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Abstract. We present an application of the FuzzyBoost learning algorithm, where
the weak learners select spatio-temporal groups of features for waving detection.
The features encode the spatial distribution of the optic flow of a tracked person,
considering the polar sampling of the flow for each instant. The FuzzyBoost al-
gorithm selects groups of features that discriminate better than any single feature,
bringing robustness and generalization over the TemporalBoost algorithm.

1 Introduction

Previous works have considered people as helpers of surveillance systems [1] by sig-
naling emergency, dangerous or suspicious situations with a universal alerting gesture:
waving. The waving detector of [2] acts as an emergency signal which was tested on
indoors, outdoors and several camera position with respect to the people. The waving
detector relies on the TemporalBoost algorithm [3], which was recently generalized to
the FuzzyBoost learning algorithm [4]. This paper presents the application of the Fuzzy-
Boost learning algorithm on the waving detection, improving the results of the waving
detector of [2].

The analysis of spatio-temporal patterns for human activity recogntion is a chal-
lenging area of research due to its computational complexity [5]. Exahustive search is
not feasible, so several works have addressed ways to consider just subsets of all the
possible patterns such as: space-time interest point detection [6], segmentation of the
spatio-temporal volume using mean shift [7] and more recently the construction of ran-
dom trees where each leave contains the information of a spatio temporal pattern [8],
amongst others. The main objective of these works is to achieve good recognition rates,
disregarding the real-time performance of the system. In this article we present an ap-
proach that analyses the spatio temporal patterns using the FuzzyBoost, which allows
to detect the waving patterns in real-time (20fps).

The main difference between our previous work [2] and this paper is the search for
spatio-temporal patterns (i.e. searching for several feature dimensions along frames).
In our initial approach, the TemporalBoost algorithm assumes just temporal patterns
(i.e. a single feature dimension along frames) for each dimension of the data samples.
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Although the TemporalBoost algorithm improves the classification performance, it is
ignoring the information contained in the spatio-temporal patterns. In this work we
present the advantages of the FuzzyBoost algorithm, which finds both the temporal and
spatio-temporal patterns that improve the classification performance.

The remaining components of this work are the same as [2], namely: (i) the frame-
based waving pattern extraction, which utilizes the Focus Of Attention (FOA) features;
(ii) the optic flow computation [9] and (iii) the segmentation and labeling of moving tar-
gets in the image, which utilizes the LOTS method [10] for segmentation and hungarian
assigment [11] for labeling. We show the generalization properties of the FuzzyBoost,
which improves the performance of TemporalBoost.

In section 2, we describe the waving model, followed by the results in section 3 and
conclusions in section 4.

2 Waving model

The waving model includes the optic flow based features and the FuzzyBoost learn-
ing. The optic flow features are collected in a spatio-temporal cuboid. The FuzzyBoost
algorithm selects feature subsets (i.e. weak learners) from the cuboid at each learning
round.

2.1 Spatio-temporal Focus Of Attention (FOA) features

FOA features encode the motion patterns of parts of the body with respect to its center
[12]. This representation is based on the mean value of the optical flow for a set of cells,
which correspond to the detected targets. Assuming that the centroid of the bounding
box corresponds to the center of the person’s body, the bounding box of the target is
divided into polar sampled cells. Then, for each cell the mean value of the optical flow
is projected onto the middle radial and normal directions of the polar cell. Particular
gestures involve motion of body parts within a limited range of angles.

Various body movements will activate different cells in different ways, constructing
patterns that represent motions of the human limbs, such as rising/putting down arms,
bending, sitting, etc. The response on each cell of the FOA at each time instant is as
follows:

FOAt =
[
FOAt1R FOAt1T . . . FOAtiR FOAtiT . . . FOAtnR

FOAtnT

]
∈ R2·n,

where FOAtiR ∈ R2 denotes the FOA computed at cell i and frame t in the radial
direction (R) of the cell. FOAtiT denotes the tangential direction (T ) of the i-th cell. The
spatial patterns included by the FOAt are augmented with temporal patterns, stacking
all the FOAt vectors in the previous τ − 1 frames,

xi =
[
FOAt . . . FOAt+τ−1

]
∈ R2·n·τ . (1)

The spatio-temporal cuboid of the waving patterns is contained in the feature vector xi
of Eq. (1). In the following section we explain how to find useful patterns for classifi-
cation, by selecting sets of components from xi.



1. Input: (x1, y1), . . . , (xN , yN ) where xi ∈ X , yi ∈ Y = {−1,+1}, set H(xi) := 0,
initialize the observation weights wi = 1/N , i = 1, 2, . . . , N

2. Repeat for m = 1, . . . ,M

(a) Find the optimal weak classifier hm over (xi, yi, wi).
(b) Update weights for examples i = 1, 2, . . . , N , wi := wie

−yih∗
m(xi)

3. Output: Compute the strong classifier as H(xi) =
∑M
m h∗

m(xi) and classify the sample xi
according to sgnH(xi)

Fig. 1. GentleBoost algorithm

2.2 The FuzzyBoost algorithm

Boosting algorithms computes a linear combination of (weak) models into a strong
classifier,H(xi). The final model is learned by minimizing, at each round, the weighted
squared error,

J =

N∑
i=1

wi(yi − hm(xi))
2, (2)

where wi = e−yihm(xi) are the weights and N the number of training samples. At
each round, the optimal weak classifier is added to the strong classifier and the sample
weights adapted, increasing the weight of the misclassified samples and decreasing for
the correctly classified ones [13]. Figure 1 shows the steps of the GentleBoost algo-
rithm.

Decision stumps are the usual choice for GentleBoost: hm(xi) = aδ
[
xdi > θ

]
+

bδ
[
xdi ≤ θ

]
, where d is the dimension index and δ is the indicator function (i.e. δ[condition]

is one if condition is true and zero otherwise). Decision stumps choose either branch
a or b according to the threshold θ and feature value xdi . At each round, the the set of
parameters {a, b, d, θ} that minimizes J w.r.t. hm must be found. In the case of Gen-
tleBoost, there is a closed form for the optimal a and b, while the pair {d, θ} is found
through exhaustive search [13].

2.3 Fuzzy weak learners optimization

Moreno et. al. [4] propose to augment the search space, looking for a set of dimensions
instead of just one dimension, as follows:

h∗m(xi) = a
FT δ [xi > θ]

||F ||
+ b

FT δ [xi ≤ θ]
||F ||

. (3)

where xi ∈ RD and the vector F ∈ ZD2 , denotes a D dimensional vector with binary
components, and the non-zero components of F define a feature set. The vector F
selects a group of dimensions that cope with the indicator function constraints of Eq.
(3). Note that the feature sets of classic decision stump are



F = {F1, . . . Fd . . . , FD},where Fd =
[
0 . . . 1d . . . 0

]T
. (4)

Therefore, the vector F generalizes GentleBoost by considering additional feature
dimensions. We remark that selector F of Eq. (3) is replacing the indicator function (i.e.
a true or false decision) by an average of decisions. The new functions are:

∆+(xi, θ, F ) =
FT δ [xi > θ]

||F ||
, ∆−(xi, θ, F ) =

FT δ [xi ≤ θ]
||F ||

. (5)

The functions ∆+ and ∆− = 1−∆+ of Eq. (5) sample the interval [0 1] according to
the number of features selected (i.e. non-zero entries of F ), which are above and below
the threshold θ. The new weak learners, the fuzzy decision stumps, are expressed as

h∗m(xi) = a∆+ + b∆−. (6)

The substitution of the fuzzy stumps of Eq. (3) into the error minimzation of Eq.
(2), yields the optimal decision parameters a and b,

a =
ν̄+ω̄− − ν̄−ω̄±
ω̄+ω̄− − (ω̄±)

2 , b =
ν̄−ω̄+ − ν̄+ω̄±
ω̄+ω̄− − (ω̄±)

2 , (7)

with
ν̄+ =

∑N
i wiyi∆

T
+, ν̄− =

∑N
i wiyi∆

T
−, ω̄+ =

∑N
i wi∆

T
+,

ω̄− =
∑N
i wi∆

T
−, ω̄± =

∑N
i wi∆

T
−∆

T
+.

There is no closed form to compute the optimal θ and F , thus exhaustive search is
usually performed. On one hand, finding the optimal θ is a tractable problem. On the
other hand, the search for the best F is NP-hard. In previous work, we assumed the
temporal similarity of each feature dimension in order to build the feature sets F [3].

Algorithm 1: Generation of feature sets F using the TemporalBoost algorithm
[3, 2]. Line 3 sets as value one at components Fi(d) where feature cell and frame
conditions are fulfilled.

input : Spatio-temporal feature, such as FOA in Eq. (1) with nC cells
output: F = {F11, . . . Fjt . . . , FnCτ}
for each time window wt t = 1 . . . τ do1

for each cell cj j = 1 . . . nC do2
Fjt(d) = δ[dc = cj ∧ dt ∈ wt = {1, . . . , t}];3

end4

end5

Alg. 1 shows the feature set selection of TemporalBoost, a heuristic that builds
temporal threads in the spatio-temporal feature volume and was used previously on the
same problem [2]. In this work we address the search for sets in the full spatio-temporal
volume, guiding the search and reducing the number of possible candidates through
dimensionality reduction algorithms.



Dimensionality reduction algorithms, as explained below, provide a projection ma-
trix that we explore in order to find feature set candidates. Figure 2 shows the Fuzzy-
Boost algorithm, which relies on the sets of features

F = {F11, . . . Fij . . . , Fnrowsns}, (8)

provided by a feature search on a linear projection matrix L with nrows rows and a
predefined number of intervals ns. In the following section we present the algorithm
that searches for F using a linear dimensionality reduction technique.

1. Given:
(x1, y1), . . . , (xN , yN ) and F = {F11, . . . Fij . . . , Fnrowsns}. Data xi ∈ X , yi ∈ Y =
{−1,+1} and feature sets F provided by a feature search on a linear projection matrix L
with nrows rows and a predefined number of intervals ns.
Set H(xi) := 0, initialize the observation weights wi = 1/N , i = 1, 2, . . . , N

2. Repeat for m = 1, . . . ,M

(a) Find the optimal weak classifier hm over (xi, yi, wi) using the feature sets F .
(b) Update weights for examples i = 1, 2, . . . , N , wi := wie

−yih∗
m(xi)

3. Compute the strong classifier asH(xi) =
∑M
m h∗

m(xi) and classify the sample xi according
to sgnH(xi)

Fig. 2. FuzzyBoost algorithm

2.4 The search space for the feature set

The follow-up work of the TemporalBoost attempted to search for groups of features
in a local neighborhood [14]. The main drawback of the local search is that Gentle-
Boost can reach its performance by considering a very large number of iterations. We
addressed recently a global search for groups of features [4], which relies on linear
dimensionality reduction techniques in order to find good set candidates for the Fuzzy-
Boost. The linear mapping

x∗ = Lx (9)

contains relevant information about the correlations between dimensions of the origi-
nal feature space. Moreno et al. analyze independently each row of the matrix L (row
projection vector), clustering vector components with similar values. Their approach
is based on clusters of weights: if the weight of a dimension in the (row) projection
vector is similar to other dimension(s) in that vector, this implies some correlation level
between those dimensions. Amongst the three dimensionality reduction algorithms, the
Multiple Metric Learning for large Margin Nearest Neighbor (MMLMNN) Classifica-
tion [15] provided better results than Linear Discriminant Analysis (LDA) and Principal
Component Analylsis (PCA). The MMLMNN method aims to learn a linear transfor-
mation of the input space, such that each training input should share the same labels as



its k nearest neighbors, and the training inputs with different labels should be widely
separated.

Given the linear mapping L computed by MMLMNN, each row of the matrix is
considered separately in order to extract feature set candidates. The sets are built by
selecting the components of the row vector having very similar values and discarding
components having very low values (see Alg. 2). The quantitative measures of closeness
and low values are: the size of the similarity interval (∆s in Alg. 2) and the lower
threshold (s0 in Alg. 2). The values of the projection matrix are scaled as follows:
Lij =

|Lij |
max(L) , which ensures that 0 < Lij ≤ 1.

Algorithm 2: Generation of feature sets F from a scaled linear mapping L
input : s0 lower threshold, ns number of intervals, L normalized projection matrix
output: Fij i = 1 . . . nrows j = 1 . . . ns
for each projection (row) vector Li do1

compute ∆s = (max(Li)− s0)/ns;2
for j = 1 . . . ns do3

compute sj = s0 + (j − 1)∆s;4
Fij = δ[sj ≤ Li < sj + j∆s];5

end6

end7

The threshold s0 ∈ [0, 1[ removes components of Li having very low weights,
which are the less meaningful dimensions. The amount of intervals ns ∈ N defines the
size of the similarity interval ∆s (line 2 of Alg. 2 ), where the dimension weights inside
the interval are grouped into a feature set (line 5 of Alg. 2 ).

Our model for waving detection has a performance comparable to the state-of-the-
art with the advantage of a very low computational load at detection time. We have
implementation running in real time (20fps) on full sized images (640x480).

3 Experiments and results

We compare the performance of TemporalBoost and FuzzyBoost in two datasets: The
KTH actions dataset [6] and waving vs not waving dataset. Figure 3 shows samples of
the waving vs not waving dataset, which was introduced first in [2]. The FOA feature
sampling is∆θ = π/4. The support window of the TemporalBoost and the FuzzyBoost
algorithms is 20 frames. The event window size is 4s (20 frames), considering a waving
event if at least 60% of the single-frame classifications are positive.

Figure 4 shows the improvements of the FuzzyBoost over TemporalBoost. In the
case of the KTH dataset the FuzzyBoost improvement is around 1%. Although the
recognition results in the KTH dataset are below some recent approaches (like [8]), our
system has the advantage of real-time performance. In the case of the waving vs. not
waving dataset the FuzzyBoost improvement is around 2%. These improvements follow
the trend of [4], showing that the spatio-temporal search of FuzzyBoost generalizes



Fig. 3. Examples of data samples from the waving vs not waving dataset. Positive and negative
samples of the training set (First row). Samples of waving events correctly detected (Second row).
Samples of the negative class detected correctly (Third row).

Related work Accuracy
Moreno et al. [2] 91.7%

Our method 92.6%
Schuldt et al. [6] 73.6%

Ke et al. [16] 91.7%
Niebles et al. [17] 93%

Yao et al. [8] 97%

single-frame Event
TemporalBoost [2] 85.95% 94.43%

FuzzyBoost 91.21% 96.47%

Fig. 4. The left side table shows the performance of several approaches in the KTH dataset [6].
The right side table compares the performance of the TemporalBoost and the FuzzyBoost for the
dataset illustrated in Figure 3.

better than the temporal strips of TemporalBoost. Recent tests in a multi-camera setup
with both traditional cameras and HD cameras show the real-time performance of the
FuzzyBoost waving detector. The computational overheads of the FuzzyBoost during
classification are very small, so the FuzzyBoost waving detector has practically the
same real-time performance of the TemporalBoost on the same samples. 1

4 Conclusions

We have applied the FuzzyBoost algorithm on the detection of waving gestures. The
FuzzyBoost algorithm searches for spatio-temporal patterns in the spatio-temporal cuboid
of optic-flow based features. Our approach improves the results of TemporalBoost,
showing the generalization properties of FuzzyBoost. Furthermore, FuzzyBoost clas-
sifies the waving patterns as fast as the TemporalBoost, mantaining the real-time exe-
cution of the waving detector.

1 http://youtu.be/9eakYtZADu8
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