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Abstract. In this paper we extend a recent approach for 3D object
recognition in order to deal with rotationally symmetric objects, which
are frequent in daily environments. We base our work in a recent method
that represents objects using a hash table of shape features, which in the
case of symmetric objects contains redundant information. We propose
a way to remove redundant features by adding a weight factor for each
set of symmetric features. The removal procedure leads to significant
computational savings while keeping the recognition perfomance. The
experiments show recognition time improvements up to 300x with respect
to state-of-the-art methods.

1 Introduction

3-D object recognition plays a role of major importance in the robotics field.
Many applications, such as object grasping and manipulation, critically depend
on visual perception algorithms. These, must be robust to cluttered environ-
ments and to sensor noise, as well as fast enough for real-time operation, in
order for the robot to correctly interact with the surrounding environment. Dur-
ing the last decades, several methods have been proposed to solve the object
recognition problem, but it is still a very challenging task and many research
efforts continue to be made. Due to recent technological advances in the field
of 3-D sensing, range sensors provide 3-D points with reasonable quality and
high sampling rates, sufficient for efficient shape-based object recognition. In
recent past, Drost et al. [1] proposed an approach which extracts description
from a given object model, using point pair features, encoding the geometric re-
lation between oriented point pairs. The matching process is done locally using
an efficient voting scheme (see Fig. 3) similar to the Generalized Hough Trans-
form (GHT) [2]. Their method is robust to sensor noise and outperforms other
feature-based state-of-the-art methods like Spin Images [3] and Tensors [4], both
in terms of computational speed in terms, robustness to occlusion and clutter.
In this paper we introduce an important extension to [1] for dealing efficiently
with rotationally symmetric objects, which are common in many daily tasks (e.g.
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kitchenware objects like cups, glasses, cans, plates). We drastically reduce the
computational effort of [1] when dealing with this kind of objects.

Next section overviews the Drost et al. object recognition and pose estimation
algorithm. Then, in section 3 we propose a methodology to efficiently deal with
rotational symmetries. Lastly, in section 4 we show results that validate our
approach.

2 Method Overview

The basic units to describe surface shape are surflets [5] s = (p,n), where p
represents sample points in the surface and n are the associated surface normals.
Let M be the set of all model surflets, M = {s!*,i = 1..N} and let S be the set
of all scene surflets, S = {s?,i = 1..N}.

The recognition process consists in matching scene surflet pairs (s,s?) to
model surflet pairs (s]*,s}*). Being s, and s; two surflets, the Point Pair Feature
(PPF) F € F C R* is defined as a 4-tuple composed by the distance between
the reference, p,, and secondary, p;, points and the angle between the normal
of the reference point n, and the vector d = |p; — p,|, the angle between the
normal of the secondary point n; and d and the angle between n, and n; as
illustrated in Fig. 1. This could be formally described by
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Fig. 1. Point Pair Feature

In section 2.1 the off-line model description creation is briefly described.
Then, in section 2.2 we describe the on-line object recognition and pose estima-
tion step.

2.1 Model Description

An object description suitable for object recognition and pose estimation is cre-
ated through the analysis of all possible permutations of surflet pairs. Let A be
the set of all model surflet pairs, A = {(s]*,sI"),r # i}, which has cardinality
|Al =N x (N —1).
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The data structure used to represent the model description is a hash table
for quick retrieval, in which the key value is given by the discrete PPF while the
mapped value is the respective surflet pair. Since one key could be associated
with several model surflet pairs, each slot of the hash table contains a list of
surflet pairs with similar discrete feature.

2.2 Pose Estimation

A set of reference surflets on the scene Ry C S is uniformly sampled from S
and each of them is paired with all the other surflets on the scene. The number
of reference points is given by |Rs| = &£|S| where £ € [0;1] is the reference
points sampling ratio control parameter. For each scene surflet pair (s¢,s$) € S2,
PPF(s?,s?) is computed and set of similar model surflet pairs is retrieved from
the hash table. From every match between a scene surflet pair (sg,s{) € S? and a
model surflet pair (s, sI") € M?, one is able to compute the rigid transformation
that aligns the matched model with the scene. This is done first by computing
the transformations T,,,4, and T,_,, that align s]* and s;, respectively, to the
object reference coordinate frame x axis, and secondly by computing the rotation
o around the z axis that aligns p* with p;. The transformation that aligns the

model with the scene is then computed considering the ensuing expression:

Tomss = T;igR(a)Tm—m (2)
In detail, the transformations T,,_,, and T,_,, translate p;* and p;, respec-
tively, to the reference coordinate frame origin and rotates their normals n*
and nf onto the x axis. After applying these two transformations, p;* and p;
are still misaligned. The transformation R(«) applies the final rotation needed
to align these two points. The previous reasoning is depicted in Fig. 2. The trans-
formation expressed in eq. (2) can be parametrized by a surflet on the model and
a rotation angle a. In [1], this pair (s, «) is mentioned as the local coordinates

T

of the model with respect to reference point s:.

Voting Scheme This method uses a voting scheme similar to the GHT for pose
estimation. For each scene reference surflet, a two-dimensional accumulator array
that represents the discrete space of local coordinates is created. The number
of rows, N,,, is the same as the number of model sample surflets |M|, and the
number of columns Nangle is equal to the number of sample steps of the rotation
angle a. A vote is placed in the accumulator array by incrementing the position
correspondent to the local coordinates (s, «), by 1 (see Fig. 3). After pairing
sy with all s, the highest peak — i.e. the position with more votes — in the
accumulator corresponds to the optimal local coordinate.

In the end, all retrieved pose hypotheses whose position and orientation do
not differ more than a predefined threshold are clustered together.
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Fig. 2. Pose acquisition by surflet pair aligment
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Fig. 3. Feature Matching and Voting Scheme

3 Dealing with Rotational Symmetry

We consider an object to be rotationally symmetric if its shape appearance is
invariant to rotations around a given axis of symmetry (see Fig. 4). In order to
efficiently deal with this kind of objects, we incorporate a strategy that reduces
drastically the size of the model description D, by discarding redundant surflet
pairs, thus increasing dramatically the recognition runtime performance. To ac-
complish this, a Euler angle representation [6], is used to describe orientation.
In our work we chose the X-Y-Z Euler representation since we assume that the
object axis of symmetry is aligned with the z axis of the object reference co-
ordinate frame. During the creation of the model description, for each surflet
pair, we compute the transformation with respect to the object model reference
frame (see section 2.2) that aligns it with each similar pair already stored in the
hash table. If the aligning transformation has a very low translation t and if the
roll and pitch rotational components, ¢ron and ¢picch respectively, are close to 0,
then this surflet pair corresponds to a rotation around the symmetry axis. Thus,



Axis of symmetry

Fig. 4. An example of a rotationally symmetric object model. All illustrated surflet
pairs have similar discrete feature. In the figure, pairs represented with similar color
are redundant.

the surflet pair is redundant and therefore discarded.
brotl < Ptn and  Ppiten < Gen and |t < tepdiam (M) (3)

where diam(M) is the maximal distance between model points. The weight w of
the homologous surflet pair, stored in the hash table, is then incremented by 1.
This process is clearly illustrated in Fig. 5.

Due to the fact that the sampled model point clouds are not perfect, i.e.,
only approximate the true shape of the object, the oy and dy, thresholds must
take into account these sampling inperfections. Higher thresholds increase the
number of jointly represented surflet pairs but reduce the stringency with which
we consider two given model surflet pairs redundant.

By representing redundant features jointly we decrease the number of fea-
ture matches thus decreasing the computations during the voting process. Each
feature match contributes with a weight equal to the model feature weight, w,
instead of 1. The peaks in the accumulator — originated by redundant surflet
pairs — which were previously scattered throughout the local coordinates are
now concentrated at single local coordinates. This is the result of keeping only
one surflet pair, i.e., one local coordinate, representing all the respective dis-
carded redundant ones which correspond to different local coordinates.

Before clustering, we collapse all poses that only differ on the yaw component,
i.e., redundant hypotheses, to a single pose. This is achieved by means of an
additional step — after knowing the final transformation T, (see equation (2))
— which removes the rotational component around the object axis of symmetry,
i.€., Pyaw = 0, ensuring that all redundant poses are gathered in the same cluster,
therefore allocating less resources and reducing the number of computations
during the pose clustering step.
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Fig. 5. Example of surflet pairs with similar feature stored in the same slot of the hash
table, during the creation of the object model description.

4 Results

To evaluate the performance gains of the proposed strategies to handle rotation-
ally symmetries efficiently, in the presence of noisy visual sensors, we created
an experimental scenario similar to the one referred in [1]. In this experimental
scenario the models library comprises only one model at a time, since we were in-
terested in evaluating the quality of the poses recovered by the algorithms. With
this purpose, we generated 200 synthetic scenes containing a single instance of
a given model from the ROS household objects library (see Fig. 6(a)) [7], on a
random pose. Before the downsampling step, each scene was corrupted by differ-
ent levels of additive gaussian noise, with standard deviation o proportional to
the model diameter diam(M). By using synthetically generated scenes, we were
able to compare the algorithm pose results with a known ground truth.

Diﬁ\ ]

Fig. 6. (a) ROS Household object models. From left to right: coke can, champagne
glass and cup. (b) Our method correctly detecting a Coca-Cola can. Figure best seen
in color.

During recognition we chose 5% of the scene points as reference points by
setting £ to 0.05. A higher percentage would increase the robustness to noise
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but also the recognition runtime. We considered three different pose thresholds
(¢n and tyn) to jointly represent features considered redundant. Fig. 7 shows
recognition performance results and speed gains for all the considered models
and thresholds. When ¢y, and ¢, are both set to 0 (blue x markers), no features
are jointly represented. Therefore the computational savings are only due to
collapsing of pose hypotheses around the axis of rotational symmetry, during
the pose clustering step. As we increase the pose thresholds ty, and ¢y, we are
able to jointly represent more features and hence have computational savings
not only on the clustering but also on the matching step. For the tests with the
cup model and pose thresholds set to ty, = 0.025 and ¢y, = 6° (red 0 markers),
we were able to discard 93.17% surflet pairs during the creation of the model
description, and reduce the number of computations during pose recognition. As
shown in Fig. 7, the recognition rate drops slightly for high levels of noise due
to sampling effects, but the recognition time performance increases significantly.
For |S| & 5000, our method achieves a recognition time 300 times faster than [1].
However, the number of jointly represented surflet pairs depends heavily on the
object geometric configuration. For objects whose shape has a smaller radius
relative to the axis of symmetry, and also lower surflet density on the surface,
less performance gains can be achieved. For the tests comprising the champagne
glass model we were only able to discard 55.33% surflet pairs (with ¢y, = 0.025
and ¢y, = 6°) during the creation of the model description, and achieve no
more than 3.5 times speed improvements during recognition relatively to [1].
Fig. 6(b) shows qualitative results of our method with real data, in a cluttered
scenario. Overall, we were able to obtain major improvements on recognition
speed without significant cost on recognition performance.
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(c) Cup model.

Fig. 7. Comparison results of our approach (continuous lines) against the original
method of Drost et al. (dashed lines), with § = 0.05; Left: Recognition rate (%).
Right: Time performance gain W

Parameters: tgn = 0,¢6n = 0° (blue x), t;n = 0.005,¢en = 1.2° (green O), tgn =
0.025, pen = 6° (red O)



