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Abstract— We address the problem of object detection and
pose estimation using 3D dense data in a multiple object library
scenario. State-of-the-art object detection and pose estimation
methods are able cope with background clutter and occlusion
with acceptable noise levels in the single object scenario.
However, with multiple object libraries, even moderate amount
of noise lead to frequent object identity switches and serious
pose estimation errors. To attenuate these effects, we propose
a joint object-id and pose filtering approach using grid-based
Recursive Bayesian Filters (RBF). The grid method considers
as state variables the object label and its pose, and models
the dynamics of the filter with two “inertia” parameters: one
for the object label and the other for the object pose. Sensor
noise characteristics are taken into account with an observation
noise parameter. To allow real-time functionality we propose
a selective update approach that dynamically reduces the set
of hypotheses evaluated at run time. We present results in
realistic scenarios and compare our approach with state-of-
the-art approaches in a three object problem, with significant
performance improvements.

I. INTRODUCTION

Reliable object identity and pose detection from 3D points
is a difficult problem in real environments due to sensor
noise, a wide range of reflective properties of the materials,
partial views, occlusion and background clutter [1], [2], [3],
[4], [5]. The recent availability of low cost depth sensors
has widely disseminated 3D sensing technology in research
and commercial applications, but these devices still have
significant noise levels that reduce their reliability for certain
types of applications. These issues become more evident
when the object library has more than one model, where the
performance degrades as the number of objects increases [6].
We address such problems by considering the object identity
detection and pose estimation problems in a filtering frame-
work.

Despite instantaneous observations of the measurement
methods present significant levels of noise, the integration
of information along time enables the reduction of noise
provided that changes in pose are slow enough. For scenarios
where objects are static in the environment, this approach
leads to increased levels of performance, with the penalty
of increased time in the detection procedure (the system
must wait enough time for the filter to ramp-up). This is a
reasonable assumption in many scenarios, for instance table-
top object detection and pose estimation for robot grasping.
Our idea is illustrated in Fig. 1, showing the signals obtained
by state-of-the-art pose estimation methods with and without

(a) t=1 (b) t=2 (c) t=3

5 10 15 20 25 30 35 40 45 50
0

50

100

150

d
e

g
re

e
s

frame

Orientation angle absolute error

5 10 15 20 25 30 35 40 45 50
0

10

20

30

c
m

frame

Position absolute error

(d) Results for 50 scenes containing a single object. Red curve
filter parameters(filter is off) - α = 0, β = 0, γ = 1. Green
curve filter parameters - α = 0.5, β = 0.1, γ = 1

Fig. 1. Filtered bottom-up object recognition hypotheses

our filtering method. Without filter significant pose estima-
tions errors appear sporadically in the time sequence. So,
with a non null probability, the system may detect a pose
that leads to serious errors. However, if the filter is used,
the pose errors are concentrated in the filter transient (initial
time steps) and, taking measurements after a certain burn-in
period, the pose estimation errors are significantly reduced.
In the context of filtering methods, the detection of object
poses from 3D samples has two types of approaches: Top-
down and bottom-up. On one hand, top-down approaches
are integrated with a model whose dynamics assume smooth
changes of the state-space variables in order to cope with
certain object pose changes.



Typically, top-down methods are associated with global
models that rely on matching global features, which demand
for good segmentations and are often sensitive to clutter
and partial occlusions [7], [4], [5], [8]. On the other hand,
bottom-up approaches use similarity of local features in order
to select promising observation candidates. These approaches
allow to cope better with discontinuous changes of the state-
space variables. Local models rely on matching localized
features that vote for the most probable pose. Local features
bring robustness to clutter and occlusion, but also increase
the ambiguities in matching [1], [2], [3]. In this paper we
address the parametrization of a bottom-up approach using
the Recursive Bayesian Filter (RBF) [9], [10] using the Drost
et. al. 3D object pose detector [1].

Our methodology relies on a grid-based RBF in a joint
object-id/pose state-space, together with an “outliers aware”
observation model. We use a grid filter instead of other
filtering paradigms (Kalman, Particle filters,etc) due to the
nature of our detection method. The instantaneous detector
we consider is based in the work of [1]. This detector
provides, for each object in the database of objects to
detect, the top k pose hypotheses and associated confidence
values. These values are normalized and used to define a
probabilistic observation model used as input to the filter.
The dynamics of the filter is parametrized by two constant
“inertia” parameters, which are related to the time window of
measurement integration. The observation model takes into
account the rate of abrupt changes in the object-id and pose
measurements due to ambiguities (e.g. symmetric objects)
and outliers [9], [11]. Overall, our filter requires three main
parameters: (i) the “inertia” of the object label; (ii) the
“inertia” of the object pose; and (iii) the sensor reliability.

We evaluate the improvement provided by the filter and
the sensor model in a three object scenario, considering
the impact of the parameters (filter dynamics and sensor
confidence) on the accuracy of the filter’s output. Section
II describes the main assumptions of the filter and section
III the grid-based method. Section IV describes the state
transition model and section V the observation model. A
selective update scheme, designed to reduce the run-time
computational demands, is explained in section VI, followed
by the experimental results in section VII and conclusions
in section VIII.

II. RECURSIVE BAYESIAN ESTIMATION IN JOINT
LABEL-POSE SPACE

Recursive Bayesian filters [9], [10] deal with the problem
of extracting valuable information about parameters or states
of a system in real time, given sensor noisy observations. In
a rigid object identification and pose estimation problem, the
state vector can be described by an index representing the
object identity θ ∈ N and a pose x ∈ R6. Considering the
static case, i.e. the object identity does not change and it
does not move over time, or move slowly with respect to
the filter dynamics, θ and x can be seen as parameters, and
the problem is framed in a parameter estimation framework.
By using a sequential filter we are able accumulate sensor

inputs and compute the likelihood of object state, θt, xt, at
each time instance.

A. Observation and State Evolution Models

Two probabilistic models must be defined according to
the problem characteristics. One is the observation model
that explains how measurements zt are generated according
to the current state θt, xt. It is common to consider that
observations are conditionally independent, given the state:

zt ∼ p(zt | θt, xt) (1)

The other is the state evolution model. This model describes
the likelihood of state changes from time to time. It is
common to adopt a Markov model, i.e. the state evolution
is conditionally independent of anything but the states in the
immediately previous time step:

θt, xt ∼ p(θt, xt | θt−1, xt−1) (2)

For the sake of computational complexity we will adopt a
few additional assumptions for our particular problem. First,
the current object label θt and pose xt are conditionally
independent given the previous state θt−1 and xt−1:

p(θt, xt | θt−1, xt−1) = p(θt | θt−1, xt−1)p(xt | θt−1, xt−1) (3)

Second, the current object label θt does not depend on the
past pose xt−1 if we know the previous object label θt−1:

p(θt | θt−1, xt−1) = p(θt | θt−1) (4)

Finally, the previous object label θt−1 does not convey any
information about the pose xt if the previous pose xt−1 is
known:

p(xt | θt−1, xt−1) = p(xt | xt−1) (5)

Substituting (4) and (5) on (3) we obtain a decoupled state
transition model that will simplify our filter derivation.

p(θt, xt | θt−1, xt−1) = p(θt | θt−1)p(xt | xt−1) (6)

B. Computing the Posterior State Distribution

Let us denote z1:t the sequence of measurements obtained
up to time t. The goal of the filter is to estimate the state
values given the current and past observations:

p(θt, xt | z1:t) = p(θt, xt | zt, z1:t−1) (7)

The solution to the filter involves two update steps. The data
update step is obtained by applying the Bayes rule to the
right hand side of the previous equation:

p(θt, xt | z1:t) = ηp(zt | θt, xt)p(θt, xt | z1:t−1) (8)

where η is a normalizing term. The time update step (a.k.a
prediction step) uses the state evolution model (6) to solve
for the distribution in the right hand side of the previous
equation:

p(θt, xt | z1:t−1) = (9)∫
p(θt | θt−1)p(xt |, xt−1)p(θt−1, xt−1 | z1:t−1)dθt−1, xt−1

The term in the right of the integral in (9) is the posterior
computed in the previous time step. Thus, state estimate can



be done sequentially by applying the time update step (9) to
the posterior of the previous time step and then applying the
data update step (8) to correct the prediction with the current
observation.

In the following we will customize the models presented
in this section for our particular setting.

III. GRID-BASED POSE ESTIMATION

The detector algorithms we consider in this work provide
us a set of the top ranked continuous valued pose hypotheses
for each object in the database and associated confidence
levels. The distribution of these hypotheses is multi-modal,
very sparse and plenty of outliers due to the nature of
the sensing mechanisms. Furthermore, pose hypotheses are
generated in a bottom-up manner: it is not trivial to assign
likelihood to arbitrary top-down hypothesis, which limits the
application of particle filtering techniques. The solution we
adopt consists in discretizing the pose state-space into a
limited number of orientations and positions. The detector
measurements are quantized and associated to a discrete set
of cells. Given that the object label is also a discrete variable,
we adopt a full grid based filtering approach (also referred
to as discrete Bayes [9]). For discrete state spaces, the grid-
based filter provides the optimal solution to the recursive
Bayesian estimation of the current state [10].

Let Θ be the set of all models in the object models library,

Θ = {θo, o = 1..Nθ} (10)

and let X be the set of all possible discrete pose states,

X = {xp, p = 1..Nx} (11)

in a discrete state space, probability distribution functions
(pdf) can be represented as normalized weights in particular
points of the state space. For instance, the posterior state
distribution can be represented as:

p(θt, xt | z1:t) =

Nθ∑
o=1

Nx∑
p=1

wo,pt|t δ(θ − θ
o, x− xp) (12)

Nθ∑
o=1

Nx∑
p=1

wo,pt|t = 1

where wo,pt|t are the weights, or likelihood, for each point
in the discrete state-space and the Dirac delta function δ
specifies the values of the discrete state. In an analogous
fashion, we write the posterior of the previous time step as:

p(θt−1, xt−1 | z1:t−1) = (13)

=

Nθ∑
o=1

Nx∑
p=1

wo,pt−1|t−1δ(θ − θ
o, x− xp)

Nθ∑
o=1

Nx∑
p=1

wo,pt−1|t−1 = 1

and the prior distribution as:

p(θt, xt | z1:t−1) =

Nθ∑
o=1

Nx∑
p=1

wo,pt|t−1δ(θ − θ
o, x− xp) (14)

Nθ∑
o=1

Nx∑
p=1

wo,pt|t−1 = 1

Introducing the above pdf’s in eq. (8) and (9) we get, respec-
tively, the discrete weights data and time update equations:

wo,pt|t =
wo,pt|t−1p(zt | θ

o
t , x

p
t )∑Nθ

i=1

∑Nx
j=1 w

o,p
t|t−1p(zt | θ

o
t , x

p
t )

(15)

wo,pt|t−1 =

Nθ∑
i=1

Nx∑
j=1

wi,jt−1|t−1p(θ
o
t | θit−1)p(xpt | x

j
t−1) (16)

The discrete versions of the state evolution models p(θot |
θit−1) and p(xpt | x

j
t−1), and observation model p(zt |

θot , x
p
t ), for our particular problem, are presented in the

following sections.

IV. DISCRETE STATE EVOLUTION MODEL

Both object label and pose are assumed not to change for
the duration of an estimation window. A scenario where such
an assumption is realistic is for instance, when a robot has to
localize, identify and estimate the pose of objects on top of
a table for grasping. Once an object is detected in the scene,
a filter instance is initialized and run for a certain duration
in order to build the estimate. After this transient period, the
posterior state estimate is analyzed and a decision is taken
about the identification and pose of the object, for instance,
the highest likelihood state. The effective duration of the
filter transient depends on the coupling specified in the state
evolution model. Let us consider the following multinomial
forms for the state transition distributions:

p(θot | θ
j
t−1) =

{
α+ 1−α

Nθ
if o = j

1−α
Nθ

otherwise (17)

p(xpt | x
j
t−1) =

{
β + 1−β

Nx
if p = j

1−β
Nx

otherwise
(18)

These models determine a probability α (β) that the object
label (pose) remains the same from one time step to the next,
and there is a probability 1−α

Nθ
to jump randomly to any label

(pose), including the current. Therefore, the higher α and β
are, the slower is the filter adaptation and the more stable is
the steady-state. However, in a pure static model (α = 1), any
state reaching zero probability will never recover. Therefore
we should not allow values too close to 1 in order to avoid
an absorbing Markov Chain [12].



Considering the above transition rules, the discrete time
update equation (16) can be written as

wo,pt|t−1 =

(
α

Nx∑
i=1

wo,it−1|t−1 +
1− α
Nθ

)
·β Nθ∑

j=1

wj,pt−1|t−1 +
1− β
Nx

 (19)

V. DISCRETE OBSERVATION MODEL

The object detector and pose estimator algorithm used
[1] is a voting method where each point pair in the scene
votes for objects with a similar point pair arrangements
and for (continuous) poses that best align them. In a first
stage, clusters with high number of votes are found and the
associated number of votes are normalized. The method then
returns a list with the top Ks hypotheses:

zt = {(θj , xj , vj), j = 1..Ks} (20)

where v are the (normalized) number of votes in each cluster.
We consider the noise measurement model, that includes the
sensor readings and unexplainable random measurements [9],
[11]. The sensor probability function psensor(zt | θo, xp)
associates plausibility values proportional to the number of
votes casted in each bin of the discretized state space. In
other words, for a given object θo and posture xp, the
plausibility of the observations is high whenever a high
number of votes is present in the corresponding state bin.
To represent uncertainty the final likelihood function p(zt |
θo, xp) depends on a parameter γ that reflects our confidence
on the sensor values

p(zt | θt, xt) ∼ γpsensor(zt | θt, xt) + (1− γ)prand (21)

where prand is a uniform distribution spread over the entire
state-space,

prand =

Nθ∑
o=1

Nx∑
p=1

1

NθNx
δ(θ − θo, x− xp) (22)

This will serve to allow for some probability mass in state
space cells with zero votes, accounting for the possibility
in arbitrary errors in the detection methodology. In other
words, it reflects our confidence that the object detector
provides consistent measures with the correct object pose
with probability γ, and unexplainable random measures,
modeled by the uniform distribution prand, with probability
1−γ. Parameter γ is related to the detector reliability, which
is hard to model analytically to the diverse source of errors
in the detection process:

1) Low level - Noisy 3-D data acquired from the range
sensor has a negative impact on the object detector
algorithm.

2) High level - A combination of factors like object
similarities, occlusions and clutter could induce the
detector to the wrong object and/or pose.

In practice, this parameter must be tuned, in search for its
best value, for each specific detector and scenario character-
istics.

Finally, substituting (21) on (15) we get the final equation
for the weight update:

wo,pt|t =
wo,pt|t−1(γpsensor(zt | θt, xt) + (1− γ)prand)∑Nθ

i=1

∑Nx
j=1 w

o,p
t|t−1(γpsensor(zt | θt, xt) + (1− γ)prand)

(23)

VI. FAST GRID-BASED POSE ESTIMATION: SELECTIVE
UPDATING

Grid-based Bayesian recursive estimation presents a heavy
computational cost. The computational complexity of the
filtering approach is directly proportional to the size of the
state-space, thus we propose a selective updating scheme for
real-time application.

Discrete State Space

Likelihood

Pose

Object

Top K state samples

Residual uniform

Fig. 2.

We are interested in computing the likelihood of a small
subset of the entire state-space. In one hand we can keep
from the belief the top ranked Kb states. On the other
hand our observation method (object recognition and pose
identification algorithm) already lists the top ranked Ks

likelihoods, given the visual sensor observation. Therefore
we will only compute the posterior explicitly on the union
set of these states. The rest of the state-space is approximated
by a single scalar representing the remaining mass of the
distribution (see Fig. 2 for clearer understanding). This
way we are able to reduce significantly the computational
complexity of the filter and update only the relevant part of
the state-space [13], [14].

VII. EXPERIMENTAL RESULTS

As mentioned in section I the introduction, we tested
our filtering method with [1]. Our tests were performed
with three objects from the ROS household dataset [15],
applying synthetically generated noise. Figure 3 shows the
polygonal meshes of the selected objects. We create a set of
50 sequences each one with 200 scene samples. Each sample
contains just an instance of the champagne glass with 50% of
occlusion and corrupted with three different levels of additive
Gaussian noise with standard deviation (σ) proportional to
the object’s model size. The pose of the object was constant
in all the scenes.
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(d) β = 0.5

Fig. 4. Quantitative results for object label inertia α = 0.5. Comparison between filter on (continuous lines) against filter off (dashed lines). Low noise
level (blue ). Medium noise level (green ). High noise level (red ).

Our aim is to evaluate the effect of several values of the
parameters of the filter, so we apply one filter for each set of
parameters (α, β, γ). Each sequence was then filtered with
different parameters.

We adopted a Euler angle representation, as defined

in [16], to describe orientation in 3-dimensional Euclidean
space. The orientation space was sampled equally in the 3
Euler dimensions, in steps of 12 degrees, yielding a total of
13500 possible orientation states per object. For the position
space a squared bounding box of 50cm3 was centered on the



(a) Objects

Fig. 3. Experiments Models Library

object ground truth position. We sampled x and y in steps
of 25cm while z in steps of 10cm yielding a total of 20
possible position states per object. The joint state-space size
is then equal to Nθ.Nx = 8.1×105. We keep a maximum of
Kb = 1000 hypotheses on our top rank states accumulator
and our observation method outputs a top rank states list of
average size Ks ≈ 230 .

The performance of the filter is assessed with the object
recognition rate, the mean of the absolute angle error and the
mean of the absolute position error. The absolute error angle
between the real and the estimated orientation is computed
with the angle between quaternions.

Figure 4 shows the performance for several set of param-
eters. Since the object label does not change during each
sequence, we found experimentally that α = 0.5 provides
good results in a wide range of situations. Thus, we evaluate
the influence of β and γ in the performance of the filter.
We observe that for values of β ∈ [0.001 . . . 0.5], there are
values of γ > 10−2 where both the detection rates and pose
errors are significantly better than the unfiltered detections,
for any noise level considered 1. In the worst case noise level,
object detection rates are improved up to 30% whereas pose
error also exhibits drastic improvements. We believe these
results illustrate the validity and significant benefits of our
approach.

VIII. CONCLUSIONS

In this paper, we have proposed a recursive Bayesian
filter to deal with observations computed from bottom-up
features. The proposed filter was integrated with one of the
state of the art algorithms [1] in 3D point cloud analysis,
and can be integrated with any other method that provides
a set of weighted hypotheses. The results show significant
improvements on the object label and pose estimates with
respect to unfiltered detections.
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1The values of β and γ are low due to the very large pose state space
size, Nx = 20 · 13500 = 2.7 · 105
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