resulting in (Bishop, 2006)

p(β|X,y) = N
(

(XXT)−1Xy, σ2
n(XXT)−1

)

; (2.8)

as a consequence, the output prediction for an input query xq has the distribution

p(y|xq,X,y) = N
(

xT
q (XXT)−1Xy, σ2

n

(

1 + xT
q (XXT)−1xq

))

. (2.9)

This is a well known result, and the mean of the posterior distribution for β coincides
with the ordinary least squares (OLS) solution for the linear regression problem, where
the regression vector β is chosen to minimize the residual sum of squares

RSS(β) =
N∑

i=1

(

yi − β0 −
d∑

k=1

xikβk

)2

= (y − XTβ)T (y − XTβ) . (2.10)

The above OLS solution, however, presents some drawbacks: in high dimensional input
spaces the OLS will typically produce high variance estimates, meaning that there is a
risk of overfitting, specializing the regression coefficients on the noise. Also, in many
datasets arising from robotic sensorimotor relations, the input values may be heavily
underconstrained, with irrelevant or highly correlated input dimensions: this means that
the full rank assumption on XXT may be violated, causing numerical instabilities in the
required matrix inversion (Ting, Mistry, and Peters, 2006).

CHAPTER 2. SENSORIMOTOR MODEL LEARNING 31

To tackle these problems, a large number of approaches were proposed to reduce
the effective number of input dimensions needed to correctly explain the linear relation
between input vectors and corresponding target responses, and thus reduce the variance in
the regression coefficients estimates. Some of these methods are briefly presented bellow:

Principal Component Regression (PCR) replaces the original regressor variables by
their principal components1, discarding the smallest eigenvalue components (Kendall,
1957). This orthogonalizes the regression problem and makes computations more
numerically stable.

Partial Least Squares Regression (PLS) (Wold, 1975), a technique widely used in
chemometrics, performs univariate regressions along the input directions that exhibit
the strongest correlation between input and output — note that PCR above only
looks at the input correlation (Frank and Friedman, 1993), and thus can potentially
eliminate low variance input directions that can, nevertheless, have a strong influence
on the output response.

Ridge regression (also known as Tikhonov regularization) (Hoerl and Kennard, 1970)
shrinks the regression coefficients by imposing a penalty on their magnitude, by
changing the cost (2.10) to (y − XTβ)T (y − XTβ) + λ‖β‖2. This results in a
solution β̂ = (XXT + λI)−1Xy. Alternatively, ridge regression can be seen as
defining a prior Gaussian distribution for β, with zero mean and λI covariance, i.e.,
p(β) = N (0, λI). In this case the above solution for β coincides with the posterior
mean for the regression coefficients2.

LASSO, or Least Absolute Shrinkage and Selection Operator (Tibshirani, 1996), consid-
ers a L1 penalty on the coefficients, instead of the L2 penalty used in ridge regression.
It can be shown that this induces sparsity on the coefficients β, making a subset of
them to go exactly to zero. In a probabilistic sense the LASSO can be interpreted as
putting a Laplace prior on the regression coefficients. This prior can be represented
in a hierarchical manner, as done by Figueiredo (2003), which opens the door to the
use of different hyperpriors, such as the uninformative Jeffreys prior that can achieve
a sparse solution without any hyperparameter to tune (Figueiredo, 2003). Several
efficient methods for computing the LASSO solutions exist, such as the least angle
regression and shrinkage (LARS) (Efron, Hastie, et al., 2004); Bayesian versions
of LASSO can provide interval estimates for the regression parameters (Park and
Casella, 2008).

Subset Regression retains only a subset of the input variables that best explains the
training data, using this subset to obtain the OLS solution. As the two previous

1The principal component analysis will be further detailed in Section 2.2.5.
2Since, in general, a shrinkage of the intercept β0 is not desired, ridge regression and some of these methods

estimate instead the regression vector with the intercept β0 excluded, calculating this coefficient separately.

2.2. LEARNING METHODS FOR SENSORIMOTOR MODELS 32

methods, it can be seen as imposing a penalty on the norm of the coefficients vector
β, but this time a L0 norm is used for regularization. From a probabilistic point of
view this equivalent to using a hierarchical Bernoulli-Gaussian model (Soussen, Idier,
et al., 2011). The selection of the best subset of predictors can be done using several
different techniques, like the leaps and bounds procedure (Furnival and Wilson, 1974)
or stepwise regression (Derksen and Keselman, 1992).

Sparse Bayesian Learning (SBL) (Tipping, 2001) takes an empirical Bayes perspec-
tive to the regression problem: its probabilistic model is similar to ridge regression,
but the prior covariances on each of the regression coefficients βk are assumed dif-
ferent and unknown. These are estimated from the marginal distribution for the
data, where the vector β is integrated out, and then these estimates are used to
obtain the posterior distribution for the regression coefficients. It can be shown
that the resulting estimate for vector β becomes sparse: in the context of neural
networks (Section 2.2.3), these technique is known as Automatic Relevance Determi-

nation (ARD) (Neal, 1996; MacKay, 1995). The Variational Bayesian Least Squares

(VBLS) approach proposed in Ting, D’Souza, et al. (2010) can be seen as a compu-
tationally efficient version of SBL, that can be applied to high dimensional problems
in a real-time environment: this can be particularly useful for robotic sensorimotor
learning tasks (Ting, Kalakrishnan, et al., 2009).

Since many robotic sensorimotor maps are highly nonlinear, some concerns about the
pertinence and applicability of the linear regression model may naturally arise. How-
ever, note that in some problems the use of a linear model is sufficient: an example is the
rigid body dynamic (RBD) formulation of a robot dynamics, where all the robot unknown
parameters appear linearly in the rigid body dynamics relations (Atkeson, An, and Holler-
bach, 1986; An, Atkeson, and Hollerbach, 1988). In this case, parameter identification
can be done resorting to the linear regression model, although some issues may arise as
there is no mechanism to ensure physical correctness of the estimated inertial parame-
ters, e.g., positive mass parameters (Nakanishi, Cory, et al., 2008). Even when the linear
assumption does not hold, the linear model can be used as part of more sophisticated
methods, like local learning (Section 2.2.2) or mixture models (Section 2.2.6). Also, many
kernel methods (Section 2.2.4) perform a linear regression in a very high (possibly infinite)
dimensional feature space, implicitly defined by the kernel function.

Finally, note that of special importance for sensorimotor learning is the ability of these
linear regression methods to cope well with online learning schemes, in order to be able
to deal with large volumes of sensorimotor data. It is well known that the OLS solution
can be computed exactly in a recursive fashion (Ljung, 2002); in order to be gracefully
adapted to robotic problems, other linear regression methods should also provide some
kind of incremental schemes.

CHAPTER 2. SENSORIMOTOR MODEL LEARNING 33

2.2.2 Memory Based Methods

Linear regression models can be seen as global parametric models, that approximate the
underlying function by a global model, parametrized by a linear relation from inputs
to their corresponding response. Memory based methods, on the other hand, are non-
parametric methods that generate local predictions based on the training samples in the
vicinity of the query point; this kind of learning scheme is also known as lazy learning or
instance based learning (Mitchell, 1997), and is characterized by the lack of an underly-
ing parametric structure, where the predictions are obtained from a local approximation
based on the training data.

The simplest memory based method for regression is the well known nearest neighbour
approximator, that simply predicts, for a query point xq, the output ŷ taken from the
training sample whose input xi is closest to xq. This estimate, however, has a large
variance with respect to the training data and changes abruptly as the query point xq is
changed. A natural extension is then to consider the k-nearest neighbours method, that
generates a prediction by averaging the responses corresponding to the k training points
closest to the query point3, as given by

ŷ(xq) =
1
k

∑

xi∈Nk(xq)

yi , (2.11)

where Nk(xq) is the k-neighbourhood of xq in the training sample.

As the number of neighbours increases the prediction variance is reduced, but at a cost
of an increasing bias. In the limit, if all data points are considered, a global, constant pre-
diction is obtained that simply corresponds to the average of all training points. Choosing
the optimal number of neighbours to use is thus the fundamental question concerning this
method, and can be considered as the training phase of the learning algorithm. This is a
manifestation of the classical bias-variance dilemma, and a common approach in this case
is to choose the neighbourhood size resorting to cross-validation techniques.

Smoothing kernels can make the nearest-neighbours prediction continuous by using a
weighted average of the training points, where lower weights wi(xq) are given to train-
ing points farther from the query point, according to the Nadaraya-Watson formula
(Nadaraya, 1964; Watson, 1964):

ŷ(xq) =
N∑

i=1

wi(xq)yi , with wi(xq) =
k(xq,xi)

∑N
j=1 k(xq,xj)

. (2.12)

The function k(xq,xi) is a smoothing kernel, a positive, decreasing function of the
distance ‖xq − xi‖. Many different kernels can be used, and most of them can be written

3Sometimes, instead of defining the number of neighbours one chooses instead the radius of a hypersphere
centred on xq, averaging the responses of the training points that fall inside that hypersphere.

2.2. LEARNING METHODS FOR SENSORIMOTOR MODELS 34

as k(xq,xi) = k(d), where d = ‖xq−xi‖/λ is a distance function; the squared-exponential

kernel (also known as the Gaussian kernel), for instance, is given by k(d) = exp(−0.5d2),
while the Epanechnikov and the tri-cube kernels are given respectively by

k(d) =







(1 − d2) if d ≤ 1

0 otherwise
(2.13)

and

k(d) =







(1 − d3)3 if d ≤ 1

0 otherwise
. (2.14)

These are only some examples of popular kernels, and, in general, the particular choice
for the weighting kernel is not critical; other choices for k(d) are described, for instance,
in (Atkeson, Moore, and Schaal, 1997a).

The smoothing parameter λ defines the width of the kernel, implicitly defining the
range over which a training point contributes to a prediction: large values correspond
to a broadener neighbourhood being considered, with many training points effectively
used in the prediction average in (2.12). This lowers the variance of the prediction, but
increases its bias. On the other side, if small values of λ are used the bias vanishes, but the
predicted function becomes more wiggly, starting to specialize over the training samples
output noise.

The Nadaraya-Watson formula, like the k-nearest neighbours method, locally approx-
imates the function to be learned by a constant, given by the weighted average of the
training samples. Local linear regression extends this formulation by locally approximat-
ing the function by a linear relation (Cleveland, 1979). This results in the weighted least

squares solution to the linear regression problem, given by

ŷ(xq) = xT
q (XW (xq)XT)−1XW (xq)y , (2.15)

where the N ×N weight matrix W (xq) is diagonal with ith diagonal element k(xq,xi).
The prediction is similar to the OLS solution, but now some weights are used to account
the influence of the training points in the regression problem, according to the kernel
being used (compare to the prediction mean in equation (2.9)). Figure 2.8 presents the
reconstructed function based on the training data shown, using a Gaussian kernel with
λ = 0.2. The local linear model obtained in the vicinity of a query point is also presented.

As with k-nearest neighbours, choosing an appropriate smoothing parameter can be
done in several different ways: leave-one-out cross-validation is a popular choice, as a
simple, closed form expression for its sum of squared residuals can be derived.

Note that higher order local polynomials can be fitted to the data, like quadratic

CHAPTER 2. SENSORIMOTOR MODEL LEARNING 35

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

Input

O
ut

pu
t

Figure 2.8: Locally weighted learning fitting of a set of noisy training data. The dashed line
in the bottom of the figure shows the kernel weight around the query point x = 2.0, while the
dashed straight line depicts the local linear approximation around the same point.

and cubic polynomials. Increasing the order of the fitted polynomial helps reducing the
bias, while increasing the variance: choosing the degree for the polynomial is an open
question, but in general lower order ones are preferred (Hastie and Loader, 1993; Hastie,
Tibshirani, and Friedman, 2009). In practice, for robotic sensorimotor learning, local
linear approximations are a good compromise between prediction error and computational
complexity. For more details on memory based methods, Atkeson, Moore, and Schaal
(1997a), Loader (1999), and Loader (2012) provide much information on this subject.
Some applications to control and robotic applications can be found in (Atkeson, Moore,
and Schaal, 1997b), where in particular it is described the use of memory based schemes
for learning both forward and inverse sensorimotor relations.

However, two major problems may arise with memory based methods when real-time
robotic applications are considered. The first is the need to keep all training points in
memory: since the data acquisition process can be very fast, there is the danger of not
being able to generate predictions in real-time, due to an increasingly large number of
computations needed to calculate a prediction. In this case a solution is to keep a small
enough representative subset of the training data, but this implies some care on choosing
what points should be maintained. Also, erroneous training points kept in the training
dataset, arising from outliers, may have a strong negative impact on the predictions.

Another problem is the fact that boundary effects become more noticeable in high
dimensions, as discussed in Chapter 1: these nonparametric, memory based methods are
particularly prone to these effects, and Loader (2012) suggests against using them for
more than a couple of input dimensions.

2.2. LEARNING METHODS FOR SENSORIMOTOR MODELS 36

More recently some other memory based approaches were proposed, with better flex-
ibility and generalization error. One example is the Bayesian approach to local linear
regression of Ting, D’Souza, et al. (2008), that locally finds the relevant input dimen-
sions and automatically discards outliers. Gaussian process regression, described in Sec-
tion 2.2.4, like the other memory based methods presented above, can also be viewed as a
linear smoother, by means of its equivalent kernel, with the important distinction that its
width automatically shrinks with the increase of density of training data (Silverman, 1984;
Rasmussen and Williams, 2006). The excellent prediction performance and probabilistic
principled approach of the Gaussian process regression method have in part contributed,
in the last decade, to the loss of popularity of some of the memory based learning methods
presented above in this section.

2.2.3 Adaptive Basis Expansions and Neural Networks

In general, the regressor vector in the linear regression model in Section 2.2.1 is not
limited to the input vector x: any transformations of these variables can be considered.
For instance, polynomial basis expansions can be considered if the regressor vector is
extended to accommodate all the interactions between input variables up to a given order,
e.g., x = [x1, x2, x

2
1, x

2
2, x1x2]T fits a quadratic relation in a 2-dimensional input space.

Another well known basis expansion of the inputs is the piecewise polynomial fitting that
can be done resorting to B-splines (De Boor, 1978). Overall, the basis expansion model
can be written as

y = β0 +
M∑

j=1

βjΦj(x) . (2.16)

However, the basis functions Φj(x) need to be set in advance and, as the input dimen-
sionality grows, typically an increasingly large number of basis functions is required to
cover the input space. The fact that the input training data typically lies in a space with
a lower dimension than the input space (Schaal, Vijayakumar, and Atkeson, 1998), to-
gether with a lack of knowledge of the relation to be estimated, encourages the learning of
the parameters that characterize the basis functions, instead of setting them beforehand.
The class of generalized additive models is a particular case of adaptive basis expansions,
where the basis Φj only operate along a particular input dimension, according to

y = β0 +
M∑

j=1

βjΦj(xj) ;

this model can be fitted by iteratively adapting each Φj in turn, using the current esti-
mates for the other basis, until the procedure converges. This is known as the backfitting

algorithm for additive models (Hastie and Tibshirani, 1986).

There is a vast literature on learning with adaptive basis expansions, and several differ-

CHAPTER 2. SENSORIMOTOR MODEL LEARNING 37

ent learning methods can be viewed under this perspective: classification and regression

trees (CART) (Breiman, Friedman, et al., 1984) and multivariate adaptive regression

splines (MARS) (Friedman, 1991), for instance, fall in this category. Classification and
regression trees recursively partition the input space by lines that are parallel to the input
coordinate axes. This results in a set of mutually exclusive regions of the input space:
the basis Φj then correspond to the indicator functions over these regions, while the co-
efficients βj specify the constant predictions provided by the model in the corresponding
regions. Multivariate adaptive regression splines, on the other hand, can be interpreted
as a modification of CART that leads to an improved performance under a regression
setting: it uses, for its basis functions Φj , a set of tensor products of regression splines to
represent the target function to be approximated.

Another popular method chooses the basis functions to be Φj(x) = k(x,xj), where
k(x,xj) assigns a similarity measure that decreases with the distance to the basis centre
xj; this function can be chosen as one of the kernels described in Section 2.2.2. This kind
of basis expansions are known as radial basis functions networks (RBF) (Broomhead and
Lowe, 1988; Buhmann, 2003): besides the weights βj , the learning process usually may
try to adapt the centre and parameters of the distance metric of each of the basis.

Artificial neural networks (NN), also known as multilayer perceptrons, are probably the
most widely used adaptive basis methods for sensorimotor model learning. Their name
comes from the artificial intelligence field, from the attempts to find a representation
model for the information processing in the human brain (McCulloch and Pitts, 1943;
Widrow and Hoffman, 1960; Rosenblatt, 1962). From a machine learning perspective, a
feed-forward neural network consists of a series of layers of adaptive basis functions, where
the output of a layer feeds the following layer. The first layer is known as the input layer,
the last one is the output layer and all the remaining, intermediary layers are labeled as
hidden layers. Figure 2.9 depicts the basic structure of a neural network with a single
hidden layer, although a typical neural network may contain several of these.

Typically the first hidden layer projects the input data into a direction given by the
weights vector wxz, and then performs a univariate nonlinear transformation, also known
as the activation function, over the result of the projection, according to

zk = σ(wT
xzx) , (2.17)

where zk is the kth output of the first layer. This is a model that bears a strong re-
semblance to the projection pursuit regression model (Friedman and Stuetzle, 1981). For
regression, the sigmoid activation function σ(v) = 1/(1 + e−v) is commonly used. The
final layer usually performs a linear regression on the intermediate units zk, according to

yi = wT
zyz . (2.18)

2.2. LEARNING METHODS FOR SENSORIMOTOR MODELS 38

Figure 2.9: Network diagram for a feed-forward neural network with a single hidden layer.
Figure taken from (Bishop, 2006).

Here, z denotes the vector that aggregates the variables zk, corresponding to the latent
variables in the hidden layer. It is customary to extend the input and intermediate layers
to accommodate a constant term, known as the bias, as shown in Figure 2.9.

The training phase adjusts the weights of each layer in order to fit the network outputs
to the training data. This can be done resorting to the popular back-propagation algo-
rithm (Rumelhart, Hinton, and Williams, 1986), an efficient gradient descent algorithm
for neural networks that has helped to boost a renewed interest in the neural networks
architecture, back in the eighties. More recently, the extreme learning machine (Huang,
Zhu, and Siew, 2006), which randomly chooses hidden nodes and analytically determines
the output weights of the network, has shown to be much faster than the back-propagation
learning algorithm.

This kind of neural networks is considered an universal approximator, capable of esti-
mate an arbitrary continuous function to any given precision (Kreinovich, 1991), as long
as the network has a sufficient number of hidden units. Also, such networks have the
ability to perform automatic feature extraction, where the relevant features are implicitly
represented in its hidden layers. The fact that the backpropagation algorithm can be
carried out online is a pertinent advantage for robotic applications.

Training a neural network requires some attention regarding overfitting: one of the
earliest methods to avoid an excessive specialization on the training data was known as
early stopping, where training ended when no improvement was observed on the prediction
error over an independent test data. Weight decay is an alternative approach, that consists
in defining a regularization term on the loss function — from a Bayesian perspective, this

CHAPTER 2. SENSORIMOTOR MODEL LEARNING 39

corresponds to the introduction of a prior on the neural network weights.

From a practical point of view, the choice of topology for the neural network —
number of layers, number of units in each hidden layer and types of connections —
may have a strong influence in the accuracy of the final model, and there are some
techniques that automatically deal with this problem (Bishop, 2006). Another issue, of
particular importance for sensorimotor learning, is the fact that standard neural networks
are global approximation methods, where each unit influences the prediction result in very
different regions of the input space. This is a problem when the input data distribution is
not stationary, as typically happens when acquiring real-time training data from robotic
devices: in this situation, catastrophic negative interference may occur, where recurrently
training on a region of the input space may lead to the destruction of the model prediction
abilities on other regions of the same space (Atkeson, Moore, and Schaal, 1997a).

Using neural networks to perform general function approximation has lost some of its
popularity in the last decade, in favour of more recent nonparametric kernel methods,
described in Section 2.2.4; in fact, it can be shown that by defining some priors over the
network parameters, a neural network may converge to a Gaussian process (Neal, 1996).

Recurrent neural networks (RNN) are an alternative to the feed-forward neural net-
works described above: they have recurrent connections linking their units, responsible
for the generation of feedback signals in the network. This recurrence leads to the ex-
istence of an implicit dynamical memory, coded in the hidden layers, and consequently
to an internal state representation that stores contextual information. This architecture
has significant advantages for the representation of time series and temporal evolution of
dynamic systems: historically, this was the main reason for the creation of this kind of
networks.

Since connections between units form directed cycles, the network behaves as a dy-
namical system, where complex, almost chaotic responses can be potentially obtained.
Due to this behaviour, full training of the network, resorting for instance to gradient
descent based methods to set the network weights, is traditionally much harder, with a
computational expensive training phase and a lack of convergence guarantees.

To overcome these limitations, a new approach to RNN was pursued, consisting in the
use of fixed random weights for the recurrent network. In this setting, only the network
weights connecting to outputs are learned, while the rest of the network is left untrained.
As a consequence, assuming the recurrent network to have a much larger number of units
than the number of network inputs, a complex nonlinear transformation of the input
signal into a high dimensional vector, encoded in the network hidden units, is achieved.
This scheme has some resemblance to kernel methods discussed in Section 2.2.4: like these
algorithms, a projection of the inputs is made into a high dimensional space, although
in this case there is an explicit representation of that projection. Then, a simple linear
regression is performed in that space to obtain the output. However, contrary to kernel

2.2. LEARNING METHODS FOR SENSORIMOTOR MODELS 40

machines, the latent representation may depend also on the output values of the network
and the previous values of its hidden units.

This idea was pursued independently in the pioneer works of Jaeger (2003), which
developed the echo state network, and Natschläger, Maass, and Markram (2002), with
their liquid state machine. During this period the Backpropagation-Decorrelation online
algorithm was also presented by Steil (2004) to train these kind of networks. Later, it was
proposed by Verstraeten, Schrauwen, et al. (2007) that the ideas supporting this type of
networks should be unified under the name of reservoir computing. Under this paradigm,
the part of the network with fixed weights is known as the reservoir.

In its most general representation, a reservoir network dynamics can be described by
the following dynamic equations (Schrauwen, Verstraeten, and Van Campenhout, 2007):

z(k + 1) = σ(W res
res z(k) + W res

in x(k) + W res
out y(k) + W res

bias)

y(k + 1) = W out
res z(k) + W out

in x(k) + W out
out y(k) + W out

bias .

Here W res
res , W res

in , W res
out and W res

bias are the weight matrices of the links connecting
the reservoir, input, output and bias units to the reservoir units. In the same manner,
W out

res , W out
in , W out

out and W out
bias are the weight matrices of the links connecting the reservoir,

input, output and bias units to the output. An example of such network architecture, as
implemented in the work of Reinhart and Steil (2009), is depicted in Figure 2.10.

Figure 2.10: Diagram for a reservoir computing network. Figure taken from (Reinhart and Steil,
2009).

Reservoir networks can be efficiently trained, resorting for instance to optimization of
reservoir weights based on neural intrinsic plasticity (Steil, 2007), or other methods like
evolutionary algorithms (Chatzidimitriou and Mitkas, 2013). Still, one of the problems
with reservoir computing is the fact that currently there is no sufficient knowledge on how

CHAPTER 2. SENSORIMOTOR MODEL LEARNING 41

the reservoir characteristics affect the learning performance. This stems from the fact that
it is harder to identify and set the inductive bias of the reservoir networks, at least com-
pared to other machine learning algorithms. The highly complex dynamic behaviour of a
reservoir network, which in certain conditions can approach a chaotic regime, makes these
kind of networks to have a black-box behaviour when used for function approximation.
The lack of a probabilistic foundation is also a handicap for these architectures, since
typically there is no uncertainty treatment whatsoever.

Some of the early applications of neural networks to sensorimotor learning go back
to the work of Miller (1989), where feed-forward neural networks are used to control the
position and orientation of an object in the field of view of a video camera mounted on
the end of a robot arm, in a real-time manner. Demers and Kreutz-Delgado (1992) also
use a feed-forward neural network to learn the inverse kinematics of a robotic manipula-
tor. In this work, due to the multi-valued nature of the inverse kinematics relation, an
unsupervised learning pre-processing step is first used to partition the input space into
regions where the inverse kinematics relation is invertible.

The versatility of the neural networks paradigm has made possible the development
of some approaches specifically directed at multi-valued function learning. Among them,
there is the work of Shizawa (1996), based on the regularization network of Poggio and
Girosi (1990), while Brouwer (2004) and Lee and Lee (2001) use feedforward networks
to learn multi-valued relations. These approaches, nevertheless, have very limited appli-
cations, as the number of multi-valued solutions must be known beforehand and their
validity was only tested in very low dimensional toy datasets. Tomikawa and Nakayama
(1998), on the other hand, use a recurrent neural network that, after training, can dynam-
ically be driven to one of the multi-valued solutions of the multimap, depending on the
initial value of the output of the network. However, a set of multi-valued solutions is not
available, and, like the previous works, it has only been applied to simple toy datasets.

The work of Patino, Carelli, and Kuchen (2002) present some stability proofs and
analysis for the inverse dynamics controllers of robotic manipulators that employ neural
networks that were previously trained in offline mode. Yet, perhaps most of the works
that use a neural network architecture in a robotic context try to emulate biologically
realistic neural circuit models, for instance to generate movement of a robot arm (Joshi
and Maass, 2005; Butz, Herbort, and Hoffmann, 2007; Herbort, Butz, and Pedersen,
2010; Hemion, Joublin, and Rohlfing, 2012). Such biological plausibility comes at a cost
of fairly complex network architectures, that are difficult to train and to generalize to
other sensorimotor learning problems. This happens for instance in the work of Hemion,
Joublin, and Rohlfing (2012): while their neural fields representation of the overall input-
output joint density distribution provides a simple way of getting multi-valued forward and
inverse predictions, their approach requires a number of network units that exponentially

2.2. LEARNING METHODS FOR SENSORIMOTOR MODELS 42

grows with the number of input and output dimensions. This, of course, makes its use
infeasible for online learning of even sensorimotor models with moderate dimensions.

Recurrent neural networks and reservoirs, due to their rich and complex dynamic
behaviour, have also been extensively used for robotic learning and control. Reinhart and
Steil (2009) learn an inverse kinematics internal model for the iCub robot (Tsagarakis,
Metta, et al., 2007) using reservoirs; in this work, only one inverse solution is obtained,
based on the initial condition of the network and its dynamical evolution. Later, the same
authors used combined ideas of reservoir computing and extreme learning machines in an
associative network (Reinhart and Steil, 2011), represented in Figure 2.11. This network

Figure 2.11: Diagram for the associative network of Reinhart and Steil (2011), used for simulta-
neous inverse and forward kinematics learning. In this example there is a feedback connection on
the joints values, and consequently the network is used in inverse kinematics prediction mode.
Feedback of the task space vector would result in a forward prediction. Figure taken from
(Reinhart and Steil, 2011).

can associate input and output values by iterating the output feedback-driven network
dynamics, in a similar way to reservoir networks with output feedback and the earlier
work of Tomikawa and Nakayama (1998): this allows forward and inverse kinematics
solutions to be recovered from the same network. Multiple basins of attraction for a
single input are created by extending the training data by synthesized sequences, to
promote attraction to the training data samples. However, it is a bit unclear how the
generalization of the network is controlled and what mechanisms exist to avoid overfitting;
also, although multi-valued solutions are implicitly stored in the associative network, only
one solution can be obtained at a time, again depending on the dynamical evolution of the
associative network. Recently an extension of this work was developed to deal with arms
and torso coupling in a humanoid upper body (Reinhart and Steil, 2012). Also recently,
Hartmann, Boedecker, et al. (2012) combined recurrent neural networks and Gaussian
process regression (Section 2.2.4) to learn online the inverse dynamics of a musculoskeletal

CHAPTER 2. SENSORIMOTOR MODEL LEARNING 43

robot.

2.2.4 Gaussian Process Regression and Kernel Machines

A Gaussian process (GP) can be viewed as a generalization of the Gaussian distribution,
where instead of random scalars and vectors there are random functions. More formally,
and taking the definition in Rasmussen and Williams (2006), a Gaussian process is a

collection of random variables, any finite number of which have a joint Gaussian distribu-

tion. This latter distribution is fully specified by its mean m(x) and covariance function
k(xl,xm),

m(x) = E[f(x)] , (2.19)

k(xl,xm) = V(f(xl), f(xm)) = E[(f(xl) −m(xl))(f(xm) −m(xm))] , (2.20)

where f(x) is the function to be learned. The specification of m(x) and k(xl,xm) im-
plicitly defines a probabilistic distribution over functions f . Usually m(x) is assumed
zero, and so the covariance function, defined by the kernel function k(xl,xm), is directly
responsible for the characteristics of the class of functions f generated by the Gaussian
process. To show how the choice of the kernel affects the type of functions generated
by the Gaussian process, in Figure 2.12 some random samples taken from Gaussian pro-
cesses are depicted, corresponding to the squared-exponential covariance function with
two different length-scales λ,

k(xl,xm) = exp

(

−
|xl − xm|2

2λ2

)

. (2.21)

0 2 4 6 8 10
−2

−1

0

1

2

3

4

Input

O
ut

pu
t

(a) λ = 1.

0 2 4 6 8 10
−3

−2

−1

0

1

2

Input

O
ut

pu
t

(b) λ = 1/3.

Figure 2.12: Random samples drawn from a Gaussian process using a squared-exponential
covariance function, with two different length-scales.

When used in a regression setting, a Gaussian process is used as a prior distribution

2.2. LEARNING METHODS FOR SENSORIMOTOR MODELS 44

for the function f to estimate. Training data (xi, yi), for i = 1 . . . N , is then assumed
to be drawn from this prior distribution, as well as any given query point xq for which
a prediction ŷ is desired. The training outputs and the desired prediction are jointly
Gaussian, according to the definition of a Gaussian process:




y

ŷ



 ∼ N



0,




K(X,X) k(X,xq)
k(X,xq)T k(xq,xq)







 . (2.22)

Here, y is a vector comprising the output training values yi and X is a d×N matrix
whose columns are the training points xi. The matrix K(X,X) collects the covariances
between training points, i.e., its element (i, j) is the covariance between the ith and
the jth training points. The vector k(X,xq), on the other side, gathers the covariances
between the training data and the query point.

The fundamental aspect of Gaussian process regression (GPR) is that a posterior dis-
tribution for a function value ŷ can be obtained that takes into account the observed values
y in the training set. In a Bayesian setting, this is equivalent to obtaining the distribution
for the output ŷ conditioned on the observed training output values y, i.e., p(ŷ|xq,y,X).
From a practical point of view, this effectively narrows the space of functions generated by
the Gaussian process prior, making them agree, in a probabilistic sense, with the observed
training data.

In a realistic setting it is assumed that the observations yi are noisy and that the
true function doesn’t necessarily coincide with the training output values. The effect of
addictive, i.i.d. Gaussian noise in the outputs, with variance σ2

n, can be easily incorporated
in this probabilistic model by changing the variance expression for a data point, making

V(yi) = V(f(xi), f(xi)) = k(xi,xi) + σ2
n . (2.23)

Accounting for this noise in the model in equation (2.22) is equivalent to adding
σ2
n to k(xq,xq) and a diagonal matrix σ2

nI to the Kernel matrix K(X,X). Predictive
distributions for the output corresponding to a query point xq can then be easily obtained
by conditioning the joint Gaussian distribution of equation (2.22) on the training data:
this results also in a Gaussian distribution for ŷ, with mean and variance given by

E[ŷ] = k(X,xq)T (K(X,X) + σ2
nI)−1y and (2.24)

V[ŷ] = σ2
n + k(xq,xq) − k(X,xq)T (K(X,X) + σ2

nI)−1k(X,xq) . (2.25)

In Figure 2.13 some sample functions taken from the posterior distributions are shown,
corresponding to the priors shown in Figure 2.12, together with the training data that
originated this distribution.

The kernel covariance structure and its parameters (commonly known as the hyper-

CHAPTER 2. SENSORIMOTOR MODEL LEARNING 45

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

Input

O
ut

pu
t

(a) λ = 1.

0 2 4 6 8 10
−4

−2

0

2

4

6

Input

O
ut

pu
t

(b) λ = 1/3.

Figure 2.13: Random samples drawn from the posterior Gaussian process. The black dashed line
is the mean of the posterior distribution, while the dotted lines depict a 3 standard deviations
confidence interval.

parameters) define the characteristics of the functions to be learned; they can deeply
influence the final prediction results, and can be viewed as the inductive bias of a GP
model. Still, most of the cases there does not exist enough information about the function
to learn that unequivocally defines the covariance function to use. It is common in this
situation to infer the hyperparameters from the training data, a procedure that can be seen
as training the Gaussian process model. There are various methods to train a Gaussian
process, and by far the most used ones are marginal likelihood maximization and cross-

validation (Rasmussen and Williams, 2006).

Gaussian process regression can also be understood as a Bayesian linear regression
performed in an infinite feature space, according to the model

y =
∞∑

j=1

βjΦj(x) . (2.26)

This model can be interpreted as the infinite counterpart of the basis expansion in-
troduced in Section 2.2.3 (Equation 2.16). Usually the features, represented by basis
functions Φj(x), need not to be explicitly known, since the predictive distributions de-
pend only on dot products of these infinite basis functions vectors, which in turn are
conveniently represented by the kernel functions k(xl,xm). This is commonly known as
the kernel trick, which allows to perform exact calculations on infinite feature spaces re-
sorting only to a finite number of sample points. This apparently non intuitive result
is explained in the context of reproducing kernel Hilbert spaces (RKHS), which is the
foundation for other nonparametric learning methods like smoothing splines and support

vector machines (Wahba, 1990; Girosi, Jones, and Poggio, 1995; Evgeniou, Pontil, and
Poggio, 2000).

Smoothing splines (Green and Silverman, 1994; Wahba, 1990) can be interpreted as a

2.2. LEARNING METHODS FOR SENSORIMOTOR MODELS 46

nonparametric extension of B-splines, where a knot is placed in every training point and
the complexity of the resulting fit is controlled by a penalty term in the residual sum of
squares to be minimized. Their extension to multivariate inputs is known as thin-plate

splines; however, unlike the univariate case, the computational complexity for thin-plate
splines makes the training procedure infeasible for a moderate number of training points,
unless some regularization techniques are employed (Hastie, Tibshirani, and Friedman,
2009).

Support vector regression (SVR) (Evgeniou, Pontil, and Poggio, 2000; Smola and
Schölkopf, 2004; Schölkopf and Smola, 2002) is another nonparametric function approxi-
mation method whose popularity rivals with Gaussian process regression. Like GPR, it
makes use of the kernel trick to lift the regression problem to an implicit high dimensional
feature space. Different from it, however, it lacks a probabilistic nature, resulting instead
from the minimization of a penalized error function, where the ǫ-insensitive error function,
defined by

Lǫ(e) =







0 if |e| ≤ ǫ

|e| − ǫ otherwise
,

is used instead of the usual squared error. Such error function does not penalize small
approximation errors, and the use of the L1 norm, like LASSO, does not penalize outliers
so strongly as the sum of squared residuals. As a consequence, support vector machines
(SVM) naturally induces sparse solutions, where only a subset of the training data — the
support vectors — effectively contribute to the prediction.

Gaussian process and support vector regression are currently considered state-of-the-
art function approximation methods, and there is no definite evidence in favour of one
of these machine learning algorithms with respect to approximation performance. While
SVR is more robust to the presence of outliers in the training set, its non probabilistic
nature may become a severe handicap concerning robotic sensorimotor learning, where
many times the uncertainty of the prediction is also an important quantity of interest.
Also, in general GPR seems to be more flexible: the kernel hyperparameters can be learned
via evidence maximization, and a GP prior can be easily incorporated into a hierarchical
Bayesian model.

The number of training points is an important issue in nonparametric kernel methods,
since computational considerations severely limit the allowable number of such points. To
overcome such limitations, sparse versions of GPR were devised to speed up learning, that
choose and only take into account a subset of the training data (Smola and Bartlett, 2001;
Csató and Opper, 2002; Seeger, Williams, and Lawrence, 2003; Snelson and Ghahramani,
2006; Keerthi and Chu, 2006; Candela and Rasmussen, 2005; Lázaro-Gredilla, 2010).

Real-time sensorimotor learning requires an online training scheme: this is not ad-
dressed by GPR or SVR, at least in their original form, due to their batch nature and

CHAPTER 2. SENSORIMOTOR MODEL LEARNING 47

the consequent need to maintain all training points in memory. There has been a large
number of adaptations to these algorithms that provide incremental versions of them,
e.g. (Csató and Opper, 2002; Engel, Mannor, and Meir, 2002; Ma, Theiler, and Perkins,
2003; Nguyen-Tuong and Peters, 2011a). However, their ability to process large volumes
of sensorimotor data, with high sampling rates, has not yet been properly addressed and
remains to be proven, although recently Nguyen-Tuong and Peters (2011a) presented an
efficient algorithm for management of a reduced dictionary of training data, to be conse-
quently used in kernel regression, that is shown to be adequate for real-time learning.

Another approaches to reduce the computational burden of these kernel methods take
instead a local perspective, learning a set of GPR or SVR models that are only valid
in a local region of the input space. They can be interpreted under the mixture model

paradigm, that also covers many other computational models: this topic is covered in
detail in Section 2.2.6.

There is a vast history of successful applications of kernel learning to robotics: Pelos-
sof, Miller, et al. (2004) use SVR to find optimal object grasps by a robotic hand; GPR
is applied to adaptive control by Kocijan, Murray-Smith, et al. (2004), while reinforce-
ment learning and optimal control also use GPR in Rottmann and Burgard (2009) and
Deisenroth, Rasmussen, and Peters (2009); GPR is used in conjunction with Bayesian
filtering to estimating the state of an autonomous micro-blimp (Ko and Fox, 2009); and
Nguyen-Tuong and Peters (2010) show how to integrate a priori robotic inverse dynamics
model knowledge within a GPR framework, to mention only a few examples.

Despite their current state-of-the-art approximation performance, there are neverthe-
less some issues in the adaptation of kernel methods to sensorimotor learning: besides
the aforementioned computational cost, there is no simple way of obtaining inverse pre-
dictions from a trained forward model. Also, their single-valued nature prevents their
use in learning models whose outputs may be potentially multi-modal. Nguyen-Tuong
and Peters (2012) show how to use kernel regression to control a redundant robot in its
task space: the multi-valued nature of the problem is solved using a single local model
that only considers training data in the vicinity of the query point; this, however, has the
undesirable property of constantly discarding the acquired information that describes the
input-output relation in other regions of the sensorimotor space.

2.2.5 Unsupervised Learning Approaches

Supervised learning based on training examples (xi,yi) can be converted to an unsuper-
vised density estimation problem, by means of the conditional densities obtained from the
learned joint density function over both inputs and outputs, p(z), where z = [xTyT]T .
Forward and inverse relations can be obtained from a learned joint density p(z|Z),
where Z comprises all training points zi, by taking the conditional densities p(y|x,Z) or

2.2. LEARNING METHODS FOR SENSORIMOTOR MODELS 48

p(x|z,Z) (Ghahramani, 1994).

Memory based methods, for instance, implicitly define a joint density distribution by
storing all the training points, from which forward or inverse predictions can be readily
obtained (Atkeson, Moore, and Schaal, 1997b). These methods, however, present a seri-
ous drawback: since the prediction is obtained from a weighted average of the training
samples, multi-valued solutions, coming from a multi-modal conditional distribution, are
simply merged together in a single estimate.

Sensorimotor models can be represented by a low dimensional manifold in the joint
input-output space, usually with the same dimension as the input space. Several di-
mensionality reduction techniques exist that search for reduced dimensionality, latent
representations of the unsupervised training data points zi: among them, perhaps the
simplest one is the Principal Component Analysis (PCA) (Pearson, 1901). This proce-
dure seeks another coordinate system to represent the training data, where the input
variables become decorrelated, and is based on the SVD decomposition of the (centred)
matrix Z. It can be shown that the new orthogonal variables, called principal compo-
nents, are organized in such a way that the projection of the training data onto the first
principal component has the highest variance among all linear combinations of the orig-
inal variables, that the second principal component has the highest variance among all
linear combinations of variables orthogonal to the first principal component, and so on
(Murphy, 2012).

In the new coordinate system, selecting only the first q variables (corresponding to
the first q principal components) and discarding the remaining variables is equivalent to
finding an affine hyperplane of rank q that best describes the data, i.e., for which the
sum of squared errors between the training data and its projection onto the hyperplane
is minimized. This operation can be seen as discarding the directions of the joint input-
output space that have the least variability of the training data.

The PCA for a given training data is easy to obtain and can be calculated either
incrementally (Warmuth and Kuzmin, 2008) or in an iterative fashion (Roweis, 1998);
forward and inverse conditional predictions can also be easily obtained from the PCA
model: these are two highly desirable properties for sensorimotor learning. However,
as can be immediately noted, the linear approximation to the training data is usually
a overly optimistic assumption for most of the models to be learned: in these cases
nonlinear dimensionality reduction algorithms are probably of much better use. There is
a vast literature on this subject, and among the most well known methods there can be
found self-organizing maps (SOM) (Kohonen, 2001), principal curves and surfaces (Hastie
and Stuetzle, 1989), multidimensional scaling (Torgerson, 1958), locally-linear embedding

(Roweis and Saul, 2000) and the Isomap algorithm (Tenenbaum, Silva, and Langford,
2000), among many others. However, most of these algorithms are very computational
demanding, and many of them are batch algorithms that require the presence of all

CHAPTER 2. SENSORIMOTOR MODEL LEARNING 49

training points. Some incremental variants of these algorithms exist (Law and Jain, 2006;
Jia, Yin, et al., 2009; Li, Jiang, et al., 2011), but the lack of a probabilistic model for
many of these nonlinear dimensionality reduction techniques prevents an easy calculation
of conditional densities, needed for prediction in forward or inverse models: this somewhat
discourages their use for model learning in a demanding robotics learning environment.

Any density estimation scheme that operates in the joint input-output space can in
principle be used to provide forward and inverse conditional distributions: one recent
example is for instance the work of Bocsi, Nguyen-Tuong, et al. (2011), that uses joint
kernel support estimation (Lampert and Blaschko, 2009) to model the joint probability
distribution, and uses this model to learn the inverse kinematics relation of a redundant
robot. Training of this model resorts to One-Class SVM (Schölkopf, Platt, et al., 2001):
this, however, is a computationally expensive procedure that must be performed offline.

A different approach for density estimation takes a local perspective, representing a
general probability density in the input-output space as a mixture of local and simpler
distributions. The ubiquitous mixture of Gaussians has the form

p(z) =
M∑

k=1

πkpk(z|µk,Σk) , (2.27)

where each distribution pk() is normally distributed with mean µk and covariance Σk,
and where πk is the a priori probability that a sample yi is generated from the kth

Gaussian distribution (McLachlan and Peel, 2000). Of interest are also the mixture of

factor analysers (Ghahramani and Hinton, 1996) and the mixture of PCA’s (Tipping and
Bishop, 1999); these methods locally perform dimensionality reduction, introducing some
structure in the covariance matrices of the underlying Gaussian densities, and can be
pictured as mixtures of “flattened” Gaussians.

Forward and inverse conditional distributions can be directly obtained from the trained
mixture models, due to their probabilistic nature. During training, the main difficulty in
estimating the mixture parameters is the presence of a latent, unobservable variable wij
that signals which mixture component j was responsible for generating training sample zi

— if these latter variables were known the estimation of the mixture parameters would be
trivial. Formulating the problem as a generative model with unobserved latent variables
naturally enters the domain of the expectation-maximization (EM) algorithm (Dempster,
Laird, and Rubin, 1977), which in fact is one of the most popular approaches for training
these mixtures. The EM algorithm naturally can be adapted for online learning schemes
(Neal and Hinton, 1999; Capp and Moulines, 2009) — this is a highly desirable property
for robotic applications.

Another problem that arises in these kind of mixture models is the choice of the num-
ber of components that constitute the mixture. Several extensions to the mixture model
exist that are capable of automatically selecting an appropriate number of components:

2.2. LEARNING METHODS FOR SENSORIMOTOR MODELS 50

the infinite mixture concept presented by Rasmussen (2000), for instance, is a Bayesian
method that assigns a Dirichlet process prior on the mixing proportions of the mixture,
responsible for the automatic generation of the correct number of components. This,
however, usually requires an offline, computational expensive training based on Markov
chain Monte Carlo sampling methods, not suitable for real-time learning, although some
variational techniques can be used to accelerate the training process. Other extensions
rely on the EM algorithm, either using a greedy approach to grow the mixture to an ap-
propriate number of components (Vlassis and Likas, 2002; Verbeek, Vlassis, and Kröse,
2003) or, using the opposite idea, starting with a large number of components and au-
tomatically shrinking the number of components of the mixture to a reasonable value.
This can be achieved, among other techniques, by considering a Bayesian approach and
carefully chosen priors (Figueiredo and Jain, 2002) or through reducing the uncertainty
of missing data, using the mutual information between the missing and incomplete data
(Li, Zhang, and Jiang, 2005).

The works of Calinon, Guenter, and Billard (2007) and Lopes and Damas (2007) are
two examples of how the mixture of Gaussians framework can be applied to sensorimotor
learning. However, note that unsupervised learning using mixture of Gaussians is a more
difficult problem than its supervised counterpart, usually conducting to worse results, as
it ignores that joint data, apart from noise corruption, lies in a lower dimensional mani-
fold; this phenomenon can be observed in Figure 2.14. Other approaches, like the mixture

0 2 4 6 8 10 12
−1

0

1

2

3

4

5

Input

O
ut

pu
t

(a)

0 2 4 6 8 10 12
−1

0

1

2

3

4

5

Input

O
ut

pu
t

(b)

Figure 2.14: Gaussian mixture model for supervised learning: (a) a mixture of 12 Gaussian
models in the input-output space is used to successfully approximate training data coming from
a multi-valued relation; (b) a different run of the EM algorithm for the mixture, applied to the
same training data, results in a different, sub-optimal solution, where the predicted conditional
output variance is much higher than the true data output noise in some regions of the input-
space.

of factor analysers, alleviate this matter by assuming data to be generated from a lower
dimensional space, but training this model requires the estimation of the projection of

CHAPTER 2. SENSORIMOTOR MODEL LEARNING 51

training data into this space. This additional latent data, known as the factors, represent
the coordinates of a data point in the lower dimensional space, and its estimation con-
siderably complicates the training phase, as the EM algorithm that is traditionally used
to train this mixture becomes prone to a larger number of local, sub-optimal likelihood
maxima. This is perhaps the main drawback of these unsupervised approaches, when
applied to multi-valued supervised learning and prediction: even if they work reasonably
well in low dimensional problems, as the input dimension grows their performance will
likely start to drop, resulting in convergence to sub-optimal solutions that do not take
the problem structure into account.

2.2.6 Mixtures of Experts

The divide and conquer principle can be seen as the foundation of a mixture model, where
a potentially hard to approximate input-output relation is divided into a set of simpler
learning problems. Mixture models for unsupervised learning were already addressed in
Section 2.2.5; in a supervised learning context, each model of the mixture approximates
the conditional output distribution in a particular region of the input space, according to

p(y|x,Θ) =
M∑

j=1

p(y|x, wj,Θ)p(wj|x,Θ) , (2.28)

where wj is a latent variable that indicates that the jth mixture component is responsible
for the generation of the observed output y and Θ is the set of parameters that define the
mixture, to be learned from the data. This probabilistic model is known as the mixture of

experts model (MOE), where p(y|x, wj,Θ) represents the conditional output distribution
provided by expert j and p(wj|x,Θ) defines, for every input vector x, the probability that
expert j is responsible for generating an output y. This is known as the gate function,
that partitions the input space in a set of distinct regions, implicitly defining the relative
strength of the experts in a particular input location.

Mixtures of experts were originally introduced by (Jacobs, Jordan, et al., 1991): like
CART (Breiman, Friedman, et al., 1984) and MARS (Friedman, 1991), this statistical
model can be regarded as a method that performs a partitioning of the input space,
where soft splits, defined by the gate p(wj|x,Θ), are used instead of the hard decision
boundaries typical of CART and MARS. The mixture of experts model was also extended
into a hierarchical representation, where the final predictions of distinct mixture of experts
models are fed into a top level gate, much in the style of a multilayer neural network
(Jordan and Jacobs, 1994).

In the original MOE formulation the gate function was defined by a softmax function,
according to

p(wj|x,Θ) =
exp(βj(x,Θ)

∑M
k=1 exp(βk(x,Θ)

, (2.29)

2.2. LEARNING METHODS FOR SENSORIMOTOR MODELS 52

where the activation function βj(x,Θ) was linear in x and thus split the input space
along an hyperplane of arbitrary orientation. An alternative model was later devised by
Xu, Jordan, and Hinton (1995), where the gate responsibilities p(wj|x,Θ) were defined
according to Bayes’ theorem,

p(wj|x,Θ) =
p(x|wj,Θ)p(wj|Θ)

∑M
k=1 p(x|mk,Θ)p(mk|Θ)

. (2.30)

Using this gate model with density distributions p(x|wj,Θ) taken from the exponential
family, as proposed in the work of Xu, Jordan, and Hinton (1995), has two major advan-
tages: in one hand it makes possible the training of the mixture using the Expectation-
Maximization procedure; on the other hand it restricts the influence of the experts to
confined regions of the input space — for this reason, this alternative model is also known
as the localized MOE.

One of the greatest strengths of the mixture of experts model is its inherent versatility,
since a large variety of learning architectures can be chosen for the experts:

Linear regression experts: In this architecture each expert models the input-output
relation by a linear function (Section 2.2.1). This is one of the earliest models
found in the literature (Jordan and Jacobs, 1994; Xu, Jordan, and Hinton, 1995;
Waterhouse, Mackay, and Robinson, 1996), and its simple formulation typically
allows a fast training procedure, like the online version presented by Sato and Ishii
(2000). While the mixture of linear experts can be initially though as a piecewise
linear approximation of the input-output relation, the fact that soft splits of the input
space are used can effectively result in a highly nonlinear conditional prediction. The
work of Bishop and Svensén (2002) and Ueda and Ghahramani (2002) extends this
model by taking a Bayesian approach, while Bo, Sminchisescu, et al. (2008) present
an efficient training procedure for a Bayesian mixture of linear experts.

Locally weighted projection regression (LWPR) (Vijayakumar, D’Souza, and Schaal,
2005) and XCSF (Wilson, 2002) are two popular non probabilistic algorithms that
share many characteristics with the mixture of linear experts concept: while sharing
the divide-and-conquer approach of the MOE architectures, using linear models to
represent the input-output relation in localized regions of the input space, they
use training algorithms different from the standard probabilistic MOE approaches.
LWPR has been widely used for online, real-time learning of robotic tasks, and
has its origins in the local linear regression model (Atkeson, Moore, and Schaal,
1997a; Schaal, Atkeson, and Vijayakumar, 2002), where the need to handle large
volumes of sensorimotor data has led to a careful management of available resources,
by means of a representation of training points by locally linear models sufficient
statistics. This algorithm uses a gradient descent on the prediction error, based on

CHAPTER 2. SENSORIMOTOR MODEL LEARNING 53

a stochastic leave-one-out cross-validation algorithm, to adapt the distance metrics
of the receptive fields that partition the input space; within each receptive field,
a linear relation from input to output is obtained via an incremental partial least
squares algorithm that efficiently deals with redundant and high dimensional input
spaces. XCSF, on the other hand, updates the input distance metric of each model
resorting to a steady state genetic algorithm, while each linear model is fitted using
a recursive least squares algorithm.

Neural networks experts: Perhaps the most significant use of a neural network to
model the conditional prediction of each expert is given by the mixture density
network (MDN) (Bishop, 1994; Bishop, 2006). Contrary to the majority of MOE
approaches that seek to partition the input space into smaller regions, this MDN
was developed with the specific purpose of providing generic conditional output
probability distributions, with a special focus on multi-valued models. Each expert
of the mixture, modelled as a neural network, is supposed to approximate a particular
branch of the multi-valued function to be learned, thus partitioning the output space
for each input point.

Smoothing kernel experts: The recent work of Huang, Li, and Wang (2013) uses a
mixture of smoothing kernel experts to specifically model multi-valued relations,
much in the same way as the mixture density network described above. An EM
algorithm is derived in this paper, together with some corresponding asymptotic
properties. Selection of the kernel bandwidth, however, is performed offline, as well
as the main EM iterations. Furthermore, application of the proposed algorithm is
limited to the univariate input, univariate output situation.

Gaussian process experts: The need to overcome the inversion of large covariance ma-
trices, corresponding to the full training dataset of the original Gaussian process
model, and the handling of nonstationary covariance and noise are perhaps the
main motivations for the use of Gaussian processes in the MOE architecture. As-
signing different GP experts to smaller regions of the input space effectively reduces
the effective number of training points of each expert and makes the required ma-
trix inversions computationally feasible. This also permits the use of independent
hyperparameters for each GP, thus allowing different input length-scales and output
noises in different regions of the input space. The need for different kernel functions
in distinct regions of the input space is also the main motivation for the use of SVM
experts in the MOE model (Cao, 2003; Lima, Coelho, and Von Zuben, 2007).

Even if the use of mixtures of GP experts overcomes the problems described above,
heavy computational resources are still needed to train such mixture, which is typ-
ically performed offline, as in the works of Tresp (2001), Rasmussen and Ghahra-
mani (2002) and Meeds and Osindero (2006). Recently there has been an effort to

2.2. LEARNING METHODS FOR SENSORIMOTOR MODELS 54

develop more efficient training techniques for the mixture of GP experts (Nguyen-
Tuong, Seeger, and Peters, 2009a; Yuan and Neubauer, 2009; Yang and Ma, 2011);
nonetheless, computational complexity is usually a delicate issue when mixtures of
Gaussian processes are considered.

As described above, mixtures of experts can be used to partition both the input and
the output space. Input space partitioning can lead to simpler and more computational
efficient learning solutions; on the other hand, allowing different experts to share the
same input space regions, while allocated to different output space regions, naturally
enables learning of multi-valued functions as those typically arising in inverse models. This
situation is depicted in Figure 2.15, where three experts are used to model a multi-valued
relation. Among many other supervised learning algorithms, this easy handling of multi-

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

original signal

(a)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

y

original signal

i = 1

i = 2

i = 3

(b)

−0 4 −02 0 0 2 0 4 0 6 0 8 1 1 2 1 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

i =1

i =2

i =3

data

(c)

Figure 2.15: Modelling of a multi-valued relation by a mixture of three experts: (a) training
data, coming from a multi-valued relation (note the region around x = 0.5); (b) the linear input-
output relations for each of the experts; (c) Gate probabilities assigned to each of the experts,
as a function of x. Figures taken from (Yuksel, Wilson, and Gader, 2012).

valued functions is perhaps a distinctive property of the mixture of experts architecture.
This characteristic has been explicitly addressed in several works (Bishop, 1994; Bishop
and Svensén, 2002; Kanaujia and Metaxas, 2006; Sminchisescu, Kanaujia, and Metaxas,
2007; Qin and Carreira-Perpinan, 2008); other works have reported this property of MOE,
using datasets where output multi-modality occurs (Rasmussen and Ghahramani, 2002;
Meeds and Osindero, 2006; Yuan and Neubauer, 2009).

Bayesian schemes are known to provide better regularization against overfitting, as
opposed to traditional maximum likelihood inference (Bishop, 2006), and so it comes
as no surprise that several Bayesian variations of the MOE architecture, for different
types of gates and experts, have been proposed in the last years, using either maxi-
mum a posteriori procedures based on the EM algorithm (Kanaujia and Metaxas, 2006;
Sminchisescu, Kanaujia, and Metaxas, 2007; Bo, Sminchisescu, et al., 2008), variational
methods (Waterhouse, Mackay, and Robinson, 1996; Bishop and Svensén, 2002; Ueda
and Ghahramani, 2002) or Markov chain Monte Carlo (MCMC) techniques like Gibbs
sampling (Rasmussen and Ghahramani, 2002; Meeds and Osindero, 2006). Many of these

CHAPTER 2. SENSORIMOTOR MODEL LEARNING 55

methods were also used to automatically find an appropriate number of experts for the
mixture or the model structure in a hierarchical approach, through maximization of the
marginal likelihood (Ueda and Ghahramani, 2002; Bishop and Svensén, 2002), although
requiring significant computations. The use of a Dirichlet process model for the gate in
the works of Rasmussen and Ghahramani (2002) and Meeds and Osindero (2006) intro-
duces the infinite mixture concept, where the number of experts is not limited a priori

and is inferred from the training data. Training, however, resorts to a computationally
expensive MCMC algorithm, which can hardly be used in an online setting. Other ap-
proaches adopt carefully chosen priors to induce sparsity in the mixture (Kanaujia and
Metaxas, 2006), much in the style of the work of Figueiredo and Jain (2002). In general,
all these model selection techniques are similar to the ones described in Section 2.2.5, and
thus non Bayesian strategies based on growing the mixture of experts (Saito and Nakano,
1996; Fritsch, Finke, and Waibel, 1997), pruning it (Jacobs, Peng, and Tanner, 1997) or
simultaneously growing and pruning the mixture (Waterhouse and Robinson, 1995) have
also been devised.

Mixtures of experts have been successfully applied to sensorimotor learning problems:
Lima, Coelho, and Von Zuben (2007), for instance, use a mixture of SVM experts to learn
nonlinear system dynamics; a mixture of Gaussian processes is used to learn online the
inverse dynamics model of a robotic arm (Nguyen-Tuong, Seeger, and Peters, 2009b); a
MDN is trained in the work of Qin and Carreira-Perpinan (2008) to learn the inverse
kinematics of a PUMA arm, and the multiple solutions provided by the network are
used to plan feasible trajectories in the joint space. One to many relations are also
learned by Grollman and Jenkins (2010), where an infinite mixture of sparse Gaussian
processes is used to approximate a policy in a learning from demonstration context, and
Bo, Sminchisescu, et al. (2008) use the multi-valued learning capability of the mixture of
experts architecture to retrieve multiple 3D reconstruction hypothesis from 2D images.

2.3 Discussion

There is currently no out-of-the-box learning solution that can tackle all the peculiarities
of robotics sensorimotor learning, and every learning algorithm presented here shows some
weaknesses with respect to some of the issues that arise in a demanding robotic context.
Nonparametric, Bayesian methods in principle provide an elegant way to learn arbitrary
functions in high dimensional spaces, showing an extremely good performance and having
the ability to automatically choose the model complexity in a principled way. However,
most of the times this comes at a painful computational cost, completely putting aside
the possibility of learning online while the robot tries to execute some desired tasks.

Online learning, on the other hand, requires incremental algorithms, since, with small
sample times, the large volume of training data that is collected by a learning algorithm

2.3. DISCUSSION 56

cannot be realistically kept in memory and fully used for inference and prediction. This
loss of information, however, prevents an online algorithm from getting the full picture
of the training data, and as a consequence makes it harder to produce more informed
decisions regarding the choice of the model complexity.

Local learning schemes present some advantages: they are less prone to the curse of
dimensionality, as they construct their models in the input-output regions covered by the
training data, and are not affected by the destructive interference phenomenon that may
occur when a global approximation method is trained intensively in a particular region
of the input-output space. Locality, however, means that a partitioning of the space is
required: this again makes the choice of model complexity a harder problem.

Most classes of learning algorithms assume a single-valued model: when confronted
with training data coming from a multi-valued model they usually generate a single predic-
tion that is close to the average of the possible true solutions. This will typically produce
inaccurate predictions, as the space of solutions for a multi-valued problem is usually not
convex: the average of solutions is usually not part of the solution space. Having the
ability to learn multi-valued models definitely enhance the representation capability for
the learned model, but on the other hand it makes the learning problem significantly more
difficult, introducing some conceptual issues that do not arise in single-valued regression.

Finally, most of the discussed learning algorithms do not have the mechanisms to
provide inverse predictions, i.e., given an output query yq they cannot generate an esti-
mate or probability distribution for the corresponding input vector x. This is in part a
consequence of the multi-modality that generally occurs in inverse mappings. Learning
methods that can provide simultaneous forward and inverse predictions from their inter-
nal models have significant advantages over competing algorithms, as they can estimate
both the forward and inverse model of the sensorimotor map being learned. Bearing all
these considerations in mind, the next chapter will introduce a learning algorithm, spe-
cially suited for robotic applications, that tries to address all the issues raised during this
exposition.

Chapter 3

The Infinite Mixture of Linear

Experts

This chapter describes the learning algorithm proposed in this dissertation: the previous
chapter outlined some specific challenges arising when learning generic sensorimotor maps,
and the infinite mixture of linear experts model (IMLE) here presented is an attempt to
provide a probabilistic model that can deal with the aforementioned issues.

In particular, the main topic of this chapter is generic nonlinear regression from R
d to

R
D, where d and D are respectively the input and output dimensions of the sensorimotor

map to be learned. Online training of the internal model representing this map is a
fundamental requisite, as a real-time adaptation mechanism is sought that can be run
during the interaction of a robot with its surroundings. Also, the learning model should
be flexible enough to accommodate very generic input-output relations, and should be able
to provide forward and inverse predictions from the same learned internal model that can
be readily exploited for sensorimotor control: as discussed before, this means that the
prediction mechanism must be able to deal with multi-valued input-output relations.

The mixture of experts architecture described in the previous chapter has some ap-
pealing properties that justify its use for the learning model that will be introduced in
this chapter: local experts, responsible only for describing the input-output relation in a
particular region of this space, are less prone to dimensionality issues, and the fact that
different experts can describe different relations in the same region of the input space make
them suited for multi-valued function learning. Additionally, assigning linear models to
describe the input-output relation of each expert may potentially lead to a fast training
procedure, with the additional benefit that this relation can be easily inverted, for each
expert, in order to build an inverse prediction scheme.

This chapter first introduces, in section 3.1, the infinite mixture of linear experts
probabilistic model. It then follows, in section 3.2, with the description of a generalized
expectation-maximization algorithm (Dempster, Laird, and Rubin, 1977) to train this

57

3.1. PROBABILISTIC MODEL 58

mixture: in particular, an online, incremental training scheme is suggested, and special
attention is given to the process of enlarging the number of active components of the
mixture.

Given the IMLE model learned so far, providing forward and inverse predictions based
on the state of this model is a sensitive matter, specially when data comes from a multi-
valued relation: obtaining predictions using the current state of the mixture model, as
well as corresponding uncertainty estimates, is covered in section 3.3; this same section
also covers the procedure required to produce inverse predictions from the same learned
model. Also, it is described in this section how to obtain the Jacobian of the relation, i.e.,
the matrix of all first-order partial derivatives of the IMLE forward map: this Jacobian is
essential for closed-loop control using the IMLE model, as will be considered in chapter 5.

Another quantity of interest that can be obtained from this model is the input space
direction along which a new training point should be sampled in order to reduce the
overall uncertainty the most. This calculations fall under a research topic known as active

learning, where, in a broad sense, it is desired to obtain an efficient sampling scheme that
results in a good quality estimated input-output map, using the least number of training
examples. This is examined in section 3.4.

3.1 Probabilistic Model

The infinite mixture of linear experts assumes the following generative model for a sample
point (xi,yi), where xi ∈ R

d is the input vector and yi ∈ R
D is the corresponding output

response:

yi|xi, wij; Θ ∼ N (µj + Λj(xi − νj),Ψj) , (3.1a)

xi|wij; Θ ∼ N (νj ,Σj) , (3.1b)

p(wij ; Θ) =
mj

M
, with M =

∞∑

k=1

mk . (3.1c)

Here wij denotes a latent or hidden indicator variable that equals 1 if data point i
was generated by linear model j and 0 otherwise, with 1 ≤ j ≤ ∞ and

∑

j wij = 1; these
variables can be gathered, for each i, in an infinite binary vector wi whose jth component
is equal to wij. For notational convenience, sometimes the shorthand notation wij will be
used to denote the event wij = 1, as in above equations. Also, since p(wij; Θ) does not
depend on a particular point i, sometimes the variable wj will be used to denote the event
that linear model j generates an unspecified sample point. The parameter mj indicates
if expert j is activated, effectively contributing to the mixture: it is equal to 1 if expert j
is active and 0 otherwise. Each of the latent indicator variables wij has consequently an
associated probability of 1/M if linear model j contributes to the mixture, where M is the

CHAPTER 3. THE INFINITE MIXTURE OF LINEAR EXPERTS 59

total number of active experts. Perhaps a more common approach to this kind of mixture
models is to assign different a priori probabilities for the mixture components, by making
p(wij; Θ) = πj , and then learn the values for the parameters πj from the training data;
however, this uniform probability distribution on the latent variables is a more natural
approach to the online regression problem, since fully learned mixture coefficients depend
heavily on the input training data distribution: this can vary greatly in an online data
acquisition setting. Note also that, although using a probabilistic mixture representation,
the ultimate goal of this model is to describe a mapping from inputs to outputs: in this
context, assigning the same importance to different parts of this mapping seems to make
more sense.

Given wij, input xi follows a Normal distribution with parameters νj and Σj , while
output yi follows a linear relation from xi, with mean µj, linear map matrix Λj and
diagonal covariance matrix Ψj , corresponding to uncorrelated Gaussian noise in y, as
depicted in Figure 3.1, for a single expert. This model, apart the uniform distribution for
wij, is similar to the one presented by Xu, Jordan, and Hinton (1995) and Sato and Ishii
(2000), where each expert j models a linear relation from input x to output y in some
region of the input domain, defined by input centre νj and covariance Σj , this way softly
partitioning the input space among the experts.

νj

µj

Ψj

Σj

Λj

Figure 3.1: A schematic representation, for univariate input and output data, of the parameters
of an individual expert in the IMLE model.

Differently from these previous works, however, the following priors for the parameters

3.1. PROBABILISTIC MODEL 60

of the active experts in the mixture, i.e., for which mj = 1, are defined:

νj |Σj ∼ N (ν0j ,
1
nν

Σj) , (3.2a)

Σj |Σ̄ ∼ W−1(nΣΣ̄, nΣ) , (3.2b)

Λj(k)|Ψj(k) ∼ N

(

Λ0 = 0,
Ψj(k)

nΛ

I

)

, (3.2c)

µj|Ψj ∼ N

(

µ0j,
1

nµ
Ψj

)

, (3.2d)

Ψj(k)|Ψ̄ ∼ G−1
(
nΨ

2
,
nΨ

2
ψk

)

, (3.2e)

as well as the following Bernoulli prior for mj:

mj ∼ Bern

(

1

j

)

. (3.2f)

The prior on the activations mj imposes an increasing penalty on the number of linear
experts the learning phase tries to allocate: this will be analysed with more detail in Sec-
tion 3.2.2. As for the remaining priors, W−1 and G−1 denote multivariate Inverse-Wishart
and univariate Inverse-Gamma distributions, respectively. Ψj(k) is the kth element of the
diagonal of Ψj, while Λj(k) corresponds to the kth row of Λj. Constants nν , nΣ, nµ,
nΛ and nΨ determine the “strength” of the respective priors, ν0j , Σ̄, µ0j, Λ0 and Ψ̄,
expressed as an equivalent number of “fake” data points. These distributions are chosen
for convenience, since they are conjugate priors for the observed data distribution. The
purpose of the common prior distribution for covariance matrices Σj , governed by diag-
onal matrix Σ̄, is threefold: it introduces some regularization, so that Σj has always an
inverse; it ensures that the experts input regions shapes do not differ too much from each
other, and finally, it prevents non-neighbouring experts from competing for the same data
in the initial phase of the learning process of each expert — a serious problem occurring
in mixtures of experts models, referred for instance in (Schaal and Atkeson, 1998; Vi-
jayakumar, D’Souza, and Schaal, 2005), thus enforcing the principle of localized learning.
The Normal prior on νj , on the other hand, controls the degree of “mobility” of this
parameter: nν = 0 makes it dependent solely on the training data, while nν = ∞ leads
to a fixed centre, as typically occurs in radial basis networks or in the LWPR algorithm
introduced in Chapter 2; the prior on µj has the same purpose of controlling the influence
of training data on this parameter. Finally, the Inverse-Gamma prior on Ψj defines a kind
of “average” noise that is shared by all experts, while the prior Λ0 = 0 for the rows of
Λj performs a coefficient shrinkage similar to ridge regression; its main purpose, however,
is to impose a regularization mechanism, in order to make the matrix inversion required
when estimating this parameter always full rank. Such prior introduces some bias in the

CHAPTER 3. THE INFINITE MIXTURE OF LINEAR EXPERTS 61

regression coefficients, and consequently nΛ should be kept to a low value in order to make
such undesired effect negligible.

Diagonal matrices Σ̄ and Ψ̄, with diagonal elements σk and ψk respectively, represent
the prior knowledge for the common structure of Σj and Ψj: these values strongly depend
on the specific map to learn, particularly its characteristic input length-scale and the
output noise. It is highly desirable that such hyperparameters are learned from training
data, and so some vague hyper-priors are defined for these, here represented by scaled
inverse chi-squared distributions, to avoid relying on such problem specific information:

σk ∼ Scale-Inv-χ2(nσ, σ0k) , (3.3a)

ψk ∼ Scale-Inv-χ2(nψ, ψ0k) , (3.3b)

with σ0k and ψ0k standing respectively for the kth diagonal elements of Σ0 and Ψ0, di-
agonal matrices representing the initial guesses for Σ̄ and Ψ̄. Free parameters nσ and
nψ control these hyper-priors strength: setting nσ = 0 and nψ = 0 results in the unin-
formative priors p(σk) ∝ 1/σk and p(ψk) ∝ 1/ψk, respectively. The (infinite) parameter
vector Θ that defines this mixture, to be learned from the data, is consequently given by
Θ =

{

Σ̄, Ψ̄
}

∪ {νj ,Σj ,µj,Λj ,Ψj, mj}(1≤j≤∞), and the graphical model corresponding to
the above described probabilistic model is shown in Figure 3.2.

nσ

Σ0

nν

nΣ

ν0j µ0j nµ

nΨ

nΛ

nψ

Ψ0Σ̄

νj

Σj

mj

µj

Ψj

Λj

Ψ̄

wij

x
j
i y

j
i

j = 1 . . .∞

i = 1 . . .N j

Figure 3.2: Graphical model representing the infinite mixture of linear experts. Lightly shaded
rectangular boxes represent fixed parameters. Observed data points are grouped according to
their label: x

j
i and y

j
i represent the ith data point generated by expert j, while N j is the total

number of training points generated by such expert.

3.2. TRAINING 62

3.2 Training

Given X, a collection of input training data {x1,x2, · · · ,xN} and Y , the corresponding
output {y1,y2, · · · ,yN}, the classical Bayesian inference approach to the above model
first builds the posterior parameter vector distribution given the observed training data,
p(Θ|X,Y), and then uses it to obtain p(y|xq,X,Y) and p(x|yq,X,Y), respectively
the forward and inverse posterior predictive distributions, by marginalization over the
parameter vector Θ and the latent variables W = {w1,w2, · · · ,wN}, i.e.,

p(y|xq,X,Y) =
∑

∫

p(y|xq,Θ) p(Θ,W |X,Y) dΘ

and

p(x|yq,X,Y) =
∑

∫

p(x|yq,Θ) p(Θ,W |X,Y) dΘ

=
∑

∫
p(yq|x,Θ)p(x|Θ)

p(yq|Θ)
p(Θ,W |X,Y) dΘ ,

where the sum is over all possible values of W . These expressions are however analytically
intractable: Markov chain Monte Carlo (MCMC) methods (Andrieu, Freitas, et al., 2003)
or variational techniques (Beal, 2003) are two popular training methods for Bayesian
models that can provide approximations to the above integrals. Still, these methods, and
MCMC in particular, are computationally expensive, and it is difficult to adapt them to
an online, incremental learning scheme. Moreover, particular attention must be given to
the parameters mj that define the number of components that compose the mixture. A
standard technique consists in defining a Dirichlet prior for the mixture proportions that
can automatically find the most appropriate number of components for the mixture, but
training such model has high computational demands that are not compatible with online
and incremental learning: this will be discussed in more detail in Section 3.2.2.

Instead of following these Bayesian procedures to train the proposed mixture model,
in this dissertation an alternative approach is pursued, based on the EM algorithm of
Dempster, Laird, and Rubin (1977) to find a maximum a posteriori (MAP) estimate for
the unknown parameter vector Θ, due to its easy adaptation to online learning schemes.

The log-likelihood of parameter vector Θ, given the complete training data {X,Y ,W },
is given by

L(Θ; X,Y ,W) = log

[

p(Θ)
N∏

i=1

p(yi|xi,wi; Θ)p(xi|wi; Θ)p(wi; Θ)

]

,

where p(Θ) encompasses the priors defined in (3.2) and (3.3). The probabilities appearing

CHAPTER 3. THE INFINITE MIXTURE OF LINEAR EXPERTS 63

in the above equation are given by

p(yi|xi,wi; Θ) =
∞∏

j=1

p(yi|xi, wij; Θ)wij ,

p(xi|wi; Θ) =
∞∏

j=1

p(xi|wij; Θ)wij and

p(wi; Θ) =
∞∏

j=1

p(wij; Θ)wij .

Maximization of this log-likelihood with respect to Θ is not feasible due to the presence
of the latent variables W . However, application of the EM algorithm to this log-likelihood
produces a sequence of estimates Θ̂t that are guaranteed to converge to a local maxima
of the log-likelihood of the observed data {X,Y }. This algorithm alternates between
the expectation step (E-Step), which calculates the Q-function Q(Θ, Θ̂t), the conditional
expectation of L(Θ; Y ,X,W) with respect to the latent variables W , for the current
value of Θ̂t, and the maximization step (M-Step), that finds the new value of Θ̂t+1 given
the previous expectation.

3.2.1 E-Step

The log-likelihood, given by

L(Θ; X,Y ,W) = log p(Θ)+
N∑

i=1

∞∑

j=1

wij [log p(yi|xi, wij) + log p(xi|wij; Θ) + log p(wij; Θ)] ,

(3.4)
is clearly linear with respect to the latent variables wij, and hence it suffices, to obtain
Q(Θ, Θ̂t), to calculate htij = E[wij|Y ,X; Θ̂t], the estimate of the posterior probability
that data point i was effectively generated by expert j, also called the responsibility that
expert j has generated data point i. Since wij only depends on training point (xi,yi) this
results, using Bayes’ theorem,

htij ≡ E[wij|Y ,X; Θ̂t]

= E[wij |yi,xi; Θ̂t]

= p(wij |yi,xi; Θ̂t)

=
p(yi|xi, wij; Θ̂t)p(xi|wij; Θ̂t) m̂t

j
∑∞
k=1 p(yi|xi, wik; Θ̂t)p(xi|wik; Θ̂t) m̂t

k

.

3.2. TRAINING 64

As a result, the Q-function becomes

Q(Θ, Θ̂t) ≡ EW [L(Θ; Y ,X,W); Θ̂t]

= log p(Θ) +
N∑

i=1

∞∑

j=1

htij [log p(yi|xi, wij; Θ) + log p(xi|wij; Θ) + log p(wij; Θ)] ,

(3.5)

where the responsibilities htij depend on the current estimate Θ̂t.

The complete data log-likelihood in (3.4) belongs to the exponential family, and thus
the Q-function depends only on training data through St, the expected value of the
sufficient statistics vector, given the observed data and the current value of the parameter
vector Θ̂t. For the mixture model (3.1-3.2), it comprises the terms Sthj, St

hxj, St
hyj, St

hxxj,
St
hyyj and St

hyxj , for 1 ≤ j ≤ ∞, defined as follows:

Sthj =
∑N
i=1 s

t
hj(i) sthj(i) = htij ,

St
hxj =

∑N
i=1 sthxj(i) sthxj(i) = htijxi ,

St
hyj =

∑N
i=1 sthyj(i) sthyj(i) = htijyi ,

St
hxxj =

∑N
i=1 sthxxj(i) sthxxj(i) = htijxix

T
i ,

St
hyxj =

∑N
i=1 sthyxj(i) sthyxj(i) = htijyix

T
i ,

St
hyyj =

∑N
i=1 sthyyj(i) sthyyj(i) = htijyiy

T
i .

(3.6)

The quantity sti = {sthj(i), s
t
hxj(i), s

t
hyj(i), s

t
hxxj(i), s

t
hyxj(i), s

t
hyyj(i)}(1≤j≤∞) is also de-

fined for convenience, so that St =
∑N
i=1 sti.

Performing the above E-Step requires the availability of all observed data, which of
course is not admissible during online training. Neal and Hinton (1999) present a view of
the standard EM algorithm that allows for partial E-Steps to be implemented, resulting
in an incremental version of EM. It consists, at iteration t, in performing an update of the
sufficient statistics using solely a particular data point i, according to St = St−1+sti−st−1

i ,
instead of the whole dataset as in equations (3.6). For a continuous stream of data,
each point is visited and used only once, and thus its index i can be associated with
corresponding iteration number t. The partial E-Step can be written in this case as

St = St−1 + st , (3.7)

where st ≡ sti for data point i = t. A more general result, provided recently by Capp and
Moulines (2009), defines more general conditions for convergence of online EM algorithms,
suggesting the following E-Step:

S̄t = S̄t−1 + γt(s
t − S̄t−1) ,

CHAPTER 3. THE INFINITE MIXTURE OF LINEAR EXPERTS 65

where γt is a step-size and S̄ is an alternative set of sufficient statistics. Setting γt = t−α,
for α ∈ (0.5, 1], guarantees the algorithm convergence under some mild assumptions,
while introducing a time decay in the sufficient statistics that may be beneficial when
slowly time varying data is presented to the algorithm: such situation may eventually
occur within the context of robotic applications. Sufficient statistics S̄ and S are related
according to S̄t = γtS

t, and thus the above equation can be reformulated to become

St = λtS
t−1 + st , where λt = γt−1(γ

−1
t − 1) ; (3.8)

this is the decaying statistics formulation presented in (Sato and Ishii, 2000). Setting
γt = t−1 corresponds to having λt = 1, i.e., an accumulation of the sufficient statistics
with no forgetting over the time, equivalent to (3.7).

3.2.2 M-Step

M-Step picks the parameter vector Θ that maximizes the current value of the Q-function.
The fact that most of the priors are conjugate to the data likelihood can be used to arrive
at the following new estimates — see Appendix A for details —, for j ∈ Mt, where
Mt = {j ∈ N : m̂t

j = 1} is the set containing the experts effectively contributing to the
mixture at iteration t:

ν̂t+1
j =

St
hxj + nνν0j

St
hj + nν

, (3.9a)

Σ̂t+1
j =

St
hxxj − (St

hj + nν)ν̂
t+1
j ν̂t+1T

j + nΣ
ˆ̄Σt+1 + nνν0jν

T
0j

St
hj + nΣ + d+ 2

, (3.9b)

Λ̂t+1
j =

(

St
hyxj −

St
hyj + nµµ0j

St
hj + nµ

(St
hxj)

T

)(

nΛI + St
hxxj −

St
hxj(S

t
hxj)

T

St
hj + nµ

)−1

, (3.9c)

µ̂t+1
j =

St
hyj + nµµ0j

St
hj + nµ

+ Λ̂t+1
j

(

ν̂t+1
j −

St
hxj

St
hj + nµ

)

and (3.9d)

Ψ̂t+1
j =

nΨ
ˆ̄Ψt+1 + diag

{

St
hyyj − Λ̂t+1

j (St
hyxj)

T − (µ̂t+1
j − Λ̂t+1

j ν̂t+1
j)(St

hyj + nµµ0j)
T
}

nΨ + Sthj + 2
;

(3.9e)

diag{·} denotes a diagonal matrix equal to the diagonal of its argument. For the common
input variance parameter Σ̄, however, the partial derivatives of Q(Θ, Θ̂t) with respect to
each σk must be obtained and equated to zero, resulting in

σ̂t+1
k =

(
M t+1

2
− nσ+1

nΣ

)

+

√
(
M t+1

2
− nσ+1

nΣ

)2
+ 2 nσ

nΣ
σ0k

∑

j∈Mt+1 Σ̂−1
j (k)t+1

∑

j∈Mt+1 Σ̂−1
j (k)t+1

, (3.9f)

3.2. TRAINING 66

where Σ̂−1
j (k)t+1 denotes the kth element of the diagonal of the inverse of Σ̂t+1

j and M t

corresponds to the effective number of experts in the mixture at iteration t, i.e., M t =
∑∞
j=1 m̂

t
j . Using the same procedure, a similar result holds for Ψ̄:

ψ̂t+1
k =

(
M t+1

2
− nψ+1

nΨ

)

+

√
(
M t+1

2
− nψ+1

nΨ

)2
+ 2

nψ
nΨ
ψ0k

∑

j∈Mt+1 Ψ̂−1
j (k)t+1

∑

j∈Mt+1 Ψ̂−1
j (k)t+1

. (3.9g)

Equations (3.9b) and (3.9f), on one hand, and (3.9e) and (3.9g), on the other, are
coupled, without an explicit closed form solution for the parameters being estimated. To
deal with this issue the maximization step is relaxed and each of these parameters is
maximized individually, conditionally on the others remaining fixed. This corresponds to
the expectation conditional maximization algorithm, a particular case of the generalized
variant of the EM algorithm, where the M-Step is modified to an update that improves
the Q-function, without necessarily maximizing it (Dempster, Laird, and Rubin, 1977).
Solving for the values of m̂t+1

j that maximize the likelihood is however intractable, as it
requires evaluating all the infinite combinations of values for mj and picking the one that
maximizes the Q-function. A procedure to set the values of m̂t+1

j at each iteration of the
EM algorithm is discussed next.

Growing the Mixture:

Activations mj define the number of experts constituting the current mixture, and play
a key role in defining the complexity of the global probabilistic model. Choosing the
appropriate number of components for a mixture is a difficult problem and several methods
have been proposed to deal with it; among them, Bayesian methods provide an elegant
framework that automatically generates a trade-off between the fitness of the data to the
model and the complexity of the same model. Moreover, the infinite mixture models based
on the Dirichlet process nonparametric prior for the mixing coefficients allow for generative
models where the number of components of the mixture is not defined a priori (Antoniak,
1974; Rasmussen and Ghahramani, 2002; Meeds and Osindero, 2006).

Unfortunately, training these infinite mixtures usually requires either computational
expensive Markov Chain Monte Carlo sampling methods or variational approaches that
typically rely on some sort of truncation that imposes a bound on the admissible number
of components for the mixture. Furthermore, the desired online training for this prob-
abilistic model creates some additional difficulties: while, in an offline setting, Bayesian
methods can in principle efficiently grow or annihilate mixture components, when oper-
ating incrementally the full set of training points is no longer available, and decisions
concerning the allocation or removal of components of the mixture must be made resort-
ing only to the most recently available training points and the current mixture state —
this is a far more demanding learning challenge. Sato (2001) derives an online variational

CHAPTER 3. THE INFINITE MIXTURE OF LINEAR EXPERTS 67

Bayesian algorithm for learning mixture models, but it requires the maintenance of paral-
lel hypothesis about the number of components that can easily become too computational
expensive. Some recent works also view the variational Bayesian learning model under an
online perspective, but are based on non-deterministic approaches based on Gibbs sam-
pling (Wang and Blei, 2012) or require processing the training points in smaller batches
of data (Gomes, Welling, and Perona, 2008). For all these methods, an adequate compu-
tational speed that allows the processing of hundreds or thousands of samples per second,
as required for online learning schemes for robotic applications, is yet to be shown.

As opposed to Bayesian methods, it is more difficult to assess an optimal value for the
number of components of a mixture when using a EM algorithm for training: a well known
drawback of these EM based techniques is the fact that the maximized observed data like-
lihood will never decrease when new components are added to the mixture (Figueiredo
and Jain, 2002). This allows the derivation of a broad class of criteria to decide when
to add new components, ranging from only allowing the existence of a single component,
which for the IMLE model would be equivalent to performing a global linear regression
on the data, to the activation of a new component for each data point processed, which
in turn would correspond to some kind of memory based learning approach, where pre-
dictions would be made resorting to all available training data. As a consequence, most
EM deterministic methods impose some kind of penalty over the number of mixture com-
ponents during optimization, such as the Akaike’s information criterion (AIC) (Akaike,
1974), the Bayesian inference criterion (BIC) (Schwarz, 1978) or the minimum message
length criterion (MML) (Wallace and Boulton, 1968), to name just a few: a comprehen-
sive comparison and review of these kind of penalty methods can be found in (McLachlan
and Peel, 2000).

In the probabilistic model given in (3.1-3.2), the prior distribution on mj plays the role
of such penalty, making a high number of experts increasingly less probable. However,
changing, at iteration t, the value of a particular parameter mj+ from 0 to 1 will result
in the following variation of the Q-function:

Q(Θ+, Θ̂t) −Q(Θ, Θ̂t) = log
p(Θ+)

p(Θ)
+

N∑

i=1

∞∑

j=1

htij log
p(wij; Θ+)

p(wij; Θ)

= log
p(mj+ = 1)

p(mj+ = 0)
+

N∑

i=1

∞∑

j=1

htij log
1

M t+1
1
M t

= log
1

j++1

1 − 1
j++1

+ log
1

M t + 1

N∑

i=1

∞∑

j=1

htij

= log
1

j+
+N log

M t

M t + 1

where Θ+ is the parameter vector corresponding to mj+ = 1; equations (3.1c) and (3.2f)

3.2. TRAINING 68

are used in the above derivation, together with the fact that responsibilities hij sum to 1
over the experts set.

This is a problem: activating a new expert will always lead to a decrease of the Q-
function; moreover, this decrease does not even depend on the training data observed
so far by the probabilistic model. However, although momentarily decreasing the Q-
function, activating a new expert can, nevertheless, increase the observed data likelihood
in the subsequent iteration. Of course, under the online paradigm herein followed it is not
possible to calculate the likelihood of the entire observed data, as each training point is
discarded after the corresponding update of the mixture sufficient statistics. However, at
the end of M-Step, the log-likelihood of the next training point (yt+1,xt+1), under the new
parameter vector Θ̂t+1, can be evaluated. This log-likelihood is given, considering also the
priors on Θ, by Lt+1(Θ̂t+1) = log[p(yt+1,xt+1|Θ̂t+1)p(Θ̂t+1)], where p(yt+1,xt+1|Θ̂t+1) is
obtained from the complete data likelihood by marginalizing out the latent variables wij:

p(yt+1,xt+1|Θ̂
t+1) =

∞∑

j=1

p(yt+1,xt+1|wj, Θ̂
t+1)p(wj|Θ̂

t+1)

=
1

M t

M t
∑

j=1

p(yt+1,xt+1|wj, Θ̂
t+1) .

If, alternatively, expert j+ = M t + 1 is activated at the end of the M-Step, by making
m̂t+1
j+ = 1 and initializing µ0j+ and ν0j+ to yt+1 and xt+1 respectively, the alternative

log-likelihood Lt+1(Θ̂t+1
+) = log[p(yt+1,xt+1|Θ̂

t+1
+)p(Θ̂t+1

+)] is obtained, where Θ̂t+1
+ is a

modified version of parameter vector Θ̂t+1, with expert j+ activated, and where the next
training point likelihood is now given by:

p(yt+1,xt+1|Θ̂t+1
+) =

∞∑

j=1

p(yt+1,xt+1|wj, Θ̂
t+1
+)p(wj |Θ̂

t+1
+)

=
1

M t + 1





M t
∑

j=1

p(yt+1,xt+1|wj, Θ̂
t+1
+) + p(yt+1,xt+1|wj+, Θ̂

t+1
+)





=
M t

M t + 1
p(yt+1,xt+1|Θ̂

t+1) +
1

M t + 1
p(yt+1,xt+1|wj+, Θ̂

t+1
+) ,

since p(y,x|wj, Θ̂+) = p(y,x|wj, Θ̂) for j 6= j+.

Activating expert j+ will increase the log-likelihood of the next training point if
Lt+1(Θ̂t+1

+) > Lt+1(Θ̂t+1), and this can be used as a criterion for deciding when to ac-
tivate a new expert. This approach, however, will often lead to too many local models
being allocated: instead, a statistical approach of activating a new expert only when
strong evidence supports the alternative parameter vector Θ̂t+1

+ against the null hypothe-
sis Θ̂t+1 is considered. This later parameter vector can be seen as a special case of Θ̂t+1

+ ,
with less one mixture component: this suggests using a likelihood ratio test to compare

CHAPTER 3. THE INFINITE MIXTURE OF LINEAR EXPERTS 69

them, where the test statistic T = 2Lt+1(Θ̂t+1
+) − 2Lt+1(Θ̂t+1) approximately follows a

chi-squared distribution with degrees of freedom equal to the difference of free number of
parameters between Θ̂t+1

+ and Θ̂t+1 (O’Hagan and Forster, 1994). At the time of activa-
tion of a new expert j+ only µ0j+ and ν0j+ are effectively defined, and so the change on
the number of free parameters is equal to d+D. Let X 2(p0, d+D) be the critical value of
a chi-squared distribution with d+D degrees of freedom, corresponding to the number of
free parameters introduced in the mixture: a new expert should be activated, according
to the likelihood ratio, if, for a significance value p0,

T = 2Lt+1(Θ̂t+1
+) − 2Lt+1(Θ̂t+1) > X 2(p0, d+D) . (3.10)

Changing mj+ only affects p(Θ̂t+1
+) through the term p(mj+), given by (3.2f); since all

the remaining terms are not modified, this results in

p(Θ̂t+1
+)

p(Θ̂t+1)
=
p(mj+ = 1)

p(mj+ = 0)
=

1
M t+1

1 − 1
M t+1

=
1

M t
,

and, after some calculations, equation (3.10) indicates that a new expert j+ should be
consequently activated whenever

M t
∑

j=1

p(yt+1,xt+1|wj, Θ̂
t+1) ≤

1

1 + 1−e−0.5X2(p0,d+D)

M t

·
e−0.5X 2(p0,d+D)

M t
· p(yt+1,xt+1|wj+, Θ̂

t+1
+) ,

(3.11)
where expert j+ parameters are equal to their prior values (expert j+ has not yet accumu-
lated any sufficient statistics). Note that the probability in the right-side of the equation
above can be decomposed as

p(yt+1,xt+1|wj+, Θ̂
t+1
+) = p(yt+1|xt+1, wj+, Θ̂

t+1
+)p(xt+1|wj+, Θ̂

t+1
+) ,

where, according to (3.1),

yt+1|xt+1, wj+; Θ ∼ N
(

µ0j + Λ0(xt+1 − ν0j),
ˆ̄Ψt+1

)

,

xt+1|wj+; Θ ∼ N
(

ν0j ,
ˆ̄Σt+1

)

;

since ν0j+=xt+1 and µ0j+=yt+1, this results in

p(yt+1,xt+1|wj+, Θ̂
t+1
+) = p(yt+1|xt+1, wj+, Θ̂

t+1
+)p(xt+1|wj+, Θ̂

t+1
+)

=
1

√

(2π)D| ˆ̄Ψt+1|
·

1
√

(2π)d| ˆ̄Σt+1|
.

The right side of (3.11) introduces an increasingly penalty on the activation of new

3.2. TRAINING 70

experts as the value of M increases. Adjustable parameter p0 can regulate the propensity
to activate new experts: the lower its value the higher the critical value of the chi-squared
distribution will be, making the experts activation criterion harder to be met, resulting
in fewer components in the mixture. In general, equation (3.11) indicates that a new
expert should be activated when the next acquired training point is poorly explained by
the current probabilistic model. This is a sensible approach to mixture grow in online
algorithms: LWPR, for instance, creates a new linear model each time an input training
point xi fails to activate the nearest receptive field by more than a given fixed threshold.
Equation (3.11), on the other hand, imposes a varying threshold that depends on the cur-
rent number of experts of the mixture and on the current estimates for hyperparameters
Σ̄ and Ψ̄. Contrary to LWPR, this activation scheme takes into account both the input
and output part of each training point, as required to adequately learn multi-valued func-
tions, thus preventing interference between different branches of a multi-valued relation
during training; it can also be viewed as a time varying threshold, that changes as the
input length-scale and output noise estimates, represented by ˆ̄Σ and ˆ̄Ψ respectively, are
learned from training data by the IMLE algorithm.

Outliers Detection

A customary pre-processing step when learning is performed offline is to discard isolated
points that clearly have a large deviation from the true input-output relation responsible
for the observed training data. Removing such outliers is however a much more sensitive
subject when incremental learning is considered, as the notion of “isolated point” fades
when it is no longer possible to look at the whole training set.

One possible approach is then to consider a special class w0 that is assumed to be
responsible for the generation of these outliers: assuming this class to have a prior prob-
ability p(w0|Θ) and that some observation model p(y,x|w0,Θ) exists for this class, then
the probability that a training point (y,x) is an outlier generated by w0, given the current
mixture parameters, follows from Bayes’ rule,

p(w0|y,x, Θ̂) =
p(y,x|w0, Θ̂)p(w0|Θ̂)

∑∞
j=1 p(y,x|wj, Θ̂)p(wj|Θ̂) + p(y,x|w0, Θ̂)p(w0|Θ̂)

. (3.12)

This posterior probability for w0 is dominant over the posterior probabilities for the
mixture experts if p(w0|y,x, Θ̂) > 0.5, and this relation can be used to mark a training
point as an outlier, removing it from the training set before it is used in the learning
process.

A natural choice for p(w0|Θ̂) is to make it depend on the number of experts activated
so far, by making, for instance, p(w0|Θ̂) = 1/M ; considering instead a constant value
for this prior would make the outlier posterior probability closer to one as the number of

CHAPTER 3. THE INFINITE MIXTURE OF LINEAR EXPERTS 71

active experts increased, irrespectively of the values of p(y,x|wj, Θ̂), which is, of course,
an undesired result. With this outlier class w0 the distribution over the models responsible
for generating the training data is no longer a proper distribution, as

p(w0|Θ̂) +
∞∑

j=1

p(wj|Θ̂) =
1

M
+

M∑

j=1

1

M

=
1

M
+ 1

> 1 ;

however, this is not a problem as far as posterior distribution (3.12) is concerned, since
any normalization factor for this distribution would cancel out in (3.12).

How should the outlier observation model p(y,x|w0,Θ) be defined? The most straight-
forward answer is simply to assign it a constant probability, making p(y,x|w0,Θ) an im-
proper distribution. A significant problem that arises with such approach is that in such
case the posterior distribution for w0, given by equation (3.12), heavily depends on the
characteristics of the relation to be learned, since the input length-scale and the output
noise of the relation influence the distribution p(y,x|Θ̂) via the normalization constants
appearing in the Gaussian distributions for p(y|x, Θ̂) and p(x|Θ̂).

To take a better view on this issue, note that the criterion to decide when an acquired
training point (y,x) is an outlier, given by p(w0|y,x, Θ̂) > 0.5 for current estimate Θ̂,
results in

M∑

j=1

p(y,x|wj, Θ̂) < p(y,x|w0, Θ̂) .

Thus, for a constant outlier observation model p(y,x|w0,Θ) = K, the above criterion
leads to a simple comparison of

∑M
j=1 p(y,x|wj, Θ̂) against a fixed threshold, which must

be adequately adjusted for every specific relation to be learned.

Instead, the criterion for outlier detection can be made approximately invariant with
respect to input length-scale and output noise of the relation by making it depend on the
current estimates for these quantities, represented respectively by ˆ̄Σ and ˆ̄Ψ, making

p(y,x|w0, Θ̂) =
1

√

(2π)D| ˆ̄Ψ|
·

1
√

(2π)d| ˆ̄Σ|
· e−0.5X 2(p0,d+D) ,

where, as before, X 2(p0, d + D) is the critical value, for significance level p0, of a chi-
squared distribution with d + D degrees of freedom, representing the inverse cumulative
distribution function of this distribution evaluated at probability 1 − p0.

What is the justification for the above expression? If a newly activated, not yet trained
expert (for which Ψ̂j = ˆ̄Ψ, Λ̂j = Λ0 = 0 and Σ̂j = ˆ̄Σ) is considered, the expression above
can be seen as the evaluation of the probability density function of such expert at a

3.2. TRAINING 72

point (y,x) that lies over the equidensity contour that encircles the input-output region,
centred at (µ̂j, ν̂j), corresponding to a 1 − p0 probability. Free parameter p0 defines
what equidensity contour of the density function is used to evaluate this probability.
This makes the outlier detection criterion more robust with respect to the input-output
relation characteristics, resulting in a value of p(y,x|w0, Θ̂) that is always comparable
to the values of p(y,x|wj, Θ̂), irrespectively of the input and output dimensions, the
estimated input length-scale and the estimated output noise.

There is a close relation between the outlier detection criterion and equation (3.11),
used to decide when to activate a new expert in the mixture: alternatively defining
p(w0|Θ̂) = (1/M)2, meaning that the event that a training point is an outlier become
much less probable as more experts are assigned to the mixture, results in the following
outlier detection criterion, for a training point (y,x):

M∑

j=1

p(y,x|wj, Θ̂) ≤
1

M
·

1
√

(2π)D| ˆ̄Ψ|
·

1
√

(2π)d| ˆ̄Σ|
· e−0.5X 2(p0,d+D) . (3.13)

This result is very similar to (3.11), since the first factor on right side of (3.11) quickly
approaches 1 as the number of active experts M increases, thus showing that the mecha-
nisms for activating a new expert or recognizing an outlier are essentially the same, and
correspond to identifying training points poorly explained by the current mixture. So
how does one know then if a training point satisfying (3.11) is an outlier or, alternatively,
an indication that a new expert is needed in the corresponding region of the input-output
space? This is challenging problem: for single-valued regression, outliers can be detected
as training points that have enough support from the current model in the input space,
while presenting a large deviation from it in the output space; the same, however, does
not happen in multi-valued regression, where this situation may simply correspond to a
yet unseen branch of the multi-valued function being learned. Furthermore, the online as-
sumption prevents taking a look at the whole training set, where identification of outliers
would in principle be made easier by searching for isolated points.

Perhaps the only way to provide a partial answer to this issue is to make some as-
sumptions about the nature of the distribution of the training data. In particular, if it is
assumed that training data is temporally correlated, as most of the times is the case in
online learning, a new data point will have a high probability of being poorly explained
by the current mixture if the same occurred with the previous point; in contrast, the same
does not happen with statistically independent outliers. Observing a sequence of consecu-
tive training points satisfying (3.11) is then more likely to be caused by a lack of fit of the
points to the current model than the (very unlikely) occurrence of a sequence of consecu-
tive outliers. This insight is the base for the final criterion to decide when to enlarge the
mixture: a new expert should be activated when the previous Noutlier training points were

CHAPTER 3. THE INFINITE MIXTURE OF LINEAR EXPERTS 73

all considered outliers, for Noutlier ≥ 1 (in practice even Noutlier = 1 should be enough for
most cases). While slightly delaying the activation of a new mixture component when a
training point is not well represented by the current mixture, such mechanism introduces
some robustness towards the existence of outlier data, that would otherwise lead to the
creation of unnecessary linear experts to explain such points.

The downside of this approach is the assumption taken on the correlation of training
points: these are assumed to be generated from temporal trajectories in the input space;
additionally, situations where multi-valued data is generated by randomly sampling be-
tween different relation branches are not considered, instead assuming that, apart some
occasional switches, consecutive training points are taken from the same branch. If this
assumption is not met the algorithm may require more training samples to converge, or
may simply produce a mixture model that does not represent the underlying data in a
satisfactory manner; however, note that this temporal correlation assumption is almost
always met when robotic real-time data acquisition processes are considered.

3.2.3 Computational Complexity

Learning with IMLE is very fast: for a new observation (xt,yt), a complete update of the
mixture parameters consists of:

1. Model creation: deciding if a new expert should be activated (Equation 3.11);

2. E-Step: assigning responsibilities hij to active experts (Equation 3.5);

3. E-Step: updating the sufficient statistics (Equation 3.8);

4. M-Step: obtaining the new value for Θ̂ (Equations 3.9).

All these calculations have a computational complexity of O(M(d2 + dD)), since the
matrix inversions required in this process can be efficiently performed using the Sherman-
Morrison formula to perform a rank-one update for these quantities. The computational
complexity of a complete update of IMLE parameters is consequently linear in D and M ,
the number of experts, and quadratic in d, the number of input dimensions, making it di-
rectly comparable to the best state-of-the-art online algorithms in terms of computational
complexity per training point. This computational complexity can be further reduced if
a Cholesky decomposition for the inverse of Shxxj is instead maintained and updated in
each iteration, once again using rank-one updates, potentially reducing the computational
complexity to roughly half when obtaining this quantity and the associated covariance
matrices. Also, this complexity can be made linear in d if the input distance metrics Σj

are constrained to be diagonal.

3.3. PREDICTION 74

3.3 Prediction

At any instant, the IMLE model can be used to generate predictions, using the state of
the mixture that results from the training process with the data points acquired until
then. The forward prediction provides an output prediction ŷ for a particular input
query xq; on the other hand, the inverse prediction finds an input prediction x̂ that
is believed to be the responsible for the generation of a desired output yq. Unless the
relation to be learned comes from an injective relation, it is very common to have different
input values x generating the same output y: as a consequence, the inverse prediction
mechanism must be able to provide more than a single solution for a query yq. In general,
as discussed in previous chapters, there are also some situations that can lead to a forward
multi-valued relation, and consequently the forward prediction algorithm must also be
prepared to generate multiple solutions for the same input query. Besides the forward and
inverse point estimates, given respectively by ŷ and x̂, predictions should be accompanied
by corresponding uncertainty estimates, represented by covariance matrices R̂; also, in
the context of forward prediction, the expected output variation resulting from a small
perturbation of the input query xq may be of great relevance: as described in this section,
the IMLE model provides the means to obtain all these quantities.

This section will first focus on forward prediction, starting with the single-valued case
and then going to the multi-valued situation. After that, inverse prediction is discussed,
followed by Jacobian prediction, that finds the aforementioned output change resulting
from an infinitesimal change in the input; a quick examination of the computational
complexity of the proposed prediction mechanisms concludes the section.

3.3.1 Conditional Probability Distribution and Forward Prediction

Under a full Bayesian paradigm, a forward prediction for an input query xq is represented
by a distribution p(y|xq,Y ,X), where the dependence on learned mixture parameters
and latent variables is marginalized out. The same occurs in inverse prediction, where now
p(x|yq,Y ,X) is considered. However, these posterior distributions cannot be analytically
calculated for most probabilistic models: instead, EM based learning algorithms will
normally provide predictions based on Θ̂, the point estimate for the parameter vector
being learned. For IMLE forward prediction, this results in

p(y|xq, Θ̂) =
∑

j∈M

wyj (xq)p(y|xq, wj, Θ̂) , (3.14a)

where

wyj (xq) = p(wj|xq, Θ̂) =
p(xq|wj, Θ̂)

∑

k∈M p(xq|wk, Θ̂)
, (3.14b)

CHAPTER 3. THE INFINITE MIXTURE OF LINEAR EXPERTS 75

and where wj and wk are a shorthand for wqj = 1 and wkj = 1; p(y|xq, wj, Θ̂) and
p(xq|wj, Θ̂) follow from (3.1), with Θ replaced by its estimate.

Even if marginalizing out all the unknown parameters Θ cannot be analytically per-
formed to provide a full Bayesian conditional distribution for the output, at least some
of these parameters can, due to their conjugacy relation to the likelihood of the ob-
served data. Doing so has the benefit of incorporating the uncertainty in these param-
eters in the final prediction. In particular, given the training data, experts activations
m̂ = {m̂j}(1≤j≤∞) and current predictions for hyperparameters Σ̄ and Ψ̄, the conditional
prediction at an input query point xq becomes

p(y|xq,Y ,X, ˆ̄Σ, ˆ̄Ψ, m̂) =
∑

j∈M

wyj (xq)p(y|xq, wj,S
t, ˆ̄Ψ) , (3.15a)

with

wyj (xq) =
p(xq|wj,St, ˆ̄Σ)p(wj|m̂)

∑∞
k=1 p(xq|wk,St, ˆ̄Σ)p(wk|m̂)

=
p(xq|wj,St, ˆ̄Σ)

∑

k∈M p(xq|wk,St, ˆ̄Σ)
, (3.15b)

and where the dependence on training data (Y ,X) is summarized using the sufficient
statistics St; distributions for p(y|xq, wj,S

t, ˆ̄Ψ) and p(xq|wj,St, ˆ̄Σ) are derived in the
appendix and are given by (A.6) and (A.1), respectively. To keep the notation simple
Θ̂∗ will be used to refer to (St, ˆ̄Σ, ˆ̄Ψ, m̂) in the remaining of the section. The condi-
tional density (3.15a) can be understood as a weighted mixture of M Normal densities,
each corresponding to a point estimate provided by a different expert, together with an
uncertainty value, and where the mixture weights are given by the posterior probabili-
ties that the query point was generated by each expert. An example of such conditional
distribution is depicted in Figure 3.3a.

Given the above conditional density, how can a point estimate for y = f(xq) be
obtained, together with an uncertainty measure of this estimate? This is a critical issue:
for single-valued forward prediction, such estimate and corresponding uncertainty can be
obtained from (3.15a) by taking its mean and variance,

ŷ = E[y|xq, Θ̂
∗] =

∑

j

wyj ŷj and (3.16a)

R̂ = V[y|xq, Θ̂
∗] =

∑

j

wyjR
y
j +

∑

j

wyj (ŷj − ŷ)(ŷj − ŷ)T , (3.16b)

where ŷj and R
y
j are respectively the mean and variance of p(y|xq, wj, Θ̂

∗), and where
from now on the dependence on xq is dropped for notational convenience. This is an
approach followed by many mixture models and it works reasonably well under the single-
valued hypothesis, although it tends to overestimate the true variance of the data due to
the cross variance between expert estimates, given by the last term in (3.16b). However,

3.3. PREDICTION 76

xq

(a)

xq

ŷ

(b)

Figure 3.3: The IMLE model after the training phase: linear models are depicted, in their
input activation regions, by straight line segments, while some training points are represented
by small grey crosses. Superimposed on this model is the output predictive distribution for a
particular input query point xq, represented by a thick blue line, as given by (a) the conditional
mixture distribution given by equations (3.15), and (b) the single-valued prediction model given
by (3.16).

when multi-valued functions are considered, this approach will only be able to generate a
single estimate, together with a large value of the associated uncertainty, as depicted in
Figure 3.3b. As reported for instance by Ghahramani and Jordan (1994) and Ghahramani
(1994), merging together the distinct solutions provided by each expert might result in
a poor overall estimate for a non-convex solution space, where the weighted mean of
different experts predictions might itself be far from the true value to estimate: this is
clearly unacceptable as far as multi-valued prediction is concerned.

An alternative approach is to search for the modes of the conditional distribution (3.15a),
as their location can be a good indicator of the true values of the underlying multi-valued
function. This is done, for instance, in (Carreira-Perpiñán, 2000; Qin and Carreira-
Perpinan, 2008); however, the distribution (3.15a) can have many low weight spurious
modes, corresponding to the contributions of distant experts; in this case some kind of
filtering must be done to remove them. Even after removing low weighted components,
the topography of the mixture can be very complex in prediction spaces with more than
one dimension, as analysed by Ray and Lindsay (2005), where, perhaps counterintuitively,
there may exist more modes than mixture components.

Yet another approach, followed in this dissertation, consists in considering a hypoth-

CHAPTER 3. THE INFINITE MIXTURE OF LINEAR EXPERTS 77

ȳ

yŷ

(a)

ȳ

y

ŷ

(b)

Figure 3.4: Multivariate linear regression graphical model. In (a), an unobserved true mean
ȳ generates a prediction ŷ (observed) and a generic output point y. In (b), the same model
is rewritten: in this equivalent graphical model an unobserved conditional output mean ȳ is
generated from an also unknown conditional output distribution y, from which, in turn, results
a prediction ŷ.

esised probabilistic model for the true conditional distribution p(y|x), and then to infer
the posterior distribution for its parameters given the current mixture. Such probabilistic
model will be described next.

3.3.2 Conditional Generative Probabilistic Model

When single-valued regression is considered and the IMLE model only contains one com-
ponent, it is relatively simple to infer the conditional distribution at a query point xq,
given the current mixture state. The prediction ŷ(xq), provided by the sole linear expert
of the mixture, is given by (A.3); this estimate relates to an unknown true conditional
mean value ȳ(xq) according to (A.9), while, according to the linear model, observations
y are obtained from ȳ with variance Ψ̂j (see equation A.7). This results in the graphical
model represented in Figure 3.4, where

y|ȳ, Θ̂∗ ∼ N (ȳ, Ψ̂) (3.17)

and
ŷ|ȳ, Θ̂∗ ∼ N (ȳ, γΨ̂) . (3.18)

Consequently, as stated in Appendix A (equation A.6), the posterior distribution for
an output sample y, given estimate ŷ, is given by

y|ŷ, Θ̂∗ ∼ N (ŷ, (1 + γ)Ψ̂) .

This result is the well known posterior predictive distribution for the linear regression

3.3. PREDICTION 78

model, where the uncertainty in the regression parameters is incorporated in the posterior
variance for a new data point y(xq).

The above equations have a different interpretation that is particularly useful for the
mixture case, where the distribution of an observation y is considered unknown and is
to be estimated, while the point estimates ŷj, provided by the different components of
the mixture, are taken as observations. With this “reverse role” model in mind, equa-
tion (3.17) becomes

ȳj|y, Θ̂
∗ ∼ N (y, Ψ̂j) ,

where again “observation” ŷj is calculated using (3.18).

Of course, each linear expert has more or less influence in the final prediction, according
to the weights wyj ; the standard way to incorporate these weights in the generative model
is to make the variances of the corresponding observations ŷj inversely proportional to
these weights, following the traditional probabilistic view of weighted least squares and
best linear unbiased estimators (Gelman, Carlin, et al., 2004; Vijayakumar, D’Souza, and
Schaal, 2005). The above equation thus must be modified to

ȳj |y, Θ̂
∗ ∼ N (y, Ψ̂j/w

y
j) ,

and using
ŷj|ȳj, Θ̂

∗ ∼ N (ȳj, γjΨ̂j)

results in

ŷj |y, Θ̂
∗ ∼ N (y,Rj) , with Rj ≡

(

γj +
1

wyj

)

Ψ̂j = ϕjΨ̂j . (3.19)

The corresponding graphical model is depicted in Figure 3.5. The posterior predictive
distribution for an output y at a query location xq is consequently

y|Θ̂∗ ∼ N (ŷ, R̂) , (3.20)

where

ŷ =
(
∑

j

R−1
j

)−1(∑

j

R−1
j ŷj

)

and (3.21a)

R̂ =
(
∑

j

R−1
j

)−1

. (3.21b)

If all experts output noise predictions Ψj are the same, and if the uncertainty on the
mixture parameters is neglected by making γj = 0, it is worth of notice that point estimate
given by equation (3.21a) becomes equal to the mixture conditional mean (3.16a); in the
general case, however, the above posterior distribution assigns lower weights to experts

CHAPTER 3. THE INFINITE MIXTURE OF LINEAR EXPERTS 79

y

ȳj

ŷj

j = 1 . . .M

Figure 3.5: Single-valued prediction graphical model.

predictions with higher uncertainties.

Different outputs y(k) must be considered when data points originate from a multi-
valued relation, for k = 1 · · ·K, where K is the number of multi-valued outputs for the
same input query xq. In this situation, to provide a meaningful generative probabilistic
model for the output distribution, it is imperative to define the latent indicator variables
sjk that signal if ȳj was indeed generated from multi-valued output y(k). This leads to

ȳj|sjk,y
(k), Θ̂∗ ∼ N (y(k), Ψ̂j/w

y
j) ,

and again using (3.18) the following result is obtained:

ŷj |sjk,y
(k), Θ̂∗ ∼ N (y(k),Rj) . (3.22)

This generative model is depicted in Figure 3.6, where sj is a vector of size K that
aggregates the indicator variables sjk corresponding to expert j, such that one of its
elements is equal to one and all the remaining components are zero. The probability
distribution of ŷj given this vector can therefore be expressed as

p(ŷj|sj , Θ̂
∗) =

K∏

k=1

p(ŷj |sjk,y
(k), Θ̂∗)sjk ,

from which follows the complete data log-likelihood

L
(

ŷ1···M , s1···M ,y
(1···K)

)

=
∑

j

∑

k

sjk log p(ŷj|sjk,y
(k), Θ̂∗) .

Even if a closed form posterior distribution for y(k) cannot be obtained due to the

3.3. PREDICTION 80

y
k

ȳj sj

ŷj

j = 1 . . .M

k = 1 . . .K

Figure 3.6: Multi-valued prediction graphical model.

presence of the indicator variables sjk, the above likelihood can be used to iterate through
a simple EM procedure, in order to obtain ŷ(k), an estimate for y(k):

hjk(t) = E[sjk|ŷj, ŷ
(k)(t), Θ̂∗] = p(sjk|ŷj, ŷ

(k)(t), Θ̂∗)

=
p(ŷj|sjk, ŷ(k)(t), Θ̂∗)
∑

l p(ŷj |sjl, ŷ(l)(t), Θ̂∗)
, (E-Step) (3.23a)

ŷ(k)(t+ 1) =
(
∑

j

hjk(t)R
−1
j

)−1(∑

j

hjk(t)R
−1
j ŷj

)

. (M-Step) (3.23b)

It usually takes only a few iterations for the EM algorithm to converge, using the
initialization procedure described in the next section. After convergence, experts are
assigned to multi-valued predictions ŷ(k) according to the final value of hjk; this leads to
the following estimates for each multi-valued branch k,

ŷ(k) =
(
∑

j

R−1
j

)−1(∑

j

R−1
j ŷj

)

and (3.24a)

R̂(k) =
(
∑

j

R−1
j

)−1

. (3.24b)

where the sums are over experts assigned to each particular multi-valued prediction ŷ(k).

CHAPTER 3. THE INFINITE MIXTURE OF LINEAR EXPERTS 81

Additionally, the relative weight of each multi-valued prediction is given by

w(k) =
∑

j

wyj , (3.24c)

where wyj is given by (3.15b) and the sum, as usual, is performed over the experts consti-
tuting prediction k.

3.3.3 Generative Model Statistical Validation

The above generative model, while providing a way to estimate the mean and the variance
of a set of multi-valued output predictions y(k) at a specific input query xq, cannot decide
on the most adequate number of multi-valued solutions K to consider. Intuitively, a
specific number of multi-valued solutions K for an input query xq is acceptable if the
experts individual predictions ŷj assigned to the same particular solution y(k) agree,
in a broad sense, with the value of that solution. This means that the deviation of
experts predictions ŷj from the corresponding solution y(k) should not be too large when
compared to Rj. Of course, as the value of K increases so does the fitness of the individual
predictions to the solutions y(k): a minimum value of K should be chosen that provides
an adequate agreement of experts predictions ŷj with the generative model presented in
the previous section.

For each ŷj , the quantity (ŷj − y(k))TR−1
j (ŷj − y(k)) follows a chi-squared distribution

with D degrees of freedom, given that ŷj was indeed generated by solution k according
to (3.22). Under the hypothesis that

(a) the probabilistic model presented in the previous section is indeed responsible for
generating experts predictions ŷj;

(b) the value K is the correct number of multi-valued solutions for the forward prediction
problem at input query xq; and

(c) the EM procedure described above correctly grouped the experts predictions into K
different multi-valued solutions,

then the statistic Tk follows a chi-squared distribution for every solution k,

Tk =
∑

j

(ŷj − ŷ(k))TR−1
j (ŷj − ŷ(k)) ∼ χ2

(Mk−1)D , (3.25)

where again the sums are over experts assigned to solution k and Mk is the number of
such experts. A low value for this statistic indicates a good fit of observations ŷj to the
estimated solutions ŷ(k); on the other hand, the current set of solutions ŷ(k) is considered
to be badly explained by the data if the p-value for any solution k is lower than a given
significance level αmulti: in such case the above hypothesis is rejected.

3.3. PREDICTION 82

A practical detail of the above test is that ŷj will not effectively have an arbitrary large
variance for corresponding small values of wyj , as expected from (3.19) and (3.22), where
Rj goes to infinity as wyj approaches zero: as a consequence, Tk will assume much lower
values than the ones expected under the null hypothesis distribution, since in a typical
prediction scenario most of the experts will have very low values of wyj , making their
contribution to the prediction at a particular query point negligible. This will make the
rejection of the goodness of fit hypothesis stated above much harder to be met; even more
problematic is the fact that the number of experts that do not significantly contribute to
the prediction, with wyj ≈ 0, and that were nevertheless assigned to a prediction ŷ(k), will
severely influence this statistical test, by “artificially” increasing the degrees of freedom
of the associated chi-squared distribution. The solution to this problem is to replace
Mk − 1 in (3.25) by 1/

∑
(wyj)

2 − 1, the effective degrees of freedom of the mixture; it
was empirically found that this adjustment provides a better fit of the statistic to its
corresponding distribution, under the null hypothesis.

3.3.4 Multi-valued Prediction

The previous sections provided the mechanisms that, for a particular value of K, gener-
ate a set of multi-valued predictions ŷ(k), while coming up with a statistical validation
tool for the results thus obtained. The question that remains to be answered is how to
find an appropriate number of multi-valued solutions for the conditional prediction prob-
lem. Following the parsimonious principle known as Ockham’s razor, the multi-valued
prediction algorithm starts with a single-valued estimation, i.e., K = 1: if the statistical
test described in the previous section rejects this single-valued solution, K is increased
by one and the EM iterations in (3.23) are performed. If the statistical test described
in the previous section rejects at least one of the two solutions, K is again incremented:
this procedure is repeated until a value of K is found for which the test fails to reject
the null hypothesis for any of the solutions thus obtained. When this happens a set of
multi-valued solutions is considered to be found, represented by posterior means ŷ(k) and
variances R̂(k), for 1 ≤ k ≤ K, as given in (3.24).

To speed up the prediction process, each EM procedure initializes ŷ(k) with the values
found in the previous run of the algorithm, while the extra solution starts near the solution
k that produced the smallest p-value in the previous statistical test, this way dividing in
two the solution responsible for the null hypothesis rejection. This initialization greatly
accelerates and stabilizes the convergence of the EM iterations for each value of K. Note
also that, during this process, the significance level αmulti controls the final number of
solutions found: the lower its value the harder it is to reject the null hypothesis, and less
solutions are likely to be found. On the other hand, increasing αmulti helps to separate
different solutions but, as an unwanted consequence, predictions ŷj for neighbour experts
may stop being merged together due to the function curvature around xq.

CHAPTER 3. THE INFINITE MIXTURE OF LINEAR EXPERTS 83

Of course, if the input-output relation is known to be single-valued, there is no need
to conduct this prediction procedure: it suffices then to use equations (3.21), using all the
active experts in the mixture.

3.3.5 Inverse Prediction

The conditional inverse probability distribution for an output query yq is given by

p(x|yq, Θ̂) =
∑

j∈M

wxj (yq)p(x|yq, wj, Θ̂) , (3.26)

where

wxj (yq) = p(wj |yq, Θ̂) =
p(yq|wj, Θ̂)

∑

k∈M p(yq|wk, Θ̂)
. (3.27)

These expressions are the inverse prediction counterparts of (3.14a) and (3.14b); the
probability densities p(x|yq, wj, Θ̂) and p(yq|wj, Θ̂) appearing above can be obtained from
the joint input-output distribution p(v|wj, Θ̂), where vT = [xT yT] is a vector where the
input x and output y are stacked together. This joint distribution is Normal, with mean
v̄Tj = [νTj µT

j] and covariance matrix

Rv
j =




Σj ΣjΛ

T
j

ΛjΣj Ψj + ΛjΣjΛ
T
j



 ;

from this result it immediately follows that

x|yq, wj; Θ̂ ∼ N (x̂j(yq),R
x
j) and (3.28a)

yq|wj; Θ̂ ∼ N (µ̂j, Ψ̂j + Λ̂jΣ̂jΛ̂
T
j) , (3.28b)

where x̂j(yq) and Rx
j are given respectively by

x̂j(yq) = ν̂j + Rx
j Λ̂

T
j Ψ̂−1

j (yq − µ̂j) and (3.28c)

Rx
j = (Σ̂−1

j + Λ̂T
j Ψ̂−1

j Λ̂j)
−1 . (3.28d)

The above conditional distributions can be used to produce a set of inverse conditional
point estimates, together with corresponding uncertainties, using a procedure similar to
the one described in the previous section for forward prediction. Note that, contrary to
forward prediction, it is not possible to incorporate the mixture parameters uncertainty in
the inverse model, since there is no closed form expression for the result of compounding
p(x|yq, wj, Θ̂) or p(yq|wj, Θ̂), given respectively by (3.28a) and (3.28b), with the poste-
rior distributions of the mixture parameters, given the training data observed so far. As a
consequence, the inverse predictions are calculated using only the point estimates for mix-
ture parameters Θ̂. The generative model for inverse prediction, depicted in Figure 3.7,

3.3. PREDICTION 84

x
k

sj

x̂j

j = 1 . . .M

k = 1 . . .K

Figure 3.7: Inverse prediction graphical model.

thus become a simplified version of the forward prediction model of Figure 3.6, with

x̂j|sjk,x
(k), Θ̂ ∼ N (x(k),Rj) , (3.29)

where now Rj is given by

Rj ≡
1

wxj
Rx
j .

With this generative model in mind, the remaining procedure for obtaining a set of
inverse multi-valued predictions for a query yq is exactly the same as the one presented
in the previous section, and will be omitted here for brevity. However, besides the lack
of integration of uncertainty in the mixture parameters in the final prediction, note that,
contrary to forward prediction, inverse prediction produces full covariance matrices for
the uncertainty on the calculated point estimates for the conditional inverse solutions.

Of special importance is the fact that, in general, the input space dimension d may
be greater than the output space dimension D: this means that, in this case, the true
solution space x(yq) is continuous and has dimension d−D. In sensorimotor learning of
a robot kinematic relation, this situation happens if the robot is redundant, with more
degrees of freedom than the dimension of the task space considered. Therefore, some care
must be used when looking at the set of inverse predictions provided by the multi-valued
prediction algorithm, as it can only be interpreted as a set of estimated samples of the
true, unknown continuous solution space x(yq).

Finally, it is worth of notice that the same reasoning for obtaining an inverse prob-

CHAPTER 3. THE INFINITE MIXTURE OF LINEAR EXPERTS 85

ability distribution from the IMLE model can also be used to produce more general
predictions. Assuming the joint vector v to comprise an arbitrary query part vq and an
answer part va, such that v = vq ∪ va, the conditional distribution p(va|vq, wj, Θ̂) can
be straightforwardly derived from the joint distribution, for each expert j, and then the
multi-valued prediction procedure previously presented in this chapter can be applied.
However, it should be stressed out that, as in the inverse prediction situation, a continu-
ous solution space is expected when the dimension of the query vector vq is lesser than the
input space dimension d, and that in that case the set of multi-valued solutions eventually
obtained can only be viewed as a noisy sampling of the continuous solution space.

3.3.6 Jacobian Prediction

The forward prediction provided by IMLE at a given input query xq is given, for a
particular solution k found by the clustering procedure presented in Section 3.3.2, by

ŷ(k)(xq) = R̂(k)(xq)
∑

j

R−1
j (xq)ŷj(xq) ,

where R̂(k)(xq) is the output expected variance, according to the current IMLE model,
for solution k, evaluated at input point xq, given by

R̂(k)(xq) =
(
∑

j

R−1
j (xq)

)−1

,

and where the sum is performed over the set of experts assigned to solution k. Quantities
Rj(xq) and ŷj(xq) are respectively expert j output variance and prediction at point xq,
defined in equations (3.19) and (A.3), and here repeated for convenience:

Rj(xq) = ϕj(xq)Ψ̂j and ŷj(xq) = Λ̂j(xq − ν̂j) + µ̂j .

This prediction can be expressed as a weighted average of the individual expert pre-
dictions,

ŷ =
∑

j

Wjŷj , with Wj =
(
∑

k

R−1
k

)−1

R−1
j = R̂R−1

j ,

where the explicit dependence on the input point xq and on a particular solution k was
dropped for readability.

The derivative of the IMLE prediction ŷ with respect to the input variable x can be
interpreted as the estimated Jacobian of the true input-output relation, a D by d matrix
where entry (m,n) gives the partial derivative of the mth output component with respect
to the nth input dimension. This matrix can be obtained, for each multi-valued solution
k, by taking the derivative of ŷ with respect to the input vector x, using the above

3.3. PREDICTION 86

expression. This results in

dŷ

dx
=
∑

j

WjΛ̂j +
∑

j

Wj(ŷ − ŷj)ζj(x) , (3.30)

where ζj(x) is defined in equation (B.5a), in Appendix B; all the intermediate steps taken
to deduce equation (3.30) are also therein presented. As a side effect of these calculations,
the derivative of uncertainty R̂ with respect to the input vector is also calculated and
given by

dR̂

dx
= R̂

∑

j

Wjζj(x) . (3.31)

Note that since R̂ is a D by D matrix, its derivative with respect to the input vector
x results in a third order tensor; however, as R̂ is a diagonal matrix, there is a slight
abuse of notation in equation (3.31) above: entry (m,n) of the matrix in the right side of
the equation denotes the partial derivative of the mth element of the diagonal of R̂ with
respect to the nth input dimension.

3.3.7 Computational Complexity

Forward prediction requires the quantities ŷj , γj, w
y
j and Ψ̂−1

j to be available for every
active expert j: calculating these values has a cost of O(M(d2 + dD)), the same compu-
tational complexity of an update of the IMLE model for a new training point. After that,
equations (3.21a) and (3.21b) are used to obtain a single-valued prediction, with a cost
of O(MD): this is usually much faster than the previous step of obtaining the aforemen-
tioned quantities for each expert. Multi-valued prediction multiplies this cost by Niter,
the number of EM iterations used in (3.23), and by K, the final number of multi-valued
solutions obtained, therefore having a total computational cost of O(MDNiterK).

The above reasoning holds for inverse prediction, exception made to the inversion
of full covariance matrices required to obtain x̂j , in (3.28c), and the weights wxj via
distributions p(wj|yq, Θ̂), given by (3.28b), which have a higher computational cost. A
full matrix inversion may sometimes present numerical problems and lack of accuracy,
but fortunately this inversion is not required to obtain x̂j and wxj : the quantity Uj =

Rx
j Λ̂

T
j Ψ̂−1

j = (Σ̂−1
j + Λ̂T

j Ψ̂−1
j Λ̂j)

−1Λ̂T
j Ψ̂−1

j needed to compute x̂j may be obtained by
solving

(

Σ̂−1
j + Λ̂T

j Ψ̂−1
j Λ̂j

)

Uj = Λ̂T
j Ψ̂−1

j

using a robust Cholesky decomposition of Σ̂−1
j +Λ̂T

j Ψ̂−1
j Λ̂j , which is faster and more accu-

rate than performing the full matrix inversion. After that, an expert j inverse prediction
is given by

x̂j(yq) = ν̂j + Uj(yq − µ̂j) .

CHAPTER 3. THE INFINITE MIXTURE OF LINEAR EXPERTS 87

This result may also be used to avoid the matrix inversion required to obtain p(wj |yq, Θ̂)

in (3.28b): using the Woodbury matrix identity,

(

Ψ̂j + Λ̂jΣ̂jΛ̂
T
j

)−1

= Ψ̂−1
j − Ψ̂−1

j Λ̂j

(

Σ̂−1
j + Λ̂T

j Ψ̂−1
j Λ̂j

)−1

Λ̂T
j Ψ̂−1

j

= Ψ̂−1
j − Ψ̂−1

j Λ̂jUj .

The above computations to obtain Uj and (Ψ̂j + Λ̂jΣ̂jΛ̂
T
j)−1 do not depend on a

specific query point yq, and thus can be reused, at a null computational cost, for inverse
predictions at different queries yq, as long as the mixture parameters do not change.
Furthermore, if computation time is a serious issue, such computations may be performed,
for each expert, only after relevant changes to its parameters are made; these changes can
be detected by monitoring the number of points used to train each expert, given by Shj

in (3.6).

3.4 Active Uncertainty Reduction

Sensorimotor learning, most of the times, does not consist in a pure supervised learning
scheme: autonomous agents have the ability to choose the input training points used
during the learning phase, as opposed to supervised learning, where input-output data
pairs are externally provided to the learner. In this situation, under an online setting, a
learning mechanism may actively and iteratively choose which input location of the sen-
sorimotor map being learned should be sampled to be presented to the learning algorithm
in a subsequent iteration, usually having the reduction of its prediction error in mind. In
a broad sense, active learning “studies the closed-loop phenomenon of a learner selecting
actions or making queries that influence what data are added to its training set”, to re-
duce the data a learner requires to achieve a given performance (Cohn, Ghahramani, and
Jordan, 1996).

Active learning — also coined optimal experimental design in a regression setting —
is an active field of research, and there are many different strategies to optimally select
the next training point to “harvest”: for a good review of active learning techniques, the
survey of Settles (2009) is suggested. Among these methods, the prediction uncertainty
reduction principle presented in (Cohn, Ghahramani, and Jordan, 1996) is of particular
relevance for use with the IMLE model, as its probabilistic reasoning adequately fits the
prediction mechanisms presented earlier in this chapter. This active learning approach
starts by acknowledging that the expected prediction error of a learning algorithm, given
by ∫

Ey,D

[

(ŷ(x) − y(x))2
]

p(x)dx , (3.32)

depends only on the training data through V[ŷ(x)], the variance of the predictor ŷ(x),

3.4. ACTIVE UNCERTAINTY REDUCTION 88

assuming the squared prediction bias of this predictor to be negligible when compared to
its variance. In the above equation a scalar output y is considered, and the expectation
is taken over p(y|x) and training sets D = (X,Y) used to train the learning algorithm
responsible for prediction ŷ(x). This result directly follows from the decomposition of the
prediction error provided by Geman, Bienenstock, and Doursat (1992):

Ey,D

[

(ŷ(x) − y(x))2
]

=Ey

[

(y(x) − Ey[y|x])2
]

+
(

ED[ŷ|x] − Ey[y|x]
)2

+

+ ED

[

(ŷ(x) − ED[ŷ(x)])2
]

;

in this expression the first term in the right side is the true variance of the data, the
second term is the squared bias of the predictor and the third one its variance, V[ŷ(x)].
Note that the first two terms cannot be computed, as the true distribution p(y|x) is not
known.

Choosing a new point x̃ to query for the corresponding response ỹ, that is expected
to lower the prediction error the most, amounts consequently to picking the value of x̃

that maximizes the average predictor variance decrease over the input space,

arg max
x̃

∫ (

V[ŷ(x)] − Ṽ[ŷ(x)]
)

p(x) dx ,

where Ṽ[ŷ(x)] is the expected predictor variance at input location x after data point (x̃, ỹ)

has been incorporated in the training set. The above expression can be easily extended
to a multivariate case, by considering instead

arg max
x̃

∫

aT ·
(

V[ŷ(x)] − Ṽ[ŷ(x)]
)

p(x) dx , (3.33)

where a is a D-dimensional vector of inverse weights that assigns more or less importance
to each output component in this active learning setting. Again, this is only valid assum-
ing the variance of the estimator to dominate its squared bias, i.e., that the learner is
approximately unbiased.

Since V[ŷ(x)] does not depend on the new training point (x̃, ỹ), the point x̃ that
maximizes the above quantity is equal to the one that minimizes aT Ṽ[ŷ(x)], i.e.,

arg min
x̃

∫

aT · Ṽ[ŷ(x)] p(x) dx ;

for a scalar output, this is the original formulation in (Cohn, Ghahramani, and Jordan,
1996).

From a practical viewpoint, obtaining the integral in (3.33) is analytically intractable;
one way to circumvent this problem is to evaluate V[ŷ(x)]−Ṽ[ŷ(x)] only at some random
points x drawn according to p(x), as suggested in the original paper of Cohn, Ghahra-

CHAPTER 3. THE INFINITE MIXTURE OF LINEAR EXPERTS 89

mani, and Jordan (1996). However, as the number of input dimensions d increases there
is an exponential increase in the number of such points required to produce a good ap-
proximation of the above integral. This goes against the scalability properties that are
desired for the IMLE learning algorithm. Another approach, followed in this work, is to
assume that after querying x̃ the prediction variation V[ŷ(x)] will decrease the most in
a region around x̃; as a consequence, the point x̃ that produces the largest decrease of
prediction variation, evaluated at the same point x̃, as given by

arg max
x̃

∆V(x̃) ,

where scalar ∆V(x̃) is defined as

∆V(x̃) = aT ·
(

V[ŷ(x̃)] − Ṽ[ŷ(x̃)]
)

, (3.34)

can be considered a reasonable, if somewhat crude, approximation to the value given
by (3.33). This approximation can be justified by the local nature of the IMLE algorithm:
adding (x̃, ỹ) to the training set will mostly affect experts that are sufficiently activated
during the E-Step of the training procedure, having non-negligible values of hij . As a
consequence, prediction will change the most in the input region influenced by these
experts, containing the point x̃.

The variance of the estimator ŷ(x) is

V[ŷ(x)] = V

[
∑

j

Wjŷj

]

=
∑

j

V

[

Wjŷj

]

=
∑

j

W 2
j V[ŷj]

=
∑

j

W 2
j γjΨ̂j

= R̂2
∑

j

R−2
j γjΨ̂j ,

as the variability of the estimator only comes from the training data output noise — the
input values X are assumed fixed and chosen by the learner — and the values of Wj

only depend on these inputs; also, it is assumed that, given X, the predictions ŷj(x) are
independent. Note that R̂, Rj and γj all depend on x, although that is omitted in the
above derivation for readability. Finally, the above derivation for the variance of ŷ(x)

takes into account the fact that all matrices involved are diagonal ones: in the general
case, V [Wjŷj] would be equal to WjV [ŷj] W T

j , of course.

As expected, the variance of the predictor is always less or equal than the estimated

3.4. ACTIVE UNCERTAINTY REDUCTION 90

data variance R̂ for each output dimension, as the latter also includes the predictor
variance. This can be demonstrated by noting that

R−1
j γjΨ̂j =

(

γj +
1

wyj

)−1

Ψ̂−1
j γjΨ̂j =

γjw
y
j

γjw
y
j + 1

where without losing generality a scalar output is assumed. As a consequence,

R−1
j γjΨ̂j < 1

⇐⇒ R−2
j γjΨ̂j < R−1

j

⇐⇒
∑

j

R−2
j γjΨ̂j <

∑

j

R−1
j = R̂−1

⇐⇒ R̂2
∑

j

R−2
j γjΨ̂j < R̂

⇐⇒ V[ŷ(x)] < V̂[y(x)] .

The expected predictor variance after presenting (x̃, ỹ) to the learner, Ṽ[ŷ(x̃)], is

Ṽ[ŷ(x)] =
∑

j

W̃ 2
j Eỹ[ŷj] = R̃2

∑

j

R̃−2
j γ̃jEỹ[Ψ̂j] ,

where W̃j, R̃j and γ̃j denote respectively the new values of Wj , Rj and γj after x̃ is
incorporated in the mixture, and Eỹ[ŷj] and Eỹ[Ψ̂j] are the expected values for ŷj and
Ψ̂j, averaged over possible values of ỹ, also after (x̃, ỹ) is added to the mixture — here,
ỹ is treated as a random variable as it is not yet observed.

Picking the value of x̃ that maximizes (3.34) is not analytically feasible and it involves
the search in a d-dimensional space: pool-based selective sampling, i.e., randomly gener-
ating a set of x̃ candidates according to the input distribution and choosing the best one
according to (3.34), may be computationally efficient for very low dimensional problems,
but unfortunately the number of such candidates required to cover the input space with
the same resolution grows exponentially as the input dimension increases. An alterna-
tive to pool-based selective sampling, also suggested in (Cohn, Ghahramani, and Jordan,
1996), is to hill-climb the criterion (3.34) by making use of the analytical derivative of
∆V(x̃),

d

dx̃
∆V(x̃) = aT ·

(

d

dx̃
V[ŷ(x̃)] −

d

dx̃
Ṽ[ŷ(x̃)]

)

, (3.35)

which can provide a local maximum of ∆V(x̃). Some gory details concerning this deriva-
tive are presented in Appendix C.

The hill-climbing procedure described above can produce a new training candidate x̃

arbitrarily far from the last acquired point xt. On the other hand, most of the times
real-time learning of sensorimotor maps introduces continuity contingencies, since it is

CHAPTER 3. THE INFINITE MIXTURE OF LINEAR EXPERTS 91

not possible to instantaneously change the robot input x by a large amount between
acquisition samples, due to acceleration limitations. This suggests using a local, greedy
approach to the active learning problem, where, at each learning iteration, a new training
point (x̃, ỹ) is sampled along the direction, provided by (3.35), that results in the largest
expected prediction variance reduction for the current robot state: this direction can be
found by simply evaluating the above derivative at current point xt.

Finally, a brief note pertaining multi-valued prediction should be added: all the above
equation apply in a straightforward manner to the multi-valued case, as long as the
summations needed to obtain V[ŷ(x)] and Ṽ[ŷ(x)] are only performed over the sets
of experts obtained through the clustering procedure presented in section 3.3.4. As a
consequence, a set of K “optimal” sampling directions are obtained, one for each of the
multi-valued predictions obtained for current input point xt. Which one should then
be used to maximize the prediction uncertainty reduction? This is equivalent to asking
which of the outputs, predicted by the IMLE algorithm, corresponds to the actual robot
state, and while more sophisticated mechanisms may be employed to estimate such latent
context (Petkos and Vijayakumar, 2007), a simple solution to this problem is to consider
the multi-valued prediction closer to the last observed output yt, and then to use the
corresponding set of experts to provide the input direction along which a new training
point should be sampled. This approach, unfortunately, cannot be directly applied to a
pool-based sampling scheme, as it is no longer trivial to find a correspondence between
the multi-valued function branch for the last seen output yt and the set of multi-valued
predictions at a random input location: what to do in this case is beyond the scope of
this thesis.

3.5 Discussion

This chapter presented the IMLE probabilistic model: it was shown how to train it in
an incremental and online fashion, automatically dealing with a number of issues that
are of great importance for sensorimotor learning. In particular, the EM based training
procedure automatically handles outliers, enlarges the model whenever needed, assigning
more experts to the current mixture, and continuously adapts the hyper-priors values
concerning the characteristic input length-scale and output noise of the relation to be
learned, shared by all experts in the mixture.

A prediction procedure, using the current of the IMLE model, was also introduced,
capable of providing forward and inverse multi-valued predictions, as well as the estimated
Jacobian at a given query point. Also, an active learning scheme was derived for this
learning architecture, that provides a method to choose the next training input x̃ that,
in a statistical manner, is expected to produce the largest reduction on the prediction
variance and, therefore, on the prediction error. Overall, these prediction mechanisms

3.5. DISCUSSION 92

and training procedure make the IMLE algorithm a highly versatile method for real-time
sensorimotor learning. The next chapter will attempt to demonstrate the capabilities of
this method, by intensively testing and comparing it to other state-of-the-art learning
algorithms, in a diversity of different and demanding situations.

Chapter 4

Experimental Evaluation

This chapter is devoted to the evaluation of the IMLE model in several different experi-
mental settings, specially focusing on large training sets arising from continuous streams
of data that particularly suit online learning. This model is compared to other online
learning algorithms, namely LWPR (Vijayakumar, D’Souza, and Schaal, 2005), probably
one of the most widely used state-of-the-art online learning methods for robotic applica-
tions, SOGP, a sparse online approximation for Gaussian process regression (Csató and
Opper, 2002), and ROGER, an online infinite mixture of SOGP experts (Grollman and
Jenkins, 2010). All these algorithms have their C++ implementation code available, and
their most recent version to this date is used in the comparisons (Klanke and Vijayakumar,
2009; Grollman, 2008; Grollman, 2009). A C++ implementation of the IMLE algorithm
is also freely available for download and is described in Appendix D.

The IMLE learning model is also compared to standard GPR: this is not an online
algorithm in its standard formulation, but it can give some insights on the expected
performance loss when going to an online operation setting. In the following experiments,
a Gaussian likelihood to be used with an isotropic squared exponential covariance function
is specified, using exact inference for training and prediction. Optimal values for the
input length-scale of the kernels and for the output noise, the free hyperparameters of the
model, are obtained using standard optimization techniques over the training set, using
the GPML Matlab code (Rasmussen and Nickisch, 2010).

Parameters of interest for tuning the LWPR algorithm comprehend Dinit, αinit, wgen
and penalty γ: for details on these parameters meaning, please consult the related doc-
umentation. Additionally, in all experiments diagOnly is set to false and useMeta and
updateD to true. The SOGP model is trained using a Gaussian kernel: the remaining
tuning parameters for this algorithm are σ2

k, the kernel width, σ2
0 , the expected output

noise for the function to learn, and β, the maximum number of training basis points to
be kept by the algorithm. SOGP resembles standard GPR if no upper limit is set to this
number of basis points. Besides the (common) parameters for each of the SOGP experts,
ROGER most important quantities to be defined beforehand are P , the number of par-

93

4.1. SINGLE-VALUED FUNCTION APPROXIMATION 94

ticles for the mixture, and α, the Chinese Restaurant Process concentration parameter
that drives the propensity of new SOGP experts to be created within each particle. In
general, the higher the number of particles and SOGP capacity the slower ROGER will
run.

As for IMLE, there are 11 parameters that can be tuned to change the resulting
behaviour of the algorithm: some of them typically don’t need any tweaking and the
following experiences, unless otherwise noted, will keep them with their default values,
namely nΛ = 0.1 (a small value is needed for regularization), nν = 0 and nµ = 0 (experts
locations fully learned). As the input space dimension increases, a stronger prior on
input covariance matrices Σj and output noise Ψj is needed to make the learning process
relatively invariant with respect to the trajectory nature of the training data acquisition
process: a good rule of thumb is to set nΣ = nΨ = nσ = 2d and then choose nψ based
on the confidence on the value of Ψ0, with smaller values corresponding to a larger
uncertainty on this parameter. A typical value for the forgetting factor lies in the range
α = 0.99 ∼ 0.999; the remaining parameters, Ψ0, Σ0 and p0 have a strong influence in the
experts activation process (3.11), and ultimately on the number of local experts created
during the training phase. Ψ0 represents the expected output noise variance, while Σ0

corresponds to the input activation region for which the function to be learned can be
approximately represented by a linear relation.

While setting and tuning such apparently high number of free parameters may appear
to be challenging at first, the convergence of the probabilistic model is not very sensitive
to specific values of these parameters. Perhaps the most important issue when considering
the tuning of IMLE free parameters is to ensure a correct convergence of Σ̄ and Ψ̄, the
input length-scale and output noise estimates; this problem is discussed thoroughly in the
following text.

4.1 Single-valued Function Approximation

This section evaluates the IMLE model performance with respect to single-valued function
approximation, applying the algorithm to four different learning problems with increasing
input dimension and comparing its performance to LWPR, SOGP and GPR. Some care
must be taken when confronting these different learning schemes: in general, increasing
the model complexity for each of the algorithms will produce smaller approximation errors,
while incurring in some heavier computational cost. The number of local linear models
activated by IMLE and LWPR is a good measure of model complexity for these online
algorithms: its final value, after the training process, is a consequence of the choices for
their tunable parameters and the training data itself. Since IMLE and LWPR have the
same computational complexity per training point, the final number of activated models
provides a fair comparison ground for IMLE and LWPR in terms of the approximation er-

CHAPTER 4. EXPERIMENTAL EVALUATION 95

ror/computational complexity trade-off. GPR and SOGP model complexity, on the other
hand, is measured by the number of stored training points used for posterior prediction
over the test data. For GPR this number is set beforehand, while SOGP learns a sparse
subset of the training data to be used for prediction, possibly limiting the maximum num-
ber of these inducing points to a value of β. IMLE and LWPR computational demands
are linear in the number of local models, while GPR and SOGP are much more penalized
by the increase of the number of stored training points or inducing points, respectively.

The amount of information implicitly available to the algorithms is another important
issue for a fair comparison between them: for regression, the input length-scale of the
data and the noise level present in the output are two critical properties of the function
to be learned. GPR learns them offline by optimizing the likelihood of the training data
with respect to these hyperparameters. Since GPR is an offline algorithm, its prediction
performance strongly depends on the stored training points input locations: if they effi-
ciently cover all the input space GPR is expected to outperform methods based on local
linear approximations, in terms of prediction error. Yet, such highly desirable informa-
tive training set may be unavailable or can be difficult to generate, as in typical robotic
applications, where visiting all the input space can be very time consuming.

Online methods alleviate this dependence on an initial representative training set by
learning their models on the fly, adapting them as new training data arrives. This is
achieved in SOGP by maintaining a representative subsample of the data. Parameters σ2

k

and σ2
0 , however, are not adapted during the learning process, and thus SOGP must rely

on a good initialization of its input length-scale and output noise parameters: adequate
values can be obtained, for instance, from an initial offline optimization, similar to GPR.
Both IMLE and LWPR learn the input length-scale and output noise for each of their local
linear models — in fact, they learn a full input distance metric, represented by covariance
matrices Σj and D−1

j respectively. They differ in the way they initialize these quantities:
LWPR initializes the input distance metrics to a constant value Dinit; IMLE, on the other
hand, puts a common prior on Σj , defining then a vague hyperprior for Σ̄. While LWPR
initialization strongly influences the number of receptive fields created during learning,
in IMLE the information conveyed in hyperpriors parameters Σ0 and Ψ0 can quickly
lose importance if nσ and nψ are small. This capability to learn, in an online fashion,
the characteristic input length-scale and output noise makes IMLE more robust to poor
parameter initialization and less dependent of problem specific knowledge; this complex
probabilistic model structure, however, can make the learning convergence depend more
on the training data input distribution, since hyperparameters Σ̄ and Ψ̄ strongly influence
the behaviour of newly activated experts — which in turn also contribute to the estimation
of Σ̄ and Ψ̄. Ultimately, as discussed in Section 4.1.3, this can lead to convergence to
poor local maxima of the likelihood function.

4.1. SINGLE-VALUED FUNCTION APPROXIMATION 96

4.1.1 Toy Example, R
1 7→ R

1

The first function approximation problem on which the IMLE model is tested is taken
from (Schaal and Atkeson, 1993) and (Vijayakumar, D’Souza, and Schaal, 2005), and
consists in an univariate regression problem whose target function, defined between 0 and
1, is given by

y = x− sin3(2πx3) cos(2πx3) exp(x4) .

Data is taken in a sequential manner from this relation, and output is corrupted with
Gaussian noise with standard deviation equal to 0.05. The IMLE model parameters for
this problem follow the general rules stated above, and were set to α = 0.999, nΛ = 0.1,
nν = nµ = 0 and nΣ = nΨ = nσ = nψ = 2. The remaining parameters, Ψ0, Σ0

and p0, were set respectively to 0.01I, 0.01I and 0.1. The IMLE single-valued prediction
provided at different stages of the learning process is shown in Figure 4.1: as can be seen in

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

Train points
Target
Prediction
Confidence

(a) After 100 training points (1/2 epoch).

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

Train points
Target
Prediction
Confidence

(b) After 200 training points (1 epoch).

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

Train points
Target
Prediction
Confidence

(c) After 1 000 training points (5 epochs).

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

Train points
Target
Prediction
Confidence

(d) After 10 000 training points (50 epochs).

Figure 4.1: Single-valued prediction provided by the IMLE model for the univariate toy example.
The prediction confidence shown in the figures represents a 3 standard deviation interval, as given
by the variance estimate provided by IMLE at each test point.

CHAPTER 4. EXPERIMENTAL EVALUATION 97

Figure 4.1b, after a single sweep of the input range the IMLE model already provides a very
decent approximation to the target function, and after 5 sweeps an accurate approximation
can already be found in Figure 4.1c.

It is also instructive to watch what happens to the IMLE model prediction when
training data is absent from a particular input range of the target function. Figure 4.2
depicts such situation, where now there is no training data from input range [0.4, 0.6]

presented to the learning algorithm. Note that the prediction uncertainty measure, as

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

Train points
Target
Prediction
Confidence

Figure 4.2: Single-valued prediction provided by the IMLE model for the univariate toy example,
after 5 epochs of training, with data missing between 0.4 and 0.6.

given by the IMLE model, quickly grows as the test point moves away from input regions
covered by the mixture linear experts. This is a consequence of equation (3.21b): as a
test point xq moves away from a linear expert j input activation region the corresponding
value of wyj goes to 0, and correspondingly Rj goes to infinity, as given by equation (3.19).
This is a desired property of the prediction process: since at xq there are no linear experts
supporting the input query location, the provided prediction should be accompanied by
a large variance, signalling the fact that such prediction should be considered highly
unreliable.

4.1.2 Cross Function, R2 7→ R
1

The next experience runs the IMLE model and other competing algorithms on a sequential
stream of data taken from the cross function suggested in (Vijayakumar, D’Souza, and
Schaal, 2005), a two-dimensional input, univariate output function displayed in Figure 4.3,
given by the relation

y = max{exp(−10x1), exp(−50x2), 1.25 exp(−5x2
1 − 5x2

2)} ,

4.1. SINGLE-VALUED FUNCTION APPROXIMATION 98

where x1 and x2 denote respectively the first and second input vector components. The

Figure 4.3: Target function and a sample of the training data (also projected on the x-plane to
enhance the trajectory nature of data acquisition).

training set consists of points sampled from a random trajectory performed in the input
space, together with corresponding output data, for which Gaussian noise with 0.1 stan-
dard deviation was added: a small sample of such training data can be seen in Figure 4.3,
superimposed on the target function.

All the suggested values for LWPR parameters presented in the cross 2D example
given in LWPR source code (Klanke and Vijayakumar, 2009), namely Dinit = 50I, were
adopted. SOGP was left with its default parameters of σ2

k = σ2
0 = 0.1, with no limit on the

number of inducing points. As for IMLE, Σ0 = 0.02I was chosen to match LWPR initial
input covariance matrix, while defining Ψ0 = 0.12 and making nΣ = nΨ = nσ = nψ =

2d = 4. For comparison purposes two values for the parameter p0, p0 = 0.1 and p0 = 0.2,
were considered. Finally, some offline algorithms were also considered whose training was
conducted in batch mode: besides a standard GP model, Gaussian Mixture Regression
was also considered by adapting a mixture of Gaussians in the joint input-output space
to the training data.

All the online algorithms were trained on a set of 200 000 sequential points coming
from a random trajectory in the input space, and the prediction root mean square error
(RMSE) was evaluated on a noiseless test grid of 200 by 200 equally spaced input points
and corresponding output values. As for the offline methods, the GP model was trained
using a random, non sequential training set with two different sizes (N = 1 000 and
N = 5 000), while the GMM used the Matlab Statistics Toolbox to adapt a mixture of 60
Gaussian models to an also random, non sequential dataset with 10 000 training points.

Figure 4.4 shows a typical reconstruction of the original target function by the different

CHAPTER 4. EXPERIMENTAL EVALUATION 99

learning algorithms. Also, it is shown in Figure 4.5 the evolution of RMSE and number

(a) IMLE (p0 = 0.1): RMSE = 0.0285. (b) IMLE (p0 = 0.2): RMSE = 0.0206.

(c) LWPR: RMSE = 0.0494. (d) GMR: RMSE = 0.0989.

(e) SOGP: RMSE = 0.0145. (f) GP (5 000 points): RMSE = 0.0261.

Figure 4.4: Reconstructed cross function.

of created experts as a function of the processed training points, for the online learning
methods; the final results for all learning methods, after training, are summarised in
Table 4.1.

4.1. SINGLE-VALUED FUNCTION APPROXIMATION 100

1,000 10,000 100,000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Training Points

R
M

S
E

1,000 10,000 100,000
0

10

20

30

40

50

60

70

80

M

od
el

s

IMLE (p
0
 = 0.1)

IMLE (p
0
 = 0.2)

LWPR
SOGP

Figure 4.5: Learning curves for the Cross 2D function: RMSE and number of models created.
For better visualization, the number of stored induced points of SOGP is scaled by 10. Also,
for accuracy, the results presented for IMLE and LWPR are averages over 100 random trials.

Method RMSE # Models CPU time (s)

Train Test

IMLE0.1 0.0351 41.04 6.3 6.6
IMLE0.2 0.0252 62.58 9.5 9.9
LWPR 0.0550 59.55 2.3 3.1
SOGP 0.0145 744 2 600.9 593.9
GPR1000 0.0563 — — —
GPR5000 0.0261 — — —
GMR10000 0.1691 60 — —
greedyGMR10000 0.2951 50.1 — —

Table 4.1: Final RMSE, number of models and spent CPU time for the Cross experiment. For
IMLE, LWPR and SOGP, training was performed online, using a 200 000 points training set.
The 40 000 points test set was used 9 times during the training phase to obtain the RMSE
evolution for the different learning algorithms. The GMR results here presented are an average
over 10 different trials. Notice that the number of models is not shown for GPR as this is a
global method; also, the offline algorithms were trained in batch mode, using a reduced training
set: this makes their training and testing times not comparable to the training and testing times
spent by the online learners, and thus these quantities are not presented in the table for GPR
and GMR.

It can be seen that SOGP achieves the best RMSE, but at a much higher computational
cost, compared to the other online methods. LWPR, on the other hand, is the fastest
algorithm, but has a worse function approximation error when compared to IMLE, even

CHAPTER 4. EXPERIMENTAL EVALUATION 101

when IMLE resorts to less local models (p0 = 0.1). Note that increasing p0 results in
a better function approximation, at a penalty on the number of linear experts activated
and consequent increase on computation time. As for offline GPR, low error rates can
be obtained if the training set is large enough, but this comes at a prohibitively cost in
terms of offline computation time and memory required to perform the necessary matrix
inversions. Also worth of notice is the fact that a random set was used to train the GP: as
stated before, this may not be easy to generate in many practical real-time applications.
This may also explain why SOGP has a better RMSE than GPR while using significantly
less training points for prediction, since SOGP keeps only the most informative points
taken out of the full training set.

Finally, note the poor performance of the GMR algorithm based on a mixture of
Gaussians: the average RMSE achieved over 10 independent trials is significantly higher
than the RMSE corresponding to the other methods. The GMM greedy learning approach
of Verbeek, Vlassis, and Kröse (2003) was also tested in this setting, where each component
of the mixture is added in a sequential manner, which in principle can potentially prevent
the EM algorithm from becoming trapped in a poor local maxima of the likelihood of the
training data. The corresponding results are also presented in Table 4.1: however, using
this algorithm lead to even worse results. This experience seems to suggest that using a
mixture of Gaussian models in the joint input-output space to describe a relation from
inputs to outputs is difficult, as the training procedure may easily lead to sub-optimal
final mixture models. While, as reported for instance in (Figueiredo and Jain, 2002), such
mixture models may be appropriate to describe training data that is indeed generated from
such mixture models, things start to become more complicated when data is generated
from a d-dimensional subspace embedded in an input-output space with d+D dimensions,
even for low values of d, as seen in this example. Possibly some better results would be
obtained if some constraints were defined on the covariances of the mixture components,
together with the introduction of some kind of regularization mechanisms: but in the end
introducing such constraints and regularization priors would lead to a generative model
very similar to the IMLE model.

4.1.3 The PUMA 560 Serial Robot, R6 7→ R
3

The Unimation PUMA 560 is a well known six degrees of freedom industrial robotic arm:
its forward kinematics function is described, for instance, in (Craig, 1989). To evaluate
the single-valued prediction capabilities of IMLE, the PUMA 560 robot kinematics was
simulated, defining a 10 cm tool extending along the z-axis of the frame associated with
the 6th joint, and random trajectories over the joint space of the robot were generated,
considering the multivariate sensorimotor map output to be the corresponding 3D position
of the tool tip. The kinematic function to be learned is thus a map from an input space
of dimension 6 to an output space of dimension 3, even if the last joint is irrelevant as it

4.1. SINGLE-VALUED FUNCTION APPROXIMATION 102

only changes the tool orientation. Note that the fully stretched arm plus tool measures
more than 90 cm, which makes the range of each of the output variables to be almost 2
meters.

Both LWPR and IMLE learning algorithms were trained with a set of 10 million
training points, and the final achieved RMSE on a different test set comprising 100 000

points was evaluated. Output training values were corrupted with Gaussian noise, with
standard deviation equal to 2 cm — this corresponds approximately to 1/100 of the output
range, and can model, for instance, moderate noise in a vision based end-effector tracking
process. SOGP, unfortunately, was left out of the comparisons: its parameters turned out
to be difficult to tune and its behaviour unstable and very slow in face of a large stream of
highly correlated input data. Standard GPR was also considered, by generating a random
set of training data for hyperparameters optimization and testing on the independent test
set: once again, as stated before, the results thus obtained do not compare fairly to the
other online algorithms, as one of the most challenging difficulties that arise with this
dataset is the massive, sequential and correlated nature of the training data.

Experimental results are shown in Table 4.2, where the RMSE for two different in-
stances of the GPR algorithm, trained with 1 000 and 5 000 data points, is presented.

Method RMSE #Models CPU time (s)

Train Test

IMLE 0.0245 668 4 181 141
LWPR 0.0560 4 338 11 974 725
GPR1000 0.0513 — — —
GPR5000 0.0144 — — —

Table 4.2: Results on the PUMA dataset for IMLE, LWPR and GPR learning algorithms: final
RMSE, number of models and spent CPU time.

Parameters for the IMLE model were set in the usual manner, defining α = 0.999,
p0 = 0.1 and nσ = nΣ = nΨ = 2d = 64. To avoid giving IMLE any information regarding
the input length-scale and output noise characteristics of the function to be learned,
parameters related to these quantities were set to broad, uninformative values Ψ0 = I

and Σ0 = I, and nψ was set to a low value of 8 in order to quickly decay the influence of
Ψ0 in the estimate for Ψ̄. As for LWPR, the combination of parameters that made LWPR
achieve the lowest error was picked, paying attention not to let the number of created
receptive fields grow to unacceptable values, namely γ = 10−8, wgen = 0.1, Dinit = 10I

and αinit = 50. Tuning these parameters to have roughly the same number of allocated
models as IMLE never produced a RMSE of less than 10 cm on each output dimension.
Figure 4.6 shows the corresponding learning curves for IMLE and LWPR. Due to the
conservative large parameter values for Ψ0 and Σ0, IMLE converged slowly in the initial

CHAPTER 4. EXPERIMENTAL EVALUATION 103

learning phase, but quickly recovered after convergence of Ψ̄ and Σ̄ to better output noise
and input length-scale estimates, respectively.

10,000 100,000 1,000,000 10,000,000
0

0.05

0.1

0.15

0.2

0.25

Training Points

R
M

S
E

10,000 100,000 1,000,000 10,000,000
0

1000

2000

3000

4000

5000

6000

M

od
el

s

IMLE
LWPR

Figure 4.6: Learning curves for the PUMA dataset, for a typical parameter configuration.

It is important to stress out that, in order to provide a fair comparison to the IMLE
model, the LWPR algorithm was tested over an exhaustive combination of parameters,
namely γ ∈ {10−5, 10−6, 10−7, 10−8, 10−9}, αinit ∈ {10, 20, 50, 150, 250}, wgen ∈ {0.1, 0.2}

and Dinit ∈ {10, 20}I. These parameters affected the final error through the number
of receptive fields they tended to create: the larger this number the lesser the error,
as expected. The same happened to IMLE when varying its tunable parameters, with
Ψ0 ∈ {1.0, 0.0016, 0.0001}I, Σ0 ∈ {4.0, 1.0, 0.25}I, nψ ∈ {64, 32, 8}, nσ ∈ {64, 32, 8}

and p0 ∈ {0.03, 0.1, 0.3}. In general, for both learning algorithms, a lower RMSE would
generally be achieved at a cost of an increasingly number of local linear models.

It is very illustrative to depict the final RMSE as a function of the number of models
created, for each parameter configuration of IMLE or LWPR, as in Figure 4.7, since the
number of local models affects the computational training and prediction time in a similar
way for these two algorithms. In the figure three different convergence behaviours can be
identified for the IMLE model: the first one, marked IMLE (Global), corresponds to a low
value of Ψ0 = 0.0001I. Since this value of Ψ0 is lower than the actual output noise, IMLE
activates a large number of linear experts in the initial learning phase, each one covering
all the input space (due to a high Σ0) and a particular region of the output space. This is
of course an undesirable behaviour, that goes against the principle of localized learning.
The second case, identified as IMLE (Overfitting), is a consequence of choosing a low
value of Σ0 in combination with a low/medium value of nσ, allowing the individual Σj

to shrink to a point where each new training point has a high probability of activating

4.1. SINGLE-VALUED FUNCTION APPROXIMATION 104

100 1,000 10,000
0.01

0.1

1.0

Models

R
M

S
E

IMLE
IMLE (Global)
IMLE (Overfitting)
LWPR

Figure 4.7: Effect of parameters variation on approximation error and number of local models
created. Each marker represents a particular configuration of parameters of the learning algo-
rithm, and its location reflects the number of local linear models created (x-axis) and RMSE
(y-axis) achieved after training using data arising from the PUMA 560 kinematics model.

a new expert. This may result in a snow ball effect, where more experts contribute to a
decrease of Σ̄, which in turn will lead to smaller Σj and consequently more experts being
activated as the parameter values are pushed towards the boundary of the parameter
space. As seen in Figure 4.7, this does not result in a reduction of RMSE in the test
set, a good indicator that IMLE is overfitting in that situation. These are, however,
two extreme situations, caused by setting Ψ0 or Σ0 to smaller values than the output
noise and input length-scale, respectively. All other combinations of parameters exhibit a
good robustness regarding the training convergence. Note that, in this case, IMLE has a
much better performance than LWPR, achieving a much smaller RMSE while activating
considerably less local models.

4.1.4 The SARCOS Inverse Dynamics Dataset, R21 7→ R
7

The SARCOS anthropomorphic robotic arm is a seven degrees of freedom manipulator
that has been used to test several function approximation algorithms. The learning task
considered here is the estimation of its inverse dynamics from training examples: this is a
nonlinear map from a 21-dimensional input space, consisting of positions, velocities and
accelerations of each joint to a 7-dimensional output space comprising the corresponding
joint torques. Such learned model can then be used to estimate the torques that achieve
a desired trajectory in the joint space. The dataset consists of 48 933 training points and

CHAPTER 4. EXPERIMENTAL EVALUATION 105

4 449 test points, taken from trajectories performed with the real robot. Output values
are normalized by the variance of the outputs of the test set, to make the results presented
here directly comparable to the ones in (Rasmussen and Williams, 2006; Vijayakumar,
D’Souza, et al., 2002). The IMLE model results on this dataset are compared to the
following models, taken from the aforementioned works:

Linear Regression (LR): A linear regression model is fitted to the data, to provide a
baseline for comparison;

Rigid Body Dynamics (RBD): This is a parametric, physics based model for the
inverse dynamics function that is estimated using a least-squares approach, using
the available training data;

LWPR: This model was trained using diagonal distance metrics Dj , cycling through
the training data over 6 000 000 iterations: this roughly corresponds to 123 passes
over the full training data.

GPR: Due to the computational infeasibility of using the full training data for opti-
mization of hyperparameters and prediction over test data, a subset of regressors
method was employed, with size 4 096. A squared exponential covariance function
was used, and its hyperparameters were optimized accordingly, using a subset of the
training data.

As for IMLE, “out-of-the-box” default parameters were used, setting conservative large
values for its noise and length-scale parameters, namely Ψ0 = I and Σ0 = I, while setting
p0 = 0.1. Using the input dimension to set up the value of nΣ, nΨ and nσ, according to
the rule of thumb presented before, would result in overly large prior strengths; instead,
one must resort to the notion that, for actual robot movements, the generated data tends
to be low dimensional, with around 4 — 6 effective dimensions (Schaal, Vijayakumar,
and Atkeson, 1998). This is a standard assumption in robotic applications, in order to
circumvent the curse of dimensionality: learning a sensorimotor map would require a
full exploration of the input space if this condition did not hold. In such case, as the
input dimension increased, the time required for exploration and learning would grow
exponentially, making the learning task infeasible from a practical point of view. In the
following experiments, it was found that a value of 7 effective dimensions could provide
satisfactory learning behaviour, and thus some of the IMLE model parameters were set
accordingly, by making nΣ = nΨ = nσ = 27. The value of nψ was set to a low value of
8, due to the high uncertainty on Ψ0: note however that varying nψ over a considerable
wide interval around this value did not change IMLE convergence behaviour significantly.

Differently from GPR and LWPR, the IMLE model can directly provide multivariate
output predictions without the need to train different models for each of the output

4.1. SINGLE-VALUED FUNCTION APPROXIMATION 106

dimensions. If the maps from inputs to each output variable have the same length-
scale properties, as frequently happens in robotic sensorimotor maps, a huge economy
of computational resources can be attained, as each local linear model can describe the
interaction between the inputs and the full output vector. It is show, in Table 4.3, the
prediction error when the output consists only of the first joint torque, comparing it to
the results presented in (Rasmussen and Williams, 2006) for LWPR, GPR, RBD and
LR. The IMLE model was also used to learn the full output torque vector: for both
situations, the Mean Square Error (MSE) and number of activated experts after (a) a
full pass over the training data and (b) 10 consecutive passes over the same data are
presented1. For confirmation purposes, IMLE was also trained with p0 = 0.0, resulting in

Method MSE #Models

LR1D 0.075 —
RBD1D 0.104 —
LWPR1D 0.040 260
GPR1D 0.011 —
IMLE1D (1 epoch) 0.019 313
IMLE1D (10 epochs) 0.010 563
IMLE7D (1 epoch) 0.018 271
IMLE7D (10 epochs) 0.010 550

Table 4.3: Prediction performance results on the SARCOS dataset for LR, RBD, LWPR, GPR
and IMLE methods. IMLE1D is the model corresponding to a map from R

21 to R
1, while

IMLE7D is the model obtained from the full map from R
21 to R

7.

a model with a single expert that provided a global linear approximation to the training
data: as expected, a MSE equal to that of the LR model was then obtained.

It is noteworthy the extremely good convergence of the IMLE algorithm: after only a
single pass through the training data IMLE achieves a better approximation error than
LWPR (after more than 100 passes through the same data) while activating a comparable
number of linear models. If more points are presented to IMLE, cycling through the data
10 times, a MSE comparable to state-of-the-art GPR is even achieved. It is also worth of
notice the fact that IMLE performance did not change much when a full 7-dimensional
output vector was considered for the learning task: the MSE remained the same, while,
perhaps surprisingly, the number of experts even dropped a bit2. No computational time
increase was noticed in this situation, as the slightly increase in computation due to this
higher output dimension was balanced by a smaller number of activated models. In this
aspect IMLE compares very favourably to GPR and LWPR, which would require 7 times
more computational power to learn the full inverse dynamics map.

1To make the results directly comparable to the ones found in (Rasmussen and Williams, 2006), Table 4.3
shows the MSE instead of the customary RMSE: to obtain this latter value it suffices to take the square root of
the presented values, of course.

2This probably is explained by a lesser tendency for overfitting when the output dimension increases.

CHAPTER 4. EXPERIMENTAL EVALUATION 107

4.2 Multi-valued Function Approximation

Next, the IMLE model prediction capabilities are evaluated under a multi-valued target
function scenario. As stated in section 3.2.2, learning multi-valued functions in an online
fashion poses several additional problems: without further information, it is difficult to
distinguish noise or outliers from new multi-valued function branches. Additionally, it
is no longer possible to set large values for Σ0 and Ψ0, hoping that the learning process
finds adequate values for the input length-scale and output noise estimate, as multi-valued
relations may then be interpreted as single-valued functions with a large output noise.
There is also the problem of time-varying functions: this issue can be easily addressed
in online single-valued algorithms by introducing some kind of forgetting mechanisms, to
allow for a quick adaptation of the internal model to the time-varying data. However,
things become a bit more unclear when multi-valued data is considered, as fast time-
changing training data may become, from an online learning algorithm point of view,
undistinguishable from data originated by a multi-valued input-output relation, without
any clear distinction between these two situations.

The IMLE model was compared, whenever possible, to the ROGER algorithm dur-
ing the following tests. This latter algorithm, however, consists in an infinite mixture of
SOGP’s, thus inheriting the same limitations mentioned in the previous section, namely
the difficulty in getting a good parameter configuration and the slow operation for medium
or high dimensional input spaces. Additionally, ROGER implementation code does not
provide a set of multi-valued solutions for the function being approximated, instead sam-
pling a single solution from the infinite mixture. This may prove to be an highly un-
desirable feature when robotic applications are considered, as ROGER predictions will
permanently probabilistically switch between different multi-valued branches, which may
become unacceptable from a control point of view, where typically smooth movements are
desired. To provide a fair comparison to IMLE, ROGER code was adapted to provide a
finite set of prediction solutions in the following way: for each input query, ROGER was
asked to repeatedly obtain a forward prediction for the same input query (100 different
trials), this way generating a random sample of prediction over its set of particles; the
distinct solutions thus obtained were gathered to become the set of predicted multi-valued
solutions.

Approximation error was measured by taking, for each input query, the multi-valued
prediction closest to the true output. Note that the important problem of choosing
a solution among the set of multi-valued prediction produced by the algorithm is not
addressed in the following experiments. This can be seen as a context estimation, and
it is a requirement when the multi-valued model is to be used for control purposes, as
discussed in Chapter 5. In the following experiments αmulti was set to 0.1: the higher this
value the higher the number of solutions found for the same query, on average; however,

4.2. MULTI-VALUED FUNCTION APPROXIMATION 108

it was found that the value of this parameter did not influence much the final prediction
when the branches of the multi-valued function to be learned happen to be well separated
in the output space, and that setting it on a range of, e.g., αmulti ∈ [0.01, 0.2] resulted
many times in similar prediction results.

4.2.1 Synthetic Datasets

To illustrate the fundamental differences between multi and single-valued function ap-
proximation algorithms, a simple toy example is presented next, consisting of a multi-
valued target sinusoidal function. Standard function approximation learning methods,
like LWPR or GPR, typically behave poorly in this setting, due to the multi-valued na-
ture of the true input-output relation to be learned. Training data was generated from
this relation by alternating sequential sweeps over each of the two branches of the multi-
valued function, given respectively by f1(x) = cos(x) and f2(x) = cos(x) + 4, and each
output sample yi was corrupted with Gaussian noise with standard deviation equal to
0.1. Figure 4.8 represents a sample of the training data, while Figure 4.9 depicts the ap-

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

3

4

5

6

X

Y

Training Points

Figure 4.8: Training data coming from a very simple multi-valued learning example.

proximations provided by IMLE, ROGER, LWPR and GPR to this input-output relation,
taken after training.

As expected, LWPR and GPR tend to average the two branches of the multi-valued
function, while IMLE and ROGER correctly identify the two solutions. In particular,
ROGER achieves an almost perfect approximation to the true function (RMSE = 0.014),
when compared to IMLE (RMSE = 0.039).

The next multi-valued function approximation example is taken from the work of
Shizawa (1996), that suggests a synthetic dataset consisting in a multi-valued function

CHAPTER 4. EXPERIMENTAL EVALUATION 109

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

3

4

5

6

X

Y

IMLE
ROGER
GPR
LWPR

Figure 4.9: Reconstructing the relation shown in Figure 4.8 using four distinct learning algo-
rithms.

from R
2 to R

1, with two distinct branches, described by equations

f1(x1, x2) =
0.6

1 + e−15(x1−0.5)
+ 0.1 and f2(x1, x2) =

0.6

1 + e−15(x1−0.5)
+ 0.35 .

Such target function is depicted in Figure 4.10a, while IMLE multi-valued prediction,
after performing a 10 000 points training phase, is represented in Figure 4.10b.

0 0.2 0.4 0.6 0.8 1 0

0.5

1

0

0.2

0.4

0.6

0.8

1

X
2

X
1

Y

(a) Target function.

0 0.2 0.4 0.6 0.8 1 0

0.5

1

0

0.2

0.4

0.6

0.8

1

X
2

X
1

Y

(b) IMLE prediction.

Figure 4.10: Multi-valued toy example suggested by Shizawa (1996).

This toy example is particularly challenging for multi-valued prediction: the two func-
tion branches are very close to each other and can easily become merged during learning.
IMLE achieves a RMSE of 0.017 in a grid-like independent, noise free test set. ROGER,

4.2. MULTI-VALUED FUNCTION APPROXIMATION 110

on the other hand, was not able to generate a good estimate: it systematically produced,
for every tested parameter configuration, more than 20 SOGP experts. This led to a
severe output prediction interference, with typically more than 10 solutions generated for
each input query3.

In the two previous examples the multi-valued functions have two distinct, well sep-
arated function branches. It is very instructive to examine what happens when such
branches blend together, as depicted for instance in Figure 2.15. This is shown in Fig-
ure 4.11, where the final multi-valued prediction after a 50 000 points training phase is
shown, together with some representative training points of this S-shaped function.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 4.11: Multi-valued prediction of the S-shaped function. A subset of the training data
is represented by stars, while the IMLE model predicted outputs for each input query are
represented by black dots. The grey dots represent a 3 standard deviation confidence interval
for each predicted value.

It can be noticed that the final multi-valued prediction is not completely representative
of the true distribution of the underlying data. This is a consequence of the local nature
of the prediction process: for a particular query point, the prediction is obtained using
only the output prediction provided by each linear expert at the same query point. There
is no way of knowing that a particular multi-valued prediction does not correspond to the
observed training data.

There is not a simple answer to this issue: one possible direction of research, that
will not be followed in this dissertation, could consist in also exploiting the information
provided by the mixture in a region around the query point. Note however that the

3This behaviour was unfortunately observed in the following experiments, and so ROGER was removed from
the remaining tests. Note that ROGER good results shown in Figure 4.9 were a consequence of a careful choice
of its parameters: small changes in these values would typically lead to more than two solutions being predicted
in many regions of the input space.

CHAPTER 4. EXPERIMENTAL EVALUATION 111

example provided in Figure 4.11 is perhaps an extreme case of such behaviour. In general
this is not a critical issue, as can be observed in the next examples concerning inverse and
forward multi-valued prediction.

Another toy example, presented now by Lee and Lee (2001), consists in a cylindrical
spiral surface, again a multi-valued function from R

2 to R
1, described by

y = tan−1(
x2

x1
) , where y ∈ [0, 4π[, and 0.2 <

√

x2
1 + x2

2 < 5 .

The co-domain of the target function makes each input point to have two distinct
solutions. IMLE was trained with random trajectories generated over the target function,
and after 50 000 points it achieved a RMSE of less than 0.065 on an independent random
test set. The multi-valued predicted outputs, after training, for this test set are shown in
Figure 4.12a, and the corresponding IMLE linear models, generated during the training
phase,are represented in Figure 4.12b.

−5 0 5 −5
0

50

2

4

6

8

10

12

14

X
2X

1

Y

(a) IMLE multi-valued prediction over the test
set.

−5 0 5 −5
0

50

2

4

6

8

10

12

14

X
2X

1

Y

(b) The 39 linear experts allocated by the IMLE
model after training.

Figure 4.12: IMLE prediction using the toy example suggested by Lee and Lee (2001).

The final toy example here presented consists in a randomly generated piecewise con-
stant target function from R

2 to R
1, shown in Figure 4.13. Although not multi-valued,

many function approximation algorithms will not be able to properly learn it, as their
smoothness assumptions can severely conflict with the discontinuities of the target func-
tion. This will typically result in either an overfitting to the data, when the complexity of
the model is increased to approximate the function in the vicinity of the discontinuities,
or in an oversmoothing behaviour, where the predictions average the two values of the
target function near the function transitions.

Multi-valued learning algorithms based on mixtures, like IMLE, can provide an ele-
gant solution to this problem. During training, there is no output interference near the
discontinuities, since in those regions the data is simply interpreted as coming from a
multi-valued function. When predicting, a single-valued solution can nevertheless be pro-

4.2. MULTI-VALUED FUNCTION APPROXIMATION 112

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

X
1

X
2

Y

Figure 4.13: Discontinuous target function to learn.

vided by simply taking the most important solution from the multi-valued prediction set,
according to the sum of weights wyj (xq) of the experts that contribute to that solution,
as given by equation (3.24c), instead of the standard single-valued prediction that simply
averages over all experts individual estimates. This procedure is able to generate sudden
transitions of the prediction, like the algorithm developed by Toussaint and Vijayakumar
(2005) to specifically deal with discontinuous functions. Prediction results are shown in
Figure 4.14, for IMLE and a single-valued learner, represented in this case by LWPR.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

X
1

X
2

Y

(a) Single-valued prediction (LWPR).

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

X
1

X
2

Y

(b) Best multi-valued prediction (IMLE).

Figure 4.14: Reconstruction of a discontinuous target function using a single and multi-valued
learner.

Note that the purpose of this experiment is mainly to provide the proof of concept
that IMLE (and other multi-valued learning algorithms) can also efficiently approximate
discontinuous functions without the need for any special modifications; although a full
comparison of IMLE to other learning algorithms capable of efficiently approximating

CHAPTER 4. EXPERIMENTAL EVALUATION 113

functions with discontinuities is certainly a topic worth investigating, such direction of
research will not be further pursued in this section.

4.2.2 iCub Inverse Dynamics Learning Under Different Loads, R12 7→ R
4

As stated in Chapter 1, the inverse dynamics learning problem consists in approximating
the relation (q, q̇, q̈) 7→ u using training points sampled from this relation, where q, q̇

and q̈ are vectors containing respectively the positions, velocities and accelerations of the
joints of a robot and where u is the motor command that actuates these same joints.
This sensorimotor map can then be employed to control the dynamics of such robot, as
it provides, for a given robot state represented by (q, q̇), the motor command u required
to generate a desired joints vector acceleration q̈.

In the next example, training data acquired from a real robot is provided to the IMLE
model to approximate its inverse dynamics map: the robot used to obtain the training
and test sets is the humanoid robot iCub, a 53 degrees of freedom humanoid robot for re-
search in embodied cognition (Tsagarakis, Metta, et al., 2007; Metta, Natale, et al., 2010;
Parmiggiani, Maggiali, et al., 2012; Natale, Nori, et al., 2013), depicted in Figure 4.15.
During data acquisition only 4 of the iCub joints were actuated, corresponding to the

Figure 4.15: The iCub robot holding a water bottle: this changes its inverse dynamics relation.

shoulder and elbow joints of the right arm. Training consisted in performing random
movements in this joint space, while acquiring the positions, velocities and accelerations
of these joints, together with the corresponding commands sent to iCub motors. A train-
ing set of 20 000 points was acquired in this way, to be posteriorly used by the IMLE
algorithm to approximate this sensorimotor map from R

12 to R
4.

After this data acquisition was performed a second experiment was conducted, similar
to the previous one, but where now a bottle of water was held by the iCub right hand.
As before, 20 000 training points were acquired by randomly moving the iCub right arm.

4.2. MULTI-VALUED FUNCTION APPROXIMATION 114

The inverse dynamics relation is well known to be a single-valued function, where knowl-
edge of the input triplet (q, q̇, q̈) suffices to obtain the corresponding motor command u.
These two experiments thus correspond to data acquisition from two distinct single-valued
inverse dynamics relations.

Things become interesting when the context within which the experiments are per-
formed, i.e., the presence or absence of the water bottle, is unknown to the robot, either
during training or during exploitation of the learned model for control purposes. In such
situation, and from the robot point of view, the sensorimotor map becomes a multi-valued
relation with two distinct branches, as the same configuration (q, q̇, q̈) can be associated
with two different motor commands, depending on whether the robot is holding the water
bottle or not. Learning in the presence of hidden contexts is a challenging problem and
is discussed with more detail in Section 5.3.

To evaluate the IMLE model prediction capabilities for this multi-valued problem, the
experiments proceeded as follows: first, the IMLE model was trained with the dataset
corresponding to the first context, where no bottle was held by the robot. After these
20 000 points were presented sequentially to the learning algorithm, the second sequence,
corresponding to the presence of the bottle, was then fed to the IMLE model. After that,
the original sequence was again used to train the IMLE model. It is important to notice
that, during this procedure, the change of context was never signalled in any way to the
learning algorithm: from its perspective, there was a single training phase consisting of
a sequence of 60 000 data points taken from the same, possibly multi-valued, relation.
During this training phase the performance of the IMLE model was evaluated using two
different test sets of 2 000 points each, consisting in sequences of data points acquired in
the same conditions as the training data, i.e., during the random movement of iCub joints
with and without the water bottle. The results are shown in Figure 4.16.

The initial phase of the training process shows an evolution typical of many online
learning algorithms: an increase of the complexity of the probabilistic model, represented
by the number of allocated linear experts, results in a corresponding decline of the pre-
diction error. When the context is changed and training data starts being acquired while
the iCub robot holds the bottle the RMSE suffers a sudden and expected increase, as the
test set where this error is evaluated has also changed to reflect the new iCub dynamic
configuration. In this situation, as training goes on, the RMSE decreases and more linear
experts are assigned to the mixture, in a very similar way to the initial training phase.
However, differently from the first part of the learning process, a fast increase of the aver-
age number of solutions found on the test set is observed, that quickly converges to a value
very close to 2. This means that the internal model corresponding to the first context was
not forgotten by the IMLE model, that can now predict two different motor commands
that, in a given joint configuration, will produce some desired joint acceleration. These
two multi-valued solutions are, of course, the motor commands corresponding to the two

CHAPTER 4. EXPERIMENTAL EVALUATION 115

0 20000 40000 60000
0

0.2

0.4

0.6

0.8
RMSE

0 20000 40000 60000
0

20

40

60

80
Experts

0 20000 40000 60000
0

0.5

1

1.5

2

2.5
Solutions

Training Samples

Figure 4.16: iCub inverse dynamics learning curves: RMSE, number of allocated experts and
average number of solutions found during the learning process.

distinct dynamic configurations of the iCub robot that arise when this robot is holding
the bottle and when it is not.

The final training phase just confirms the adequate learning of the multi-valued relation
by IMLE: when training points, generated from the initial context, are presented again to
this model the RMSE suffers almost no change and the average number of predicted multi-
valued solutions is kept around 2. Also, no sudden increase of the number of allocated
experts was observed, meaning that the linear experts that modelled the first dynamical
relation did not suffer any kind of interference from the second context training data and
that the information kept in their parameters was not forgotten. Just for comparison, a
simple linear regression model, trained and evaluated using the same data, has a prediction
error value of RMSE = 0.331.

4.3 Inverse Prediction

As stated in Chapter 2, the IMLE model can be used at any time of the learning process to
generate predictions for both forward and inverse relations. The following text describes
some experiments that assess the inverse prediction capabilities of the IMLE probabilistic
model.

4.3. INVERSE PREDICTION 116

4.3.1 PUMA 560 Serial Robot, R3 7→ R
3

In this experiment the first three joints of the PUMA 560 robot arm described in Sec-
tion 4.1.3 are used to position the end-effector. The kinematic function for this robot
configuration is a map from R

3 to R
3: while the forward map consists of a single-valued

function, the inverse kinematics is multi-valued and can exhibit up to 4 solutions.

The IMLE model was trained using 1 million points taken from a simulated random
trajectory in the joint space of the PUMA robot, and a noiseless random test trajectory of
100 000 points was then used to evaluate the IMLE prediction capabilities. Gaussian noise
was also added to the observed output training points, with standard deviation equal to
0.02, corresponding approximately to 1/100 of the output range. Ten different trials were
performed, and the average prediction error is presented in Table 4.4.

#Models
Forward RMSE (cm) Inverse RMSE (%)

x y z θ1 θ2 θ3

163.0 1.54 1.61 1.13 3.71 3.91 1.43

Table 4.4: Forward and inverse prediction performance results on the PUMA 560 kinematic
map, where only the first three joints are actuated and considered.

Figure 4.17 also presents, for the PUMA robot, the frequency of the number of solutions
found by IMLE inverse prediction, comparing it to the real value, obtained by explicitly
solving the inverse kinematics equations. The discrepancy between these numbers can

1 2 3 4 5
0

10

20

30

40

50

60

70

80

Number of Inverse Solutions

F
re

qu
en

cy
 (

%
)

Effective Number of Solutions
Predicted Number of Solutions

Figure 4.17: Frequency of the number of solutions found by IMLE inverse prediction for the
PUMA 560 problem.

be explained by the fact that close to the workspace boundary of the PUMA 560 there
are pairs of inverse solutions that become close to each other: in this situation IMLE

CHAPTER 4. EXPERIMENTAL EVALUATION 117

inverse prediction tends to merge these solutions. Increasing the value of αmulti would
reduce this behaviour; however, due to the curvature of the map to learn, this would have
the undesired side effect of predictions of neighbour experts being erroneously taken as
separate solutions. In general, choosing a value for αmulti is a compromise between this
two effects. Nevertheless, IMLE still achieves a good inverse prediction error rate, since
in the workspace boundary the merged solution provided by IMLE is approximately the
average of two reasonable similar true solutions.

4.3.2 Parallel 3-RPR Robot, R3 7→ R
3

As a second example, the 3-RPR parallel manipulator described in (Merlet, 2006) is used
to evaluate IMLE forward and inverse prediction capabilities. This robot consists in an
end-effector connected to a fixed base through three prismatic links, each connecting
to the base and end-effector using free, unactuated rotational joints, as represented in
Figure 4.18. Its movement is restricted to the x-y plane: actuating on link lengths p1, p2

F (c3 , d3)

C(c2 , 0)
x

y

A(0, 0)

B (x, y)

D

E

l1

l3

l2

ρ2

ρ1

ρ3

Figure 4.18: A parallel 3-RPR robot geometric scheme. Figure taken from (Merlet, 2006).

and p3 changes the x-y end-effector position and θ orientation on this plane. The kinematic
map for this mechanism is also a map from R

3 to R
3. Parallel robots typically exhibit a

duality relation to serial chains with respect to the forward and inverse kinematics nature:
while their inverse relation is usually unique and straightforward to calculate, obtaining
a closed formula for the end-effector position and orientation as a function of actuator
values is difficult and frequently gives rise to multiple valid solutions. This mechanism
is known to have up to six different solutions for the same actuator configuration, which
makes learning its forward kinematics infeasible for most standard single-valued function
approximation techniques.

As in the previous example, the IMLE model was trained using 1 million points taken
from a simulated random trajectory, and Gaussian noise with standard deviation equal
to 1/100 of the output range was added to the output part of the training samples. The
movement of the 3-RPR parallel manipulator was restricted to a square of 40 cm by 40 cm
in the centre of the mechanism, while the angle was constrained to the interval [−π/2; π/2].

4.3. INVERSE PREDICTION 118

As in the previous experiment, the obtained model was tested over a noiseless random
sequence of 100 000 points, and Table 4.5 presents the final results averaged over 10 such
different trials.

#Models
Forward RMSE (%) Inverse RMSE (cm)

x y θ p1 p2 p3

91.3 0.70 0.70 1.12 0.27 0.26 0.26

Table 4.5: Forward and inverse prediction performance results on the parallel 3-RPR robot
kinematic map.

The trained IMLE model found on average 1.88 forward solutions per test point, which,
given the constrained workspace, agrees with the expected number of solutions. For every
point on the test set only a single inverse solution was found: this is in total agreement
with the single-valued nature of the inverse kinematics for these kind of mechanisms.

4.3.3 PUMA 560 Serial Robot, R2 7→ R
1

When the input dimension of a sensorimotor map is greater than its output dimension
the inverse problem becomes ill-posed, in the sense that the input locations that generate
a given output value do not correspond to a finite set of multi-valued solutions: instead,
generally a continuous solution space, with dimension equal to the difference between
input and output dimensions of the map must be considered.

In this situation, one cannot expect the IMLE model to find such continuous inverse
solution space, since the clustering procedure presented in Section 3.3.4 can only produce
a finite set of inverse point estimates. Nevertheless, the inverse predictions thus obtained
can in principle provide a useful sampling of such space.

To illustrate the IMLE model inverse prediction mechanism a simple kinematic mech-
anism is learned in this section: for ease of visualisation, a sensorimotor map from R

2 to
R

1 is considered, consisting of the map from the second and third joints of the PUMA
560 robot described earlier in this chapter to the x coordinate of the corresponding end-
effector. This, of course, corresponds to a redundant kinematic structure, as the input
dimension is greater than the output dimension. Learning this map poses no problem to
the IMLE model: Figure 4.19 shows the target function and the corresponding IMLE for-
ward estimate, taken after a training phase of 100 000 points corrupted with 2 cm standard
deviation Gaussian noise. After training, the IMLE model allocated 61 linear experts.

Given the learned model, a set of output queries was then presented to the IMLE
algorithm, corresponding to the contour lines depicted in Figure 4.20, and a set of multi-
valued inverse predictions was obtained for each query. As discussed in Chapter 3, the
parameter αmulti strongly influences the number of solutions obtained when a multi-valued
prediction is requested: the higher this value, the higher the number of solutions found

CHAPTER 4. EXPERIMENTAL EVALUATION 119

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

−1

−0.5

0

0.5

1

(a) Target function.

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−1

−0.5

0

0.5

1

(b) Prediction provided by the IMLE model af-
ter training.

Figure 4.19: The PUMA kinematic function from R
2 to R

1.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.6

−0.6
−0.4

−0.4
−0.4

−0.2

−0.2

−0.2

00

0

0

0

0

0

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.6

0.6
0.8

Figure 4.20: Contour plot describing the inverse kinematics of the PUMA robot. Each contour
corresponds to the input subspace that generates the same x-position of the end-effector.

by the clustering procedure, on average, and to substantiate this statement, Table 4.6
presents the number of inverse solutions found by the IMLE algorithm, for a set of different
output query points, using 4 different values of αmulti.

Using a higher value of αmulti has the desired consequence of providing a finer sampling
of the inverse solution space; however, as a consequence, some spurious inverse solutions
may then appear, corresponding to inverse predictions provided by experts that, despite
the fact that their output space region of influence does not conveniently support the out-
put query location, have nevertheless some influence on the final set of inverse predictions,
due to a high value of αmulti.

Inverse predictions found by the IMLE model, for the different values of αmulti pre-
sented in Table 4.6, are shown in Figure 4.21, superimposed over the contours describing

4.3. INVERSE PREDICTION 120

αmulti
yq

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

0.2 2 2 3 3 2 4 3 2 2
0.8 2 3 3 3 4 4 3 3 2
0.95 2 4 6 5 9 8 6 5 4
0.99 3 7 12 16 13 16 11 9 4

Table 4.6: Number of inverse solutions found by the IMLE algorithm for the R
2 7→ R

1 PUMA
kinematic function, for different values of αmulti.

the true inverse relation. Also shown in this figure are the predicted variances provided
by IMLE, represented by the ellipsoids centred at each inverse prediction. Such predic-

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) αmulti = 0.2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) αmulti = 0.8

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) αmulti = 0.95

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) αmulti = 0.99

Figure 4.21: Inverse prediction provided by the IMLE model, for different values of αmulti.

tions and variances constitute a Gaussian mixture model describing the inverse solution
space, and additionally each Gaussian has a weight given by w(k), as defined in (3.27).
Figure 4.21 shows a remarkable agreement between such Gaussian mixture and the true
inverse solution space: as expected, there are more inverse predictions populating the

CHAPTER 4. EXPERIMENTAL EVALUATION 121

inverse solution space as the value of αmulti is increased. As discussed above, an undesired
side effect in this situation is the lack of accuracy of some of the inverse predictions found:
in particular, this can be observed in Figure 4.21d. Fortunately, such spurious predictions
can be easily detected, as they correspond to predictions with a low value of the associated
weight. Also, as a consequence of such low value of w(k), their corresponding prediction
variances become increasingly larger, signalling an increase of the uncertainty on such
prediction values. One can easily remove these low confidence inverse predictions, for
instance, by simply imposing a threshold on the weights w(k), under which a multi-valued
prediction is simply discarded. This was done in Figure 4.21, where each inverse predic-
tion whose weight was less than 5% was considered unreliable: these predictions are still
marked in Figures 4.21a–4.21d, but they lack, in the figures, the ellipsoids representing
their variance.

4.4 Active Learning

The last experiments presented in this chapter have the primary purpose of shedding
some light to the active learning strategies devised in Section 3.4 for the IMLE model. It
is important to understand why is this proposed active learning scheme preferable over
other sampling schemes: one could legitimately ask if a simpler sampling scheme, based for
instance in picking training points from locations with a high level of output uncertainty,
would not suffice. To show how could such sampling policy fail, a simple univariate toy
example, represented by the relation

y =







2x if x ≤ 0.5

−2x+ 2 if x > 0.5
(4.1)

will be used: some training data generated from this relation is depicted in Figure 4.22.
Note that the left half of the function has a stronger noise level, with a standard deviation
five times larger than the right half of the function. This heteroscedasticity has a profound
impact on active learning schemes based on variance maximization, as the tendency to
explore regions of the input space with a high level of output uncertainty may definitely
compromise a full coverage of this same space. Figure 4.23a shows the evolution of this
quantity as the training of the IMLE model is undertaken. In this particular example,
data was acquired by conducting consecutive sweeps of the input range, from left to right.
After only 10 training points are presented to the IMLE model there is a large uncertainty
in the right half of the input space, as the training data seen so far was only originated
from the left half of the input domain. As training goes on the output variance estimate
becomes more accurate, and after N = 5 000 training points the distinct nature of output
noise in the two halves of the input domain can be clearly devised.

4.4. ACTIVE LEARNING 122

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4.22: Some training data generated from the target function described in (4.1). Note the
higher level of output noise in the first half of the function.

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0

10
1

N = 10
N = 50
N = 500
N = 5000

(a) Output variance.

0 0.2 0.4 0.6 0.8 1
10

−15

10
−10

10
−5

10
0

N = 10
N = 50
N = 500
N = 5000

(b) Expected prediction variance reduction.

Figure 4.23: Evolution of output variance and expected prediction variance reduction as a
function of x, at different IMLE model training stages.

A different picture can be seen in Figure 4.23b, representing the expected prediction
variance reduction if a particular value of x is picked to collect a training sample to be
presented to the IMLE model, as given by equation (3.34). Even if a slight preference
appears to be given to the left half of the input domain after a training phase of N =

5 000 points, this is only caused by the presence of a higher level of noise in that region:
acquisition of a few more samples on the left half of the input range would in principle lower
the value of the expected prediction variance reduction in that region. This figure also
shows an important characteristic of equation (3.34): it tends to give higher preference to
the input space boundaries and to regions where the most dominant linear expert changes,
according to the input regions defined by Σj and νj .

The two different active learning criteria described above were used, in the next ex-
periment, to influence the data acquisition process during training, using a pool-based

CHAPTER 4. EXPERIMENTAL EVALUATION 123

selective sampling scheme. Data was picked by performing straight line trajectories in the
input space, by taking a succession of input target points to reach. These target points
were chosen according to the variance and the expected prediction variance reduction
criteria: every time a new input target point was needed a set of 20 random input points
was generated within the input range, and the one maximizing the considered criterion
was picked as the new target point.

Figure 4.24 shows the input trajectories obtained using such active learning scheme,
for the two criteria presented above. It comes immediately into attention that actively

0 0.5 1
0

100

200

300

400

500

600

700

800

900

1000

(a) Output variance.

0 0.5 1
0

100

200

300

400

500

600

700

800

900

1000

(b) Expected prediction variance reduc-
tion.

Figure 4.24: Input space trajectories as training is performed, for two different exploration
policies — initial stage of the learning process. The y coordinates denotes the training iteration.

picking training points that maximize the output variance has the undesired consequence
of getting the exploration stuck in the particular region of the input space corresponding
to a higher noise level. This phenomenon even becomes more accentuated as the learning
proceeds, as can be visualized in Figure 4.25: in the final training phase, after 4 000 data
points were presented to the IMLE model, an active learning scheme based on output
variance maximization keeps exploring the input region corresponding to the higher output
noise level, completely neglecting the remaining regions of this space. Picking training
points that maximize the expected prediction variance reduction, on the other hand,
produces a more uniform exploration of the input space.

Figure 4.26 may contribute to better understand the exploration process underlying
these different active learning approaches: it depicts the percentage of time spent in a
particular input region, after a training phase of 5 000 points, by considering a partition of
the input range in a set of 10 equally spaced bins. The active learning scheme introduced in

4.4. ACTIVE LEARNING 124

0 0.5 1
4000

4100

4200

4300

4400

4500

4600

4700

4800

4900

5000

(a) Output variance.

0 0.5 1

4100

4200

4300

4400

4500

4600

4700

4800

4900

5000

(b) Expected prediction variance reduc-
tion.

Figure 4.25: Input space trajectories as training is performed, for two different exploration
policies — final stage of the learning process.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

Random
Variance
Error Reduction

Figure 4.26: Percentage of time spent in a particular input region.

Section 3.4 effectively produces an almost uniform sampling of the input range, while the
criterion that picks training points based on their expected output variance concentrates
its efforts in the exploration of the left half of the input range, corresponding to a higher
noise level. Another result concerning random exploration of the input space is also
shown in this figure: due to its random nature, the input regions close to the input space
boundaries are less visited.

Next, the PUMA 560 testbed is used to illustrate some characteristics of the IMLE
model active learning mechanism. For visualization purposes, the same low-dimensional
map from R

2 to R
1 considered in Section 4.3 is also used in the following experiments.

CHAPTER 4. EXPERIMENTAL EVALUATION 125

Figure 4.27 shows how the input space is sampled when the same pool-based sampling

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) N = 10.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) N = 50.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) N = 500.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d) N = 5 000.

Figure 4.27: The evolution of the variance reduction measure as the IMLE model is trained.
Contours indicate equal expected variance reduction as a result of sampling a new training point
at a specific location. Also depicted are the training points acquired at each situation (exception
made to Figure 4.27d, which would lead to unnecessary figure clutter.

scheme described in the previous experiment is used to generate the input space acquisition
trajectory in an online way. It is worth of notice that such active learning mechanism
will usually lead to a more intensive exploration of the input space boundaries. This
behaviour is caused by the higher variance reduction expected if a new training point is
sampled near the input space limits, as can be observed in Figure 4.27. As a consequence,
the input space is sampled in a more uniform way: random sampling, on the other hand,
produces more frequent visits to interior regions of the input space. These behaviours are
depicted in Figure 4.28.

Does this active learning scheme improve the convergence of the learning process to low
prediction errors? Figure 4.29 shows that an active learning sampling scheme is beneficial,
specially in an early learning stage, as compared to random trajectory generation. In
this figure the random sampling is compared to the pool-based active learning scheme

4.4. ACTIVE LEARNING 126

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) Random sampling.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) Active learning.

Figure 4.28: 2D grid representing the percentage of time spent in a particular input location.
Darker squares denote a higher percentage of training points coming from these regions.

100 1 000 10 000 100 000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Training Points

R
M

S
E

100 1 000 10 000 100 000
0

5

10

15

20

25

30

35

40

M

od
el

s

Random
Active Sampling (NC = 10)
Active Sampling (NC = 50)
Active Sampling (NC = 200)

Figure 4.29: Learning curves for the PUMA 560 active learning example (R2 7→ R
1), showing

the evolution of the RMSE and the number of allocated experts for 4 different sampling schemes.
Results shown are the average over 20 independent trials.

provided by the IMLE model, for 3 different sizes of such pool, corresponding to 10,
50 and 200 random input candidates, represented by variable NC in the figure. It can
be seen that active sampling initially allocates more experts than the random sampling
strategy, and that, as a consequence, the RMSE drops to significantly lower values than
the ones corresponding to random sampling. However, as the learning process goes on,
eventually the random sampling creates enough linear experts to produce values of RMSE
comparable to the ones corresponding to the active learning scheme.

Similar learning curves can be obtained, for the PUMA 560 testbed, if a higher number
of input and output dimensions is considered: learning the R

3 7→ R
3 sensorimotor map,

CHAPTER 4. EXPERIMENTAL EVALUATION 127

first introduced in Section 4.3, has the results depicted in Figure 4.30, where, after a
training phase consisting of 100 000 sample points, the RMSE corresponding to the active
learning schemes is approximately half the random sampling RMSE.

100 1 000 10 000 100 000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Training Points

R
M

S
E

100 1 000 10 000 100 000
0

20

40

60

80

100

120

140

160

M

od
el

s

Random
Active Sampling (NC = 10)
Active Sampling (NC = 50)
Active Sampling (NC = 200)

Figure 4.30: Learning curves for the PUMA 560 active learning example (R3 7→ R
3), showing

the evolution of the RMSE and the number of allocated experts for 4 different sampling schemes.
Results shown are the average over 20 independent trials.

However, pool-based sampling becomes less practical as the input dimension increases,
since the size of the pool must increase accordingly, thus requiring more processing time
to obtain the next candidate point to sample. In this situation, the gradient of the
variance reduction criterion, as defined in equation (3.35) and Appendix C, can be used
to locally find the input direction along which the next training point should be sampled.
There are however some technical details with such approach: the predisposition of this
active learning scheme to sample the boundary of the input space will inevitably drive
the acquisition process outside the allowable input range, and as a consequence some
sort of penalty on the distance to the input space boundary must be introduced in the
trajectory generation mechanism to prevent sampling outside this range. Also, there are
no guarantees that the achieved trajectories will not enter some kind of deadlocks, where
the same region of the input space is sampled over and over again, as the dynamics
of the learning and active sampling processes are highly complex. This is a topic that
surely deserves additional investigation, but that will not be further addressed in this
dissertation, as it goes a bit beyond the scope of this thesis.

4.5. DISCUSSION 128

4.5 Discussion

The IMLE probabilistic model can be incrementally trained, and predictions can be pro-
vided during the training process, in a fully online fashion. All the experiments described
in this chapter served the primary purpose of validating the IMLE model performance
in different learning situations: it was shown first that the IMLE model is a competitive
learning algorithm for traditional single-valued forward prediction, achieving a prediction
accuracy comparable to several state-of-the-art function approximation algorithms. After
that the IMLE model was tested in several different multi-valued experimental settings
that demonstrated its good performance in such domains: these are regression problems
that are not conveniently dealt with by most supervised learning algorithms. This multi-
valued prediction capability also allows the generation of inverse predictions from the
same IMLE model that is used for forward prediction, and this was demonstrated in this
chapter too. Finally, it was shown how the variance reduction estimate provided by the
same IMLE model can be used to conduct the data acquisition procedure in order to
accelerate the convergence of the learning algorithm, under an active learning context.
The following chapter will show how to make use of the versatility of the IMLE proba-
bilistic model to control anthropomorphic robotic limbs, by learning their corresponding
sensorimotor maps and using these internal models to provide the information required
by their control processes.

Chapter 5

Sensorimotor Coordination

This chapter illustrates the application of the IMLE model to online learning and control
of robotic limbs, putting a special emphasis on situations where traditional learning algo-
rithms may fail, due to the lack of ability to deal with a multi-valued nature of the training
data. Section 5.1 introduces the model based control problem, providing a short review
of some standard approaches to this matter. Section 5.2 shows how the IMLE model can
be used to control a robotic arm using either open or closed-loop control schemes, making
use of its ability to provide both forward and inverse predictions from the same learned
model. Finally, Section 5.3 illustrates the use of a single IMLE model to learn a robotic
sensorimotor relation where a hidden change of context can occur without any kind of
notification to the learning and control algorithms — in this particular case, the change
of the kinematics structure by inclusion of a tool of unknown geometry.

5.1 Robotic Model Based Control

The major question that arises in model based control of robotic mechanisms is how to
choose, based on a previously acquired sensorimotor model, the actuation values that
will drive the robot state to a particular desired value. In the following discussion, the
control of the end-effector position, expressed as a vector x comprising the end-effector
coordinates in a known referential will be considered. Note, however, that the techniques
described in this section can be readily applied to control different components of the
robot state, other than the end-effector position; in particular, orientation of the same
end-effector can also be considered by an appropriate coding of this orientation in the
task space vector x.

At a kinematic level, the relation between joint positions q and end-effector task space
position x is defined by the kinematics function

x = fkin(q) . (5.1)

129

5.1. ROBOTIC MODEL BASED CONTROL 130

As stated before, when the dimension of the joint space is equal to the dimension of
the task space, the kinematics forward relation of a serial robot is a proper, single-valued
function, while the inverse relation is usually multi-valued — parallel robot exhibit the
opposite behaviour. If the dimension of the joint space is greater than the dimension of
the task space the robot is said to be redundant. This means that, for fixed task space
positions, the robot still can move along certain directions of the joint space, along a
constraint surface, known as the self-motion manifold. This redundancy allows the robot
to use the extra degrees of freedom, for instance, to avoid obstacles or to minimize the
energy spent to actuate its joints.

Another important concept is the notion of singularities, regions of the joint space
where the robot loses some degrees of freedom for its movements. Putting the robot near
singular configurations is highly undesirable, as the joint velocities needed to move the
robot in some task space directions become unbounded. Formally, singularities occur in a
particular joint configuration when the Jacobian matrix J(q), whose ijth element is given
by ∂f i

kin
(q)

∂qj
, is rank deficient. Redundant robots can use the extra degrees of freedom to

avoid joint limits and singularities.

While the kinematic function describes a static relation that describes the transfor-
mation operated by a robot from joint to task space, the dynamics equation relates joints
accelerations q̈ to corresponding torques τ . Contrary to the kinematics function, this is a
well-posed one-to-one relation between vectorial spaces of the same dimension, given by
the inverse dynamics equation

τ = M(q)q̈ + C(q, q̇) + G(q) , (5.2)

where M(q) is the mass or inertia matrix, C(q, q̇) aggregates the centrifugal and Coriolis
forces and G(q) denotes the gravity term. As can be seen in the above equation, this
relation depends on the robot current values of q and q̇, that can be understood as the
context of the dynamics equation. Since the inertia matrix is positive definite, the above
equation can be easily inverted to obtain

q̈ = M(q)−1(τ − C(q, q̇) − G(q)) .

The following sections will describe how these kinematic and dynamic sensorimotor
maps can be exploited to make the robot follow a desired task space trajectory.

5.1.1 Static Control

Given a desired end-effector xd(t), robotic control at a pure kinematic level uses the
kinematic function (5.1) to obtain a joint vector q that will place the end-effector at
the desired position. If an inverse model q = f−1

kin(x) is available, either an analytical

CHAPTER 5. SENSORIMOTOR COORDINATION 131

or a learned one, the choice of the joint vector q is generally guided by some kind of
minimization of a cost criterion, such as the manipulability index, the distance to joint
limits, the distance to obstacles or the proximity of singularities (Baillieul and Martin,
1990), as a kinematic inverse model for a redundant mechanism does not provide a single
solution for the control problem.

Forward kinematic models of serial mechanisms are normally much easier to obtain:
when such forward model is available a solution for the static control problem can be
found using numerical optimization techniques that also deal with the redundancy resolu-
tion issue. One of the simplest solutions for this problem is the use of a Newton–Raphson
algorithm to solve the equation fkin(q) − x = 0 (Peiper, 1968). Global methods find a
solution that minimizes a desired cost function by looking at the global joints and task
space paths: in (Nakamura and Hanafusa, 1987) the globally optimal redundancy control
problem is solved strictly by using Pontryagin’s maximum principle, while Kazerounian
and Wang (1988) integrate joint velocities found using the differential kinematics equa-
tions to produce the joint angles corresponding to the desired solution. Local methods, on
the other hand, only look at the instantaneous cost: this makes the optimization problem
simpler and easier to solve in real-time, but contrary to global methods they are prone
to singularities and less than optimal global solutions (Baillieul and Martin, 1990). Local
methods typically make use of the differential kinematic equations, described in detail in
Section 5.1.2, to calculate a sequence of joint values that will drive the end-effector to
the desired position (Shamir and Yomdin, 1988). The cyclic coordinate descent method

of Wang and Chen (1991) can also be viewed as a local method, where, starting from
an initial robot configuration, each joint value is updated in turn, trying to minimize the
distance between the end-effector position x and the desired position xd. A comparison
of global and local methods for numerical inverse kinematics is presented in the works
of Suh and Hollerbach (1987), Martin, Baillieul, and Hollerbach (1989) and Baillieul and
Martin (1990), while a comparison of real-time applications of some of these numerical
methods is discussed by Tolani, Goswami, and Badler (2000).

5.1.2 Velocity Control

The aim of a velocity based control scheme, also known as resolved motion rate control

(RMRC) is to find joint velocities q̇ that will generate some desired task space positions
xd and velocities ẋd. The reference task space velocity is usually given by

ẋr = ẋd + Kp(xd − x) , (5.3)

where x is the current end-effector position and Kp is a gain diagonal matrix. While
omitted for readability, in this chapter all the above variables depend on a particular
value of time, i.e., q, x, xr and xd, among others, should be read as q(t), x(t), xr(t) and

5.1. ROBOTIC MODEL BASED CONTROL 132

xd(t), respectively.

Differentiation of equation (5.1) results in the well known relation

ẋ = J(q)q̇ , (5.4)

where the matrix J(q) is the Jacobian matrix that, at a given joint configuration q, relates
task space velocities and joint velocities. If the Jacobian matrix is invertible, this means
that the task is not redundant and the robot is not in a singular configuration; in this
case, the solution for the control problem is straightforward and is given by

q̇a = J−1ẋr , (5.5)

where for notational convenience the dependence of the Jacobian on the current joint
position vector q has been dropped.

Equation (5.4) admits an infinite number of solutions q̇a, for a desired value of ẋ,
if the robot is redundant, with a joint space dimensionality greater than the task space
dimensionality, due to the existence of a null space of the transformation J , defined by
the set of joint values that satisfy the relation

Jq̇ = 0 .

As a consequence, any vector q̇N belonging to the null space of J can be added to an
arbitrary velocity vector q̇ without changing the corresponding task velocity, since

J(q̇ + q̇N) = Jq̇ + Jq̇N = Jq̇ + 0 = Jq̇ .

Also, when the robot is redundant it is no longer possible to define the inverse J−1.
One solution is to replace this inverse by a generalized inverse J †: the relation (5.5) then
becomes

q̇a = J †ẋr .

Note that the generalized inverse may not be unique: this can be remedied if the
Moore-Penrose pseudoinverse is chosen, a special generalized inverse that is unique and
that exists for every matrix, irrespectively of its rank.

A more general approach to velocity based control is to consider the actuation joint
velocity q̇a to be given by the solution of the following minimization problem,

arg min
q̇

(Jq̇ − ẋr)
TWx(Jq̇ − ẋr) + L(q, q̇) , (5.6)

where Wx is a diagonal matrix of weights and L(q, q̇) is a general loss function; setting

CHAPTER 5. SENSORIMOTOR COORDINATION 133

this function to
L(q, q̇) = (q̇ − q̇r)

TWq(q̇ − q̇r) + λH(q + τ q̇) ,

where q̇r is some reference joint space velocity, Wq is another diagonal matrix of weights,
H(q) is some penalty on the current joints positions, that tries to drive them to a given rest
position, τ is an infinitesimal that goes to 0 and λ is a scalar weight, allows the derivation
of some well-known velocity controllers, as will be shown in the following discussion. With
such loss function, the function to be minimized has a strong resemblance to the coherence
enforcement of Hersch (2009), where the control of movement in both task and joint space
is achieved using a Vector Integration To Endpoint (VITE) dynamical system (Bullock
and Grossberg, 1988). Setting the derivative of (5.6) to 0 and solving for q̇ results in

q̇a =
(

q̇r − λW −1
q ∇H

)

+ W −1
q JT

(

JW −1
q JT + W −1

x

)−1 [

ẋr − J
(

q̇r − λW −1
q ∇H

)]

,

(5.7)
where ∇H is the gradient of H at the current joint position.

Least Norm Method

Setting λ = 0, Wq = I, q̇r = 0 and Wx = wxI, with wx → ∞, results in

q̇a = JT (JJT)−1ẋr = J †ẋr ,

where J † = JT (JJT)−1 is the Moore-Penrose pseudoinverse of J ; this is one of earliest
solutions to velocity control problem, proposed by Whitney (1969), and known as the least
norm method. In this case, the cost is given by L(q, q̇) = q̇T q̇ = |q̇|2, and the fact that
the weights in Wx go to infinity makes this problem equivalent to minimizing the norm
of q̇, under the constraint given by equation (5.4): hence the “least norm” designation.

Weighted Least Norm Method

If a general weight matrix Wq is used instead, that assigns different importance to each
of the joints, the solution in equation (5.7) is simplified to

q̇a = W −1
q JT (JW −1

q JT)−1ẋr .

This is a weighted version of the least norm solution, first suggested by Whitney (1972),
where high values of the elements of the diagonal of Wq prevent fast movements of the
corresponding joints.

5.1. ROBOTIC MODEL BASED CONTROL 134

Damped Least Squares Method

The least norm method (and its weighted variant) has numerical problems when (JJT)

becomes ill-conditioned: this happens near singularities, where the robot cannot move in
the desired direction due to its kinematic properties. This undesired phenomenon can
be circumvented if the constraint (5.4) is relaxed, and this can be achieved by setting a
finite value for the weights in Wx. Making Wx = α−1I, while keeping λ = 0 and Wq = I,
results in the damped least squares control scheme, proposed simultaneously by Nakamura
and Hanafusa (1986) and Wampler (1986), with solution

q̇a = JT (JJT + αI)−1ẋr .

The existence of αI makes the matrix always invertible, but as a consequence the
solution no longer exactly satisfies (5.4). A weighted variant of this solution can be
readily obtained by considering an arbitrary positive diagonal matrix Wq, leading to

q̇a = W −1
q JT (JW −1

q JT + αI)−1ẋr .

Gradient Projection Method

Finally, avoiding joint vector values too close to the corresponding joint physical limits
can be enforced by defining a function H(q) that imposes higher penalties in regions close
to the joint space boundary. This method was first proposed by Liegeois (1977) and can
be obtained from equation (5.7) by considering Wq = I, λ > 0 and making Wx go again
to infinity, resulting in

q̇a = JT
(

JJT
)−1

ẋr − λ
(

I − JT
(

JJT
)−1

J

)

∇H

= J †xr − λ
(

I − J †J
)

∇H .
(5.8)

Since Wx → ∞ enforces a perfect task constraint, the joints limits avoidance is per-
formed in the null space of the Jacobian transformation, via the null space projector
(I − J †J).

Practical Considerations

All these velocity based control schemes only require the Jacobian of the forward kine-
matics relation, at every possible joint position q, to be able to operate normally. Any
sensorimotor motor learning algorithm that is able to provide an estimate of this Jacobian
can in principle be used to provide the necessary information needed to control a robot at
the velocity level, as done, for instance, by Salaün, Padois, and Sigaud (2010), using the
LWPR learning algorithm (Vijayakumar, D’Souza, and Schaal, 2005). Another approach

CHAPTER 5. SENSORIMOTOR COORDINATION 135

is to learn the map (q, ẋr) 7→ q̇a directly (D’Souza, Vijayakumar, and Schaal, 2001):
however, due to the redundancy of the kinematic function, this problem is ill-posed, with
a continuum of possible solutions q̇a that generate the same task space velocity ẋr under
the same context q. While it can be shown that, in the vicinity of a particular joint
value q, any solution obtained from averaging the training samples ẋi

r will result in a
solution ˆ̇qa that will produce the desired task space velocity ẋr (D’Souza, Vijayakumar,
and Schaal, 2001; Peters and Schaal, 2008), globally these solutions may not provide a
coherent controller due to the nonlinearity of the forward model. As a consequence, the
work of D’Souza, Vijayakumar, and Schaal (2001) biases the learning algorithm by train-
ing it with carefully chosen data that will produce only an inverse solution, an approach
that certainly lacks the generality required for autonomous learning.

Desired velocity commands q̇a can be directly fed to low-level controllers, responsible
for accurate tracking of such reference commands. This approach, however, does not take
into consideration the complex dynamics of a robot manipulator, ignoring the interactions
between different links. The dynamics equation (5.2) can be used to calculate the actu-
ation torques that will produce a desired joint vector acceleration q̈a; such acceleration
is not provided by any of these velocity control schemes, but it may be obtained from
numerical differentiation of q̇a, making

q̈a ≈
q̇a − q̇olda

T
,

where T is the sampling period and q̇olda is the desired joints velocity calculated in the
previous control iteration. This approach is taken, for instance, by Nakanishi, Cory, et al.
(2008) and Salaün, Padois, and Sigaud (2010). Note, however, that these approaches also
need a learned model for the robot dynamics.

Perhaps the main drawback of velocity control methods is the fact that, by operating
at a velocity level, they do not take into account desired acceleration references ẍd, as
can be seen in expression (5.3). The lack of such reference for the task space acceleration
many times leads to highly overdamped, non compliant controlled systems (Nakanishi,
Cory, et al., 2008). Acceleration based control methods, presented in the next section,
are a natural solution to this problem if desired acceleration profiles are to be considered.

5.1.3 Acceleration Control

Control methods at the acceleration level compute a joint acceleration vector q̈ from a
reference task space acceleration ẍr. This reference acceleration can be calculated, given
desired temporal profiles for the task space position, velocity and acceleration, represented
respectively by xd, ẋd and ẍd, by

ẍr = ẍd + Kv(ẋd − ẋ) + Kp(xd − x) . (5.9)

5.1. ROBOTIC MODEL BASED CONTROL 136

As before, x denotes the current end-effector position and Kp is a matrix gain over the
current position error. Vector ẋ is the end-effector velocity and Kv is a matrix gain over
the velocity error. Equation (5.9) turns the tracking problem into a reference attractor in
the task space, with gains Kv and Kp (Peters, Mistry, et al., 2005; Udwadia, 2003). This
reference acceleration vector can be related to a corresponding joint space acceleration by
the following equation,

ẍ = J̇ q̇ + Jq̈ , (5.10)

obtained from the time differentiation of (5.4), where J̇ denotes the time derivative of the
Jacobian.

Acceleration control suffers from the same redundancy resolution issues that arise
in velocity control, and obtaining an acceleration vector q̈ that fulfils the task space
acceleration requirements can follow the same approach. Thus, such solution q̈a can be
viewed as the vector that minimizes the following cost,

arg min
q̈

(Jq̈ + J̇ q̇ − ẍr)
TWx(Jq̈ + J̇ q̇ − ẍr) + L(q, q̇, q̈) . (5.11)

Setting L(q, q̇, q̈) = (q̈ − q̈0)
TWq(q̈ − q̈0), for instance, where q̈0 is the acceleration

required to perform some secondary task, and making Wx → ∞ results in

q̈a = W −1
q JT (JW −1

q JT)−1(ẍr − J̇ q̇) +
[

I − W −1
q JT (JW −1

q JT)−1J
]

q̈0

= W
− 1

2
q

(

JW
− 1

2
q

)†

(ẍr − J̇ q̇) + W
− 1

2
q

[

I −
(

JW
− 1

2
q

)† (

JW
− 1

2
q

)]

W
1
2
q q̈0 ,

(5.12)

which can be seen as the enforcement of the task ẍr while maintaining the joints accel-
erations q̈a as close to q̈0 as possible — as can be seen in equation (5.12), the secondary
task acceleration is projected into the null space of the main task, thus guaranteeing that
the resulting acceleration vector q̈a still fulfils the desired task space acceleration ẍr.

Reference accelerations q̈a have a simple translation to corresponding joint torques,
given by equation (5.2), and it is no surprise that a resolved acceleration controller is
almost always used in conjunction with an inverse dynamics model, leading to a torque
vector given by

τ = Mq̈a + C + G ;

when Wq = I and q̈0 = M−1(τ0 − C − G) the resulting control law is the well known
combination of a resolved acceleration based controller with a dynamical model, as first
proposed by Hsu, Mauser, and Sastry (1989).

Given the correspondence between desired acceleration and torques, other approaches
consider instead, in equation (5.11), a loss function

L(τ) = (τ − τ0)
TN(τ − τ0) ,

CHAPTER 5. SENSORIMOTOR COORDINATION 137

where τ0 represents the torque corresponding to some desired secondary task. It is easy
to show, using the dynamics relation τ = Mq̈ + C + G, that L(τ) corresponds to the
cost (5.11) if the substitutions Wq = MNM and q̈0 = M−1(τ0 − C − G) are made. It
can be shown that plugging these two expressions into (5.12), after some simplifications,
results in a desired torque vector given by

τ = N− 1
2

(

JM−1N− 1
2

)† (

ẍr − J̇ q̇ + JM−1(C + G)
)

+

+ N− 1
2

[

I −
(

JM−1N− 1
2

)† (

JM−1N− 1
2

)]

(N− 1
2 τ0) .

This is the framework presented by Peters, Mistry, et al. (2005): by choosing different
values for N several known controllers can be obtained: making N = M−2, for instance,
results again in the controller of Hsu, Mauser, and Sastry (1989), while N = M−1 recovers
the controller of Khatib (1987).

Practical Considerations

Besides the estimation of the Jacobian J , resolved acceleration controllers also need cur-
rent joint velocities q̇ and an estimate for J̇ , as can be seen from equation (5.12). Numer-
ically differentiating the Jacobian may introduce some estimation noise, and should be
handled with care. Also, cascading the controller with a dynamical model of the robot,
to obtain the actuation torques, also requires the learning of the inverse dynamics model.

The kinematics model in (5.10) and the dynamics model in (5.2) become coupled when
the overall torque controller cannot be expressed as a cascade of a resolved acceleration
controller and an inverse dynamics model, as in the work of Hsu, Mauser, and Sastry
(1989); as a consequence, matrices M , C and G may appear in the control law in a
unstructured manner. This complicates the learning process, as it means that these
quantities also need to be estimated from the data, independently of the estimation of the
kinematic or dynamic sensorimotor maps. Like in the velocity control case, direct learning
of the sensorimotor map needed for control, represented by the relation (q, q̇, ẍr) 7→ τ̈a,
is not feasible using standard learning approaches, due to the kinematics redundancy.
In this case the introduction of a penalty function on the torques τ may remove this
ambiguity, as done for instance in (Peters and Schaal, 2008). Note, however, that in this
case the training algorithm directs the learning process towards a particular solution for
the operational space control problem, somehow discarding the possibility of applying
different control schemes using the same learned model.

5.2. OPEN AND CLOSED-LOOP CONTROL USING IMLE 138

5.2 Open and Closed-Loop Control Using IMLE

Resolved acceleration and resolved motion rate controllers described in Sections 5.1.2
and 5.1.2 fall within the class of closed-loop control, where feedback sensory data is used
to track the desired end-effector trajectory. In this type of control, this feedback usually
comes in the form of current readings of position, velocity or acceleration of the end-
effector.

Closed-loop methods are known for their robustness towards external perturbations
and model uncertainties: resolved motion rate control, for instance, works reasonably well
even when the Jacobian estimate is not accurate, as long as the actuated joint velocities,
calculated using the estimated Jacobian, move the end-effector closer to the desired task
space point. In the absence of noise and perturbations, when a perfect kinematic model is
available, straight line trajectories towards the desired end-effector position are obtained
when RMRC schemes are used (Liegeois, 1977). However, since such methods need sensory
feedback, they suffer, in their original form, from excessive sensor noise levels, sometimes
resulting in robot jerky motions. Also, they are condemned to failure whenever signals
from the sensors cease to be available, for instance when the end-effector is occluded in a
vision based tracking system.

Open-loop controllers, on the other hand, rely on an accurate inverse sensorimotor
model to provide the actuations that will drive the end-effector to the desired state.
They are insensitive to sensor noise or sensor failure, as they do not use feedback sensory
information in the control process. Still, they are not as robust as closed-loop controllers
with respect to unexpected movement perturbations and inaccurate learned models.

The IMLE model provides an elegant solution to model based control of robotic end-
effector position tracking, as it can provide forward, inverse and Jacobian estimates from
the same model, that can be used for both open and closed-loop control. In closed-loop
mode, IMLE provides Jacobian estimates that are used to control the robot joints, using
either velocity or acceleration control schemes. If an open-loop control is desired, the
multiple solutions resulting from IMLE inverse prediction can be used to plan a trajectory
in the joint space, as described with more detail in Section 5.2.2. This results in a general,
learning based control scheme that can be switched from closed to open-loop at any time,
either due to a high noise level in the sensors, occlusions in visual feedback or simple
sensor failure. In fact, IMLE can be used to compare sensor readings to their expected
values, as predicted from its forward model, in this way enabling an automatic switch to
open-loop mode whenever there is a large discrepancy in these values. This is a distinctive
characteristic of the IMLE probabilistic model: as discussed in Chapter 2, while many
learning algorithms were successfully applied to operational space control, none of these
methods provides a learned model that can be simultaneously used in a feedback and
feedforward control scheme.

CHAPTER 5. SENSORIMOTOR COORDINATION 139

The rest of this section provides experimental results supporting the effectiveness of
the IMLE model in dealing with both open and closed-loop control, in both an online and
offline learning setting.

5.2.1 Closed Loop Position Tracking

In the following experiments, the gradient projection method originally proposed by
Liegeois (1977), as given by equation (5.8), is adopted to control the end-effector po-
sition in task space, where the null space of the main task is used to keep the joints values
as far as possible from their physical limits, using

H(q) =
1

Nq

Nq∑

i=1

(

qi − ai
ai − qmaxi

)2

, with ai =
qmaxi + qmini

2
;

the constant Nq denotes the overall number of joints and qmin and qmax are the lower and
upper joints limits.

Motor velocity commands q̇a(t) are calculated, at each time step, according to equa-
tions (5.3) and (5.8). When the system is close to singularities a regularization term is
introduced in the pseudo-inverse, similar to the regularization term of the damped least
squares method of Nakamura and Hanafusa (1986) and Wampler (1986), to avoid numer-
ical instabilities. The Jacobian J(q(t)) is obtained, at each time step, from the current
IMLE model, taking the estimate of the learned map local slope at input query point
q(t).

Following a trajectory in the task space, represented by a sequence of task space points
x

(i)
d , can be accomplished, using this closed-loop controller, by simply feeding the desired

task space points, together with desired velocities ẋ
(i)
d , in sequence to the controller,

switching to the next reference point x
(i+1)
d whenever the current point x

(i)
d is reached.

5.2.2 Open Loop Trajectory Planning

Given a trajectory in the task space, represented by a sequence of task space points
x

(i)
d , together with corresponding desired velocities ẋ

(i)
d , the open loop trajectory plan-

ning problem consists in finding joints position profiles, qd(t), eventually together with
velocity and accelerations given by q̇d(t) and q̈d(t) respectively, that will generate a task
space trajectory satisfying the desired position and velocity constraints. This problem,
as previously discussed in this chapter, is ill-posed, as redundant robots exhibit, for each
desired task space position, a continuum of inverse solutions. To generate a feasible joint
space trajectory, first IMLE is used to obtain, for each task space point x

(i)
d , a set of

inverse kinematics solutions q
(i)
j . After that, a single solution for each of the inverse

kinematics sets of solutions is picked, by imposing a penalty on the overall joint space
displacement and on the predicted forward error for the whole trajectory, choosing the

5.2. OPEN AND CLOSED-LOOP CONTROL USING IMLE 140

joint space sequence that minimizes such cost. Finally, position, velocity and acceleration
profiles are generated for each joint that respect the velocity and acceleration constraints
for the joints. These steps are further detailed in the following text.

Inverse Prediction

The IMLE model can directly provide inverse predictions q̂
(i)
j for a given query x

(i)
d , cal-

culated using the probabilistic model learned so far. In general, as discussed in Chapter 3,
inverse predictions may be not as accurate as predictions taken from the forward model,
due to the multi-valued nature of the inverse kinematics map. However, since forward
and Jacobian estimates can also be readily obtained from the same learned model, these
estimates can be used to improve q̂

(i)
j , the inverse kinematics solutions provided by the

IMLE model for each of the desired positions in the task space. Assuming a first order
approximation to the estimated forward kinematics map, it is straightforward to obtain
the new inverse prediction q

(i)
j that will exactly produce the desired output x

(i)
d , in a least

norm sense. This quantity is the solution of the relation,

x̂(q̂
(i)
j) + J(q̂

(i)
j)

(

q
(i)
j − q̂

(i)
j

)

= x
(i)
d ,

where q̂
(i)
j is an inverse solution provided by IMLE, q

(i)
j is the corrected valued for this

inverse solution, and J(q̂
(i)
j) and x̂(q̂

(i)
j) are respectively the Jacobian and forward pre-

dictions evaluated at q̂
(i)
j , as predicted by IMLE. This results in the following corrected

inverse estimate:
q

(i)
j = q̂

(i)
j + J †(q̂

(i)
j)

(

x
(i)
d − x̂(q̂

(i)
j)
)

; (5.13)

in a small neighbourhood of q̂
(i)
j this correction will drive the error (x

(i)
d − x̂(q̂

(i)
j)) ap-

proximately to zero, according to the learned model.

Trajectory Optimization

Having a set of candidate inverse solutions for each desired task space point, q
(i)
j , the main

issue is then how to choose an appropriate solution from each of these sets. A sensible
approach is to pick the inverse solutions in a way that the overall joints displacement is
minimized, avoiding large jumps in the joint space, and also to prefer inverse solutions
with a low forward error, as estimated from the learned model.

To achieve such behaviour, the approach proposed in (Qin and Carreira-Perpinan,
2008) is closely followed, where a joint space trajectory is obtained, from the full set of
inverse solutions, by minimization of a global penalty of the form

N∑

i=1

‖q(i) − q(i−1)‖ + λ
N∑

i=1

‖x
(i)
d − x̂(q(i))‖2 , (5.14)

CHAPTER 5. SENSORIMOTOR COORDINATION 141

for λ ≥ 0. The first term penalizes large joint space variations, encouraging short trajec-
tories, while the second term imposes a penalty on inaccurate solutions given by inverse
prediction. Note that, contrary to the work of Qin and Carreira-Perpinan (2008), the
IMLE model is used to get the predictions x̂(q(i)) — in (Qin and Carreira-Perpinan,
2008), the Mixture Density Network used for learning the inverse kinematics map cannot
generate forward predictions, and so the forward error must be calculated, either using
an analytical model for the direct kinematics or an independent learning algorithm. Also,
another fundamental difference is the online nature of the IMLE algorithm: in (Qin and
Carreira-Perpinan, 2008) the inverse kinematics model must be learned offline, before
being used for control.

Minimization of (5.14) is computationally very cheap, using Dijkstra’s algorithm over
a directed acyclic graph; compared to the computations involved in obtaining forward
and inverse predictions, its cost is negligible.

Generation of motor commands

After the calculation of a joint space trajectory, corresponding to the desired task space
trajectory, it is needed to generate temporal positions, velocity and acceleration profiles
for each of the joints, that can be fed to low level PID joint controllers or to an inverse
dynamics model, responsible for the generation of a set of joint torques that will achieve
the desired joint profiles. Additionally, it may be of interest to traverse each of the task
space points with a given desired velocity ẋ

(i)
d . Fortunately, these velocities can easily

be mapped back to the joint space, once again using the pseudo-inverse of the estimated
Jacobian J †, making

q̇
(i)
d = J †(q

(i)
d) ẋi

d . (5.15)

Position, velocity and acceleration temporal profiles that achieve such task, described
by q

(i)
d (t), q̇

(i)
d (t) and q̈

(i)
d (t) respectively, can then be obtained for each joint, by resorting

to classic joint trajectory generation based on, for instance, cubic polynomials or Bang-
Bang acceleration policies (Craig, 1989), that take the acceleration and velocity limitations
of each joint into account. These temporal profiles can then be fed into the low level joint
controllers or to an inverse dynamics model. Note that this control scheme does not
need information about the end-effector position (or velocity or acceleration): control is
performed in a pure open-loop manner, and the trajectory planning is executed without
resorting to task space feedback.

5.2.3 Experimental Evaluation

The following experiments are performed on the iCub simulator (Tikhanoff, Fitzpatrick,
et al., 2008), a software that uses ODE (Open Dynamic Engine) for realistically simulating
the movement and physical interaction with objects of iCub, a 53 degrees of freedom hu-

5.2. OPEN AND CLOSED-LOOP CONTROL USING IMLE 142

Figure 5.1: A snapshot of the iCub Simulator used in the experiments.

manoid robot for research in embodied cognition (Tsagarakis, Metta, et al., 2007; Metta,
Natale, et al., 2010; Parmiggiani, Maggiali, et al., 2012; Natale, Nori, et al., 2013) —
Figure 5.1 displays a snapshot of this simulator.

The right arm and the waist of the robot are actuated to control the end-effector posi-
tion in the 3D Cartesian space, using the controllers presented in the two previous sections.
The joint space vector q used in the experiments has 7 degrees of freedom, corresponding
to the shoulder yaw, pitch and roll rotations (elevation/depression, adduction/abduction
and rotation of the arm), the elbow flexion/extension, and the waist yaw, roll and pitch
rotations (rotation, adduction/abduction, elevation/depression of the trunk). The cor-
responding joint limits are defined in Table 5.1. The task space end-effector position x,
on the other hand, consists in the 3D position of the hand, taken with respect to a fixed
reference frame placed on the ground, between the robot feet.

arm waist

qmin −80◦ 0◦ 0◦ 20◦ −30◦ −30◦ −10◦

qmax 0◦ 80◦ 80◦ 80◦ 30◦ 30◦ 30◦

Table 5.1: Joints limits of the iCub robot simulator.

Open and Closed-Loop Trajectory Following

The first experiment compares the performance of the proposed open and closed-loop
control schemes when following a desired trajectory in the task space. In this and the
following experiments, the robot was asked to perform a square-like pattern in a X-Y
plane in the task space, with side length equal to 10 cm, using its end-effector. One of

CHAPTER 5. SENSORIMOTOR COORDINATION 143

the main advantages of the IMLE algorithm is the ability to work in an online manner,
learning and updating its internal parameters while using the same model to make the
predictions needed to execute the desired actions. This motivates using the model pro-
vided by the IMLE learner to try to perform the desired trajectory from scratch, using an
untrained IMLE probabilistic model and updating the IMLE probabilistic model on the
fly, presenting it with the training points as they are acquired during the robot movement.

Figure 5.2 shows the results obtained when trying to draw the square-like pattern,
both for open-loop (in the left) and closed-loop control (in the right). The robot repeated
the movement for several iterations, trying to follow the desired square-like trajectory in
each iteration.

The open-loop controller planned, at each iteration, the joint space velocity and po-
sition profiles that would take the end-effector to each of the edges of the square, in
sequence, stopping at each of them. Additionally, some task space via points were defined
between the square edges, to guarantee a reasonably straight trajectory in the task space,
between the edges of the square. As for the closed-loop controller, it sufficed to set its
end-effector position reference to each of the edges of the desired square-like trajectory:
each time the end-effector was close enough to the target point or a time limit was reached
the reference in the task space would change to the next edge. There was no need to set
via points for the closed loop controller, since, as stated before, RMRC schemes are known
to generate straight line task space trajectories when the Jacobian estimate is accurate
enough.

As expected, a poor controller performance was observed during the first iterations of
the movement, specially for open-loop control, due to a not yet properly learned model.
However, as shown in Figure 5.2, after about 10 iterations the kinematics model had been
learned and the robot could then properly follow the desired trajectory, for both open and
closed-loop control. Note that in the first iterations the closed-loop controller was more
successful at performing the task: this is a consequence of the online learning setup, since
the closed-loop controller Jacobian estimation at each time step used an IMLE model that
was also constantly being updated and improved. In contrast, the open-loop controller
planned the whole trajectory in the beginning of the movement, and would only use
the updated IMLE model in the next movement iteration. Alternatively, the open-loop
controller could be easily adapted to re-plan the trajectory at a given time rate, to exploit
the online update of the kinematics model.

It can be rightfully argued that controlling the robot while simultaneously learning the
model in an online fashion avoids the potential problems that can arise when estimating
the inverse kinematics of a redundant robot, as the training data being fed to the learning
algorithm originates mostly from a single joint space trajectory, biasing the learning algo-
rithm to a specific solution of the inverse kinematics. Motivated by the desired to evaluate
the IMLE inverse prediction capabilities in a more general setting, a random exploration

5.2. OPEN AND CLOSED-LOOP CONTROL USING IMLE 144

0.3

0.32

−0.1 −0.05 0 0.05

X [m]
Z

 [m
]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [m

]

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [m

]

(a) First Iteration.

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [m

]

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [m

]

(b) Second Iteration.

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [m

]

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [m

]

(c) Tenth Iteration.

Figure 5.2: Online Learning and Trajectory Following: open-loop (left) and closed-loop (right).

CHAPTER 5. SENSORIMOTOR COORDINATION 145

in the joint space of the robot was performed: this motor babbling was executed until
100 000 training points were acquired and processed by the IMLE algorithm, in order to
cover the whole workspace. After that, the task described in the previous experiment
was repeated. There were no noticeable changes on the final open-loop trajectory, and
the tracking error remained in the same level: this shows that, despite the redundancy in
the kinematics map, the open-loop controller based on the inverse predictions provided
by IMLE could still achieve a good accuracy while performing the desired task.

Sensitivity to Sensor Noise

Next, the performance of both open and closed-loop controllers under different sensor
noise levels is analysed. While a performance drop is to be expected for both controllers
when the noise increases, as a consequence of less precise learned IMLE models, a larger
sensitivity of the closed-loop controller to the noise is also anticipated, as this controller
relies on sensor readings to calculate the actuation at each control step. This is confirmed
in Figure 5.3, where the RMSE is depicted for both open and closed-loop controllers as
a function of the noise level, for the square-like target trajectory, after the kinematics
model has been properly learned, and where a noise level of X means a noise uniformly
distributed between -X and X. The jerkiness of the motion is also depicted in this figure:
as expected, the jerk for the closed-loop controller quickly increases with the output noise
level, while the open-loop jerk is kept at negligible values due to the smooth joint profiles
generated by the trajectory planner, using cubic polynomials.

Figure 5.4 shows the attained trajectories, for open and closed-loop, for three different
noise levels. Also, shown in Figure 5.5 is a comparison of the first joint position profile
under a severe sensor noise scenario, for both types of controllers; the obtained results for
the other joints were similar.

Sensor Failure

Sometimes the sensors reading the end-effector task space position may fail: this may be
due to a sensor malfunction or, for vision based systems, simply a consequence of some
kind of end-effector occlusion. When such kind of situation occurs an open-loop control
scheme must be used, as the sensory feedback that makes the current task space end-
effector position x(t) is no longer available. Figure 5.6 depicts the catastrophic trajectory
that arises when, using a closed-loop controller, a sensor malfunction is simulated at a
specific instant. In the right side of the same figure is shown the resulting trajectory when a
composite controller is used for the same situation: this controller uses the Jacobian based
RMRC scheme during normal operation, and when the end-effector position feedback fails
a seamless switch to open-loop control, based on the same learned model used for closed-
loop control. As soon as the failure is detected, the composite controller switches to

5.3. LEARNING AND CONTROL OF SWITCHED SYSTEMS USING IMLE 146

0 0.025 0.05 0.075 0.1 0.2
0

0.01

0.02

0.03

0.04

Noise level [m]

T
ra

ck
in

g
er

ro
r

[m
]

Closed−loop
Open−loop

(a) Average error (RMSE).

0 0.025 0.05 0.075 0.1 0.2
0

100

200

300

400

500

600

Noise level [m]

A
ve

ra
ge

 je
rk

 [m
/s

3]

Closed−loop
Open−loop

(b) Average jerk (m/s3).

Figure 5.3: Average error and jerk over the square-like trajectory, for different sensor noise levels.

open-loop mode and a new trajectory is planned and executed that does not depend on
task space feedback.

As shown in the figure, the composite controller based on both open and closed-loop
control shows no noticeable degradation on the task performance when the failure occurs.
Above each end-effector trajectory is also depicted the temporal profile for the first joint
of the arm. Note that even when a sensor failure is not properly communicated to the
controlling algorithm, resulting in a situation where the sensory feedback simply returns
erroneous values, the control system can detect such situation by permanently comparing
the sensor readings to the corresponding predicted values, taken from forward predictions
given by the IMLE model.

5.3 Learning and Control of Switched Systems Using IMLE

Many robotic tasks, involving handling and manipulation of different objects, make the
environment and the mappings to be learned non-stationary. The kinematics mapping
from robot joint angles to end-effector position, for instance, changes whenever different

CHAPTER 5. SENSORIMOTOR COORDINATION 147

0.3

0.32

−0.1 −0.05 0 0.05

X [m]
Z

 [m
]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [m

]

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [m

]

(a) No noise.

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [m

]

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [m

]

(b) Moderate noise level.

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [m

]

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [m

]

(c) High noise level.

Figure 5.4: Trajectory following after the learning phase, for several noise levels: open-loop (left)
and closed-loop (right).

5.3. LEARNING AND CONTROL OF SWITCHED SYSTEMS USING IMLE 148

0 2 4 6 8 10
−70

−65

−60

−55

−50

−45

−40

Time [s]

q0 [°
]

(a) Open-loop.

0 5 10 15 20
−70

−65

−60

−55

−50

−45

−40

Time [s]

q0 [°
]

(b) Closed-loop.

Figure 5.5: Position profiles for the first joint, as the robot executes the task with a high level
of sensor noise.

0 5 10 15 20
−90

−80

−70

−60

−50

Time [s]

q0 [°]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [m

]

(a) Closed-loop controller.

0 5 10 15 20
−90

−80

−70

−60

−50

Time [s]

q0 [°]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [m

]

(b) Composite controller, changing to
open-loop when the fault is detected.

Figure 5.6: Simulating an end-effector position sensor fault.

tools are used; another classical example is the change in the robot dynamics due to
the variation of the load of the end-effector. This is known as learning under a varying
context, where an unobserved context variable changes the map to be learned. Such
context can generally be a discrete variable, corresponding to the case where only a finite,
albeit unknown, number of different contexts exist, or continuous, indicating a smooth
change on the mapping to learn. The most straightforward answer to this problem is to
introduce some form of adaptation in the learning algorithms, making them forget past

CHAPTER 5. SENSORIMOTOR COORDINATION 149

experience through the use of some kind of forgetting factors mechanism. Of course, it
is terribly inefficient to relearn the complete mapping every time the context changes,
specially when there is an effective chance that a previously learned context may be
presented again to the robot. Another approach to this problem, for the discrete case, is
to keep a set of models that describe the robot model for each different context: some
of the earliest work on this subject is given by the works of Narendra and Balakrishnan
(1997) on adaptive control and the MOSAIC architecture of Haruno, Wolpert, and Kawato
(2001), while (Petkos and Vijayakumar, 2007) constitutes a more recent vision on this
matter. This latter work identifies three critical issues when learning multiple models for
use in robot control. The first issue is how to identify the correct number of models to
use without any problem specific information. The other two issues are how to estimate
the current context, given that the correct number of models to use is known, and how
to use such estimation for either controlling the robot or further training the models.
The adaptive control of Narendra and Balakrishnan (1997), for instance, considers that
an appropriate number of models is given a priori, already trained and exhibiting good
performance within each context; the MOSAIC architecture, on the other hand, assumes
that some perceptual cues are available that can guide a correct context estimation in
the early learning process, that can in turn successfully assign the perceived data points
to a predefined number of models — which in practice turns out to be a very optimistic
assumption. Additionally, the results presented for the MOSAIC model are somewhat
limited to a very simple system consisting of an object moving along a single direction
axis. Finally, the approach presented in (Petkos and Vijayakumar, 2007) ambitiously
claims the ability to deal with continuously varying contexts, although, as the authors
admit, their method only holds under changes in the mass of the object being manipulated
— it could not be applied, for instance, when varying a robot link length while trying
to learn its forward kinematics. Their assumption of an explicit latent context variable
also brings some problems when the current context needs to be inferred for training
purposes: in the continuous case they need to resort to two models previously trained
using context labelled data before they are able to generalize to unseen contexts, while in
the discrete case a bootstrap, based on a EM procedure over a batch of unlabelled data
points, is required when no trained models exist yet — this however, goes against the
online, incremental philosophy of LWPR (Vijayakumar, D’Souza, and Schaal, 2005), the
function approximation algorithm used in the corresponding simulations.

Some recent works focus more specifically on the problem of adapting the robot kine-
matics under different tools operation. In (Nabeshima, Kuniyoshi, and Lungarella, 2006)
a simple 2-joints planar manipulator is controlled using an analytical model of the Ja-
cobian, and when a tool is added to the kinematic chain the corresponding Jacobian is
obtained through multiplication of the analytical Jacobian by a linear constant matrix,
which is learned exploiting the temporal integration of visual and tactile information dur-

5.3. LEARNING AND CONTROL OF SWITCHED SYSTEMS USING IMLE 150

ing motor exploration. Another approach is proposed in (Rolf, Steil, and Gienger, 2010),
where a recurrent neural network parametrized with the length of the tool is used to
estimate the inverse kinematics of a humanoid robot. However, the length of the tool
must be known in advance to train and query the neural network. Additionally, training
is done using circular trajectories in a fixed plane: this procedure learns a subspace of
much lower dimensionality than the joints space dimension being used. Another major
limitation of these works is their inability to account for other than rigid transformations,
i.e., their inability to cope with flexible or deformable tools.

The IMLE model framework allows modelling the map to be learned directly as an
unknown multi-valued function: this approach bears some significant advantages over the
other aforementioned approaches to estimation and control of discrete varying context
systems: on one hand, there is no need to maintain a bank of single-valued function
approximation models, since IMLE produces a discrete set of solutions for each input
query point; the number and values for this set of solutions depend on the specific input
query location and the information gathered so far by the algorithm. This also avoids
the need to define or estimate the number of single-valued models to use. Secondly,
the IMLE training process, based on the EM algorithm, automatically and transparently
assigns responsibilities to each of the local models for each training point, with no need
to explicitly maintain an estimate for the hidden context variable. This even allows for
the existence of a different number of contexts in different locations of the input space.
Choosing an appropriate control action is also very simple using IMLE: assuming some
form of continuity and smoothness, a particular solution, for a given query point, can be
picked by simply choosing the predicted solution closest to the most recently observed
output point.

To evaluate the performance of the IMLE algorithm under a discrete varying context
situation, this algorithm is used to learn the kinematics map of two distinct humanoid
robots: section 5.3.1 describes the experiments made using the iCub simulator, while
section 5.3.2 introduces the Kobian robot and presents the experimental results obtained
using this humanoid robot. The same task space closed-loop control scheme is used to
track a desired trajectory in both situations: such controller, once again, is based on the
approach first introduced by Liegeois (1977), already presented in section 5.2.1.

In the following experiments the online multi-valued estimation performance of the
IMLE model is evaluated and compared to the estimation provided by LWPR, a single-
valued function approximation algorithm, in a switching context scenario. It is important
to stress out that this, of course, is not a fair comparison, as LWPR simply cannot
cope with multi-valued data and thus is condemned to a poor prediction performance
in this situation. Nevertheless, providing these comparisons may help understanding
the technical limitations of classical single-valued function approximation schemes in the
presence of training data arising from switching sensorimotor contexts, and how a multi-

CHAPTER 5. SENSORIMOTOR COORDINATION 151

valued learning algorithm like IMLE can circumvent such limitations.

5.3.1 Experimental Results: iCub Simulator

The same joint vector q and corresponding limits used in section 5.2.3 are also used in
the following experiments, carried using the iCub simulator, and thus their description
will be omitted here for brevity. Differently from previous experiments, the end-effector
position x can be considered the robot hand position or the location of the tip of a tool,
depending on whether the robot is holding such tool or not. Two different tools where
considered in the following simulations: a 28 cm stick tool and a 48×30 cm L-shaped tool,
displayed in Figure 5.7. This makes the kinematics map to be learned to vary in time, as
the task space position x depends, for the same joint configuration q, on the presence or
not of a tool held by iCub.

Figure 5.7: Snapshots of the iCub Simulator grabbing the two different tools used in the exper-
iments: on the left, the 28 cm stick tool, on the right, the 48 × 30 cm L-shaped tool.

Motor babbling and model estimation

The first experiment consists in training the IMLE and LWPR learning algorithms with
data pairs (qi,xi) sampled from random trajectories performed by the robot in its joint
space. During this motor babbling phase the robot moved to random reference configu-
rations in the joint space, using a low-level joint position controller, spanning the whole
space within the robot limits defined in Table 5.1. The first 100 000 training points were
acquired with no tool held by iCub, i.e., considering x to be the iCub right hand coor-
dinates. After that, the 28 cm stick tool (see left image in Figure 5.7) was attached to

5.3. LEARNING AND CONTROL OF SWITCHED SYSTEMS USING IMLE 152

the robot hand, without informing the learning algorithms of such change in the forward
kinematics. After the acquisition of more 100 000 training points, the tool was removed
and the robot continued the motor babbling for more 100 000 points.

During this procedure, the root mean square error (RMSE) over two independent test
sets of 3 000 samples each, S1 and S2, was calculated: the joint values q were the same
in both test sets, while the x values corresponded to the positions of the end-effector,
considering either the hand position (S1) or the position of the tip of the 28 cm stick tool
(S2). The results thus obtained are shown in Figure 5.8.

0 100,000 200,000 300,000
0

0.05

0.1

0.15

0.2

0.25

0.3

RMSE on Test Set S
1

Training Samples

E
st

im
at

io
n

E
rr

or
 (

R
M

S
E

)
[m

]

IMLE
LWPR

(a) Test set S1 (no tool).

0 100,000 200,000 300,000
0

0.05

0.1

0.15

0.2

0.25

0.3

RMSE on Test Set S
2

Training Samples

E
st

im
at

io
n

E
rr

or
 (

R
M

S
E

)
[m

]

IMLE
LWPR

(b) Test set S2 (28 cm stick tool).

0 100,000 200,000 300,000
0

0.05

0.1

0.15

0.2

0.25

0.3

RMSE on Switching Test Set (S
1
+S

2
)

Training Samples

E
st

im
at

io
n

E
rr

or
 (

R
M

S
E

)
[m

]

IMLE
LWPR

(c) Test set is changed according to the tool
used during training: first S1 is used, then S2

and finally S1 again.

Figure 5.8: Forward kinematic prediction error with a switching context: IMLE and LWPR
learning algorithms are trained first without the tool (until sample 100 000), then with the
28 cm stick tool (until sample 200 000) and then again without the tool (until sample 300 000).
Figures above show the observed RMSE in different test sets.

As expected, the IMLE model performs much better than a single-valued learner: af-
ter being presented with training data coming from the two branches of the multi-valued
relation, corresponding to the two different kinematic contexts, this model is able to suc-
cessfully predict the task space position of the end-effector in both situations, i.e., with

CHAPTER 5. SENSORIMOTOR COORDINATION 153

and without a tool attached to iCub hand. It is important to stress again that the pres-
ence of the tool is never signalled to the learning algorithms any time during the training
process: from their point of view, they were trained with 300 000 undistinguishable train-
ing points. The reason for IMLE apparent superiority is, of course, the fact that it can
maintain information regarding both multi-valued branches in its internal model. As for
LWPR, it can be seen that its performance is quite similar to IMLE during the first phase
of training, showing an RMSE comparable to IMLE in both test sets S1 and S2. When
the second training phase starts, by changing the context and introducing the tool in
the kinematic chain, some fundamental differences can already be found between the two
algorithms, with IMLE converging faster in the presence of this new training data. This
is a consequence of LWPR necessity to forget the relation learned using the first context,
fully retraining its internal model to be able to approximate the new kinematic relation.
This can be observed in Figure 5.8a, where a sudden increase in the RMSE evaluated
over S1 is observed when training with data coming from the alternative context. On the
other hand, in the same situation, there is only a slight increase in the RMSE over S1

for the IMLE model, showing that the new training data causes little interference on the
linear experts assigned to the kinematics map corresponding to the first context.

When the context changes again, with training data being generated from the original
kinematics relation, relating the joint vector to the iCub hand position with no tool being
held, the prediction error of the IMLE model suffers almost no change (see Figure 5.8c),
as its internal model kept the information corresponding to the initial context training
data. The LWPR model, as expected, must again fully retrain its parameters, leading to
a huge instantaneous increase of the prediction error when the tool is removed.

There is a lower bound on a single-valued learning algorithm prediction error in the
presence of multi-valued relations: for a two-valued function like the one presented in the
above experiment, this value can easily be found if the two branches of this relation are
assumed to differ by a constant distance: this is precisely what happens when a tool is
added to the iCub kinematic chain. In this case, the mean square error of a single-valued
predictor x̂(q) on the test set S̄ = S1 ∪S2 is, assuming S1 and S2 to have the same number
of test points Ntest,

MSES̄(x̂) =
MSES1(x̂) +MSES2(x̂)

2

=
1

2Ntest

(
Ntest∑

i=1

‖xS1
i − x̂(qi)‖

2 +
Ntest∑

i=1

‖xS2
i − x̂(qi)‖

2

)

,

where xS1
i and xS2

i are test outputs coming respectively from S1 and S2, sharing the same
input qi. It is relatively simple to see that the predictor x̂∗ that minimizes the above
error is the one that produces, for each qi, a prediction corresponding to the average of
the true solutions, i.e., x̂∗(qi) = (xS1

i + xS2
i)/2. In this situation, the mean square error

5.3. LEARNING AND CONTROL OF SWITCHED SYSTEMS USING IMLE 154

is MSES̄(x̂∗) = (∆L/2)2, where ∆L is the constant value by which the two branches of
the multi-valued relation differ: in the above experiment this corresponds to the length
of the displacement of the end-effector x caused by the introduction of the tool, i.e.,
∆L = 28 cm. Multi-valued learning algorithms, by being able to generate a set of multi-
valued predictions for the same input query, are of course not troubled by this bound.

Task space control

The next experiment evaluates the performance of the IMLE algorithm while controlling
the end-effector (be it the iCub hand or the tip of one of the tools), after training with
data points generated by different contexts. The test movement consists of a sequence of
16 target positions that results in a cube with a 10 cm side, including some of its diagonals.

Three different training sets with 100 000 points each are considered, T1, T2 and T3,
corresponding respectively to the kinematics map when the end-effector is the iCub hand
(no tool attached), when the stick tool is held by iCub and when the L-shaped tool
is instead considered. The cube-like trajectory, correspondingly, can be performed using
iCub hand, the stick tool or the L-shaped tool: these experiments are denoted respectively
by S1, S2 and S3. For illustration purposes, it is also shown in the following figures the
trajectories attained by a single-value learner, here once more represented by the LWPR
algorithm.

Figure 5.9 shows the execution of the test movement with the hand, after motor
babbling without any tool (T1). This is a standard single-valued learning scenario, and

(a) IMLE. (b) LWPR.

Figure 5.9: Task space test trajectory using the hand (S1), after training using data coming
from the same context (T1).

both algorithms achieve satisfactory performance. After that, both algorithms are also
trained using the dataset T2, corresponding to the stick tool, and the test movement
is attempted using the same tool: the observed trajectories are depicted in Figure 5.10:
while some minor degradation on the obtained trajectories can be observed — particularly

CHAPTER 5. SENSORIMOTOR COORDINATION 155

in those generated by the LWPR algorithm — the overall results are still acceptable.

(a) IMLE. (b) LWPR.

Figure 5.10: Task space test trajectory using the stick tool (S2), after the training sequence
T1 7→ T2.

If, however, the test movement is attempted without the stick tool, using the iCub
hand, after the same training sequence took place (T1 7→ T2), some very distinct trajecto-
ries are produced, as can be observed in Figure 5.11. Here, LWPR can no longer perform

(a) IMLE. (b) LWPR.

Figure 5.11: Task space test trajectory using the hand (S1), after the training sequence T1 7→ T2.

the cube trajectory using the iCub hand, as it adaptation to the stick tool context made
the algorithm forget the original joints to hand position kinematics map. IMLE, on the
other hand, does not exhibit any performance drop, still having the ability to perform the
desired trajectory using the iCub hand.

After these tests, the training procedure was resumed, using again dataset T1, corre-
sponding to the original kinematics map, where no tool was held by iCub. Figure 5.12
shows the cube-shaped task performed by the IMLE learner, using either the hand or the
tip of the stick tool. As can immediately be perceived from this figure, training using

5.3. LEARNING AND CONTROL OF SWITCHED SYSTEMS USING IMLE 156

data coming from the two different contexts (stick tool and no tool) does not cause any
kind of interference in the learning process, and after this training takes place the robot
can successfully perform the desired task using either its hand or the stick tool tip.

(a) Hand (no tool attached). (b) Stick tool held.

Figure 5.12: Task space test trajectory using IMLE, after the training sequence T1 7→ T2 7→ T1.
In the left figure the trajectory is performed using the hand with no tool attached, while in the
right figure the stick tool is held.

It is interesting to study what happens when the IMLE learner tries to perform the
cube-shaped test trajectory using the stick tool, without being previously trained with
data generated from such kinematic relation: the obtained trajectories are depicted in
Figure 5.13. Of course, since the IMLE learner had only been trained with no tool attached
to its hand and had not yet seen any training data corresponding to this distinct scenario,
its performance was expected to be very poor. However, differently from the previous
experiments, the IMLE model was allowed to operate in a full online mode, i.e., training
data was acquired while the test trajectory was being tracked and it was immediately fed
to the learning algorithm as soon as it was available, allowing the controller to improve
its performance during the execution of the task. As seen in the figure, convergence is
fast, and by the third attempt to track the cube-like trajectory the IMLE learner already
achieves satisfactory results.

This experiment shows that the IMLE model allows new tools, corresponding to dif-
ferent sensorimotor contexts, to be dynamically introduced during normal operation and
control of the end-effector position, without any kind of signalling of such change and not
requiring a motor babbling phase for this new context, thus leading to a large degree of
autonomy for the robot.

The final experiment introduces a third sensorimotor context, corresponding to the
insertion of the L-shaped tool in the iCub kinematics chain (depicted in the right image in
Figure 5.7). Motor babbling is performed using training data coming from the T3 dataset,
and then the test trajectory is performed using the L-shaped tool: results are depicted in
Figure 5.14. Note that target positions used in this test are shifted in space, as the robot

CHAPTER 5. SENSORIMOTOR COORDINATION 157

(a) First iteration. (b) Third iteration.

Figure 5.13: Task space test trajectory using IMLE, after training with dataset T1. The IMLE
model learns, in an online manner, to control its end-effector using an unobserved tool, updating
its internal parameters as the test trajectory is performed.

(a) IMLE. (b) LWPR.

Figure 5.14: Task space test trajectory using the L-shaped tool (S3), after the training sequence
T1 7→ T2 7→ T1 7→ T3.

cannot physically reach the previous workspace when holding this new tool. Also worth of
notice is the incapacity of the LWPR learner to track this test trajectory, even after being
trained with a dataset corresponding to the same sensorimotor context. This is probably
due to LWPR internal mechanisms making more difficult to forget previous experiments
as the number of training points increases. It is instructive to analyse what happens if
both algorithms are trained again using the original context dataset T1: in this situation
the training sequence T1 7→ T2 7→ T1 7→ T3 7→ T1 has been presented to IMLE and LWPR
learners. In this situation, Figure 5.15 depicts the cube-like test trajectories performed by
both algorithms, using the L-shaped tool: the advantage of using a multi-valued learning
algorithm to estimate a sensorimotor map in the presence of different contexts should be
apparent from the observation of these figures.

5.3. LEARNING AND CONTROL OF SWITCHED SYSTEMS USING IMLE 158

(a) IMLE. (b) LWPR.

Figure 5.15: Task space test trajectory using the L-shaped tool (S3), after the training sequence
T1 7→ T2 7→ T1 7→ T3 7→ T1.

As a final note, during the experiments, the IMLE model was allocating around 40
experts to approximate the robot forward kinematics, raising to about 130 and 280 experts
after the inclusion of the stick tool and the L-shaped tool, respectively. The number
of allocated linear models has a strong influence on the computational burden of the
algorithm: a large number of mixture components may indicate some sort of undesired
learning overfitting, due to an incorrect initialization of the IMLE model parameters.
However, these are reasonably low numbers, considering the dimension of the explored
space, that do not introduce any kind of real-time processing constraints.

5.3.2 Experimental Results: Kobian

Kobian (Zecca, Endo, et al., 2008) is a 48 degrees of freedom full humanoid robot, that
has been designed to integrate the bipedal walking skill of Wabian (Ogura, Aikawa, et al.,
2006) to the emotion expression capabilities of the human-like head robot WE-4 (Miwa,
Okuchi, et al., 2002). This robot, depicted in Figure 5.16, has a size similar to that of an
average Japanese woman, while its overall weight is 62 kg. Its joints configuration is also
illustrated in this figure, distributed in the following manner: 12 joints in the legs, 3 in
the waist, 14 in the arms, 8 in the hands, 4 in the neck and 7 in the head.

In the following experiments, the right arm of the Kobian robot is controlled, using
4 of its joints, to position its end-effector in a desired position of the workspace. This
end-effector is represented by a visual marker, consisting of a green ball, attached either to
the wrist or to the tip of a 35 cm long flexible rubber tube, as represented in Figure 5.17.
The end-effector position in the workspace is represented by the visual marker position
in the images captured by the cameras installed in Kobian eyes: this position, obtained

CHAPTER 5. SENSORIMOTOR COORDINATION 159

520 mm
14

70
 m

m

Y
Z

X

Figure 5.16: The Kobian humanoid robot.

Figure 5.17: The Kobian humanoid robot with the flexible rubber tool. Green balls (i.e., visual
markers) are attached to both the wrist and the tip of the tool.

through color based segmentation, is defined as

xv =







uR

vR

uL − uR






,

where uR and vR are respectively the horizontal and vertical coordinates of the centre of
the marker in the right camera image, while uL and vL are the same coordinates as seen

5.3. LEARNING AND CONTROL OF SWITCHED SYSTEMS USING IMLE 160

in the left image. The usual alignment and placement of the cameras in the eyes makes
vL = vR; uL −uR, the difference in the horizontal position of the marker in both cameras,
on the other hand, provides depth information concerning its 3D position in the head
reference frame.

The actuated joints, used in the closed-loop control of the task space end-effector
position, are the right arm shoulder pitch, yaw and roll rotations, corresponding to the
elevation/depression, adduction/abduction and rotation of the arm, and the elbow flex-
ion/extension; these joints are represented by the vector qarm = [θsp θsy θsr θe] and are
depicted respectively as joints 16, 17, 18 and 19 in Figure 5.16. Since one of the following
experiments also requires moving the Kobian neck, additionally the vector qhead = [θny θnp]

is also defined, comprising the neck yaw and pitch rotations, corresponding to the Kobian
head rotation and elevation/depression, represented by joints 40 and 39 in Figure 5.16).
The joint limits are defined in Table 5.2.

arm head

qmin −70◦ −30◦ −15◦ −90◦ −40◦ −10◦

qmax −60◦ −5◦ 15◦ −40◦ 40◦ 20◦

Table 5.2: Joints limits of the Kobian robot.

As in the previous experiments, performed using the iCub simulator, this experimental
setup makes possible the study of the IMLE model multi-valued prediction capabilities
in the presence of a switching context scenario. As before, the inclusion or removal of
the flexible tool is never signalled to the learning algorithm in any way, neither during
motor babbling nor during task space control. Note that the use of a flexible tool, made
of soft rubber, makes the kinematic chain extremely difficult to analytically model, as the
shape of this tool changes unpredictably with the arm configuration, due to the influence
of gravity.

5.3.3 Visual-motor Coordination

The vector xv provides the end-effector position with respect to the head reference frame,
which is not the most convenient frame to be used for visual-motor coordination if the
head is allowed to move. An alternative encoding for this end-effector position can be
considered if instead it is assumed that the head joints qhead are independently moved to
bring the end-effector position in the images to a fixed and pre-determined location — in
these experiments, the centre of of the right image is considered, i.e., uR = 0 and vR = 0.
This fixation behaviour can be achieved by generating head joint velocities according to




q̇0
head

q̇1
head



 =




K0 0

0 K1








∆uR

∆vR



 = −




K0 0

0 K1








uR

vR



 ,

CHAPTER 5. SENSORIMOTOR COORDINATION 161

where K0 and K1 are positive gains, q̇0
head and q̇1

head are the instantaneous velocities of
the joints q0

head and q1
head respectively, and ∆uR = udR − uR and ∆vR = vdR − vR are the

current deviations, measured in the right camera image, from the desired image position
for the end-effector, given in this situation by udR = vdR = 0.

When fixation is achieved, leading to ∆uR = ∆vR = 0, the end-effector position with
respect to the Kobian torso can be encoded using the head configuration qhead (Metta,
Sandini, and Konczak, 1999), using the alternative end-effector position vector

xm =







q0
head

q0
head

uL − uR






.

Using this latter encoding, the sensorimotor learning problem consists in estimating
the kinematics relation xm = f (qarm), a R

4 to R
3 multi-valued relation that depends on

the hidden context that indicates if the flexible tool is held by the Kobian robot or not,
and where the xm vector is obtained after fixation of the marker by the head controlling
system.

To evaluate the IMLE model learning and prediction capabilities using this physical
robot, first a motor babbling phase is conducted, following the same procedure presented
in Section 5.3.1. A low level controller was used to move the arm joints to random
configurations within the joint limits, and the head controller was used to bring the robot
into fixation of the visual marker: after this fixation took place, the corresponding input-
output pair consisting of joint values qarm and end-effector position, given by xm, was
presented as a training point to the IMLE model. After 500 training points were collected
in this manner, the visual marker was moved to the tip of the flexible tool, and 500 more
training points were acquired. After that, the marker was repositioned in its original
configuration and 300 more points were acquired and used to train and test the IMLE
algorithm. The prediction error, evaluated over two independent test sets S1 and S2 of
100 points each, corresponding respectively to the two different sensorimotor contexts, is
presented in Figure 5.18. This error is evaluated using the test set corresponding to the
training phase of the learning algorithm: S1 for the first 500 training points, then S2 and
finally S1 again for the remaining 300 points. For illustration purposes it is also shown the
prediction results using LWPR, to stress again the competitive handicap of single-valued
learning algorithms in these switching context sensorimotor environments.

After the motor babbling phase, the trained IMLE probabilistic model is used to
track a star-like pattern, here denoted by the STAR test. A sequence of 16 target visual
positions that draws a virtual star in the right camera, shown in Figure 5.19, is fed into
the head controller: each reference position is changed every 2 seconds, and so the full test
trajectory has a total duration of 32 seconds. Simultaneously, the Kobian arm is actuated,
using the gradient projection controller of Liegeois (1977), presented in Section 5.1.2 and

5.3. LEARNING AND CONTROL OF SWITCHED SYSTEMS USING IMLE 162

Figure 5.18: Prediction RMSE of the IMLE and LWPR algorithms during Kobian motor bab-
bling. First part of training uses the hand as end-effector, then a flexible tool is introduced at
training sample 500 and finally, at training sample 1000, the tool is removed.

also used in this section to control the iCub simulator, in order to follow the trajectory
given by xd = xm, using equation (5.3) and the Jacobian provided by the trained IMLE
model.

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

u
R

 [pixels]

v R
 [p

ix
el

s]

STAR test pattern

Figure 5.19: STAR pattern used in the Kobian experiments.

Whenever the head starts to move to fixate the next target of the STAR pattern, the
arm is thus controlled to follow the head motion, in order to position its end-effector in the
centre of the right camera image. During this procedure the third component of xd, the
desired end-effector position, is kept at a constant value that keeps the Kobian arm within
its workspace. Figure 5.20 shows the visual error, measured in pixels in the right camera
image, i.e., the difference between the marker location in the right camera image and the

CHAPTER 5. SENSORIMOTOR COORDINATION 163

(a) No tool.

(b) Flexible tool held.

Figure 5.20: End-effector visual position error during the arm-head coordination experiment.

centre of the same image, when the experiment is performed with and without the flexible
tool, using the same IMLE learned model. The larger error peaks in Figure 5.20b are due
to oscillations of the flexible tool, produced by the higher accelerations in the starting
phase of each sub-trajectory of the STAR pattern, but otherwise this error remains low,
irrespectively of the sensorimotor context in which the experiment is performed.

5.3.4 Visually Guided Reaching

Next, to further test the performance of the task space control using the learned kine-
matics, a visually guided reaching experiment is executed, under the aforementioned sen-
sorimotor context switching situation. This time the head is kept fixed, and thus the
vector xv is used to encode the task space end-effector position. The same motor bab-
bling described in the previous section is performed, and after this learning phase, where
the IMLE model is trained using the visual marker in Kobian hand and in the tip of the

5.4. DISCUSSION 164

flexible tool, the STAR pattern is executed, again in both sensorimotor contexts. The
position of the marker in the right camera image is depicted in Figure 5.21: again, these

(a) No tool. (b) Flexible tool held.

Figure 5.21: End-effector visual position during the visually guided reaching experiment.

are satisfactory results, where the desired trajectory can be performed with the visual
marker placed at two different positions in the arm kinematic chain — it is important to
stress again that the learner is never signalled whether the flexible tool is being used or
not.

Finally, it is worth of notice that this experiment produces smooth trajectories in both
the joint and task spaces: Figure 5.22 depicts the task space trajectories, as a function of
time, obtained while performing the STAR test pattern, while Figure 5.23 presents the
corresponding joint trajectory profiles.

5.4 Discussion

This chapter presented several applications of the IMLE learning algorithm to task space
trajectory control of a robot end-effector, where its inverse and multi-valued prediction
capabilities were emphasised. First, it was shown the way its multi-valued prediction
capability allows the learner to recover multiple solutions for the inverse kinematics prob-
lem, corresponding to different branches of the inverse map, or a sample of the continuum
space of inverse solutions when redundant robots are considered. This characteristic, com-
bined with its forward and Jacobian prediction, makes IMLE a highly versatile learning
algorithm that can be used to learn the kinematic sensorimotor map online, while simul-
taneously performing a task space trajectory control that uses the same learned model
to choose the commands that should be sent to the robot actuators in the subsequent
time step. While other learning algorithms have also been successfully applied to this
kind of goal directed exploration (Salaün, Padois, and Sigaud, 2010), a distinctive feature

CHAPTER 5. SENSORIMOTOR COORDINATION 165

(a) No tool.

(b) Flexible tool held.

Figure 5.22: End-effector visual position as a function of time.

of the IMLE probabilistic model is its ability to generate forward, inverse and Jacobian
predictions from the same learned model. This characteristic can be used to control the
task space end-effector position under a pure closed-loop RMRC scheme, updating the
IMLE model while executing a desired task, and also to perform an open-loop trajectory
planning and tracking when the feedback signal is not present or when it has too much
noise or delay. The online nature of the IMLE learning algorithm even makes the use of
a composite controller possible, that activates a closed or open-loop controller whenever
needed during the operation of the robot: as shown above, this type of controller can
seamless switch from closed to open-loop, without any considerable degradation of the
task being performed.

Then, the IMLE model was used to learn the the kinematic model of a redundant
robot under switching sensorimotor contexts, corresponding to the use of tools of differ-
ent lengths and shapes. The use of such tools effectively changed the end-effector location
and, consequently, the kinematic properties of the robot arm; as it turns out, this is chal-
lenging robotic environment for a learning algorithm, as the changes on the sensorimotor

5.4. DISCUSSION 166

(a) No tool.

(b) Flexible tool held.

Figure 5.23: Actuated arm joints positions as a function of time.

context are not signalled to the learner. This is a situation where the IMLE learning
algorithm can truly stand out, since this context switching sensorimotor relation can per-

CHAPTER 5. SENSORIMOTOR COORDINATION 167

fectly be modelled by a multi-value relation, where each branch of the relation represents
a distinct context. Differently from previous works, the IMLE probabilistic model makes
no assumptions about the kinematic properties of the tool; also, no information is given
to the robot about the current tool being used, or when a change or removal of the tool is
performed. Moreover, the number of different contexts represented by the model doesn’t
need to be decided a priori, but it is automatically determined by the learning algorithm,
during the prediction phase, based on the training samples.

The IMLE learning model can also be applied to a diversity of promising applications
in the robotics domain, not covered in this chapter. It was shown, in Chapter 4, that
IMLE can successfully learn the inverse dynamics relation of a robot: the multi-valued
prediction capabilities of the IMLE model make possible, in principle, to learn this model
when different loads are applied to the robot being controlled, using a procedure similar
to the one presented in Section 5.3. However, some additional considerations must be
taken into account in this case, as the sensorimotor map being learned, represented by
the relation (q, q̇, q̈) 7→ u, has the controlled variable u as output, while the context
(q, q̇) and the causal consequence q̈ are gathered to form the input vector of this map. As
a consequence, it is not straightforward to identify the current context, during operation
of the robot, based only in the last seen output sample, as done in Section 5.3.

Finally, equations (5.7) and (5.6) deserve a closer look: setting convenient values for
diagonal matrices Wx and Wq can in principle lead a hybrid control scheme, where open
and closed loop controllers are simultaneously used. In this situation, a balance between
closed-loop control, represented by the term (Jq̇ − ẋr)

TWx(Jq̇ − ẋr), and open-loop
control, represented by the (q̇ − q̇r)

TWq(q̇ − q̇r) term, can be achieved. This balance can
even be dynamically changed during online control: when a low confidence is assigned
to open-loop trajectories q̇r, planned using the inverse solutions provided by the IMLE
algorithm, the value of Wq can be made smaller; conversely, when ẋr is affected by a large
noise level or when the extreme situation of sensor failure occurs, Wx can be reduced,
making the open-loop control dominant. Also, the penalty H(q) can be modified to
consider the uncertainty reduction cost described in Section 3.4: this can potentially
result in the extremely interesting behaviour of having the robot actively exploring the
null space of the Jacobian of the desired task, in order to improve the IMLE model, while
simultaneously performing the same desired task. All these are topics that are being
currently investigated.

Chapter 6

Discussion and Concluding Remarks

The infinite mixture of linear experts presented in this dissertation is a probabilistic model
that can efficiently deal with nonlinear function approximation in an online, incremental
manner, comparable to current state-of-the-art online learning methods. It consists of
a collection of linear experts, together with appropriate priors on the parameters being
learned and a mechanism that efficiently grows the number of experts when the need
to explain outfitted data arises for newly acquired samples. Its training is based on the
generalized expectation-maximization algorithm, where the expectation step is extended
to allow for incremental updating of the sufficient statistics of the mixture of experts
and the maximization step includes the allocation of a new expert each time a training
point is poorly explained by the current mixture. Put together, this results in a very fast
and scalable online learning algorithm, capable of processing hundreds or thousands of
samples per second, coming from continuous streams of data. This is a difficult learning
setting: when no knowledge is provided about the characteristics of the function to learn
this information must be estimated from a sequence of correlated training data that may
correspond to only a small subset of the full input-output space. The IMLE was tested
in this kind of situation, for single-valued regression, and showed how it could equal or
even surpass current state-of-the-art online learning algorithms, in terms of convergence
of prediction error and complexity of the overall model.

However, a distinctive feature of IMLE, when compared to other online supervised
learning algorithms, is its ability to deal with multi-valued estimates for the same query
data. The applications for such kind of prediction capabilities range from learning for-
ward models of parallel robots to learning switching models, where the function to be
approximated can alternate between different configurations over time. This constitutes
a even more challenging learning problem: besides the limitations coming from learning
online from a stream of data, the expert allocation dilemma comes into play, where it is
difficult to distinguish between noise and outliers, in one hand, and a mixture requiring
a new component, on the other. Additionally, underlying non-stationary relations make
the problem even more difficult to learn.

169

170

It was also shown in this dissertation that the same procedure used to obtain a set of
multi-valued forward solutions can be applied to inverse queries, making IMLE capable
of delivering both forward and inverse multi-valued predictions from the same model,
without need for further training. This is a consequence of directly learning a multivariate
output relation from R

d to R
D, instead of a set of D distinct univariate output maps. Such

multi-valued learning capability can also prove to be useful when learning discontinuous
functions, for which an undesirable prediction smoothing typically occurs in the vicinity
of the discontinuities when using standard function approximation algorithms.

Finally, the exploitation of the IMLE model under an active learning context was also
described: the same model used to generate forward and inverse predictions can be used
to provide an estimate of the expected prediction uncertainty reduction at any given input
point, and also makes available the derivatives of such estimate with respect to the input
vector. This way, a more parsimonious exploration of the input space can be conducted
while achieving the same approximation error in the same space.

As any other learning method, specially under such demanding and unfriendly exper-
imental settings, the IMLE algorithm also presents some limitations, that in part are a
consequence of the multi-valued nature of the data and the online training scheme; still,
these limitations are potential topics for further work and future improvement:

• The IMLE training algorithm currently lacks a mixture shrinking mechanism, that
would be responsible for removing either experts providing wrong predictions or
redundant mixture components. The experiments presented in Chapter 4 show that
IMLE will activate new experts more and more sparingly as the training progresses,
but eventually, after a lifetime of learning, too much experts may become activated,
resulting in an increase of computational resources consumption. Moreover, in the
event of some episodic outlier bursts, some experts may be activated to represent
such erroneous training data. This dissertation does not provide a definite answer to
this problem — as discussed is section 3.2.2, growing the mixture under incremental
assumptions, for multi-valued data, is a delicate matter, and shrinking the same
mixture in a principled way is even more troublesome. The main difficulty here
is the fact that there is no simple way to detect experts wrongly activated by an
outlier (or a sequence of outliers), as they cannot easily be distinguished from experts
originating from a sporadic training on a new branch of the multi-valued function
being learned. Such “incorrect” experts can be heuristically detected, for instance,
by a strong deviation from the characteristic input length-scale or output noise
(strong disagreement between Σj and Σ̄ or between Ψj and Ψ̄) or by a low support
on training data (low accumulation of sufficient statistics after a long period of
training). However, removing an expert under this conditions doesn’t come without
the risk of lowering the likelihood of the training data, since no guarantees exist
that such expert doesn’t represent the true distribution of the multi-valued function

CHAPTER 6. DISCUSSION AND CONCLUDING REMARKS 171

being learned. In general, choosing an expert to be removed from the mixture —
due for instance to capacity limitations imposed to the mixture — is not easy to do
without access to the full set of training points, and this hinders the creation of a
probabilistically supported shrinking mechanism for the mixture.

• Learning of multi-valued relations rises some issues and questions that are not fully
answered in this dissertation. In order to avoid output interference during train-
ing, there must be a clear separation between multi-valued branches: when this
does not happen there is the risk that the output regions between these branches
become populated with inconsequential experts. There is also the time-varying of
the training data issue: when the relation to be learned exhibits slow drifts during
the training process, the IMLE model can in principle adapt to these variations by
means of the forgetting factor in the E-Step update of the sufficient statistics. But
what rate of change is allowed for an input-output relation before the IMLE model
starts interpreting it as a multi-valued relation? This is an open issue.

• Another delicate issue is the presence of highly correlated or irrelevant data. Feature
selection is a very desirable property of a function approximation algorithm, that
allows to learn the input subspace that effectively contributes to the output variation:
this typically makes the prediction more stable and less influenced by irrelevant or
strongly correlated input dimensions. In a Bayesian setup, feature selection can
be implemented if adequate priors for loading matrices Λj are defined: adopting a
Gaussian prior — like IMLE currently does — leads to the ridge regression (Hoerl
and Kennard, 1970), while a Laplacian prior induces the LASSO (Tibshirani, 1996).
Both these priors involve the choice of a hyperparameter to control the degree of
regularization and sparseness. Figueiredo (2003) uses a Jeffrey’s prior to overcome
the necessity of such hyperparameter. More recently, Ting, D’Souza, et al. (2010)
proposed a slightly different formulation of the generative model corresponding to
the linear regression performed by each expert, which together with a careful choice
of priors for the elements of Λj can lead to a fast and efficient high dimensional
feature selection and regression. IMLE has a large space for customization by choice
of different priors for the mixture parameters, and in principle any of these priors
can be integrated into the IMLE model: the key challenge is then the preservation
of the current computational complexity of the training algorithm.

• The training procedure is not completely insensitive to variations in the input data
distribution: the sampling rate of training points and their input correlation some-
how can influence the convergence of the algorithm. An emblematic example for
this issue is the situation where the algorithm is trained with the same data point,
over and over again: this may result in some mixture parameters converging to
the boundaries of the parameter space, a very undesirable situation, particularly

172

in the beginning of the training procedure, when the values of Σ̄ and Ψ̄ have not
yet settled. This issued can be circumvented in an ad hoc manner, accepting only
consecutive training points whose input parts differ by a minimum amount; overall,
this problem has not an easy solution in a probabilistic setting, and plagues many
algorithms based on mixture models.

• A correct convergence of the hyperparameters Σ̄ and Ψ̄ is also a delicate topic: the
IMLE model tries to learn the characteristic input length-scale and output noise of
the data, but a particularly bad choice of tuning parameters can result in convergence
to values that are not compatible with the true nature of the data, pushing the
training procedure to unfavourable local maxima of the likelihood. Even so, as shown
in Section 4.1.3, the IMLE model is sufficient robust to such initial choices, as long
as they are reasonably within the true values of the input length-scale and output
noise of the data. Under a historical perspective, the initial approach to online
sensorimotor learning taken on this work was based on an unsupervised mixture of
Gaussian models, from which conditional distributions provided the required forward
and inverse relations (Lopes and Damas, 2007). However, soon it was realized that
learning these relations in an unsupervised way was prone to poor convergence of
the training algorithm; additionally, each different sensorimotor map to learn needed
a careful choice of initial parameters for the mixture, a frustrating trial-by-error
tuning process that went against the robot autonomy that was the final goal of the
undergoing work. Mixtures of Factor Analysers (Ghahramani and Hinton, 1996),
by performing a local dimensionality reduction that took the problem structure into
account, were also considered, but they proved to have the same convergence issues,
this time due to the increased effort put on estimating a larger set of latent variables.
Under this context, the current solution presented in this thesis, adopting instead
a supervised learning paradigm that made the training process more tractable, lead
to a huge improvement over the unsupervised learning approach initially followed.

• The existence of a large number of tunable parameters in the IMLE model, together
with the aforementioned possibility of poor convergence of the learning algorithm
due to a bad choice of the tuning parameters related with Σ̄ and Ψ̄, makes this
learning architecture somehow difficult to be easily employed by the casual user.
Having an “out-of-the-box” behaviour for the software that implements the IMLE
model, leading to a satisfactory convergence behaviour without the need to tune
any kind of parameters would be an evident improvement for this work. However,
it must be kept in mind that some information must be conveyed to the algorithm
in the form of tunable parameters, as sensorimotor relations may be very distinct
in their nature and their input and output ranges may also be very different: in
general, some kind learning bias must be provided.

CHAPTER 6. DISCUSSION AND CONCLUDING REMARKS 173

• Finally, it would be desirable to have a fully Bayesian mechanism for training the
mixture, as these kind of methods choose the right model complexity automatically,
thus controlling the mixture tendency to overfit. This can be done, for instance, by
defining Dirichlet priors over the mixture proportions, under a variational training
approach. The main challenge with this kind of approach would be retaining the
online and scalability properties of the algorithm: management of the number of
active components in a mixture is computationally intensive in a Bayesian paradigm,
and the incremental requirements for the algorithm turn the Bayesian solution even
harder. Some recent works on stochastic variational inference (Hoffman, Blei, et al.,
2013) may point a promising direction worth investigating, but to this date a fully
incremental Bayesian approach to the mixture of experts model, that can be trained
in real-time in high dimensional spaces, is not yet available.

These issues, nevertheless, should not be considered major weaknesses of the proposed
model, as some of them are common to many online and offline learning algorithms, while
the others result from the multi-valued assumption for the training data, that significantly
complicates the learning process.

The IMLE model provides a general framework for online learning of generic senso-
rimotor relations, that can be seamlessly applied to a variety of robotic problems that
would traditionally need distinct approaches to the learning problem. It has been shown,
during this dissertation, how the same learned model can be used to (i) generate forward
predictions, useful for simulation and prediction of consequences of actions; (ii) provide
inverse predictions, that implicitly define an inverse model that can be used for open-loop
control of end-effector task space position; (iii) estimate the Jacobian of the sensorimotor
map, a fundamental component for closed-loop velocity and acceleration tracking of task
space end-effector position; and (iv) explore the sensorimotor space under an active learn-
ing paradigm, as the learned model also makes available not only an uncertainty estimate
at each input location, but also an estimate for the expected variation of this model un-
certainty, as a consequence of the choice of a particular action. Altogether, the proposed
IMLE model for learning and prediction, presented in this dissertation, constitutes a co-
hesive framework that can hopefully be used as a basic building block of a higher-level
architecture, responsible for endowing a robot with a greater level of autonomy.

Appendix A

IMLE Posterior Distributions

The fact that distributions (3.2) are conjugate to data likelihood (3.1) can be used to
derive the posterior distribution for the mixture parameters at iteration t, given the
current estimates for Σ̄ and Ψ̄. Since the Normal-Inverse Wishart is a conjugate prior
for the centre and covariance matrix of a multivariate Normal data distribution (Gelman,
Carlin, et al., 2004), the posterior distribution for νj and Σj becomes, for each expert j,

νj ,Σj|S
t, Σ̄ ∼ NW−1(ν∗, n∗

ν , Σ∗, n∗
Σ) ,

where

n∗
ν = nν + Shj ,

ν∗ =
nνν0j + Shxj

nν + Shj
,

n∗
Σ = nΣ + Shj and

Σ∗ = nΣΣ̄ + nνν0jν
T
0j + Shxxj − n∗

νν
∗
j ν

∗T
j .

Equations (3.9a) and (3.9b) directly follow from the preceding equations, as the max-
imum value for the Normal-Inverse Wishart distribution is achieved by ν̂j = ν∗ and
Σ̂j = Σ∗/(n∗

Σ +d+2). The predictive distribution p(xq|wj,S
t, Σ̄) can then be obtained if

the marginal distribution of p(xq,Σj ,νj|wj,S
t, Σ̄) is taken with respect to unknown pa-

rameters Σj and νj , which results in a multivariate t-Student distribution with n∗
Σ −d+1

degrees of freedom,

xq|wj,S
t, Σ̄ ∼ tn∗

Σ
−d+1

(

ν∗,
n∗
ν + 1

n∗
ν(n

∗
Σ − d+ 1)

Σ∗

)

. (A.1)

The Normal-Inverse Gamma distribution is a conjugate prior for the noise and re-
gression coefficients under the standard linear regression likelihood model (O’Hagan and
Forster, 1994). A different parametrization of equation (3.1a) can be used to infer the pos-

175

176

terior distribution of Λj , µj and Ψj at iteration t, by defining Λ̃j ≡ [Λj , µ̄j], where µ̄j ≡

µj−Λjνj , and expanding the input vector to accommodate a constant term, x̃ ≡ [xT , 1]T ;
this makes possible rewriting (3.1a) as yi|xi, wij,Θ ∼ N (Λ̃jx̃i,Ψj) and changing the cor-
responding priors (3.2c) and (3.2d) accordingly, Λ̃j(k)|Ψj(k) ∼ N (Λ̃0(k),Ψj(k)R̃−1

Λ),
with Λ̃0 = [0, µ0j] and

R̃−1
Λ =






nΛI 0...
0 · · · nµ




 .

The posterior distribution for (Λ̃j(k),Ψj(k)) then becomes

Λ̃j(k),Ψj(k)|St, Ψ̄ ∼ NG−1

(

Λ̃∗(k), R̃∗
Λ,

n∗
Ψ

2
,

Ψ∗(k)

2

)

, (A.2)

where

R̃∗
Λ = (R̃−1

Λ + S̃hxxj)
−1 ,

Λ̃∗ = (S̃hyxj + Λ̃0R̃−1
Λ)R̃∗

Λ = [Λ∗, µ̄∗] ,

n∗
Ψ = nΨ + Shj ,

Ψ∗ = nΨΨ̄ + diag
{

Shyyj + Λ̃0R̃−1
Λ Λ̃T

0 − Λ̃∗(R̃∗
Λ)−1Λ̃∗T

}

,

with S̃hyxj = [Shyxj, Shyj] and

S̃hxxj =




Shxxj Shxj

ST
hxj Shj





accounting for the extended input vector x̃. Noting that R̃∗
Λ can be written as

R̃∗
Λ =





R∗
Λ −R∗

Λ
Shxj

Shj+nµ

−
ST
hxj

Shj+nµ
R∗

Λ R∗
µ̄



 , where

R∗
Λ =

(

nΛI + Shxxj −
ShxjS

T
hxj

Shj + nµ

)−1

and R∗
µ̄ =

1

Shj + nµ
+

ST
hxj

Shj + nµ
R∗

Λ

Shxj

Shj + nµ
,

easily leads to

Λ∗ =

(

Shyxj −
Shyj + nµµ0j

Shj + nµ
ST
hxj

)

R∗
Λ ,

µ̄∗ =
Shyj + nµµ0j

Shj + nµ
− Λ∗ Shxj

Shj + nµ
and

Ψ∗ = nΨΨ̄ + diag
{

Shyyj − Λ∗ST
hyxj − µ̄∗(Shyj + nµµ0j)

T
}

.

APPENDIX A. IMLE POSTERIOR DISTRIBUTIONS 177

Equation (A.2) can be split as p(Λ̃j(k)|Ψj(k),St)p(Ψj(k)|St, Ψ̄), where

Λ̃j(k)|Ψj(k),St ∼ N (Λ̃∗(k), Ψj(k)R̃∗
Λ) and

Ψj(k)|St, Ψ̄ ∼ G−1

(

n∗
Ψ

2
,

Ψ∗(k)

2

)

,

and consequently Λj(k) and µ̄j(k) are jointly Normal given Ψj(k), with

Λj(k)|Ψj(k),St ∼ N (Λ∗(k), Ψj(k)R∗
Λ) ,

µ̄j(k)|Ψj(k),St ∼ N (µ̄∗(k), Ψj(k)R∗
µ̄)

and cross-variance equal to −R∗
Λ

Shxj
Shj+nµ

. As a consequence, µj(k) is also normally dis-
tributed given Ψj(k), with µj(k)|Ψj(k),St ∼ N (µ∗(k), Ψj(k)R∗

µ), where

µ∗ =
Shyj + nµµoj

Shj + nµ
+ Λ∗

(

ν̂j −
Shxj

Shj + nµ

)

and

R∗
µ =

1

Shj + nµ
+

(

Shxj

Shj + nµ
− ν̂j

)T

R∗
Λ

(

Shxj

Shj + nµ
− ν̂j

)

.

Equations (3.9c–3.9e) arise from the previous posterior distributions, since Λ̂j = Λ∗,
µ̂j = µ∗ and Ψ̂j = Ψ∗/(n∗

Ψ + 2) are the modes of the respective distributions.

In order to obtain p(Λj |St) and p(µj|St) Equation (A.2) must be marginalized with
respect to Ψj : a well known result states that the resulting distribution becomes a mul-
tivariate t-Student with n∗

Ψ degrees of freedom. When this value is large the distribution
can be approximated by a multivariate Normal: for Λj and µj this results in

Λj(k)|St ∼
a

N (Λ∗(k), R∗
Λ Ψ∗(k)/n∗

Ψ) and

µj(k)|St ∼
a

N (µ∗(k), R∗
µ Ψ∗(k)/n∗

Ψ) .

Finally, the posterior predictive distribution for y|xq is obtained by noting that the
marginalization of p(yi|xi, wij,Θ) with respect to the parameters Ψj , µj and Λj yields
again a t-Student distribution, with n∗

Ψ degrees of freedom, mean equal to

ŷj(xq) = Λ̃∗x̃q = Λ̂j(xq − ν̂j) + µ̂j (A.3)

and variance given by

R
y
j (xq) = (1 + x̃T

q R̃∗
Λx̃q)

Ψ∗

n∗
Ψ

= (1 + γj(xq))
Ψ∗

n∗
Ψ

≈ (1 + γj(xq))Ψ̂j , (A.4)

178

where the factor

γj(xq) =
1

Shj + nµ
+

(

xq −
Shxj

Shj + nµ

)T

R∗
Λ

(

xq −
Shxj

Shj + nµ

)

(A.5)

reflects the uncertainty on the estimates µ̂j and Λ̂j used in the posterior prediction: note
that as the training size increases this term vanishes in (A.4), while the fundamental
source of noise due to Ψj remains. Put together, this results in

y|xq, wj,S
t, Ψ̄ ∼

a
N (ŷj(xq), R

y
j (xq)) , (A.6)

where again the t-Student distribution is approximated to a Normal one, under the as-
sumption of a large value of n∗

Ψ. It may be useful to view this result under a different and
equivalent formulation, given by the hierarchical model

y|ȳj, wj,S
t, Ψ̄ ∼

a
N (ȳj, Ψ̂j) , (A.7)

ȳj|xq,S
t, Ψ̄ ∼

a
N (ŷj(xq), γj(xq)Ψ̂j) , (A.8)

which can be interpreted as a sample point y(xq) being generated, with noise Ψ̂j, from
an unknown mean ȳj , for which posterior distribution (A.8) is available given the current
set of sufficient statistics and input query xq. The last equation can also be rewritten as

ŷj |xq,S
t, Ψ̄ ∼

a
N (ȳj(xq), γj(xq)Ψ̂j) , (A.9)

which can be interpreted, for current mixture parameters, as a point estimate ŷ being
generated from a true value ȳj(xq) with an uncertainty represented by variance γj(xq)Ψ̂j .

Appendix B

IMLE Prediction Derivatives

This appendix presents some useful results concerning the derivatives of the IMLE pre-
diction with respect to the input variable x. This prediction is given, for a given solution
k found by the clustering procedure presented in Section 3.3.2, by

ŷ(k)(x) = R̂(k)(x)
∑

j

R−1
j (x)ŷj(x) ,

where R̂(k)(x) is the output expected variance, according to the current IMLE model, for
solution k, evaluated at input point x. This is given by

R̂(k)(x) =
(
∑

j

R−1
j (x)

)−1

.

For readability, unless denoted otherwise, in the remaining text the explicit dependence
on the input point x and solution k will be dropped. Also, without loss of generality, all
the following results will be derived assuming the output dimension D to be equal to 1:
this avoids the notation burden concerning some matrix calculus that would otherwise be
required. Note that the matrices Rj are all diagonal, and so the final results obtained in
this appendix can be readily extended to the output multivariate case D > 1.

The prediction can be expressed as a weighted average of the individual expert pre-
dictions:

ŷ =
∑

j

Wjŷj , with Wj =
(
∑

k

R−1
k

)−1

R−1
j = R̂R−1

j ,

where R̂ is again the output variance and Rj and ŷj are respectively expert j variance
and prediction at point x, given respectively by (3.19) and (A.3),

Rj = ϕjΨ̂j and ŷj = Λ̂j(x − ν̂j) + µ̂j ,

where ϕj = γj + 1/wyj , with γj and wyj given respectively by (A.5) and (3.15b).
The derivative of the IMLE prediction ŷ with respect to the input variable x, that

179

180

can be interpreted as the Jacobian of the estimated input-output map, is given by

dŷ

dx
=

d

dx

[

R̂
∑

j

R−1
j ŷj

]

=
dR̂

dx

∑

j

R−1
j ŷj + R̂

∑

j

d

dx

[

R−1
j ŷj

]

.

The first derivative appearing in the right side of the above equation is the derivative
of the output uncertainty with respect to x,

dR̂

dx
=

d

dx

[(
∑

j

R−1
j

)−1]

= −
(
∑

j

R−1
j

)−2∑

j

(

− R−2
j

dRj

dx

)

= R̂2
∑

j

R−2
j

dRj

dx

= R̂
∑

j

R̂R−1
j R−1

j Ψ̂j
dϕj
dx

,

and noting that R−1
j Ψ̂j = ϕ−1

j I and R̂R−1
j = Wj, the above expression becomes

dR̂

dx
= R̂

∑

j

ϕ−1
j Wj

dϕj
dx

. (B.1)

Since

d

dx

[

R−1
j ŷj

]

= −R−2
j

dRj

dx
ŷj + R−1

j

dŷj

dx

= −R−1
j R−1

j Ψ̂jŷj
dϕj
dx

+ R−1
j

d

dx

[

Λ̂j(x − ν̂j) + µ̂j

]

= −R−1
j ϕ−1

j ŷj
dϕj
dx

+ R−1
j Λ̂j ,

the Jacobian becomes

dŷ

dx
= R̂

(
∑

j

ϕ−1
j Wj

dϕj
dx

)(
∑

j

R−1
j ŷj

)

+ R̂
∑

j

R−1
j

(

Λ̂j − ϕ−1
j ŷj

dϕj
dx

)

= ŷ
∑

j

ϕ−1
j Wj

dϕj
dx

−
∑

j

ϕ−1
j Wjŷj

dϕj
dx

+
∑

j

WjΛ̂j

=
∑

j

WjΛ̂j +
∑

j

ϕ−1
j Wj(ŷ − ŷj)

dϕj
dx

. (B.2)

APPENDIX B. IMLE PREDICTION DERIVATIVES 181

The derivative in the previous expression is equal to

dϕj
dx

=
dγj
dx

−

(

1

wyj

)2
d

dx
wyj ,

with
dγj
dx

= 2

(

x −
Shxj

Shj + nµ

)T

R∗
Λ (B.3)

and

d

dx
wyj =

d

dx

[

pj(x)
∑

k pk(x)

]

=
1

∑

k pk(x)

d

dx
pj(x) −

pj(x)

(
∑

k pk(x))2

∑

k

d

dx
pk(x)

=
1

∑

k pk(x)

(

d

dx
pj(x) − wyj

∑

k

d

dx
pk(x)

)

,

where R∗
Λ is defined in Appendix A and pj(x) is the probability density for x given that it

was generated by expert j, given by (A.1) of the same Appendix. This probability follows
a multivariate t-Student distribution,

pj(x) ∝

[

1 +
n∗
ν

n∗
ν + 1

(x − ν∗)T (Σ∗)−1(x − ν∗)

]−
n∗

Σ
+1

2

,

and so

d

dx
pj(x) = −

n∗
Σ + 1

2

[

1 +
n∗
ν

n∗
ν + 1

(x − ν∗)T (Σ∗)−1(x − ν∗)

]−1

2
n∗
ν

n∗
ν + 1

(x − ν∗)T (Σ∗)−1pj(x)

= −κj(x)pj(x) ,

with

κj(x) = (n∗
Σ + 1)

[

n∗
ν + 1

n∗
ν

+ (x − ν∗)T (Σ∗)−1(x − ν∗)

]−1

(x − ν∗)T (Σ∗)−1 (B.4)

and where n∗
Σ, n∗

ν , and Σ∗ are defined in Appendix A for each j. Consequently,

d

dx
wyj =

1
∑

k pk(x)

(

−κj(x)pj(x) + wyj
∑

k

κk(x)pk(x)

)

= wyj

(∑

k κk(x)pk(x)
∑

k pk(x)
− κj(x)

)

= wyj

(
∑

k

wykκk(x) − κj(x)

)

,

182

and finally equations (B.2) and (B.1) become

dŷ

dx
=
∑

j

WjΛ̂j +
∑

j

Wj(ŷ − ŷj)ζj(x) and (B.5a)

dR̂

dx
= R̂

∑

j

Wjζj(x) , (B.5b)

with

ζj(x) = ϕ−1
j

dϕj
dx

=
1

1 + γjw
y
j

(

wyj
dγj
dx

+ κj(x) −
∑

k

wykκk(x)

) (B.6)

and where dγj/dx and κj(x) are given by (B.3) and (B.4), respectively.

Appendix C

IMLE Uncertainty Reduction

This appendix derives, in more detail, the calculations needed to obtain equation (3.35)
in Chapter 3, here repeated for convenience:

d

dx̃
∆V(x̃) = aT ·

(

d

dx̃
V[ŷ(x̃)] −

d

dx̃
Ṽ[ŷ(x̃)]

)

.

In the following text the dependence on x̃ will be omitted for most quantities, for
the sake of notational simplicity, although keeping in mind that most of these quantities
depend on the particular value of x̃. The first term on the right side of the above equation
can be expressed as

dV[ŷ]

dx̃
=

d

dx̃

∑

j

W 2
j V[ŷj]

= 2
∑

j

WjV[ŷj]
dWj

dx̃
+
∑

j

W 2
j

dV[ŷj]

dx̃

= 2
∑

j

W 2
j V[ŷj]

(

R̂−1dR̂

dx̃
− ζj

)

+
∑

j

W 2
j

dV[ŷj]

dx̃

= 2 R̂−1
V[ŷ]

dR̂

dx̃
− 2

∑

j

W 2
j V[ŷj]ζj +

∑

j

W 2
j

dV[ŷj]

dx̃
,

where, borrowing some results from Appendix B, the derivative of Wj with respect to x̃

was calculated according to

dWj

dx̃
=

d

dx̃
[R̂R−1

j]

=
dR̂

dx̃
R−1
j + R̂

dR−1
j

dx̃

= R̂

(
∑

k

Wkζk

)

R−1
j − R̂R−2

j Ψ̂j
dϕj
dx̃

183

184

= Wj

(
∑

k

Wkζk

)

− WjR
−1
j Ψ̂j

dϕj
dx̃

= WjR̂
−1dR̂

dx̃
− Wjϕ

−1
j

dϕj
dx̃

= Wj

(

R̂−1dR̂

dx̃
− ζj

)

.

Obtaining the derivative of Ṽ[ŷ] with respect to x̃, the predictor variance after the
same x̃ has been added to the training set, results in very complex, albeit analytically
tractable, derivations, due to all the computations performed when IMLE is trained with a
new point x̃. To overcome these difficulties, two approximations are made in the following
text. The first one assumes that training the IMLE model with a new input point x̃

does not significantly change the weights Wj used to predict ŷ(x̃). This is equivalent to
saying that an input direction is sought that achieves the maximum prediction uncertainty
reduction through minimization of individual experts uncertainties, as these quantities are
the only other source of uncertainty variation in (3.35) if the weights Wj are assumed to
be fixed. As a consequence,

dṼ[ŷ]

dx̃
= 2 R̂−1

Ṽ[ŷ]
dR̂

dx̃
− 2

∑

j

W 2
j Ṽ[ŷj]ζj +

∑

j

W 2
j

dṼ[ŷj]

dx̃
,

and the derivative with respect to x̃ of the uncertainty reduction after training with x̃

becomes

d

dx̃

(

V[ŷ]−Ṽ[ŷ]
)

= 2 R̂−1
(

V[ŷ]−Ṽ[ŷ]
)
dR̂

dx̃
−2

∑

j

W 2
j

(

V[ŷj]−Ṽ[ŷj]
)

ζj+
∑

j

W 2
j

d

dx̃

(

V[ŷj]−Ṽ[ŷj]
)

.

Obtaining each expert individual prediction variance at x̃ is straightforward: according
to Appendix A,

V[ŷj] = γjΨ̂j ,

where

γj =
1

Shj
+
(

x̃ −
Shxj

Shj

)T

R∗
Λ

(

x̃ −
Shxj

Shj

)

,

with

R∗
Λ =

(

Shxxj −
ShxjS

T
hxj

Shj

)−1

= S−1
hxxj +

(S−1
hxxjShxj)(S

−1
hxxjShxj)

T

Shj − ST
hxjS

−1
hxxjShxj

.

In the above equations the values of nµ and nΛI have been incorporated in sufficient

APPENDIX C. IMLE UNCERTAINTY REDUCTION 185

statistics Shj and Shxxj respectively, to ease the notation in the calculations that follow:
hence the apparent difference relative to the same equations presented in Appendix A.

The derivative of expert j uncertainty is

dγj
dx̃

= 2
(

x̃ −
Shxj

Shj

)T

R∗
Λ ,

and therefore
dV[ŷj]

dx̃
= 2Ψ̂j

(

x̃ −
Shxj

Shj

)T

R∗
Λ .

As for Ṽ[ŷ], it is importance to notice that this quantity depends on the values of Ψ̂j,
which are affected by the addition of a new training point (x̃, ỹ). However, the purpose
of this active learning scheme is to choose the new training point x̃: the value of ỹ has
not yet been observed. It can be estimated, though, using the current mixture state and
the prediction mechanism presented in Section 3.3, and thus Ṽ[ŷ] must be interpreted as
an expected value over values of y, as predicted by the IMLE model.

The expected value of Ψ̂j , after including x̃ can be obtained using equations (3.9), after
completely updating the sufficient statistics with training point (x̃, ŷ(x̃)), where ŷ(x̃) =

E[ỹ|x̃]. This requires extensive calculations, that can become somewhat overwhelming
when the derivative of the updated value of Ψ̂j with respect to x̃ is also considered. This
motivates the second approximation made herein, where Ψ̂j is assumed to change much
less than γj when (x̃,E[ỹ]) is used to train the IMLE model. This assumption puts the
emphasis on searching potential training points that reduce the uncertainty coefficient γj,
as opposed to reducing the full prediction uncertainty of expert j. For this reason,

Ṽ[ŷj] = γ̃jΨ̂j ,

with

γ̃j =
1

S̃hj
+
(

x̃ −
S̃hxj

S̃hj

)T

R̃∗
Λ

(

x̃ −
S̃hxj

S̃hj

)

,

where now

R̃∗
Λ =

(

S̃hxxj −
S̃hxjS̃

T
hxj

S̃hj

)−1

= S̃−1
hxxj +

(S̃−1
hxxjS̃hxj)(S̃

−1
hxxjS̃hxj)

T

S̃hj − S̃T
hxjS̃

−1
hxxjS̃hxj

.

The updated sufficient statistics of interest, for expert j, after inclusion of x̃ are given

186

by

S̃hj = λjShj + hj ,

S̃hxj = λjShxj + hjx̃

and

S̃−1
hxxj =

(

λjShxxj + hjx̃x̃T
)−1

=
1

λj



S−1
hxxj −

(S−1
hxxjx̃)(S−1

hxxjx̃)T

λj
hj

+ x̃TS−1
hxxjx̃



 ,

where hj are the responsibilities, calculated in the E-Step, for the fictitious training point
(x̃, ŷ(x̃)).

Defining the auxiliary vectors

f = S−1
hxxjx̃, g = S−1

hxxjS̃hxj

and the auxiliary scalar quantities

a = x̃TS−1
hxxjx̃ = x̃Tf , b = x̃TS−1

hxxjS̃hxj = x̃Tg, c = S̃T
hxjS

−1
hxxjS̃hxj = S̃hxjg,

d =
λj
hj

+ a, e = 1 −
a

d
, i =

b

d
,

k = c− bi, m = beS̃hj − k, n = λjS̃hj − k,

the previous expressions become

S̃−1
hxxj =

1

λj

(

S−1
hxxj −

ffT

d

)

,

S̃−1
hxxjS̃hxj =

1

λj
(g − if)

and

R̃∗
Λ

=
1

λj

(

S−1
hxxj −

ffT

d
+

1

n
(g − if)(g − if)T

)

.

As a consequence,

γ̃j =
1

S̃hj
+
(

x̃ −
S̃hxj

S̃hj

)T

R̃∗
Λ

(

x̃ −
S̃hxj

S̃hj

)

=
1

S̃hj
+

1

λj

(

x̃ −
S̃hxj

S̃hj

)T
(

S−1
hxxj −

ffT

d
+

1

n
(g − if)(g − if)T

)(

x̃ −
S̃hxj

S̃hj

)

APPENDIX C. IMLE UNCERTAINTY REDUCTION 187

=
1

S̃hj
+

1

λj

(

ae− 2be
1

S̃hj
+
(

k +
m2

n

)
1

S̃2
hj

)

.

The derivative of γ̃j can be obtained by first noting that

d

dx̃
a = 2fT ,

d

dx̃
b = gT + hfT ,

d

dx̃
c = 2hjg

T ,
d

dx̃
d = 2fT ,

d

dx̃
e = −2

e

d
fT ,

d

dx̃
i =

1

d
(gT + (hj − 2i)fT),

d

dx̃
k = 2(hj − i)(gT − ifT),

d

dx̃
n = −2(hj − i)(gT − ifT)

and

d

dx̃
m = (eS̃hj − 2(hj − i))gT + ((hj − 2i)eS̃hj + 2(hj − i)i)fT ;

this results in

dγ̃j
dx̃

=
1

λj

[

2e2fT −
2

S̃hj

(

e(hj − 2i)fT + egT
)

+
2

S̃2
hj

(hj − i)
(

g − ifT
)

+

+
2

S̃2
hj

m2

n2
(hj − i)(gT − ifT) +

2

S̃2
hj

m

n

(

(eS̃hj − 2(hj − i))gT + ((hj − 2i)eS̃hj + 2(hj − i)i)fT
)
]

=
2

λj

[

e2fT +
(
m

n
− 1

)
e

S̃hj

(

(hj − 2i)fT + gT
)

+
hj − i

S̃2
hj

(
m

n
− 1

)2

(gT − ifT)

]

.

Defining the additional auxiliary variables

o =
1

S̃hj

(
m

n
− 1

)

and p = (hj − i)o2 ,

the above equation finally becomes

dγ̃j
dx̃

=
2

λj

[

(e(e+ (hj − 2i)o) − ip) fT + (eo+ p) gT
]

,

which leads to

dṼ[ŷj]

dx̃
=

2

λj
Ψ̂j

[

(e(e+ (hj − 2i)o) − ip) fT + (eo+ p) gT
]

.

Appendix D

Software

The IMLE training and prediction algorithm is fully implemented in C++, in the form
of a template-based header-only library, freely available at Damas (2013). Using the
IMLE library requires the installation of the Eigen library (Guennebaud, Jacob, and
Others, 2013), also a template, header-header only library for linear algebra and vector
and matrix manipulation. In addition, some components of the widely used Boost C++
libraries (Boost.org, 2013) are also required, in particular Boost.Math, for accessing some
statistical functions, and Boost.Serialization, to provide a mechanism for saving the
current IMLE model in a non-volatile memory for posterior use.

The IMLE library has been tested in a Linux environment, using a recent Ubuntu
distributions (12.04 LTS): it has been successfully compiled using the GCC compiler,
version 4.6.3. This library was also compiled in the Windows 7 environment, using Visual
Studio Express 2012, and, although not tested as thoroughly as in the Linux environment,
has proven to perform correctly. To ease the building process of software using the IMLE
library across different platforms and operating systems some CMake scripts (Cmake.org,
2013) are also provided.

D.1 IMLE Class Interface

The IMLE class is a template class, that needs the input and output dimensions to be
defined before an object can be instantiated. The following code, for instance, creates
two IMLE models, imleObj1 and imleObj2, that can be used to learn a R

4 7→ R
3 and a

R
5 7→ R

2 input-output map, respectively.

#include " imle . hpp "

int main (int argc , char ∗∗ argv)
{

const int d = 4 ;

189

D.1. IMLE CLASS INTERFACE 190

const int D = 3 ;

IMLE<d ,D> imleObj1 ;

IMLE<5, 2> imleObj2 ;

return 0 ;
}

The IMLE class provides a structure that comprises all parameters that can be tuned
to influence the learning algorithm behaviour, that can be used to initialize an IMLE class
instance:

IMLE<d ,D>::Param param ;
param . sigma0 = 2 . 0 ;
param . wPsi = 1 0 . 0 ;

IMLE<d ,D> imleObj (param) ;

There are many other parameters that can be set, besides sigma0 and wPsi presented
in the above example: these parameters are described in Chapter 3. Additionally, struc-
ture members saveOnExit and defaultSave signal if the current state of the IMLE model
should be saved when a IMLE object ceases to exist and, in that case, the filename where
this state should be stored.

The IMLE class also provides some convenient alias to some of the most used vectors
and matrices used to interact with the IMLE model:

IMLE<d ,D>::Z vec1 ;
IMLE<d ,D>::X vec2 ;
IMLE<d ,D>::ZZ mat1 ;
IMLE<d ,D>::XX mat2 ;
IMLE<d ,D>::XZ mat3 ;

In the above example, vec1 is an input vector and vec2 is an output vector, with
corresponding dimensions d and D; mat1 is an input covariance matrix, with dimension
d× d, mat2 is an output covariance matrix, with dimension D ×D, and mat3 is a D × d

matrix that can be used, among other things, to store a Jacobian matrix.

It is worth of notice that, in this code, Z denotes an input vector and X denotes an
output vector, which is not consistent with the notation presented in this dissertation,
where x and y denote respectively an input and an output vector. This is due to historical

APPENDIX D. SOFTWARE 191

reasons: in earlier works this was the notation used, by the time the IMLE code was
developed.

Multi-valued predictions are stored in data structures given by the following types:

IMLE<d ,D>:: ArrayZ ;
IMLE<d ,D>:: ArrayX ;
IMLE<d ,D>:: ArrayZZ ;
IMLE<d ,D>::ArrayXX ;
IMLE<d ,D>:: ArrayXZ ;

Here, ArrayZ is just an alias to a std::vector of Eigen vectors Z; in the same way,
the other typedefs are just a shorthand to vectors comprising data types X, ZZ, XX and
XZ, respectively. In this way, the following code prints to the screen the D-dimensional
vector that contains the 4th multi-valued prediction given by the IMLE model (details on
this topic will be given in the following text):

IMLE<d ,D> imleObj ;
IMLE<d ,D>:: ArrayX predX ;

(. . .)

predX = imleObj . g e t Mu l t i p l eP r ed i c t i o n s () ;
std : : cout << predX [3] << std : : endl ;

D.1.1 Constructors

An IMLE object can be created using three different constructors:

IMLE<d ,D>::Param prm ;

IMLE<d ,D> imleObj1 ;
IMLE<d ,D> imleObj2 (prm) ;
IMLE<d ,D> imleObj3 (" savedModel . imle ") ;

The first constructor simply creates an empty IMLE object, with a default set of
parameters. The second constructor also creates an empty IMLE object, but changes its
internal parameters, as given by its argument. The last constructor uses a previously
saved IMLE model to initialize the IMLE object state. In these constructors, an optional
argument defining the size of memory reserved for the experts comprising the mixture
can be defined; the following code, for instance, creates an empty IMLE object and
preallocates the memory required to store 512 experts:

D.1. IMLE CLASS INTERFACE 192

IMLE<d ,D> imleObj (5 1 2) ;

Note that this number does not limit the number of experts allowed in the mixture
and is only defined for computational efficiency1: if, at a given moment, more than 512
experts are needed, the IMLE object simply allocates more memory to the mixture.

Finally, any IMLE object can be reset to an empty state, using the method

void IMLE<d ,D>:: r e s e t () ;

This empties the mixture, resetting the IMLE object to its default state. The only
information that is kept is the current set of parameters used by the model.

D.1.2 Parameter handling, serialization and state display

An IMLE object can be fully serialized to a file, for posterior use. This is achieved by the
save() and load() methods:

bool save (std : : s t r i n g const &f i l ename) ;
bool load (std : : s t r i n g const &f i l ename) ;

The IMLE parameters can also be changed and accessed any time, using the setParameters()

and getParameters() methods presented bellow, while displayParameters() prints the
current set of parameters being used by the IMLE model to a std::ostream, using the
screen as default stream. Also, for convenience, a loadParameters() method allows to
load a given set of parameters from a XML configuration file; such file can be generated
using the static method createDefaultParamFile(), that creates a file with the default
set of parameters that can be posteriorly changed by the user.

void setParameters (Param const &prm) ;
Param const &getParameters () ;
void di sp layParameter s (std : : ostream &out = std : : cout) const ;
bool loadParameters (std : : s t r i n g const &fname) ;
stat ic void createDefau l tParamFi le (std : : s t r i n g const &fname) ;

Some information regarding the current state of the mixture can be obtained using
the following methods:

int getNumberOfExperts () ;
Z const &getSigma () ;
X const &getPs i () ;
Experts const &getExperts () ;
void modelDisplay (std : : ostream &out = std : : cout) const ;

1The current version of the IMLE C++ code reserves memory for 1024 experts by default, if such number is
not provided.

APPENDIX D. SOFTWARE 193

This way, the current number of linear experts of the mixture and the current values
of Σ̄ and Ψ̄ can be inspected at any time during the learning process. Additionally,
getExperts() provides a way of accessing the current set of experts of the mixture, while
modelDisplay() outputs the complete IMLE internal state to a std::ostream — since
this includes each expert internal state, this method can easily lead to some considerable
amount of data being output to the stream.

D.1.3 Train and Predict

To incrementally update the mixture with a new input-output sample pair (x,y) the
following method should be used:

void update (Z const &z , X const &x) ;

This triggers the online EM update and the automatic allocation of a new expert if
needed, as described in Section 3.2.

A single-valued prediction ŷ can be produced at an input query x using the method

X const &pr ed i c t (Z const &z) ;

This prediction is obtained using equation (3.21a) in Section 3.3. After using the
predict() method some other quantities become available and can be accessed using the
following methods:

X const &g e t Pr ed i c t i o n () ;
X const &getPred ict ionVar () ;
Sca l getPred ict ionWeight () ;
XZ const &getPred i c t i onJacob ian () ;
X const &getPred ict ionErrorReduct i on () ;
XZ const &getPred i c t i onEr ro rReduct i onDer iva t ive () ;

This way, besides the prediction ŷ, a user can obtain the corresponding variance
estimate at the same query point (equation (3.21b), the Jacobian of the estimated input-
output map (equation (3.30) and some quantities pertaining the active learning scheme de-
scribed in Section 3.4 (equations (3.34) and (3.35)). Additionally, a getPredictionWeight()

method is available, returning the effective percentage of the mixture that was used to
generate the prediction, as given by weights w(k) defined in equation (3.24c). Note this
quantity is much more relevant for multi-valued prediction methods described next, as, for
single-valued prediction, getPredictionWeight() will usually return a value very close
to 1; if it returns a value lower than 1, this means that the prediction at query point x

is poorly supported by the current mixture, i.e., that there are no linear experts covering
the location of the input query. In this case, a non negligible weight is assigned to the

D.1. IMLE CLASS INTERFACE 194

outlier model w0, as described in Section 3.2.2. Finally, the quantities used for an active
learning scheme, V[ŷ(x̃)] − Ṽ[ŷ(x̃)] (equation (3.34)) and d

dx̃
(V[ŷ(x̃)] − Ṽ[ŷ(x̃)]) (equa-

tion (3.35)), can be obtained using the methods getPredictionErrorReduction() and
getPredictionErrorReductionDerivative(), respectively.

Another single-valued prediction method is given by

X const &pr ed i c t S t r o ng e s t (Z const &z) ;

This method effectively performs a multi-valued regression at query point x, but only
considers the strongest solution obtained, according to the prediction weights described
above, and discarding the rest, as described in Section 4.2.1. After predictStrongest()

is used the same methods presented for single-valued prediction can be used to obtain the
variance and the Jacobian of the estimated input-output map, among other quantities of
interest.

A multi-valued prediction can be generated using the following method:

void pr ed i c t Mu l t i p l e (Z const &z) ;

After this prediction command is issued, a set of methods similar to the ones presented
in the single-valued prediction can be used to obtain some quantities of interest:

ArrayX const &g e t Mu l t i p l ePr ed i c t i o n s () ;
ArrayX const &getMul t ip l ePred i c t i onsVar () ;
ArrayScal const &getMult ip l ePred ic t i onsWeight () ;
int getNumberOfSolutionsFound () ;
ArrayXZ const &getMul t ip l ePred i c t i onsJacob ian () ;
ArrayX const &getMul t ip l ePred i c t i onEr ro rReduct i on () ;
ArrayXZ const &getMul t ip l ePred i c t i onEr ro rReduct i onDer iva t ive () ;

Note that, additionally, there is a method that provide the number of forward predic-
tions found using the procedure described in Section 3.3. Finally, inverse predictions can
be obtained using the IMLE class method

void pr ed i c t I nv e r s e (X const &x) ;

After that, as usual, the inverse predictions and the corresponding variances and
weights, together with the number of such predictions found by the clustering procedure,
can be accessed using the following methods:

ArrayZ const &g e t Inve r s ePr ed i c t i o n s () ;
ArrayZZ const &get Inver sePred i c t i onsVar () ;
ArrayScal const &get Inver sePred i c t i onsWeight () ;
int getNumberOfInverseSolutionsFound () ;

APPENDIX D. SOFTWARE 195

D.2 YARP Module

To facilitate the application of the IMLE C++ library to sensorimotor learning and con-
trol in robotic tasks, a YARP module was also developed in the scope of this work. YARP
(Yet Another Robot Platform) is an open source middleware specially developed to sup-
port software development on humanoid robotics (Metta, Fitzpatrick, and Natale, 2006;
Fitzpatrick, Metta, and Natale, 2008; Fitzpatrick, Metta, and Natale, 2013). In this con-
text, a YARP module is an executable program that can run autonomously and that can
communicate with simulators, hardware devices belonging to a robot or another modules.

All configuration of IMLE model parameters can be done resorting to standard YARP
configuration files, as described in Fitzpatrick, Metta, and Natale (2013). The IMLE
module opens two ports for communication with another modules: one of them is used
to train the IMLE model by sending it single input-output pairs of training data, while
the second port is bidirectional and is used to provide predictions from the current IMLE
model. Two different threads are used for training and prediction, and a software lock
is used to ensure integrity of the IMLE model, by only allowing one thread at a time to
access and change this model.

D.2.1 Data Port

The data port of the IMLE model accepts training points in the following message form:

((x1 x2 · · ·xd) (y1 y2 · · · yD)) ,

where d and D are respectively the input and output dimensions.

D.2.2 Query Port

The query port provides predictions to queries sent to it. Such queries start with the word
predict, followed by an optional prediction mode (single-valued prediction is assumed if
no prediction mode is provided) and the input query point, in the form

(predict (x1 x2 · · ·xd))

(predict SingleValued (x1 x2 · · ·xd))

(predict MultiValued (x1 x2 · · ·xd))

(predict Strongest (x1 x2 · · ·xd)) .

The optional WithJacobian string can be specified at the end of the message if the
Jacobian at the query point is desired, like in

(predict MultiValued (x1 x2 · · ·xd) WithJacobian) .

D.2. YARP MODULE 196

Inverse prediction follows the same message structure, although now WithJacobian is
not taken into account:

(predict Inverse (y1 y2 · · · yD)) .

The IMLE module replies to these queries with a message with the following structure,

(s1 s2 · · · sK) ,

where K is the number of solutions found (K will always be equal to 1 when single-
valued prediction is considered) and sk is the kth solution found by the IMLE prediction
algorithm. A forward prediction reply has the form

sk = ((Prediction y1 y2 · · · yD) (Variance v1 v2 · · · vD) (Weight w) (Jacobian J11 J12 · · · JDd)) ,

where v1 · · · vD are the components of the diagonal covariance matrix that represents the
output uncertainty at query point x1 · · ·xD, w is the solution weight with respect to the
full set of multi-valued predictions and J11 · · ·JDd represent the D by d Jacobian matrix
that is only provided if a request for it was made in the corresponding query.

Replies to inverse queries follow more or less the same structure,

sk = ((Prediction x1 x2 · · ·xd) (Variance v11 v12 · · · vdd) (Weight w)) ,

but now a full covariance matrix is returned and no Jacobian estimate is provided.

Bibliography

Akaike, H (1974). “A new look at the statistical model identification”. In: IEEE Transactions

on Automatic Control 19.6, pp. 716–723.

An, Chae H, Christopher G Atkeson, and John M Hollerbach (1988). Model-based Control of a

Robot Manipulator. Vol. 16. MIT Press Cambridge, MA.

Andrieu, Christophe, Nando De Freitas, Arnaud Doucet, and Michael I Jordan (2003). “An

introduction to MCMC for machine learning”. In: Machine learning 50, pp. 5–43.

Antoniak, C E (1974). “Mixtures of Dirichlet Processes with Applications to Bayesian Nonpara-

metric Problems”. In: The Annals of Statistics 2.6, pp. 1152–1174.

Asada, M., K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui, et al. (2009). “Cognitive Develop-

mental Robotics: A Survey”. In: IEEE Transactions on Autonomous Mental Development

1.1, pp. 12–34.

Asada, Minoru, Karl F. MacDorman, Hiroshi Ishiguro, and Yasuo Kuniyoshi (2001). “Cognitive

developmental robotics as a new paradigm for the design of humanoid robots”. In: Robotics

and Autonomous Systems 37.2-3, pp. 185–193.

Atkeson, Christopher G, Chae H An, and John M Hollerbach (1986). “Estimation of Inertial

Parameters of Manipulator Loads and Links”. In: The International Journal of Robotics

Research 5, pp. 101–119.

Atkeson, Christopher G, Andrew W Moore, and Stefan Schaal (1997a). “Locally Weighted Learn-

ing”. In: Artificial Intelligence Review 11.1, pp. 11–73.

Atkeson, Christopher G, Andrew W Moore, and Stefan Schaal (1997b). “Locally Weighted Learn-

ing for Control”. In: Artificial Intelligence Review 11.1, pp. 75–113.

Baillieul, J and D P Martin (1990). “Resolution of kinematic redundancy”. In: Proceedings of

Symposia in Applied Mathematics. Vol. 41, pp. 49–89.

Beal, Matthew J (2003). “Variational Algorithms for Approximate Bayesian Inference”. PhD

thesis, pp. 1–281.

Bellman, Richard (1957). Dynamic Programming. A Rand Corporation research study. Princeton

University Press.

Bishop, Christopher M (1994). Mixture density networks. Tech. rep.

Bishop, Christopher M (2006). Pattern Recognition and Machine Learning. Ed. by M Jordan,

J Kleinberg, and B Schölkopf. Information science and statistics. Springer, p. 738. arXiv:

0-387-31073-8.

197

BIBLIOGRAPHY 198

Bishop, Christopher M and Markus Svensén (2002). “Bayesian hierarchical mixtures of experts”.

In: Proceedings of the Nineteenth conference on Uncertainty in Artificial Intelligence. Morgan

Kaufmann Publishers Inc., pp. 57–64.

Bo, Liefeng, Cristian Sminchisescu, Atul Kanaujia, and Dimitris Metaxas (2008). “Fast algo-

rithms for large scale conditional 3D prediction”. In: 2008 IEEE Conference on Computer

Vision and Pattern Recognition, pp. 1–8.

Bocsi, Botond, Duy Nguyen-Tuong, Lehel Csató, Bernhard Scholkopf, and Jan Peters (2011).

“Learning inverse kinematics with structured prediction”. In: IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, pp. 698–703.

Bongard, Josh, Victor Zykov, and Hod Lipson (2006). “Resilient machines through continuous

self-modeling.” In: Science (New York, N.Y.) 314.5802, pp. 1118–21.

Boost.org (2013). Boost {C}++ Libraries, version 1.53. url: http://www.boost.org (visited

on 10/2013).

Breiman, Leo, Jerome H Friedman, Richard A Olshen, and Charles J Stone (1984). “Classifica-

tion and Regression Trees”. In:

Brooks, Rodney A (1986). “A robust layered control system for a mobile robot”. In: IEEE

Journal on Robotics and Automation 2.1, pp. 14–23.

Brooks, Rodney A (1990). “Elephants don’t play chess”. In: Robotics and Autonomous Systems

6.1-2, pp. 3–15.

Brooks, Rodney A (1991). “Intelligence without representation”. In: Artificial Intelligence 47.1-3,

pp. 139–159.

Broomhead, D and David Lowe (1988). “Multivariable functional interpolation and adaptive

networks”. In: Complex Systems 2, pp. 321–355.

Brouwer, R K (2004). “Feed-forward neural network for one-to-many mappings using fuzzy sets”.

In: Neurocomputing 57, pp. 345–360.

Buhmann, Martin Dietrich (2003). Radial basis functions: theory and implementations. Vol. 12.

Cambridge university press.

Bullock, D and S Grossberg (1988). “Neural dynamics of planned arm movements: emergent in-

variants and speed-accuracy properties during trajectory formation.” In: Psychological review

95.1, pp. 49–90.

Butz, Martin V, Oliver Herbort, and Joachim Hoffmann (2007). “Exploiting redundancy for

flexible behavior: unsupervised learning in a modular sensorimotor control architecture.” In:

Psychological review 114.4, pp. 1015–46.

Calinon, Sylvain, Florent Guenter, and Aude Billard (2007). “On Learning, Representing, and

Generalizing a Task in a Humanoid Robot”. In: IEEE Transactions on Systems, Man and

Cybernetics, Part B (Cybernetics) 37.2, pp. 286–298.

Candela, Joaquin Quiñonero and Carl Edward Rasmussen (2005). “A unifying view of sparse

approximate Gaussian process regression”. In: The Journal of Machine Learning Research

6, pp. 1939–1959.

BIBLIOGRAPHY 199

Cao, Lijuan (2003). “Support vector machines experts for time series forecasting”. In: Neuro-

computing 51, pp. 321–339.

Capp, Olivier and Eric Moulines (2009). “Online EM Algorithm for Latent Data Models”. In:

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 71.3, pp. 593–613.

Carreira-Perpiñán, M Á (2000). “Mode-finding for mixtures of Gaussian distributions”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 22.11, pp. 1318–1323.

Chatzidimitriou, Kyriakos C. and Pericles a. Mitkas (2013). “Adaptive reservoir computing

through evolution and learning”. In: Neurocomputing 103, pp. 198–209.

Cleveland, W S (1979). “Robust locally weighted regression and smoothing scatterplots”. In:

Journal of the American Statistical Association 74, pp. 829–836.

Cmake.org (2013). Cmake – Cross Platform Make, version 2,8. url: http://www.cmake.org

(visited on 10/2013).

Cohn, David A, Zoubin Ghahramani, and Michael I Jordan (1996). “Active Learning with Sta-

tistical Models”. In: Journal of Artificial Intelligence Research 4.1. Ed. by G Tesauro, D

Touretzky, and TEditors Leen, pp. 129–145. arXiv: 960310 [cs].

Craig, J J (1989). Introduction to Robotics: Mechanics and Control. Addison-Wesley Longman

Publishing Co., Inc.

Csató, Lehel and Manfred Opper (2002). “Sparse on-line Gaussian processes”. In: Neural Com-

putation 14.3, pp. 641–668.

Damas, Bruno (2013). Infinite Mixture of Linear Experts (IMLE) Library, version 1.9. url:

http://users.isr.ist.utl.pt/~bdamas/IMLE/ (visited on 10/2013).

Damas, Bruno, Lorenzo Jamone, and José Santos-Victor (2013). “Open and Closed-Loop Task

Space Trajectory Control of Redundant Robots Using Learned Models”. In: IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems. IEEE.

Damas, Bruno and José Santos-Victor (2012). “An online algorithm for simultaneously learning

forward and inverse kinematics”. In: 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 1499–1506.

Damas, Bruno and José Santos-Victor (2013). “Online learning of single- and multivalued func-

tions with an infinite mixture of linear experts.” In: Neural computation 25.11, pp. 3044–

91.

Damásio, António (1999). O Sentimento de Si (English: The feeling of what happens: body and

emotion and the making of consciousness). Publicações Europa-América.

De Boor, C (1978). A Practical Guide to Splines. Vol. 27, p. 325.

Deisenroth, Marc Peter, Carl Edward Rasmussen, and Jan Peters (2009). “Gaussian process

dynamic programming”. In: Neurocomputing 72.7-9, pp. 1508–1524.

Demers, David and Kenneth Kreutz-Delgado (1992). “Learning Global Direct Inverse Kinemat-

ics”. In: Advances in Neural Information Processing Systems. Morgan Kaufmann, pp. 589–

595.

BIBLIOGRAPHY 200

Dempster, A P, N M Laird, and D B Rubin (1977). “Maximum Likelihood from Incomplete Data

via the EM Algorithm”. In: Journal of the Royal Statistical Society. Series B (Methodological)

39.1, pp. 1–38.

Derksen, Shelley and H J Keselman (1992). “Backward, forward and stepwise automated sub-

set selection algorithms: Frequency of obtaining authentic and noise variables”. In: British

Journal of Mathematical and Statistical Psychology 45.2, pp. 265–282.

Dreyfus, Hubert L (1992). What computers still can’t do: a critique of artificial reason. The MIT

Press.

D’Souza, Aaron, Sethu Vijayakumar, and Stefan Schaal (2001). “Learning inverse kinematics”.

In: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems.

Vol. 1. Iros. IEEE, pp. 298–303.

Efron, Bradley, Trevor Hastie, Ian Johnstone, and Robert Tibshirani (2004). “Least Angle Re-

gression”. In: The Annals of Statistics 32.2, pp. 407–499.

Engel, Yaakov, Shie Mannor, and Ron Meir (2002). “Sparse online greedy support vector regres-

sion”. In: European Conference on Machine Learning (ECML), pp. 84–96.

Evgeniou, Theodoros, Massimiliano Pontil, and Tomaso Poggio (2000). “Regularization Net-

works and Support Vector Machines”. In: Advances in Computational Mathematics 13, pp. 1–

50.

Figueiredo, Mário A T (2003). “Adaptive sparseness for supervised learning”. In: IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 25.9, pp. 1150–1159.

Figueiredo, Mário A T and Anil K Jain (2002). “Unsupervised learning of finite mixture models”.

In: IEEE Transactions on Pattern Analysis and Machine Intelligence 24.3, pp. 381–396.

Fitzpatrick, Paul, Giorgio Metta, and Lorenzo Natale (2008). “Towards long-lived robot genes”.

In: Robotics and Autonomous Systems 56.1, pp. 29–45.

Fitzpatrick, Paul, Giorgio Metta, and Lorenzo Natale (2013). YARP – Yet Another Robot Plat-

form, version 2.3.20. url: http://eris.liralab.it/yarp/ (visited on 10/2013).

Frank, Ildiko E and Jerome H Friedman (1993). “A Statistical View of Some Chemometrics

Regression Tools”. In: Technometrics 35, pp. 109–135.

Friedman, Jerome H (1991). “Multivariate adaptive regression splines”. In: The annals of statis-

tics 19.1, pp. 1–67.

Friedman, Jerome H and Werner Stuetzle (1981). “Projection Pursuit Regression”. In: Journal

of the American Statistical Association 76, pp. 817–823.

Fritsch, Jürgen, Michael Finke, and Alex Waibel (1997). “Adaptively growing hierarchical mix-

tures of experts”. In: In Advances in Neural Information Processing Systems 9. MIT Press

Cambridge, MA.

Furnival, George M and Robert W Wilson (1974). “Regressions by leaps and bounds”. In: Tech-

nometrics 16.4, pp. 499–511.

Gelman, A, J B Carlin, H S Stern, and D B Rubin (2004). “Bayesian Data Analysis”. In:

Champan and Hall/CRC.

BIBLIOGRAPHY 201

Geman, Stuart, Elie Bienenstock, and René Doursat (1992). “Neural Networks and the Bias/-

Variance Dilemma”. In: Neural Computation 4.1, pp. 1–58.

Ghahramani, Zoubin (1994). “Solving inverse problems using an EM approach to density esti-

mation”. In: Proceedings of the 1993 Connectionist Models Summer School. Ed. by Michael C

Mozer, P Smolensky, David S Touretzky, J L Elman, and A S Weigend. Erlbaum Associates,

pp. 316–323.

Ghahramani, Zoubin (2013). “Bayesian non-parametrics and the probabilistic approach to mod-

elling.” In: Philosophical transactions. Series A, Mathematical, physical, and engineering

sciences 371.1984, p. 20110553.

Ghahramani, Zoubin and Geoffrey E Hinton (1996). The EM Algorithm for Mixtures of Factor

Analyzers. Tech. rep.

Ghahramani, Zoubin and Michael I Jordan (1994). “Supervised Learning from Incomplete Data

via an EM approach”. In: Advances in Neural Information Processing Systems 6, pp. 120–

127.

Girosi, Federico, Michael Jones, and Tomaso Poggio (1995). “Regularization Theory and Neural

Networks Architectures”. In: Neural Computation 7.2, pp. 219–269.

Gomes, Ryan, Max Welling, and Pietro Perona (2008). “Incremental learning of nonparametric

Bayesian mixture models”. In: 2008 IEEE Conference on Computer Vision and Pattern

Recognition. IEEE, pp. 1–8.

Green, Peter J and Bernard W Silverman (1994). Nonparametric regression and generalized

linear models: a roughness penalty approach. Chapman & Hall London.

Grollman, D H and O C Jenkins (2010). “Incremental learning of subtasks from unsegmented

demonstration”. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and

Systems. IEEE. IEEE, pp. 261–266.

Grollman, Daniel (2008). Sparse Online Gaussian Process (SOGP) Library, version 2.0. url:

http://cs.brown.edu/people/dang/code.shtml (visited on 01/2012).

Grollman, Daniel (2009). Realtime Overlapping Gaussian Expert Regression (ROGER) Library,

version 1.5. url: http://cs.brown.edu/people/dang/code.shtml (visited on 01/2012).

Guennebaud, Gaël, Beno\ˆit Jacob, and Others (2013). EIGEN library, version 3.1.4. url:

http://eigen.tuxfamily.org (visited on 10/2013).

Hartmann, Christoph, Joschka Boedecker, Oliver Obst, Shuhei Ikemoto, and Minoru Asada

(2012). “Real-Time Inverse Dynamics Learning for Musculoskeletal Robots based on Echo

State Gaussian Process Regression”. In: Robotics: Science and Systems.

Haruno, M, Daniel M Wolpert, and Mitsuo Kawato (2001). “Mosaic model for sensorimotor

learning and control”. In: Neural computation 13.10, pp. 2201–20.

Hastie, Trevor and Clive Loader (1993). “Local Regression: Automatic Kernel Carpentry”. In:

Statistical Science 8.2, pp. 120–129.

Hastie, Trevor and Werner Stuetzle (1989). “Principal Curves”. In: Journal of the American

Statistical Association 84, pp. 502–516.

BIBLIOGRAPHY 202

Hastie, Trevor and Robert Tibshirani (1986). “Generalized additive models”. In: Statistical sci-

ence 1.3, pp. 297–310.

Hastie, Trevor, Robert Tibshirani, and Jerome H Friedman (2009). The Elements of Statistical

Learning. Vol. 27. Springer Series in Statistics 2. New York, NY: Springer New York.

Hemion, Nikolas J., Frank Joublin, and Katharina J. Rohlfing (2012). “Integration of sensorimo-

tor mappings by making use of redundancies”. In: The 2012 International Joint Conference

on Neural Networks (IJCNN). IEEE, pp. 1–8.

Herbort, Oliver, Martin V Butz, and Gerulf Pedersen (2010). “The SURE_REACH model for

motor learning and control of a redundant arm: from modeling human behavior to appli-

cations in robotics”. In: From Motor Learning to Interaction Learning in Robots. Springer,

pp. 85–106.

Hersch, Micha (2009). “Adaptive sensorimotor peripersonal space representation and motor

learning for a humanoid robot”. PhD thesis.

Hersch, Micha, Eric Sauser, and Aude Billard (2008). “Online Learning of the Body Schema”.

In: International Journal of Humanoid Robotics 05.02, pp. 161–181.

Hinton, Geoffrey E (1991). Connectionist Symbol Processing. The MIT Press.

Hinton, Geoffrey E, J L McClelland, and David E Rumelhart (1986). “Distributed represen-

tations”. In: Parallel distributed processing: explorations in the microstructure of cognition,

vol. 1. MIT Press. The MIT Press, pp. 77–109.

Hoerl, A E and R W Kennard (1970). “Ridge regression: Biased estimation for nonorthogonal

problems”. In: Technometrics 42.1, pp. 55–67.

Hoffman, Matthew D, David M Blei, Chong Wang, and John Paisley (2013). “Stochastic Vari-

ational Inference”. In: Journal of Machine Learning Research 14, pp. 1303–1347.

Hsu, Ping, John Mauser, and Shankar Sastry (1989). “Dynamic control of redundant manipu-

lators”. In: Journal of Robotic Systems 6.2, pp. 133–148.

Huang, Guang-Bin, Qin-Yu Zhu, and Chee-Kheong Siew (2006). “Extreme learning machine:

Theory and applications”. In: Neurocomputing 70.1-3, pp. 489–501.

Huang, Mian, Runze Li, and Shaoli Wang (2013). “Nonparametric Mixture of Regression Mod-

els.” In: Journal of the American Statistical Association 108.503.

Jacobs, Robert A, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton (1991). “Adaptive

Mixtures of Local Experts”. In: Neural Computation 3.1, pp. 79–87.

Jacobs, Robert A, Fengchun Peng, and Martin A Tanner (1997). “A Bayesian Approach to

Model Selection in Hierarchical Mixtures-of-Experts Architectures”. In: Neural Networks

10.2, pp. 231–241.

Jaeger, Herbert (2003). “Adaptive Nonlinear System Identification with Echo State Networks”.

In: Advances in Neural Information Processing Systems 15. Ed. by S Thrun S. Becker and

K Obermayer. MIT Press.

Jamone, Lorenzo, Bruno Damas, Nobotsuna Endo, José Santos-Victor, and Atsuo Takanishi

(2013a). “Incremental development of multiple tool models for robotic reaching through

autonomous exploration”. In: Paladyn Journal of Behaviour Robotics 3.3, pp. 113–127.

BIBLIOGRAPHY 203

Jamone, Lorenzo, Bruno Damas, José Santos-Victor, and Atsuo Takanishi (2013b). “Online

Learning of Humanoid Robot Kinematics Under Switching Tools Contexts”. In: IEEE In-

ternational Conference on Robotics and Automation.

Jia, Peng, Junsong Yin, Xinsheng Huang, and Dewen Hu (2009). “Incremental Laplacian eigen-

maps by preserving adjacent information between data points”. In: Pattern Recognition Let-

ters 30.16, pp. 1457–1463.

Jordan, Michael I (1992). “Constrained supervised learning”. In: Journal of Mathematical Psy-

chology 36.3, pp. 396–425.

Jordan, Michael I and Robert A Jacobs (1994). “Hierarchical Mixtures of Experts and the EM

Algorithm”. In: Neural Computation 6.2, pp. 181–214.

Jordan, Michael I and David E Rumelhart (1992). “Forward Models: Supervised Learning with

a Distal Teacher”. In: Cognitive Science 16.3, pp. 307–354.

Jordan, Michael I and Daniel M Wolpert (1999). “Computational Motor Control”. In: The

Cognitive Neurosciences, 2nd edition. Ed. by Michael S. Gazzaniga. MIT Press.

Joshi, Prashant and Wolfgang Maass (2005). “Movement generation with circuits of spiking

neurons”. In: Neural computation 17.8, pp. 1715–38.

Kanaujia, Atul and Dimitris Metaxas (2006). “Learning Ambiguities Using Bayesian Mixture

of Experts”. In: 8th IEEE International Conference on Tools with Artificial Intelligence

(ICTAI’06), pp. 436–440.

Kawato, Mitsuo, Kazunori Furukawa, and R Suzuki (1987). “A hierarchical neural-network

model for control and learning of voluntary movement”. In: Biological Cybernetics 57.3,

pp. 169–185.

Kazerounian, K. and Z. Wang (1988). “Global versus Local Optimization in Redundancy Res-

olution of Robotic Manipulators”. In: The International Journal of Robotics Research 7.5,

pp. 3–12.

Keerthi, Sathiya and Wei Chu (2006). “A matching pursuit approach to sparse Gaussian process

regression”. In: Advances in Neural Information Processing Systems 18. Ed. by Y Weiss, B

Schölkopf, and J Platt. Cambridge, MA: MIT Press, pp. 643–650.

Kendall, Maurice G (1957). A Course in Multivariate Analysis.

Khatib, Oussama (1987). “A unified approach for motion and force control of robot manipulators:

The operational space formulation”. In: IEEE Journal on Robotics and Automation 3.1,

pp. 43–53.

Klanke, Stefan and Sethu Vijayakumar (2009). Locally Weighted Projection Regression (LWPR)

Library, version 1.2.3. url: http://wcms.inf.ed.ac.uk/ipab/slmc/research/software-

lwpr (visited on 01/2012).

Ko, Jonathan and Dieter Fox (2009). “GP-BayesFilters: Bayesian filtering using Gaussian process

prediction and observation models”. In: Autonomous Robots 27.1, pp. 75–90.

Kocijan, J, Roderick Murray-Smith, Carl Edward Rasmussen, and A Girard (2004). “Gaus-

sian process model based predictive control”. In: Proceedings of the 2004 American Control

Conference. Vol. 3. IEEE: Institute of Electrical and Electronics Engineers, pp. 2214–2219.

BIBLIOGRAPHY 204

Kohonen, Teuvo (2001). Self-Organizing Maps. Vol. 30. Springer.

Kreinovich, Vladik Y A (1991). “Arbitrary nonlinearity is sufficient to represent all functions by

neural networks: A theorem”. In: Neural Networks 4.3, pp. 381–383.

Kuperstein, M (1988). “Neural model of adaptive hand-eye coordination for single postures”.

In: Science 239.4845, pp. 1308–1311.

Lampert, Christoph H and Matthew B Blaschko (2009). “Structured prediction by joint kernel

support estimation”. In: Machine Learning 77.2-3, pp. 249–269.

Law, Martin H and Anil K Jain (2006). “Incremental nonlinear dimensionality reduction by

manifold learning”. In: IEEE transactions on pattern analysis and machine intelligence 28.3,

pp. 377–91.

Lázaro-Gredilla, Miguel (2010). “Sparse Gaussian Processes for Large-Scale Machine Learning”.

PhD thesis.

Lee, K W and T Lee (2001). “Design of neural networks for multi-value regression”. In: IJCNN’01.

International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222). Vol. 1.

IEEE. IEEE, pp. 93–98.

Li, Haifeng, Keshu Zhang, and Tao Jiang (2005). “The regularized EM algorithm”. In: Proceed-

ings of the national conference on artificial intelligence (AAAI). Vol. 20. 2. Menlo Park, CA;

Cambridge, MA; London; AAAI Press; MIT Press; 1999, p. 807.

Li, Housen, Hao Jiang, Roberto Barrio, Xiangke Liao, Lizhi Cheng, et al. (2011). “Incremental

manifold learning by spectral embedding methods”. In: Pattern Recognition Letters 32.10,

pp. 1447–1455.

Liegeois, Alain (1977). “Automatic Supervisory Control of the Configuration and Behavior of

Multibody Mechanisms”. In: IEEE Transactions on Systems, Man, and Cybernetics 7.12,

pp. 868–871.

Lima, Clodoaldo A M, André L V Coelho, and Fernando J Von Zuben (2007). “Hybridizing

mixtures of experts with support vector machines: Investigation into nonlinear dynamic

systems identification”. In: Information Sciences 177.10, pp. 2049–2074.

Ljung, Lennart (2002). “Recursive identification algorithms”. In: Circuits, Systems, and Signal

Processing 21.1, pp. 57–68.

Loader, Catherine (2012). “Smoothing: Local regression techniques”. In: Handbook of Computa-

tional Statistics. Springer, pp. 571–596.

Loader, Clive (1999). Local Regression and Likelihood. Statistics and Computing. Springer.

Lopes, Manuel and Bruno Damas (2007). “A learning framework for generic sensory-motor

maps”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1533–

1538.

Lopes, Manuel and José Santos-Victor (2007). “A developmental roadmap for learning by imita-

tion in robots”. In: IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics

: a publication of the IEEE Systems, Man, and Cybernetics Society 37.2, pp. 308–21.

Lungarella, Max, Giorgio Metta, Rolf Pfeifer, and Giulio Sandini (2003). “Developmental robotics:

a survey”. In: Connection Science 15.4, pp. 151–190.

BIBLIOGRAPHY 205

Ma, Junshui, James Theiler, and Simon Perkins (2003). “Accurate on-line support vector re-

gression.” In: Neural computation 15.11, pp. 2683–703.

MacKay, David (1995). “Probable networks and plausible predictions — a review of practical

Bayesian methods for supervised neural networks”. In: Network: Computation in Neural

Systems 6.3, pp. 469–505.

MacKay, David (2003). Information theory, inference and learning algorithms.

Martin, D.P., J. Baillieul, and J.M. Hollerbach (1989). “Resolution of kinematic redundancy

using optimization techniques”. In: IEEE Transactions on Robotics and Automation 5.4,

pp. 529–533.

McCulloch, Warren S. and Walter Pitts (1943). “A logical calculus of the ideas immanent in

nervous activity”. In: The Bulletin of Mathematical Biophysics 5.4, pp. 115–133.

McLachlan, G and D Peel (2000). “Finite Mixture Models”. In:

Meeds, Edward and Simon Osindero (2006). “An Alternative Infinite Mixture Of Gaussian

Process Experts”. In: Advances in Neural Information Processing Systems 18. Ed. by Y

Weiss, B Schölkopf, and J Platt. Cambridge, MA: MIT Press, pp. 883–890.

Merlet, J P (2006). Parallel Robots. Springer-Verlag New York Inc.

Metta, G, G Sandini, and J Konczak (1999). “A developmental approach to visually-guided

reaching in artificial systems.” In: Neural networks : the official journal of the International

Neural Network Society 12.10, pp. 1413–1427.

Metta, Giorgio, Paul Fitzpatrick, and Lorenzo Natale (2006). “YARP: Yet Another Robot Plat-

form”. In: International Journal of Advanced Robotic Systems 3.1, p. 1.

Metta, Giorgio, Lorenzo Natale, Francesco Nori, Giulio Sandini, David Vernon, et al. (2010).

“The iCub humanoid robot: an open-systems platform for research in cognitive development.”

In: Neural networks : the official journal of the International Neural Network Society 23.8-9,

pp. 1125–34.

Miall, R Chris and Daniel M Wolpert (1996). “Forward Models for Physiological Motor Control”.

In: Neural Networks 9.8, pp. 1265–1279.

Miller, W T (1987). “Sensor-based control of robotic manipulators using a general learning

algorithm”. In: IEEE Journal on Robotics and Automation 3.2, pp. 157–165.

Miller, W T (1989). “Real-time application of neural networks for sensor-based control of robots

with vision”. In: IEEE Transactions on Systems, Man, and Cybernetics 19.4, pp. 825–831.

Mitchell, Tom (1997). Machine Learning. McGraw Hill, p. 432.

Miwa, Hiroyasu, Tetsuya Okuchi, Hideaki Takanobu, and Atsuo Takanishi (2002). “Development

of a new human-like head robot WE-4”. In: Intelligent Robots and Systems, 2002. IEEE/RSJ

International Conference on. Vol. 3. IEEE, pp. 2443–2448.

Murphy, Kevin P (2012). Machine learning: a probabilistic perspective.

Nabeshima, Cota, Yasuo Kuniyoshi, and Max Lungarella (2006). “Adaptive body schema for

robotic tool-use”. In: Advanced Robotics 20.10, pp. 1105–1126.

Nadaraya, E A (1964). “On Estimating Regression”. In: Theory of Probability & Its Applications

9.1, pp. 141–142.

BIBLIOGRAPHY 206

Nakamura, Y and H Hanafusa (1986). “Inverse kinematic solutions with singularity robustness

for robot manipulator control”. In: ASME Journal of Dynamic Systems, Measurement, and

Control 108.3, pp. 163–171.

Nakamura, Y and H Hanafusa (1987). “Optimal Redundancy Control of Robot Manipulators”.

In: The International Journal of Robotics Research 6.1, pp. 32–42.

Nakanishi, Jun, R Cory, Michael Mistry, Jan Peters, and Stefan Schaal (2008). “Operational

Space Control: A Theoretical and Empirical Comparison”. In: The International Journal of

Robotics Research 27.6, pp. 737–757.

Narendra, K.S. and J Balakrishnan (1997). “Adaptive control using multiple models”. In: IEEE

Transactions on Automatic Control 42.2, pp. 171–187.

Natale, Lorenzo, Francesco Nori, Giorgio Metta, and Matteo Fumagalli (2013). “The iCub

platform: a tool for studying intrinsically motivated learning”. In: Intrinsically Motivated

Learning in Natural and Artificial Systems. Ed. by Gianluca Baldassarre and Marco Mirolli.

Springer, pp. 433–458.

Natschläger, Thomas, Wolfgang Maass, and Henry Markram (2002). “The "Liquid Computer": A

Novel Strategy for Real-Time Computing on Time Series”. In: Special Issue on Foundations

of Information Processing of TELEMATIK 8.1, pp. 39–43.

Neal, Radford M (1996). Bayesian Learning for Neural Networks. Lecture Notes in Statistics

Series. Springer-Verlag.

Neal, Radford M and Geoffrey E Hinton (1999). “A view of the EM algorithm that justifies

incremental, sparse, and other variants”. In: Learning in graphical models, pp. 355–368.

Nguyen-Tuong, Duy and Jan Peters (2010). “Using model knowledge for learning inverse dy-

namics”. In: IEEE International Conference on Robotics and Automation, pp. 2677–2682.

Nguyen-Tuong, Duy and Jan Peters (2011a). “Incremental online sparsification for model learn-

ing in real-time robot control”. In: Neurocomputing 74.11, pp. 1859–1867.

Nguyen-Tuong, Duy and Jan Peters (2011b). “Model learning for robot control: a survey”. In:

Cognitive processing 12.4, pp. 319–40.

Nguyen-Tuong, Duy and Jan Peters (2012). “Online Kernel-Based Learning for Task-Space

Tracking Robot Control”. In: IEEE Transactions on Neural Networks and Learning Systems

23.9, pp. 1417–1425.

Nguyen-Tuong, Duy, Matthias Seeger, and Jan Peters (2009a). “Local Gaussian Process Regres-

sion for Real Time Online Model Learning”. In: Advances in Neural Information Processing

Systems 21. Ed. by D Koller, D Schuurmans, Y Bengio, and L Bottou, pp. 1193–1200.

Nguyen-Tuong, Duy, Matthias Seeger, and Jan Peters (2009b). “Model Learning with Local

Gaussian Process Regression”. In: Advanced Robotics 23.15, pp. 2015–2034.

Ogura, Yu, Hiroyuki Aikawa, Kazushi Shimomura, Akitoshi Morishima, Hun-ok Lim, et al.

(2006). “Development of a new humanoid robot WABIAN-2”. In: Robotics and Automation,

2006. ICRA 2006. Proceedings 2006 IEEE International Conference on. IEEE, pp. 76–81.

O’Hagan, A and J Forster (1994). Kendall’s Advanced Theory of Statistics: Volume 2B; Bayesian

Inference. Halsted Press.

BIBLIOGRAPHY 207

Park, Trevor and George Casella (2008). “The Bayesian Lasso”. In: Journal of the American

Statistical Association 103.482, pp. 681–686.

Parmiggiani, Alberto, Marco Maggiali, Lorenzo Natale, Francesco Nori, Alexander Schmitz, et

al. (2012). “The design of the iCub humanoid robot”. In: International Journal of Humanoid

Robotics 9.04.

Patino, H D, R Carelli, and B R Kuchen (2002). “Neural networks for advanced control of robot

manipulators”. In: IEEE Transactions on Neural Networks 13.2, pp. 343–54.

Payne, V G and L Isaacs (2001). Human Motor Development: A Lifespan Approach. McGraw-

Hill Higher Education.

Pearson, K (1901). “On lines and planes of closest fit to systems of points in space”. In: Philo-

sophical Magazine 2, pp. 559–572.

Peiper, Donald Lee (1968). “The kinematics of manipulators under computer control”. PhD

thesis.

Pelossof, R, A Miller, P Allen, and T Jebara (2004). “An SVM learning approach to robotic

grasping”. In: IEEE International Conference on Robotics and Automation. Vol. Vol.4, pp. 3512–

3518.

Peters, Jan, Michael Mistry, Firdaus Udwadia, R. Cory, J. Nakanishi, et al. (2005). “A uni-

fying methodology for the control of robotic systems”. In: 2005 IEEE/RSJ International

Conference on Intelligent Robots and Systems. 1. IEEE, pp. 1824–1831.

Peters, Jan and Stefan Schaal (2006). “Learning Operational Space Control”. In: Proceedings of

Robotics: Science and Systems. Philadelphia, USA: The MIT Press.

Peters, Jan and Stefan Schaal (2008). “Learning to Control in Operational Space”. In: The

International Journal of Robotics Research 27.2, pp. 197–212.

Petkos, Georgios and Sethu Vijayakumar (2007). “Context Estimation and Learning Control

through Latent Variable Extraction: From discrete to continuous contexts”. In: Proceedings

2007 IEEE International Conference on Robotics and Automation. IEEE. IEEE, pp. 2117–

2123.

Poggio, Tomaso and Federico Girosi (1990). “Regularization algorithms for learning that are

equivalent to multilayer networks”. In: Science (New York, N.Y.) 247.4945, pp. 978–82.

Qin, Chao and Miguel A Carreira-Perpinan (2008). “Trajectory inverse kinematics by conditional

density modes”. In: 2008 IEEE International Conference on Robotics and Automation. IEEE.

IEEE, pp. 1979–1986.

Rasmussen, Carl Edward (2000). “The infinite Gaussian mixture model”. In: Advances in Neural

Information Processing Systems 12 12, pp. 554–560.

Rasmussen, Carl Edward and Zoubin Ghahramani (2002). “Infinite Mixtures of Gaussian Process

Experts”. In: Advances in Neural Information Processing Systems 14, pp. 881–888.

Rasmussen, Carl Edward and Hannes Nickisch (2010). Gaussian Processes for Machine Learning

(GPML) Matlab Code, version 3.1. url: http://www.gaussianprocess.org/gpml/code/

matlab/doc/ (visited on 01/2012).

BIBLIOGRAPHY 208

Rasmussen, Carl Edward and Christopher K I Williams (2006). Gaussian Processes for Machine

Learning. The MIT Press.

Ray, Surajit and Bruce G Lindsay (2005). “The topography of multivariate normal mixtures”.

In: The Annals of Statistics 33.5, pp. 2042–2065.

Reinhart, Rene Felix and Jochen Jakob Steil (2009). “Reaching movement generation with a

recurrent neural network based on learning inverse kinematics for the humanoid robot iCub”.

In: 9th IEEE-RAS International Conference on Humanoid Robots. Ieee, pp. 323–330.

Reinhart, Rene Felix and Jochen Jakob Steil (2011). “Neural learning and dynamical selection

of redundant solutions for inverse kinematic control”. In: 2011 11th IEEE-RAS International

Conference on Humanoid Robots. IEEE. IEEE, pp. 564–569.

Reinhart, Rene Felix and Jochen Jakob Steil (2012). “Learning whole upper body control with

dynamic redundancy resolution in coupled associative radial basis function networks”. In:

IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1487–1492.

Rissanen, J. (1978). “Modeling by shortest data description”. In: Automatica 14.5, pp. 465–471.

Rolf, Matthias, Jochen J. Steil, and Michael Gienger (2010). “Learning Flexible Full Body Kine-

matics for Humanoid Tool Use”. In: International Conference on Emerging Security Tech-

nologies, pp. 171–176.

Rosenblatt, F (1962). Principles of neurodynamics: perceptrons and the theory of brain mecha-

nisms. Report (Cornell Aeronautical Laboratory). Spartan Books.

Rottmann, A and Wolfram Burgard (2009). “Adaptive autonomous control using online value

iteration with gaussian processes”. In: IEEE International Conference on Robotics and Au-

tomation, pp. 2106–2111.

Roweis, Sam (1998). “EM algorithms for PCA and SPCA”. In: Proceedings of the 1997 Confer-

ence on Advances in Neural Information Processing Systems 10. MIT Press, pp. 626–632.

Roweis, Sam and Lawrence Saul (2000). “Nonlinear dimensionality reduction by locally linear

embedding.” In: Science (New York, N.Y.) 290.5500, pp. 2323–6.

Rumelhart, David E, Geoffrey E Hinton, and R J Williams (1986). “Learning internal repre-

sentations by error propagation”. In: Parallel Distributed Processing: Explorations in the

Microstructure of Cognition. Ed. by David E Rumelhart and J McClelland. Vol. 1. The MIT

Press, Cambridge, MA, pp. 318–362.

Russell, Stuart and Peter Norvig (1995). Artificial Intelligence: a Modern Approach. Prentice-

Hall International (UK).

Saito, Kazumi and Ryohei Nakano (1996). “A constructive learning algorithm for an HME”.

In: Proceedings of International Conference on Neural Networks (ICNN’96). Vol. 2. IEEE,

pp. 1268–1273.

Salaün, Camille, Vincent Padois, and Olivier Sigaud (2010). “Learning Forward Models for the

Operational Space Control of Redundant Robots”. In: From Motor Learning to Interaction

Learning in Robots. Ed. by Olivier Sigaud and Jan Peters. Vol. 264. Springer Berlin Heidel-

berg, pp. 169–192.

BIBLIOGRAPHY 209

Sato, Masa-aki (2001). “Online Model Selection Based on the Variational Bayes”. In: Neural

Computation 13.7, pp. 1649–1681.

Sato, Masa-aki and Shin Ishii (2000). “On-line EM Algorithm for the Normalized Gaussian

Network”. In: Neural Computation 12.2, pp. 407–432.

Schaal, S and C G Atkeson (1998). “Constructive Incremental Learning from Only Local Infor-

mation”. In: Neural Computation 10.8, pp. 2047–2084.

Schaal, S, S Vijayakumar, and C G Atkeson (1998). “Local dimensionality reduction”. In: Ad-

vances in Neural Information Processing Systems, pp. 633–639.

Schaal, Stefan and Christopher G Atkeson (1993). “Assessing the Quality of Learned Local

Models”. In: Advances in Neural Information Processing Systems 6. Ed. by J D Cowan, G

Tesauro, and J Alspector, pp. 160–167.

Schaal, Stefan, Christopher G Atkeson, and Sethu Vijayakumar (2002). “Scalable Techniques

from Nonparametric Statistics for Real Time Robot Learning”. In: Applied Intelligence 17.1,

pp. 49–60.

Schölkopf, Bernhard, John C Platt, J Shawe-Taylor, Alexander J Smola, and Robert C Williamson

(2001). “Estimating the support of a high-dimensional distribution”. In: Neural Computation

13.7, pp. 1443–71.

Schölkopf, Bernhard and Alexander Smola (2002). Learning with Kernels: Support Vector Ma-

chines, Regularization, Optimization, and Beyond. Adaptive computation and machine learn-

ing. MIT Press.

Schrauwen, Benjamin, David Verstraeten, and Jan Van Campenhout (2007). “An overview of

reservoir computing: theory, applications and implementations”. In: Proceedings of the 15th

European Symposium on Artificial Neural Networks, pp. 471–482.

Schwarz, Gideon (1978). “Estimating the Dimension of a Model”. In: The Annals of Statistics

6.2, pp. 461–464.

Searle, John R (1980). “Minds, brains, and programs”. In: Behavioral and brain sciences 3.3,

pp. 417–457.

Seeger, Matthias, Christopher K I Williams, and Neil D Lawrence (2003). “Fast forward selection

to speed up sparse Gaussian process regression”. In: Workshop on AI and Statistics. Vol. 9.

Settles, Burr (2009). Active Learning Literature Survey. Tech. rep. University of Wisconsin-

Madison.

Shamir, T and Y Yomdin (1988). “Repeatability of redundant manipulators: mathematical so-

lution of the problem”. In: IEEE Transactions on Automatic Control 33.11, pp. 1004–1009.

Shizawa, Masahiko (1996). “Multivalued regularization network-a theory of multilayer networks

for learning many-to-h mappings”. In: Electronics and Communications in Japan (Part III:

Fundamental Electronic Science) 79.9, pp. 98–113.

Silverman, Bernard W (1984). “Spline Smoothing: The Equivalent Variable Kernel Method”.

In: Annals of Statistics 12, pp. 898–916.

BIBLIOGRAPHY 210

Sminchisescu, Cristian, Atul Kanaujia, and Dimitris Metaxas (2007). “BM3 E: discriminative

density propagation for visual tracking.” In: IEEE transactions on pattern analysis and

machine intelligence 29.11, pp. 2030–44.

Smola, Alexander and Peter Bartlett (2001). “Sparse Greedy Gaussian Process Regression”. In:

Advances in Neural Information Processing Systems 13.

Smola, Alexander and Bernhard Schölkopf (2004). “A tutorial on support vector regression”. In:

Statistics and computing 14.3, pp. 199–222.

Snelson, Edward and Zoubin Ghahramani (2006). “Sparse Gaussian Processes using Pseudo-

inputs”. In: Advances in Neural Information Processing Systems 18. Ed. by Y Weiss, B

Schölkopf, and J Platt. Cambridge, MA: MIT Press, pp. 1257–1264.

Soussen, Charles, Jérôme Idier, David Brie, and Junbo Duan (2011). “From Bernoulli–Gaussian

Deconvolution to Sparse Signal Restoration”. In: IEEE Transactions on Signal Processing

59.10, pp. 4572–4584.

Steil, Jochen Jakob (2004). “Backpropagation-decorrelation: online recurrent learning with O(N)

complexity”. In: IEEE International Joint Conference on Neural Networks. Vol. 2, pp. 843–

848.

Steil, Jochen Jakob (2007). “Online reservoir adaptation by intrinsic plasticity for backpropagation-

decorrelation and echo state learning.” In: Neural Networks 20.3, pp. 353–64.

Stone, Mervyn (1974). “Cross-Validatory Choice and Assessment of Statistical Predictions”. In:

Journal of the Royal Statistical Society. Series B (Methodological) 36.2, pp. 111–147.

Sturm, Jurgen, Christian Plagemann, and Wolfram Burgard (2008). “Unsupervised body scheme

learning through self-perception”. In: IEEE International Conference on Robotics and Au-

tomation, pp. 3328–3333.

Suh, Ki C and J. Hollerbach (1987). “Local versus global torque optimization of redundant ma-

nipulators”. In: IEEE International Conference on Robotics and Automation. Vol. 4. Institute

of Electrical and Electronics Engineers, pp. 619–624.

Tenenbaum, J B, V de Silva, and J C Langford (2000). “A global geometric framework for

nonlinear dimensionality reduction.” In: Science (New York, N.Y.) 290.5500, pp. 2319–23.

Tibshirani, Robert (1996). “Regression Shrinkage and Selection via the Lasso”. In: Journal of

the Royal Statistical Society (B) 58, pp. 267–288.

Tikhanoff, V, P Fitzpatrick, G Metta, L Natale, F Nori, et al. (2008). “An Open Source Simulator

for Cognitive Robotics Research: The Prototype of the iCub Humanoid Robot Simulator”. In:

Workshop on Performance Metrics for Intelligent Systems. National Institute of Standards

and Technology, Washington DC.

Ting, Jo-Anne, Aaron D’Souza, Sethu Vijayakumar, and Stefan Schaal (2008). “A Bayesian ap-

proach to empirical local linearization for robotics”. In: 2008 IEEE International Conference

on Robotics and Automation, pp. 2860–2865.

Ting, Jo-Anne, Aaron D’Souza, Sethu Vijayakumar, and Stefan Schaal (2010). “Efficient learning

and feature selection in high-dimensional regression.” In: Neural computation 22.4, pp. 831–

86.

BIBLIOGRAPHY 211

Ting, Jo-Anne, Mrinal Kalakrishnan, Sethu Vijayakumar, and Stefan Schaal (2009). “Bayesian

Kernel Shaping for Learning Control”. In: Advances in Neural Information Processing Sys-

tems 21. Ed. by D Koller, D Schuurmans, Y Bengio, and L Bottou, pp. 1673–1680.

Ting, Jo-Anne, Michael Mistry, and Jan Peters (2006). “A Bayesian Approach to Nonlinear Pa-

rameter Identification for Rigid Body Dynamics.” In: Robotics: Science and Systems (RSS).

Tipping, Michael E (2001). “Sparse Bayesian Learning and the Relevance Vector Machine”. In:

Journal of Machine Learning Research 1, pp. 211–244.

Tipping, Michael E and Christopher M Bishop (1999). “Mixtures of Probabilistic Principal

Component Analyzers”. In: Neural Computation 11.2, pp. 443–482.

Tolani, Deepak, Ambarish Goswami, and Norman I. Badler (2000). “Real-Time Inverse Kine-

matics Techniques for Anthropomorphic Limbs”. In: Graphical Models 62.5, pp. 353–388.

Tomikawa, Y and K Nakayama (1998). “Approximating many valued mappings using a recur-

rent neural network”. In: 1998 IEEE International Joint Conference on Neural Networks

Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227) 2,

pp. 1494–1497.

Torgerson, Warren S (1958). Theory and methods of scaling.

Toussaint, M and S Vijayakumar (2005). “Learning discontinuities with products-of-sigmoids

for switching between local models”. In: Proceedings of the 22nd international conference on

Machine learning. ACM, pp. 904–911.

Tresp, Volker (2001). “Mixtures of Gaussian processes”. In: Advances in Neural Information

Processing Systems 13.

Tsagarakis, N G, G Metta, G Sandini, D Vernon, R Beira, et al. (2007). “iCub: the design

and realization of an open humanoid platform for cognitive and neuroscience research”. In:

Advanced Robotics 21.10, pp. 1151–1175.

Turing, A M (1937). “On Computable Numbers, with an Application to the Entscheidungsprob-

lem”. In: Proceedings of the London Mathematical Society s2-42.1, pp. 230–265.

Udwadia, F. E. (2003). “A new perspective on the tracking control of nonlinear structural and

mechanical systems”. In: Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences 459.2035, pp. 1783–1800.

Ueda, Naonori and Zoubin Ghahramani (2002). “Bayesian model search for mixture models

based on optimizing variational bounds”. In: Neural Networks 15.10, pp. 1223–1241.

Verbeek, Jakob, Nikos Vlassis, and B Kröse (2003). “Efficient greedy learning of gaussian mixture

models.” In: Neural computation 15.2, pp. 469–85.

Verstraeten, David, Benjamin Schrauwen, M D’Haene, and D Stroobandt (2007). “An exper-

imental unification of reservoir computing methods.” In: Neural Networks 20.3, pp. 391–

403.

Vijayakumar, Sethu, Aaron D’Souza, and Stefan Schaal (2005). “Incremental Online Learning

in High Dimensions”. In: Neural Computation 17.12, pp. 2602–2634.

Vijayakumar, Sethu, Aaron D’Souza, Tomohiro Shibata, Jörg Conradt, and Stefan Schaal (2002).

“Statistical Learning for Humanoid Robots”. In: Autonomous Robots 12.1, pp. 55–69.

BIBLIOGRAPHY 212

Vlassis, Nikos and Aristidis Likas (2002). “A Greedy EM Algorithm for Gaussian Mixture Learn-

ing”. In: Neural Processing Letters 15.1, pp. 77–87.

Wahba, Grace (1990). Spline models for observational data.

Wallace, C S and D M Boulton (1968). “An Information Measure for Classification”. In: The

Computer Journal 11.2, pp. 185–194.

Wampler, Charles (1986). “Manipulator Inverse Kinematic Solutions Based on Vector Formula-

tions and Damped Least-Squares Methods”. In: IEEE Transactions on Systems, Man, and

Cybernetics 16.1, pp. 93–101.

Wang, Chong and David Blei (2012). “Truncation-free Stochastic Variational Inference for

Bayesian Nonparametric Models”. In: Advances in Neural Information Processing Systems

25. Ed. by P Bartlett, F C N Pereira, C J C Burges, L Bottou, and K Q Weinberger, pp. 422–

430.

Wang, Li-Chun Tommy and Chih Cheng Chen (1991). “A combined optimization method for

solving the inverse kinematics problems of mechanical manipulators”. In: IEEE Transactions

on Robotics and Automation 7.4, pp. 489–499.

Warmuth, Manfred K and Dima Kuzmin (2008). “Randomized Online PCA Algorithms with

Regret Bounds that are Logarithmic in the Dimension”. In: Journal of Machine Learning

Research 9, pp. 2287–2320.

Waterhouse, Steve, David Mackay, and Tony Robinson (1996). “Bayesian Methods for Mixtures

of Experts”. In: Advances in Neural Information Processing Systems 8 (NIPS). Vol. 8. MIT

Press.

Waterhouse, Steve and A J Robinson (1995). “Pruning and growing hierachical mixtures of

experts”. In: 4th International Conference on Artificial Neural Networks. Vol. 1995. IEEE,

pp. 341–346.

Watson, Geoffrey S (1964). “Smooth Regression Analysis”. In: Sankhyā: The Indian Journal of

Statistics, Series A (1961-2002) 26.4, pp. 359–372.

Whitney, D E (1972). “The Mathematics of Coordinated Control of Prosthetic Arms and Ma-

nipulators”. In: ASME Journal of Dynamic Systems, Measurement, and Control 94, pp. 303–

309.

Whitney, Daniel (1969). “Resolved Motion Rate Control of Manipulators and Human Prosthe-

ses”. In: IEEE Transactions on Man Machine Systems 10.2, pp. 47–53.

Widrow, B and Matthew Hoffman (1960). “Adaptive Switching Circuits”. In: IRE WESCON

Convention Record, pp. 96–104.

Wilson, S W (2002). “Classifiers that approximate functions”. In: Natural Computing 1.2,

pp. 211–234.

Wold, Herman (1975). “Soft modeling by latent variables: The nonlinear iterative partial least

squares approach”. In: Perspectives in probability and statistics, papers in honour of M. S.

Bartlett. Ed. by M S Bartlett and J M Gani, pp. 520–540.

Wolpert, Daniel M, Zoubin Ghahramani, and J Randall Flanagan (2001). “Perspectives and

problems in motor learning.” In: Trends in cognitive sciences 5.11, pp. 487–494.

BIBLIOGRAPHY 213

Wolpert, Daniel M and Mitsuo Kawato (1998). “Multiple paired forward and inverse models for

motor control”. In: Neural Networks 11.7-8, pp. 1317–1329.

Wolpert, Daniel M, R Chris Miall, and Mitsuo Kawato (1998). “Internal models in the cerebel-

lum.” In: Trends in cognitive sciences 2.9, pp. 338–47.

Wolpert, David H (1996). “The Lack of A Priori Distinctions Between Learning Algorithms”.

In: Neural Computation 8, pp. 1341–1390.

Xu, Lei, Michael I Jordan, and Geoffrey E Hinton (1995). “An Alternative Model for Mixtures of

Experts”. In: Advances in Neural Information Processing Systems. The MIT Press, pp. 633–

640.

Yang, Yan and Jinwen Ma (2011). “An efficient EM approach to parameter learning of the

mixture of gaussian processes”. In: Advances in Neural Networks–ISNN 2011, pp. 165–174.

Yuan, Chao and Claus Neubauer (2009). “Variational Mixture of Gaussian Process Experts”.

In: Advances in Neural Information Processing Systems 21. Ed. by D Koller, D Schuurmans,

Y Bengio, and L Bottou, pp. 1897–1904.

Yuksel, S. E., J. N. Wilson, and P. D. Gader (2012). “Twenty Years of Mixture of Experts”. In:

IEEE Transactions on Neural Networks and Learning Systems 23.8, pp. 1177–1193.

Zecca, M., N. Endo, S. Momoki, K. Itoh, and A. Takanishi (2008). “Design of the humanoid robot

KOBIAN - preliminary analysis of facial and whole body emotion expression capabilities-

”. In: Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots,

pp. 487–492.

