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“Joe’s blind left eye was not blind. Joe had devised an artificial eye, wired

into the optic center, that presented his mind with pictures, often quite at

variance with the reports of the right eye. This was especially noticeable

when he looked at human and animal subjects, and he came to realize to

what extent that which we see is conditioned by what we expect to see – that

is, by a habitual scanning pattern, whereas the artificial eye had no scanning

pattern. The lens was fixed and Joe had to direct it by movements of his

head. On the other hand, the lens could be adjusted to a wide angle, which

greatly extended the range of his peripheral vision. He found that he could

read motives and expressions with great precision by comparing the data of

the good eye, which was picking up what someone wants to project, and the

data of the synthetic eye. Sometimes the difference in expression was so

grotesque that he was surprised it was not immediately apparent to anyone.”

William S. Burroughs – The Western Lands
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Abstract

To follow a goal-directed behavior, an autonomous agent must be able to acquire knowledge about

the causality between its own motor actions and the corresponding changes induced in sensory feed-

back. Since the complexity of such sensorimotor relationships directly influences required cognitive

resources, this work proposes that it is of great importance to keep an autonomous agent’s sensorimo-

tor relationships simple. This implies that the agent should be designed in a way such that sensory

consequences can be described and predicted in a simplified manner. Living organisms implement this

paradigm by adapting sensory and motor systems specifically to their behavior and environment. As

a result, they are able to predict sensorimotor consequences with a strongly limited amount of (expen-

sive) nervous tissue. In contrast, most robots are composed of standard components and are not nearly

as well adapted to a specific behavior and environment. Implicitly, this lack of adaptation has im-

portant implications which are often neglected. In this context, the thesis proposes that advantageous

sensory and motor structures can be evolved by rewarding the ability to predict self-induced stimuli

through simple sensorimotor relationships. It is shown that this criterion can be employed to conjointly

develop layers of visual receptors and motor primitives which together are more efficient with respect

to both, computational and physical resources. Different from classical work in sensorimotor learning,

the structure of sensory and motor spaces are considered to be variables of the learning problem. The

principal focus thus, does not simply lie on learning an appropriate sensorimotor map, but on shaping

the morphology of sensors and actuators such that the induced sensorimotor relationship is simplified.

Experiments consider a simulated agent recording realistic visual stimuli from natural images. The

obtained results demonstrate the ability of the proposed method to i) synthesize visual sensorimotor

structures adapted to an agent’s environment and behavior, and ii) serve as a computational model

for testing hypotheses regarding the development of biological visual sensorimotor systems. In con-

clusion, the work proposes a unified approach for self-organizing sensory and motor primitives from

sensorimotor experience and paves the way towards more advanced autonomous systems.

Keywords: sensorimotor learning, sensorimotor coupling, self-organization of sensorimotor struc-

tures, visual receptors, visual motor primitives, visual stimulus prediction.
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Resumo

Para um agente autónomo conseguir concretizar objectivos, é antes de mais essencial ser capaz de

adquirir conhecimento sobre as suas próprias ações e mudanças resultantes na percepção sensorial.

Como a complexidade de tais relações sensório-motoras influencia diretamente os recursos cognitivos

necessários, este trabalho propõe que é de grande importância manter simples estas relações. Isto

implica que o agente deve ser concebido de tal forma que as consequências sensoriais possam ser

descritas e preditas de forma simplificada. Organismos vivos implementam este paradigma adaptando

os sistemas sensoriais e motores especificamente para o seu comportamento e meio ambiente, con-

sequentemente ganhando a capacidade de prever as consequências sensório-motoras com uma quan-

tidade limitada de tecido nervoso (dispendioso). Em contraste, a maioria dos robôs são compostos

de componentes padronizados e não estão de forma alguma tão bem adaptados a um determinado

comportamento e ambiente. Implicitamente, essa falta de adaptação tem implicações importantes que

muitas vezes são negligenciadas. Neste contexto, esta tese propõe que estruturas sensório-motoras

vantajosas podem ser evoluídas premiando a capacidade de prever estímulos auto-induzidos através

de relações sensório-motoras simples. Mostra-se que este critério pode ser empregue para conjun-

tamente desenvolver camadas de receptores visuais e primitivas motoras que em conjunto são mais

eficientes no que diz respeito a recursos computacionais e físicos. Contrário a trabalhos clássicos em

aprendizagem sensório-motora, a estrutura dos espaços sensoriais e motores é considerada variável.

Portanto o foco principal não consiste simplesmente em aprender um mapa sensório-motor adequado,

mas em moldar a morfologia dos sensores e actuadores tal que a relação sensório-motora induzida seja

simplificada. As experiências realizadas consideram um agente simulado que grava estímulos visuais

realistas a partir de imagens naturais. Os resultados obtidos demonstram a capacidade do método pro-

posto para i) sintetizar estruturas sensório-motoras visuais adaptadas ao ambiente e comportamento do

agente, e ii) servir de modelo computacional para testar hipóteses sobre o desenvolvimento de sistemas

sensório-motores visuais biológicos. Concluindo, o trabalho propõe uma abordagem unificada para

a auto-organização sensorial e primitivas motoras a partir de experiências sensório-motoras e abre o

caminho para sistemas autónomos mais avançados.

Palavras-chave: aprendizagem e acoplamento sensório-motor, auto-organização de estruturas sensório-

motoras, receptores visuais, primitivas motoras visuais, previsão de estímulos.
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Chapter 1

Introduction

Contents

1.1 In Favor of Simple Brains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Sensorimotor Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Self-Similarity in Visual Sensorimotor Systems . . . . . . . . . . . . . . . . . . 9

1.4 Approach of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Building machines with skills comparable to those of a human is an age-old dream of mankind.

The first known written record of an anthropomorphic automaton dates back more than two thousand

years. A passage in the Daoist text Lieh-tzǔ describes how the craftsman Yan Shi presents a life-sized

moving figure to the Chinese King Mu of Zhou [41]. Although this historical record is considered a

legend, it reflects ancient man’s desire to create autonomous systems.

Today, robots outperform humans in several areas. For example, they handle mathematical oper-

ations much faster than we do, and in industrial manufacturing facilities, they assemble parts, weld,

or place products with accuracy and speed, way beyond what we can achieve. However, outside the

structured environment of assembly lines, artificial systems are still far from reaching the autonomy

or versatility of biological organisms. This is mainly due to the fact that, unlike the mechanistic ex-

ecution of a prespecified task, the interaction with a natural environment requires an artificial system

to behave in an adaptive manner and to take appropriate and context dependent actions. Despite re-

markable progress in some areas of artificial intelligence, advancements in this direction have been

slow. Designing a system able to act under real-world conditions has proven to be extraordinarily

difficult. The interaction with an unknown environment requires an artificial agent not only to feature

1



suitable sensors and actuators, but also to exhibit advanced sensorimotor coordination, meaning motor

actions are deduced from sensory stimuli in a prompt and adequate manner. While today’s hardware

enables robotocists to equip artificial agents with sensors and actuators more powerful than ever, the

sensorimotor skills of these designs are often lagging behind considerably. Thus, while many robots

possess sensory systems which in principle are able to gather sufficient information to solve difficult

tasks, they are unable to choose appropriate actions based on recorded stimuli. The following section

motivates that this is not primarily because these robots are incapable per se, but to a big part because

the structure of their sensory and motor systems make it often unnecessarily hard to couple sensory

and motor signals efficiently.

1.1 In Favor of Simple Brains

When a robot fails to select a sensible action despite the potential availability of required sensory

information, one could say the system lacks the required cognitive skills to find a solution. However,

one might argue conversely, the reason why the systems fails to deduce an appropriate action is simply

because the relationship between sensory and motor signals is too complicated in order for the robot

to translate recorded sensory stimuli into a motor action adequate in the current context. While the

first formulation suggests to increase the robot’s processing power, the second formulation implies an

alternative approach. Instead of striving to increase cognitive capabilities, one could try to find a design

for the robot’s sensorimotor apparatus such that less complex operations are required to translate

sensory feedback into purposeful actions. Seen from the latter perspective it can be conjectured: if

sensory and motor systems of a robot are well concerted and adapted to a task and environment,

then the cognitive load imposed on the agent’s processing system is reduced. According to this line

of thinking, this work considers the two following points of crucial importance for the design of

autonomous artificial agents:

1. The sensory system should be adapted to the agent’s motor system and environment. This means

that the sensory system should provide (only) stimuli which are meaningful with respect to the

agent’s motor capabilities and environment. Or, conversely, that sensing something which is

never relevant for a possible motor action is redundant.

2. The motor system should be adapted to the agent’s sensory system and environment. This means

that the motor system should support (only) actions which lead to meaningful transformations

of sensed stimuli. Or conversely, actions which lead to a discontinuous sensory experience are

2



Sensory System Motor System

Environment

Figure 1.1: Proposed directions of influence for structural adaptations of an artificial sensorimotor

system. On one hand, both the sensory and the motor system are influenced by the environment. On

the other hand, sensory and motor systems can be expected to influence each other mutually.

unfavorable since they hamper the linkage between consecutive sensory stimuli and thus impede

the construction of coherent percepts.

Fig. 1.1 schematically depicts the directions of influence when considering such mutual adaptations

to sensory and motor systems with respect to a given environment. In the remainder of this section,

the reduction of required brainpower in favor of better adapted physical structures and interaction

strategies is first motivated from a biological perspective and subsequently discussed with respect to

the design of autonomous robots.

A Biological Perspective. In biological systems, evolutionary pressure has a profound impact on

the development of an animal’s nervous system [83]. Although at first sight, it seems generally ad-

vantageous for an organism to possess more sophisticated cognitive capabilities, from an evolutionary

perspective, it is not desirable to have an oversized brain. In fact, the maintenance of an extensive ner-

vous system is expensive. Even at rest, neural tissue consumes a considerable amount of energy [63].

It is therefore reasonable to assume that there is high selective pressure for evolving efficient solutions

for stimulus processing. This view is supported by a number of neuroscientific studies. The review

provided in [78] includes a number of examples which demonstrate how nervous systems reduce en-

ergy consumption by adapting their morphology and physiology. For example, insect photoreceptors

have a membrane that filters the light-induced current generated by the receptor. This filter is tuned to

discard frequencies which are not relevant for the animal’s behavior and provides a reduction of band-

width for further signal processing circuits [77]. For neural codes where information is represented

by a population of neurons, it has been suggested that a sparse coding strategy, where only a small

proportion of neurons in the population is active, is frequently used in biological signal processing.

Evidence for such sparse codes has been found in different species, see e.g. [79, 133]. Finally, ener-

getic costs are also assumed to be reduced by “saving wire”. For example by placing brain regions

3





A

B

Figure 1.3: Two Braitenberg vehicles. Each of them is equipped with two actuated wheels and two

temperature or light receptive sensors. The vehicles have a “minimalist brain” consisting of two wires.

In vehicle A, sensors route positive feedback to actuators located on the same lateral side. In vehicle

B, sensors are connected to actuators crosswise. Despite this simple setup, both versions exhibit a

diverse behavior. Vehicle A avoids a source of heat or light and vehicle B is attracted to it.

to assume that as long as a task can be solved by “cheaper” means, the development of more resource-

intensive cognitive abilities is delayed in biological systems. Of course, to what extent cognitive

resources can be “saved” by implementing smart adaptations depends on the specific task to be solved

and the associated potential for specialization. Furthermore, a highly adapted design always comes

at the cost of loosing the ability to address more general problems. A specific survival strategy in a

very particular ecological-niche allows for a higher degree of adaptation and might reduce consider-

ably the pressure for more advanced cognitive skills. On the other hand, animals which follow a more

generalist surviving strategy typically evolve more complex behaviors and require more versatile sen-

sory systems which in turn demand for more sophisticated stimulus processing systems and cognitive

capabilities.

Reducing Required Cognitive Resources in Artificial Systems. In robotics and artificial intelli-

gence, the strategy of solving a problem with less computational power through a specifically designed

body has sometimes been referred to as “morphological computation”, see for example [84, 87]. A

great number of examples demonstrating this approach for artificial systems can be found in [88] and

[86]. There, it is shown how the cognitive load imposed on artificial agents can be reduced by taking

advantage of the morphological characteristics of an agent’s body and the properties of the ecological

niche inhabited.

A particularly descriptive example is due to an early but highly influential work by Braiten-

berg [14]. In this work a number of different vehicle designs are described of which the most famous

one consists of just two actuators and two receptive sensor elements, see also Fig. 1.3. Each actuator of

this vehicle drives a wheel, and each sensor element records a quantity like temperature or luminance.

5



(a) Robot Chica

Action

Stimulus
ActionPerception

Action

Stimulus

Action

Stimulus

(b) Perception-action cycle

Figure 1.4: Example of a reactive sensorimotor loop. The visual attention system described in [106],

shown here running on the robot Chica, continuously drives the robot’s gaze towards visually salient

locations. The execution of this action-perception cycle leads to a reciprocal recursion during which

actions are chosen based on recorded stimuli, and in turn stimuli are influenced by the actions taken.

In this sense, actions become a part of sensing, and sensing becomes a part of acting.

By connecting the sensor elements in different manners directly to the actuators, an extremely simple

relationship between sensors and actuators is established. Despite such a more than simplistic “brain”,

the vehicle exhibits a quite diverse behavior and can solve a comparatively difficult task. Depending

on the wiring, the vehicle can find and follow the source of the measured quantity, or it moves away

from such a source. Thus, with a circuit consisting of only two wires, the vehicle establishes a tight

connection with its environment and implements a specific behavior.

Other more recent designs for artificial systems making use of “cheap” visual perception include

robots with solve more complex tasks like navigation and visual tracking or object recognition [136,

36, 37, 98, 35]. A robot inspired by the praying mantis using “peering movements” of its upper

body and head for visual depth perception has been described in [15]. Directly related to adaptive

sensorimotor structures as addressed by this work, a robot with an adjustable 1-dimensional visual

sensor is presented in [65]. This robot learns to change the distribution of its visual receptors such that

projected stimuli undergo a uniform translation during straight locomotion. The proposed optimization

of the sensor relates to the idea of reducing cognitive resources through structural changes, in the sense

that the resulting receptor distribution facilitates visual distance estimation.

To conclude, this section briefly reviews the visual attention system implemented by the author in

previous work [106]. Observations made there directly relate to the tight interdependency of sensory

and motor systems in autonomous agents and marked the beginning of the work addressed in this the-

sis. A short explanation of the system is described next. When running the mentioned attention system

on the humanoid robot iCub (Fig. 1.4 shows an early copy named “Chica”), then the robot acts accord-

ing to a simple sensorimotor transformation which combines the selection of visually salient regions

6



with a rule for temporal stimulus inhibition. According to this rule, the robot explores its surroundings

by continuously focusing on conspicuous locations in its field of view. The resulting behavior of the

robot is surprisingly diverse and is perceived as anthropomorphic even though the underlying rule is

very simple. This is mainly due to the fact that the system establishes a close relationship with its

environment by engaging the robot in a continuous action-perception cycle with prompt reactions to

external events. Furthermore, it is interesting to observe that the sustained execution of such a action-

perception cycle leads to a reciprocal recursion. While the behavior selects actions based on recorded

sensory stimuli, sensory feedback in turn is influenced by the actions taken. After following the exe-

cution of action-perception cycles for several iterations it becomes apparent that the classical view of

a sequential “sense”, “process”, “act” is blurred. Actions become a part of sensing, and sensing be-

comes a part of acting. This view on temporal processes in visual perception is also supported by the

premotor theory of attention which proposes that the planning of motor actions directly influences vi-

sual attention [99, 24]. Furthermore, an inspiring introduction to a paradigm which relates perception

directly to sensorimotor coordination and sensorimotor contingencies can also be found in [81].

In Conclusion. This section motivated that, i) the complexity of the relationships induced between

sensory and motor signals by a particular organism or artificial system affects the cognitive resources

required by that system, and ii) adaptations to the design of a sensorimotor system can be made in a

way such that relationships between sensory and motor signals are simplified.

The next section discusses sensorimotor transformations in particular. These mapping functions

are of importance with respect to the above summarized observations. They encode sensorimotor

relationships by mapping sensory stimuli to motor signals and vice versa.

1.2 Sensorimotor Transformations

For a purely reactive agent, a simple brain can be considered a function which transforms sensory

stimuli into motor actions. This section provides a brief overview on modeling and learning such

sensorimotor relationships, in addition, it is outlined how the physical structure of a sensorimotor

system influences these transformations.

In mathematical terms, sensorimotor transformations can simply be considered functions mapping

an input domain to an output range in one of two directions: either the transformation takes as input

a stimulus and provides as output a motor command, or it takes a motor command and provides a

stimulus. Since such a mapping between sensory stimuli and motor actions is in most cases initially

7



unknown, it is typically desirable to learn transformation functions via unsupervised exploration or

supervised teaching processes. However, due to nonlinearities and high dimensional sensor and mo-

tor signals, this is often a non-trivial task. In general, the problem of finding an approximation of a

desired transformation has to be addressed by learning a non-linear function. In robotics a number of

techniques from the broad range of applicable methods have found to frequently provide satisfactory

results. Two particular methods should be mentioned here. The first approach employs a set of basis

functions which are then linearly combined to represent a complete mapping function. A review on

models of sensorimotor transformations using this approach can be found in [92]. A second approach

uses self-organizing maps to represent the relationship between sensory input and motor actions [55].

Similar to a function constructed by linearly combining basis functions, self-organizing maps attempt

to approximate a principal manifold in the input space by adapting the position of discrete nodes ac-

cording to experienced training samples. Due to their simple use in online and unsupervised learning

problems, the use of self-organizing maps is of particular appeal in applications with such require-

ments.

Sensor to Motor Transformations. In the sensor to motor direction, a sensorimotor transformation

associates motor actions to sensory stimuli. This direction is usually considered the “default” direction

when referring to sensorimotor maps.

Studies on visual sensorimotor transformations in a sensor to motor direction typically concentrate

on learning oculomotor actions required to center a target stimulus on the visual sensor, or on how to

translate visual signals into coordinated eye-hand movements for reaching [39, 27].

Motor to Sensor Transformations. In the motor to sensor direction, a sensorimotor transformation

estimates future sensory stimuli based on given motor actions. Such a transformation represents a

feedforward model of an animal’s or artificial agent’s sensorimotor system. It is of particular interest

in the context of this thesis, since it is expected to represent a “location” for where to implement the

ideas outlined in Sect. 1.1. Why is further explained in the remainder of this section.

Chap. 2 provides a detailed overview of feedforward sensorimotor transformations in biological

systems and outlines their importance for living organisms. A review of recent work on modelling

feedforward transformations can be found in [137]. In developmental robotics, the prediction of self-

induced sensory feedback has been previously addressed in work described for example in [62].
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Measuring Properties of Sensorimotor Transformations. In a study conducted by Lungarella et

al. information theoretic measures were used to analyze the causal structure present in the information

flow induced by sensorimotor activities of a visual system [67]. The results show that the charac-

teristics of the recorded signals have strong ties to spatiotemporal relationships defined between the

physical embodiment and the movement strategies executed by the system. Based on this insight, it is

concluded that the physical structure and the behavior of an embodied system mutually influence each

other in defining the characteristics of recorded stimuli.

Variable Sensorimotor Structures. Clearly, changes to the design of a sensorimotor system in-

duce changes to a previously established sensorimotor map. This, conversely, also means that, the

properties of the associated sensorimotor transformation can be influenced by changing the design

of the sensorimotor system. Considering the preference for “simple brains” introduced in the pre-

vious section, the relationship between properties of sensorimotor transformations and the design of

sensorimotor systems is of principal importance.

To the best of the author’s knowledge, the extent of previous work addressing the design of sen-

sorimotor structures depending on properties of induced sensorimotor transformations is limited. A

particular example of a robotic implementation directly related to this idea has been described in [65]

and was previously reviewed at the end of Sect. 1.1. Other influential work described in [21] will be

reviewed as part of Sect. 1.3. Partly related work on explicitly deducing the topology of unknown

visual sensor layouts has been published in [80]. There, the retinotopic layout of an unknown vi-

sual sensor is reconstructed using an entropy maximization method relying on information distance

measures between sensor elements. Comprehensive work on the development of sensorimotor rela-

tionships from an internal perspective considering an unknown sensorimotor structure has also been

described in [89].

1.3 Self-Similarity in Visual Sensorimotor Systems

At the beginning of this work, different sources of inspiration led to the belief that self-similarity

can serve as a relevant property to qualify the adaptation of sensorimotor structures. This section

motivates why and reviews related material. First, a general introduction is provided. Subsequently,

it is discussed how self-similarity manifests itself in visual sensorimotor systems. Eventually, the

section is concluded by reviewing work published by Clippingdale et al. [21]. There, a measure

of self-similarity is used to develop abstract geometrical layouts for visual sensor topologies. This
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(a) Sierpinski Triangle* (b) Seahorse Tail* (c) Sunflower* (d) Broccoli*

Figure 1.5: Structures with self-similar properties. The Sierpinski Triangle and the so-called Sea-

horse Tail of the Mandelbrot set are exactly self-similar under combinations of dilation and rotation

transformations. The center of the sunflower shown in (c), and the broccoli floret shown in (d) are

approximately self-similar under combinations of dilation and rotation transformations.

directly relates to the previous sections 1.1 and 1.2, because it reveals that self-similar properties in

sensorimotor systems correlate with simplified sensorimotor transformations.

What Are Self-Similar Structures? An object is considered self-similar if it is approximately or

exactly similar to part of itself. This is for example a principal property of fractals like the Sierpinski

triangle shown in Fig. 1.5(a). The shown pattern is scale invariant, meaning it can be scaled by a

specific factor any number of times and its shape does not change. Similarly, the Mandelbrot set

is self-similar with respect to dilation centered at so called Misiurewicz points. A section of the

Mandelbrot set centered at a Misiurewicz point can be seen in Fig. 1.5(b). In nature, self-similarity

often appears related to growth processes, both in plants as well as in animals. Two representative

examples are depicted in Fig. 1.5(c) and Fig. 1.5(d). A more in depth discussion on natural growth

processes and how to model them can be found for example in [96] and [8].

For later purposes, it is important to point out that a structure is always self-similar with respect

to a specific set of transformations. Hence, self-similarity can be described as a combination of a

structure S and a corresponding set M of transformations {tm}m∈M such that

S =
⋃

m∈M

tm(S). (1.1)

Thus, the fractal shown in Fig 1.5(a) is self-similar under certain dilation transformations and the

structures depicted in Fig. 1.5 (b) – (d) are self-similar under certain transformations composed of

* Image Licenses: (a) released into public domain with all rights granted by user Marco Polo of the English Wikipedia

project; (b) released under the Creative Commons Attribution-ShareAlike (CC BY-SA) by user Wolfgang Beyer of the En-

glish Wikipedia project; (c) released under the Creative Commons Attribution-ShareAlike (CC BY-SA) by user Shyamal of

the English Wikipedia project; (d) released under the Creative Commons Zero license (CC0) by Jon Sullivan (pdphoto.org).
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(a) Paralejurus (genus), Trilobita (class)*. (b) Erbenochile (genus), Trilobita (class)*.

Figure 1.6: Two examples of fossilized trilobite eyes. Trilobite fossils document the oldest preserved

visual system; and, they show that in many trilobite species, the so-called eyelets were arranged in

patterns of highly regular and self-similar logarithmic spirals. This is especially noticeable for species

with eyelets of varying size, compare also Fig. 6 in [20].

dilation and rotation.

In sensorimotor systems, self-similarity can be considered to be present if sensors and actuators

are designed in a way such that there are motor actions which can induce self-similar stimulus trans-

formations. Considering a visual sensor composed of a number of discrete receptors, a self-similar

stimulus transformation means for example that there exist motor actions which move the sensor in a

way such that recorded visual stimuli are displaced exactly or approximately from receptor to recep-

tor. Interestingly, visual sensorimotor systems in living organisms often approximate such self-similar

properties for some subset of available motor actions. The next paragraph reviews a few examples and

discusses a possible explanation for why this might be advantageous.

Self-Similarity in Early Visual Systems. Many fossils of Trilobite eyes – the oldest preserved

visual system – show structures with strong self-similar properties. Similar to modern compound eyes,

the eyes of these animals were composed of independent lenses called eyelets. In many trilobite species

these eyelets were arranged in patterns of intersecting logarithmic spirals [20]. Two examples with

moderate spatial variance in eyelet size are shown in Fig. 1.6, other illustrations of fossils with clearly

expanding logarithmic spiral patterns and greater variance in eyelet size can be found in [20] (Fig. 6).

Non-uniformly sized eyelets arranged in expanding logarithmic spirals are suitable to induce perfectly

self-similar stimulus transformations under actions which lead to a dilation of the projected stimulus

in radial direction of the spiral. The induced transformation is an affine transformation which contracts

*Image licenses: (a) and (b) released under the Creative Commons Attribution-ShareAlike (CC BY-SA) by users Pseu-

domorph and Micha L. Riser (in sequence) of the English Wikipedia project.
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towards a point on the sensor surface (far) outside the area covered by the eyelets. For an animal living

on the sea floor, locomotion results in a “zoom in” on the soil in front of it. Thus, it could be argued

that there might exist naturally occurring actions in Trilobite locomotion which induce self-similar

stimulus transformations. Recent evidence discussed in [112] also suggests that the trilobite eye might

have implemented a system of muscles which was able to move the receptor areas inside each unit with

respect to the fixed lenses, similar to the mobile retina of jumping spiders reviewed in Appendix A.

Such a motor system could in principle allow for the execution of actions which induce self-similar

stimulus transformations, although this is pure speculation since very little is known about the inner

(non-calcite) structure of the trilobite eye and even less is known about the temporal dynamics of these

animals.

With regard to research concerned with the morphogenesis of trilobite eyes, it shall be noted that

the immediate reason for why trilobite eyes exhibit self-similar properties is with high probability to

be found in a genetically coded lens-emplacement program [126]. According to this theory, eyelets are

placed via a genetic program iteratively executed during ontogenetic development. This would mean,

Trilobite eyelets do not adaptively organize themselves according to experienced stimuli. However,

arguing in favor of self-similar stimulus transformations, it is of course possible that selective pressure

during phylogenetic development might have preferred eyelet placement strategies which generate

self-similar sensor structures because they provide an advantage for the animal.

Self-Similarity in Modern Camera-Type Visual Systems. While receptor topologies of compound

eyes can be observed directly at the periphery of an animal, receptor density distributions in camera-

type eyes require a closer look at the visual projection surface within the eye. Studies measuring

the distribution of retinal ganglion cell layers revealed that there are profound differences between

receptor density distributions in camera-type eyes of different species.

Primates and mammals with binocular vision typically feature a fovea. This means, they have

a small high-resolution area in the center of their retina, and outside this area a in radial direction

almost logarithmically decreasing receptor density. In [117], it is pointed out that such a log-polar-like

receptor distribution corresponds to a mapping function which transforms image rotation and dilation

(zoom) into simple coordinate shifts in the log-polar coordinate system. Thus, if an eye featuring such

a receptor distribution is focusing on an object, and that object is rotated or scaled, then the object’s

projection on the eye is merely shifted along the log-polar coordinate axes. In other words, under

such actions the image undergoes a transformation with high self-similarity properties with respect to

a log-polar receptor distribution. In conclusion, it was argued in [117] that this property results in an
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advantage for neural processing since the sensor topology could achieve image invariance for these

transformations at a low computational cost by simply shifting the image.

Other mammals, for example sheep, pigs, and horses, feature a horizontally elongated ganglion

cell distribution in their fovea called visual streak [44]. Such cell distributions are typically found in

animals which live in open territory and have a predominantly monocular vision system. According

to these observations, it has been suggested that an animal’s environment and behavior have a direct

influence on visual receptor distributions in camera-type eyes [50]. For example, in [49] the retinal

ganglion cell distribution of two different kangaroo species have been compared. It was found that

while the kangaroo Dendrolagus doriana which lives in the rain forest of New Guinea has a nearly

radially uniform ganglion cell distribution, the red kangaroo Macropus rufus which lives in open Aus-

tralian grassland and desert habitats shows a clear visual streak. For a qualitative reproduction of the

results presented in [49], see Fig. 1.7. In general, it is assumed that retinal ganglion cell distributions

with a visual streak could account for the fact that horizontal image translations are more frequently

experienced by the host of such a system. Differently from the eyes of typical predators, animals with

a visual streak have limited binocular vision and their behavior is less “object oriented”. On the other

hand, it is important for these species to observe the horizon, a behavior which induces horizontal

image shifts. Thus, it might be assumed that the visual streak improves, on average, the self-similarity

of experienced stimulus transformations.

A particularly curious ganglion cell distribution has been recorded in the eyes of African elephants.

These animals combine the two previously described receptor topologies in one eye. They feature a

visual streak pointing at the horizon, but additionally also have an area of high receptor concentration

in the upper temporal area of their retina. Not surprisingly, when the visual streak is aligned with

the horizon, the center of the Elephant’s fovea points exactly at its trunk [123]. Considering that an

elephant most of the time keeps its eye aligned with the horizon while using its trunk at the same time

for dexterous object manipulation, its eye seems to reflect the characteristics of experienced stimulus

translations which predominantly are: shifts along the horizon, and small movements around the tip

of the trunk.

In conclusion, for many stimulus transformations the discussed camera-type eyes are clearly un-

able to achieve perfect self-similarity. However, their ganglion cell distributions seem to approximate

self-similar transformations for a number of commonly experienced transformations in recorded visual

stimuli. This means that, for certain types of actions, the error with respect to perfect self-similarity is

smaller than for others. The next section reviews work which makes use of such an error measure to
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(a) Trans. h = 1.0, v = 1.0 (b) Trans. h = 0.19, v = 0.2 (c) Trans. h = 0.5, v = 0.2 (d) Trans. h = 0.0, v = 0.0

Figure 1.8: Geometrical point layouts obtained by Clippingdale and Wilson according to the algorithm

described in [21]. The different plots show layouts obtained under different layout transformation

action probability distributions. Actions are sampled from a uniform distribution of arbitrary rotation

and dilation actions, and a uniform distribution of x- and y-translations of limited range. The different

ranges of translation actions are denoted below each plot. Reproduction with kind permission of

S. Clippingdale.

of camera-type visual systems. The results of Clippingdale and Wilson are shown in Fig. 1.8. The

probability distributions of transformations which lead to the configurations shown in these figures

are composed of rotation and dilation transformations uniformly distributed over an arbitrary range,

combined with horizontal and vertical translations distributed over different limited ranges.1

In summary, Clippingdale and Wilson provide empirical support regarding the validity of the hy-

pothesis that animals optimize their visual sensorimotor systems to achieve “closer-to-invariant” image

transformations for certain sets of actions. Their work shows, that with a preference for spatiotemporal

self-similarity, abstract sensor layouts can be synthesized which resemble receptor distributions found

in biological organisms, and that these layouts are obtained under stimulus transformations which can

be expected to be characteristic for the respective organisms. Referring back to feedforward senso-

rimotor maps discussed in Sect. 1.2, it is important to note that the measure for self-similarity, as

introduced by Clippingdale and Wilson, directly relates to a request for simpler feedforward sensori-

motor maps. It essentially favors (on average) exact receptor-to-receptor stimulus translations.

A number of restrictions related to the approach proposed by Clippingdale and Wilson are note-

worthy in the context of this thesis. Firstly, in [21] it is assumed that there is knowledge about the

sensor topology, meaning the algorithm has access to the spatial position of sensory elements (and

size, in case of Gaussian sensor elements). Secondly, it is assumed that the displacement of sensor

elements with respect to the sensor surface is known a priori from a given transformation; which

1In [21] Clippingdale and Wilson extended the same algorithm to work with 2-dimensional Gaussians instead of simple

geometrical points. To do so, the Euclidean distance measure between two points was replaced with the inner product

between two Gaussians in the self-similarity measure.
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for a real visual sensor has to be reformulated as: it is assumed that the new locations of a previ-

ously recorded stimuli are known from a given transformation. Both assumptions are unrealistic when

considering an autonomously developing organism or robot. Rather, it seems appropriate to take an

intrinsic perspective of a developing system and to base self-organization of the sensorimotor appa-

ratus on recorded stimuli and motor commands directly available to the system. From this point of

view, it cannot be assumed that measurements concerning the spatial topology of the sensory system

can be obtained. Also, it is improbable that information about the spatial displacement of visual re-

ceptors is readily available since motor commands and stimulus displacements are usually connected

via complex transformations. In contrast, this thesis adopts a more natural approach where the sensor

topology is considered unknown and visual stimuli are recorded with a realistic sensor model.

1.4 Approach of This Work

The goal of this work is to develop a method which allows for the self-organized synthesis of senso-

rimotor structures in artificial visual systems. Considering a co-developmental process, it is proposed

that sensory and motor systems mutually influence each other such that the structure of a visual sensor

organizes according to the characteristics of the given motor apparatus, and, vice versa, the motor

system adapts to the structure of the associated sensor. As a common direction for such a joint devel-

opment the present work proposes that sensor morphology and motor primitives should concurrently

adapt such as to simplify the relationship between recorded sensory stimuli and executed motor ac-

tions. A first indication on how to qualify “simple” for sensorimotor relationships in visual systems

has been given in Sect. 1.3.

In Fig. 1.9, a simplified sketch of a general sensorimotor system is shown. Dashed lines indicate

components of the system which are initially unknown. Thus, both, the sensory system S, and the

motor system M , are considered variables of the proposed problem. The two arrows between S and

M indicate the two directions of possible sensorimotor transformations. The arrow denoted behavioral

policy B represents the map which associates motor actions to experienced stimuli. This map is always

considered to be known in this work. In the opposite direction, the arrow denoted forward model P

represents the sensorimotor map which estimates sensory stimuli based on selected motor actions.

This map is initially unknown and represents a variable of the problem which depends on S and M .

Having proposed that a perceptual system with favorable properties possesses a simplified feedforward

model, the structure of P is of central importance. Accordingly, a first goal of this work is to find a

measure which evaluates the simplicity of P . Subsequently, the central idea is to adapt S and M such
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Sensory System S Motor System M

Environment

Behavioral Policy B

Forward Map P

Coupling

Stimuli Actions

Figure 1.9: A general sensorimotor system with subsystems S and M which are coupled in two

directions via sensorimotor maps B and P . Dashed lines denote initially unknown components of the

system. The policy B associates actions to recorded stimuli and is considered to implement a given

behavior. The sensorimotor system (S, M ) and its sensorimotor transformation (P ) are variables of

the proposed problem which are defined under the assumptions specified later in Chap. 3.

that the previously proposed measure is optimized.

The problem outlined above is addressed in four steps. In a first part, an empirical study in-

vestigates feedforward sensorimotor relationships in visual systems with respect to accuracy and the

complexity of the associated prediction models. It results a measure which is directly related to the

concept of self-similarity as introduced in Sect. 1.3. In a second step, it is investigated how a motor

system M should be organized such as to allow for simple forward models P considering a given

sensor S and action selection policy B. The third part addresses the inverse problem: how should the

sensor S be adapted such as to allow for simple forward models P given M and B? In a last step, part

two and three are merged into a unified approach which conjointly develops sensorimotor structures

S and M according to a given behavior B.

An important objective of this work is to keep an intrinsic perspective, meaning that a process

structuring sensory and motor systems should use only information which can be expected to be ac-

cessible “from inside” a developing agent. This objective impedes for example the use of information

describing the current structure of the sensorimotor apparatus, since from the perspective of a develop-

ing nervous system it is not realistic to assume that a developing neural circuit can access information

about the physiology of the body it is embedded in. Thus, the principal information available from

an intrinsic perspective are recorded sensory stimuli and issued motor commands. Consequently, the

proclaimed goal is to adapt sensorimotor structures S and M solely according to experienced senso-

rimotor signals. In this respect, the organization of sensor topologies as proposed in this work con-

siderably differs from the approach proposed by Clippingdale and Wilson (reviewed in the previous
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section) which requires information not available from an intrinsic perspective.

At last, an important constraint which is imposed throughout all four parts of the present work

is that, agents are considered to be stateless in the sense that changes in visual stimuli induced by

motor actions are independent of the system’s current position with respect to the environment. The

remainder of this section provides an overview of the four principal parts of this thesis.

1. A Measure of Visual Sensorimotor Coupling. Work carried out in a first step addresses the

influence of sensor morphology and sensor movements on the structure of an induced stimu-

lus. The objective is to understand how actions and sensor structure interrelate when recording

primary visual stimuli and to assess the quality of visual sensorimotor coupling in terms of

predictability of visual stimuli and the complexity of the model required to predict stimulus

changes. In this sense, pairings of sensor topologies and actions are preferred which firstly lead

to a predictable change in sensory stimulus and secondly lead to a change in stimulus which

can be described using a simple model. With these criteria an environment-independent mea-

sure is developed specifying “how simple” it is to predict the outcome of a given action under

a given sensor topology. This measure is then used to evaluate two different sensor layouts

using three different types of actions. By visual inspection of the obtained measurements, it is

easily possible to detect good motor actions specific to a given sensor topology. Based on the

assumption that actions leading to predictable sensor feedback and simpler prediction models

are preferable, it is then possible to deduce how an agent’s actions and behaviors are coupled

with its sensor topology. It is found that the resulting conclusions match well with observations

made for biological systems described in Sect. 1.3. This study has been published in [102].

2. Organizing Motor Topologies. In a second part, the question is addressed how to spatially

organize a number of motor primitives M in a given motor space for a given sensor layout S

in order to optimize a criterion similar to the one developed in the first part. The thesis ad-

dresses this questions by first proposing a biologically inspired model for an adaptive visual

sensorimotor system capable of learning to predict visual stimuli from self-induced motor ac-

tions incorporating also structural adaptations to the underlying motor space. This model is then

extended by releasing some previously specified constraints.

First, a visual stimulus prediction circuit is considered where motor signals enter through mo-

tor movement fields modeled as multivariate Gaussians of variable size and position integrating

input from the motor space. This model is inspired by a neural feedforward pathway found in

primates which connects the superior colliculus with the frontal eye field, previously discussed
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in Sect. 2. According to a functional understanding of visual stimulus prediction in the pri-

mate brain, a graphical interpretation of the addressed circuit is deduced first. Subsequently,

a learning process optimizing stimulus predictability is introduced. This process adapts at the

same time the feedforward circuit as well as the topological organization of a number of corol-

lary discharge neurons or motor movement fields integrating input from the motor space. The

obtained results demonstrate the adaptation of the introduced model with respect to different

sensor topologies and sensor movement strategies. Two interesting and interrelated properties

are observed: the circuit connecting motor and sensor areas converges to a particularly sparse

configuration in terms of number of connections; and the geometry of the circuit’s connection

nodes shows strong self-similarity properties in the sense of [21]. This work has been published

in [104].

In an extension, the constraint that motor movement fields must implement a Gaussian model is

relaxed and a discretized representation allowing for arbitrary motor movement field functions

is introduced instead. This work has been published in [103].

3. Organizing Sensor Topologies. Dual to the second part, this part investigates how to spatially

organize a number of visual receptors S on a given sensor surface for a given behavior B in

order to optimize a criteria similar to the one developed in the first part. The thesis addresses

this question in two steps described next. Both consider spatially extended visual receptors

which integrate luminance according to receptive field functions described in a discretized form

allowing for arbitrary receptive field shapes.

First, it is investigated how prediction and spatiotemporal correlation can be exploited to de-

velop visual sensors well-adapted to an artificial agent’s interaction with its environment in

the sense of good sensorimotor coupling as introduced in the first part. The result is a com-

putational method for synthesizing visual sensor topologies according to experienced stimulus

transformations. This method establishes a relation between a sensor’s spatial layout and expe-

rienced stimulus transformations by adopting the basic principle of self-similarity as proposed

by Clippingdale and Wilson in [21]. Though, instead of considering point-like sensor elements,

a realistic visual sensor is simulated with spatially extended receptive fields. Different from

[21], it is imposed that the algorithm has no access to information about the topological lay-

out of the sensor being organized. This means, the organization of the sensor layout has to be

achieved solely by observing the activation of an orderless array of visual receptors. Hence,

the implementation of a rule similar to the one proposed in [21] becomes considerably more
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challenging. In particular, the Euclidean distance measure between transformed and original

points has to be replaced with a measure related to how activation is transported between visual

receptors when the recorded stimulus changes. This issue is addressed by introducing a crite-

rion based on spatiotemporal cross-correlation of receptor activation. This criterion allows for

the implementation of an optimization which organizes the layout of visual receptors depend-

ing on sensorimotor activity. At the same time, the algorithm is also required to find a suitable

shape for the receptive fields of visual receptors. This approach shows that spatially coherent

receptive fields can evolve driven only by the predominantly low spatial frequency of natural

images [13]. By rewarding spatial correlation within receptive fields, smoothly overlapping

clusters organize on the sensor surface without any further constraint on the spatial shape of a

receptor’s integration area. This work has been published in [105]. Preliminary work appeared

in [101].

In an adaptation to the first method for synthesizing visual sensors, the request for self-similar

structures is combined with a request for accurate representation of available visual signals.

Similar to the previous method, it is proposed that the perceptual system should develop a sensor

layout such that the relationship between past and future stimuli is simplified on average in the

sense of self-similarity, but additionally, the system should also optimize available resources

to accurately perceive an observed phenomena. This additional request for a more accurate

representation is accommodated by introducing an error between the available signal and its

reconstruction from the recorded stimulus. This work has been published in [103].

4. Organizing Sensor and Motor Topologies Conjointly. In a final step, part (2) and (3) are

combined into a unified method which allows for the organization of the topology of sensor and

motor spaces S and M conjointly according to agent-environment interaction patterns resulting

from a given behavior B.

The presented method takes as input experienced efferent (motor commands) and afferent (stim-

uli) signals, and evolves a spatial layout for light receptive fields and motor movement fields.

It is shown that visual receptive fields and motor movement fields can evolve simultaneously

when minimizing a simple error measure – assembled from part (2) and (3) – which contem-

plates the reconstruction error for recorded stimuli with respect to given input signals and the

prediction error for stimuli resulting from self-initiated actions. As previously found, the low

spatial frequency of natural images induces the development of spatially coherent and smoothly

overlapping receptive fields on the sensor side without any further constraint on spatial shape.
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At the same time on the motor side, individual movement fields evolve such as to displace the

sensor ensuring high temporal coherence of visual stimuli. The presented results demonstrate

how the proposed principles can be used to develop sensory and motor systems with favorable

mutual interdependencies.

1.5 Summary of Contributions

The present thesis introduces an approach to develop sensorimotor structures of artificial visual sys-

tems in a self-organized manner. In a first step, it is proposed that the quality of a sensorimotor system

is related to the simplicity of the relationship between sensors and actuators. Subsequently, it is shown

that by optimizing a criterion related to this property, it is possible to conjointly structure the layout

of sensory and motor systems according to a given higher level behavior. In summary, the principal

contributions are:

1. Development of a criterion assessing the characteristics of sensorimotor relationships in visual

systems. The proposed criterion is related to the amount of information required to describe

stimulus transformations induced by motor actions executed by the considered system.

2. Topological organization of visual motor primitives according to the proposed criterion for a

given sensor layout and behavior. Resulting motor primitives are optimized with respect to the

physical structure of the given sensor in order to induce simple signal transformations.

3. Topological organization of visual receptive fields according to the proposed criterion for a

given motor layout and behavior. Resulting visual receptors are optimized to allow for simple

visual stimulus transformations under a given set of motor actions.

4. Given a desired higher level behavior, conjointly organize motor primitives and visual receptors.

It is demonstrated that sensor and motor topologies which are tuned to the characteristics of

the system’s interaction with its environment can be synthesized solely driven by experienced

efferent and afferent signals.
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Chapter 2

Stimulus Prediction in Biological Systems

Contents

2.1 Neural Circuits That Predict Sensory Stimuli . . . . . . . . . . . . . . . . . . . 25

2.2 Plasticity in Visual Neural Circuits . . . . . . . . . . . . . . . . . . . . . . . . . 29

This chapter provides an overview of neuroscientific studies and results related to neural circuits

involved in visual stimulus prediction and (forward) sensorimotor mapping. In an introductory part, a

number of commonly used terms are introduced and an important concept, the reafference principle,

is reviewed. In addition, the last paragraph of the introduction reviews the superior colliculus, a well

studied brain area where visual sensory stimuli are topographically mapped onto underlying motor

layers which control eye and body orientation. From a biological perspective, this area is of particular

interest, since it can be considered a biological prototype for the sensorimotor mapping addressed in

this work. Subsequently, the two principal sections of this chapter review a number of neural circuits

dedicated to stimulus prediction. Sect. 2.1, reviews stimulus prediction at different levels along the

visual pathway, and Sect. 2.2 discusses neuroscientific findings related to adaptive processes in visual

neural circuits.

Inspired by the results reviewed in Sect. 2.1, this chapter also proposes a simplified model of a

visual feedforward circuit. This model is visualized in Fig. 2.3 and is later revisited and integrated as

a part of the approach proposed for the organization of sensorimotor topologies described in Chap. 4.

Common Terminology in Neuroscience. In neuroscientific terms, afferent signals are stimuli com-

ing from the periphery of the central nervous system, efferent signals are typically motor related signals

travelling towards the periphery of the nervous system. Depending on their origin, afferent signals can

23



Figure 2.1: Efference copy and corollary discharge circuits along the sensory processing stream and

motor pathway. Adapted from [25].

be further decomposed into a component of the signal which is generated by events external to the

organism (exafferent), and a component which is induced by self-initiated movements (reafference).

The Reafference Principle. In the middle of the last century, von Holst and Mittelstaedt formulated

the reafference principle which proposes that it is an important property of nervous systems to be able

to distinguish reafference from exafference [134]. It was suggested that a copy of a motor command,

the efference copy (EC), is used to distinguish the reafferent part of the signal from the exafferent part.

At the same time, similar conclusions led Sperry to coin the term corollary discharge (CD) in his work

[121]. Nowadays, despite the conceptual similarity between EC and CD, the commonly used termi-

nology makes a slight difference between the two. CD is in general used to refer to signals which are

transmitted along feedforward connections from the motor pathway to the sensory processing stream.

These circuits can connect from any tier of the motor pathway to any other tier in the sensory process-

ing stream. EC on the other hand is considered to be a motor signal affecting sensory channels close

to the effector / sensor periphery. Fig. 2.1 illustrates these different levels of feedforward connections.

For further reading on corollary discharge circuits including this definition and an attempt to classify

them, see [25, 26].

The Superior Colliculus. The optic tectum, or in mammals the superior colliculus (SC), is a phy-

logentically ancient structure in the vertebrate midbrain, often studied in relation to eye and head

movements triggered by visual stimuli, but also known to be responsible for full body reorientation as

a response to multimodal sensory input [33, 43]. The tectum is organized as a layered structure where

the superficial layers receive somatosensory input while the deeper layers are concerned with attention
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orienting movements. Depending on the somatosensory system of an animal, the sensory modalities

processed by the tectum may be balanced differently. In diurnally active mammals relying mainly on

vision as one of their principal senses, the superficial layers of the superior colliculus receive primarily

visual input. These optic input layers are retinotopically organized, meaning the topological map of

the recording sensor (the retina) is still present in the superior colliculus. This topology is preserved

through several layers and as far as down to the deeper motor areas. As a result, neural activity in the

motor layers of the SC code eye saccades in a gaze-related retinotopic reference frame. This layout

of movement fields in the SC was first revealed in studies done by [100]. Using microstimulation the

spatial layout of the motor map was deduced in terms of relative gaze orientation angles. It was found

that when stimulating locations in the motor layers of the SC, relative saccades are triggered, no mat-

ter where the eye was in the orbit previously to the saccade [111, 100]. Another influential study later

presented further evidence which supports the so called population coding theory for motor layers in

the SC [64]. According to this theory, a blob-like activation of a number of neurons in the motor layer

triggers a saccade to a target location which is encoded as the vector sum of all active motor neurons.1

This theory on the working of motor layers is revisited later when formulating the definition for motor

movement fields as used in this work, see Chap. 3.

In conclusion, the optic tectum is of interest to this work in the sense of a biological prototype

since it appears to implement a general design for a forward sensorimotor map applicable to different

input modalities, generating output activity used for a great variety of behaviors.

2.1 Neural Circuits That Predict Sensory Stimuli

Biological systems predict stimuli at a multitude of different levels. Neural structures adapted to the

spatiotemporal properties of visual signals appear for example as early as in the ganglion cell layer of

the vertebrate retina. Also, at later processing stages, corollary discharge circuits predicting exafferent

stimuli based on efferent signals have been found to be ubiquitous in neural tissue.

This section first provides an overview of neural circuits concerned with prediction by following

a classification of corollary discharge circuits proposed in [25]. Subsequently, two particular neural

circuits are reviewed in more detail. The first is directly implemented in the vertebrate eye, just after

recording the visual signal. It provides a statistical estimate of the spatiotemporal characteristics of

visual stimuli at a very first processing stage. The second is found in primates located between the

1Note, to eventually move the eyes, retinotopic motor signals have to undergo a non-trivial transformation while travel-

ling from the SC to the oculomotor nuclei [71].
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superior colliculus and the frontal eye field. It is used to predict visual stimuli based on oculomo-

tor signals. For the latter, this section also proposes a simplified model which is later instantiated

in Sect. 4.5.

Corollary Discharge Circuits at Different Levels. On a first level, corollary discharge circuits are

used to distinguish between external signals (with origin in the environment) and signals induced by

self-initiated actions. Male crickets for example filter their self-produced bursts of sound by generating

a neural signal which anticipates the auditory stimulus [135, 93]. By doing so, the animal is able

to suppress its own chirping while focusing on the response of female crickets. The same filtering

strategy has been discovered in a number of other species which elicit escape reactions depending on

whether a sensory signal is self-generated or results from an event in the environment [28, 32].

On a higher level, stimulus prediction is believed to be a basic mechanism used to achieve stable

perception. For any organism, the acquisition of a coherent percept of the environment is not a passive

one-step action but is the result of a continuous process of sensorimotor interactions which take place

over a number of iterations. Rats for example explore objects by tactile whisking; bats “see” the world

by listening to the echo of their self-produced ultrasonic waves, and many animals relying on vision

continuously have to move their eyes and body to sweep their visual field over an observed scene.

The motor actions involved in these exploration movements often induce drastic changes in sensory

stimuli which can be understood when trying to focus for example on the image stream recorded

by an abruptly moved camera. The question arises, how is the brain able to assemble a stable and

coherent percept in light of such radical stimulus changes? Clearly, this task becomes considerably

easier if information about the planned sensor repositioning action is assumed to be available. Given

the appropriate neural circuitry, the expected sensory stimuli could be predicted and used to relate

sensory input over a sequence of sensor movements. Neuroscientific studies on the neural mechanisms

underlying coherent perception in rats (tactile whisking) and bats (echolocation) have been described

by [2, 72].

From a dynamical point of view, stimulus prediction is also important for fast action sequences.

If a signal providing sensory feedback for a previous action reaches the motor system only after the

next action has to be initiated, then prediction is indispensable to plan accurate motor commands.

This is for example the case for a sequence of fast eye movements (saccades). Studies with primates

showed that the brain actually relies on a predictive control strategy: motor commands for subsequent

saccades are issued before proprioceptive or visual sensory feedback from the previous movement is

available to the motor system [129, 69, 132, 94, 11]. Furthermore, considering that primates execute
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up to three visual saccades per second during normal behavior and knowing that neurons in the frontal

and parietal visual areas of the primate brain record afferent signals with a latency of at least 60 ms,

relying on purely passive afferent signals would mean that the cortical representation of the visual

world is inaccurate during almost 20% of the time [17, 40, 97]. Such delay and accuracy is likely to

be compensated by neural feedforward pathways like the one discussed in the next paragraph.

Early Predictive Circuits in Retinal Cell Layers. From early studies of vertebrate and insect vi-

sual systems, it is known that visual receptive fields which feature antagonistic center and surround

areas play an important role at the first levels of stimulus processing. 2 In a number of influential

studies described by Srinivasan, Laughlin, Dubs, and Barlow, it was proposed that bipolar and gan-

glion cells in the vertebrate retina implement a form of spatiotemporal stimulus prediction [122, 6].

In a framework termed predictive coding theory it was suggested that the (negative) surround area of

such a cell’s receptive field generates a statistical estimate of the signal expected at a certain point

in space or time. This prediction is then subtracted from the signal that was actually recorded at the

(positive) central area of the receptive field. A number of advantages resulting from such a mechanism

were proposed, among them e.g. deblurring or edge enhancement [122]. In addition it was proposed

in [122] that local, statistical prediction mechanisms might remove redundant signal components and

thus contribute to a more efficient coding of visual signals. Referred to as the efficient coding theory,

the latter proposal has subsequently been investigated over several decades, and remains an active re-

search topic in neuroscience [131, 5, 91]. Recent studies suggest that the receptive fields of ganglion

cells in the vertebrate retina are highly adaptive with respect to the spatiotemporal characteristics of

observed stimuli, see also Sect. 2.2.

An Exemplary Corollary Discharge Circuit: the SC-MD-FEF Pathway. An important and well

studied neural feedforward circuit is the SC-MD-FEF pathway in the primate cortex leading from the

superior colliculus (SC) via the medial dorsal nucleus (MD) to the frontal eye field (FEF). This circuit

is responsible for visual stimulus prediction during eye saccades.

Input to the SC-MD-FEF pathway is motor activation generated by the deep layers of the superior

colliculus. These motor signals ascend the SC-MD-FEF pathway as corollary discharge in a feed-

forward direction and eventually reach the frontal eye field, see also Fig. 2.2. There, these signals

are integrated with visual signals which reach the FEF through the main sensory processing stream.

A prediction of future visual stimuli is achieved by modulating the receptive fields of visual neurons

2The integration function of receptive fields with antagonistic center and surround areas can for example be approximated

by the second derivative of a multivariate Gaussian.
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Figure 2.2: The SC-MD-FEF corollary discharge circuit connecting the superior colliculus (SC) via

the medial dorsal nucleus (MD) with the frontal eye field (FEF). Note the inverted (feedforward)

direction with respect to the motor pathway and sensory processing stream.

depending on the corollary discharge arriving from the superior colliculus.3 That is, when a saccade is

executed, the RFs of the visual neurons in the FEF are modulated to integrate visual signals from the

target location of the saccade. The shifted integration profile of such a modulated visual neuron is then

called future field (FF)[120]. Consequently, the presaccadic FF and the postsaccadic RF sample the

same absolute location in visual space. Comparison of presaccadic and postsaccadic FEF neuron acti-

vation can therefore in principle be used for both, stabilization purposes and to distinguish exafferent

from reafferent stimuli (filtering). This hypothesis that neurons with shifting receptive fields are able

to perform comparative operations is supported by a number of studies, among them [31, 23, 119].

Work describing the SC-MD-FEF pathway in general can be found in [118, 119, 120, 129, 130, 74].

Other areas in the visual system where neurons with shifting RFs have been found include the lateral

intraparietal sulcus (LIP) described in [10, 22, 31], and extrastriate visual areas like V4 discussed

in [76, 128].

In Fig. 2.3, a graphical interpretation of the topological and functional relationships reviewed here

is introduced. Signals traveling along the SC-MD-FEF pathway originate from a peak of activation in a

layer of SC motor neurons coding eye movements in a retinotopic reference frame which is denoted (a)

in Fig. 2.3. Along the corollary discharge pathway, this activation is integrated by corollary discharge

neurons (CDNs, (b) in Fig. 2.3). The CDNs project in turn through feedforward connections (c), to

visual neurons and their connections (d). We will resume on this interpretation when proposing the

computational model of the SC-MD-FEF circuit in the next section.

3Neurons with this type of variable receptive fields are said to have shifting receptive fields. In general, the receptive

field of a neuron is considered to be spatially fixed with respect to the underlying input neurons. However, neuroscientific

studies showed that in several areas in the visual system there are neurons which feature shifting receptive fields.
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Figure 2.3: Model of a visual corollary discharge circuit. A population of motor neurons codes visual

saccades in a retinotopic reference frame (d). An intermediate layer of corollary discharge neurons (c)

collects activation from the underlying motor layer and projects through feedforward connections (b)

to the sensor area (a). The corollary discharge signals modulate the activation of visual receptive fields

and their connections such as to predict a future visual stimulus resulting from an activation in (a).

2.2 Plasticity in Visual Neural Circuits

Adaptations in visual neural circuits have been studied since the early days of modern neuroscience.

As an inspiration for the structural optimization of artificial visual sensorimotor circuits developed in

Chap. 5, this section reviews a number of studies providing long-standing evidence for such adaptive

processes in living organisms. Some of these adaptive processes take place during the development of

an organism and result in subsequently stable structures, others remain dynamic and occur even at the

timescale of seconds. The section concludes by revising the degrees of freedom of the model presented

in Fig. 2.3 with respect to an adaptive process which optimizes the prediction of visual stimuli.

Early influential work by Hubel and Wiesel showed that ontogenetic development of the visual

areas V1–V5 involves a high degree of adaptivity in higher vertebrates [46, 47]. Based on single-unit

recordings, the formation of orientation sensitive cells in striate and extrastriate cortices could be ob-
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served, clearly influenced by experienced stimuli [48]. Since then, a great body of work confirmed that

plasticity is present along the entire visual sensory processing stream, for an overview see e.g. [90].

Moreover, plasticity also plays a major role in the superior colliculus. In [53], King et al. describe

for example how visual and auditory maps in the SC are topographically aligned during early life.

And in recent work, the alterations of the visual map in the superior colliculus due to lacking neuronal

activity in the early retina have been studied [73]. It was found that without previous visual stimuli,

the projection layers in the superior colliculus are a coarse retinotopic map given by morphogenetic

development. Subsequently, during growth, the spatially correlated firing of retinal ganglion cells re-

fines the organization of the retinotopic layers in the superior colliculus. This organization is defective

if natural neural activity due to lacking or disturbed visual input is not present after birth. Hence,

like in the striate and extrastriate cortices, the fine tuning of the superior colliculus clearly depends on

sensorimotor contingencies experienced while the animal interacts with its environment. This form of

reafference exploration is a commonly found learning strategy in nature [113]. An equivalent method-

ology termed motor babbling can be applied in artificial embodied systems

Adaptive processes also occur at the level of early predictive circuits implemented in the verte-

brate retina. It was recently found that ganglion cells adapt their receptive fields within a timescale of

seconds to the statistical properties of recorded stimuli [45]. This remarkable plasticity has been con-

firmed with respect to contrast and intensity but is also clearly related to the spatiotemporal character-

istic of observed patterns. It could be shown that the ganglion-cell receptive fields change dynamically

depending on the correlation structure of the visual environment. The result of the adaptation is that

predictable stimulus features are suppressed compared with novel features. Also it is conjectured that

ganglion cells might contribute to an early decorrelation of visual stimuli [91].

The circuit proposed in Fig. 2.3 can learn to predict visual stimuli and minimize the prediction

error by adapting its network topology in two different ways. Firstly, similar to the adaptation of

receptive fields reviewed above for ganglion cells, corollary discharge neurons can adapt the shape

and position of their receptive fields (b) with respect to the underlying motor layer; and secondly,

feedforward connections (c) can alter their amount of discharge. A solution approach where these

adaptation mechanisms will be implemented is described in Sect. 4.5.
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Chapter 3

Problem Formulation
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This chapter formulates the problem addressed in this work. A brief overview of the considered

artificial system is given first. Subsequently, Sect. 3.2 provides the reader with a dictionary of the

most important symbols used to describe the problem. An in depth formulation of the considered

visual sensorimotor system follows in Sect. 3.3, Sect. 3.4, and Sect. 3.5. In Sect. 3.6 a general form of a

forward sensorimotor map for visual stimulus prediction is introduced. Eventually, Sect. 3.7, identifies

the input to the considered problem, and Sect. 3.8 outlines a general criterion for the organization of

sensorimotor structures. The chapter is concluded by a summary of assumptions and the principle

questions addressed in this work.
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3.1 Overview

An artificial agent is considered consisting of a sensor S, composed of an array of light sensitive

receptors s, and a motor layer M , composed of a number of motor primitives m. The agent lives in

a static environment E and works as a closed sensorimotor loop which is found at each timestep in a

particular state x. It observes the stimulation of its receptor array and takes actions by activating its

motor primitives depending on the recorded stimulus. To choose actions based on recorded stimuli the

agent possesses a given behavioral policy B which associates to any given stimulus an action. Thus,

for a sequence of discrete time steps, the agent records at each time step a stimulus as the activation

of its receptors o and triggers an action by activating its motor primitives via weights a. Each selected

action can induce a change in the observed stimulus which leads to the selection of a new action in the

next time step.

3.2 Nomenclature

Before the considered sensorimotor system is detailed further in the next section, this section provides

an overview of the most important symbols used throughout this work. All symbols are explained

ordered by topic with references to their definition in the text where applicable. This section may be

skipped by the casual reader.

Agent State & Environment

E Environment. A given world in which the agent lives. The world is assumed to be

static (Assumption (1) in Sect. 3.9).

x Agent State. The agent’s current state from an external perspective. A state can

consist e.g. of a global position, orientation or velocity of the agent. A state x fully

describes the agent’s situation within the environment E. The state assumed at the

next timestep is denoted x+ 1. (Sect. 3.5).

X State Space. The agent’s state space containing the set of possible states x ∈ X . A

more in depth description of an external perspective on the considered agent and its

environment is given in Sect. 3.5.
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Sensory System

Φs Sensor Area. A physical area of the agent’s body in which signals are recorded.

This area is ds-dimensional and has a given parametrization in R
ds . It represents the

domain on which visual signals i ∈ I are defined (Sect. 3.3, Embodiment, Fig. 3.2(a)).

ds Dimension of the Sensor Area. The dimensionality of the physical structure of

the sensor recording a signal. While ds is typically considered to equal 2 for a 2-

dimensional surface onto which an image of the environment is projected, other values

for ds could be assumed. For example a 1-dimensional sensor can be imagined, see

e.g. the sea snail Oxygyrus described in Appendix A. Also ds = 3 might be desirable

to model sensors with a number of light sensitive cell layers located on top of each

other, as featured for example by the visual system of jumping spiders, Appendix A

(Sect. 3.3, Embodiment).

i Visual Signal. A function i : Φs → R, which assigns to each location y in Φs

a luminance value. A function i can be thought of as an image projected onto the

visual sensor under consideration, see also Sect. 3.4 and Fig. 3.3(a). For example,

in a camera-type eye, i represents an activation profile of the retinal surface – i.e.

a projected (gray scale) image. Analogously, in a digital camera, i represents an

activation of the image sensor. In this work the range of visual signals i is considered

to be [0, 1] if not otherwise specified (Sect. 3.4).

I Sensor Space. The function space describing a set of possible visual signals i ∈ I.

y Location in the Sensor Space. Denotes a point in the sensor area Φs.

s Receptive Field. A function s : Φs → R describing the profile according to which a

visual receptor integrates input from the sensor area. The function s assigns to each

location y in Φs a weight determining how much a visual signal i(y) contributes to

the value recorded by a visual receptor with receptive field s (Eq. (3.1), Eq. (3.2)).

ns Number of Visual Receptors. A given number of visual receptors, each described

by a receptive field function s (Assumption (6) in Sect. 3.9).

S Sensor Topology. A set of ns visual receptive fields s describing the topology of the

visual sensor. The topology S is the principal variable of interest on the sensor side of
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the sensorimotor system considered in this work. Any instance S = {s1, s2, . . . , sns}
is a valid sensor layout (Eq. (3.1)).

S Sensor Topology Space. A ns-dimensional function space describing a set of pos-

sible sensor topologies S. An element S ∈ S is a set of ns functions, where each

function s : Φs → R describes a visual receptive field.

Ns Resolution of a Discretized Domain for Visual Signals. The number of discrete

elements when considering a discretized domain for visual signals i ∈ I. A dis-

cretization of the domain of visual signals is used to represent otherwise continuous

functions i or s on a computer (Sect. 4.1).

s Discretized Receptive Field. A discretized representation of s. In this representation,

a receptive field s is described as a real-valued vector of size Ns (Sect. 4.1).

S Discretized Sensor Topology. A discretized representation of S. In this representa-

tion, a sensor topology S is described as a real-valued matrix S = [s1
⊤; s2

⊤; . . . ; sns
⊤]

of size ns ×Ns where each row represents a receptive field (Sect. 4.1, Eq. (4.1)).

i Discretized Visual Signal. A discretized representation of i. In this representation, a

visual signal i is described as a real-valued vector of size Ns (Sect. 4.1, Eq. (4.1)).

I Batch of Discretized Visual Signals. A batch of visual signals where each column

of the matrix I describes a visual signal i (Sect. 4.1, Eq. (4.3)).

o Visual Stimulus. A visual stimulus recorded by the visual sensor through a given

sensor topology S. A stimulus o is a real-valued vector of size ns and entries oj ≥ 0

(Sect. 3.3 Internal Perspective, Sect. 3.4, Eq. (3.1)).

O Batch of Visual Stimuli. A batch of visual stimuli where each column of the matrix

O describes a visual stimulus o (Sect. 4.1, Eq. (4.3)).

O Stimulus Space. A set of possible visual stimuli o ∈ O recorded by a visual sensor

through a given sensor topology S (Sect. 3.5).

ι Image Projection Function. Returns the resulting visual signal i in a given state x.

(Sect. 3.5 Fig. 3.4).
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Motor System

Φm Motor Area. A physical area in the agent’s body in which motor signals are encoded.

This area is a topological map of the dm-dimensional domain of the functions q ∈ Q
and has a parametrization in R

dm which is assumed to be given (Sect. 3.3, Embodi-

ment, Fig. 3.2(b)).

dm Dimension of the Motor Area. The dimensionality of the domain of the functions

q ∈ Q, or in other words, the dimensionality of a motor command of the considered

agent. The value of dm equals the number of actuators or degrees of freedom available

to the agent (Sect. 3.3, Embodiment).

q Motor Signal. A function q : Φm → R returning the activation for each location in

the motor area Φm. A function q can be thought of as an activation profile according

to which the motor system of the agent selects a particular action. For a more in depth

description of the action selection process (Sect. 3.4, Eq. (3.3), Fig. 3.3(b)).

Q Motor Space. A function space describing a set of possible motor signals q ∈ Q.

w Location in the Motor Space. Denotes a point in the domain of the functions q ∈ Q.

Because of the given mapping of the domain of the functions q ∈ Q and the motor

area Φm, a location w also denotes a point in Φm.

m Movement Field. A function m : Φm → R describing the influence area of a motor

primitive. In an efferent direction (triggering motor signals), a function m is defined

as a probability density function which defines for each location w in Φm a probability

of activation, see also Eq. (3.3). In an afferent direction (routing corollary discharge),

the same function m assigns to each motor space coordinate w in Φm a weight deter-

mining how much a motor signal q(w) contributes to the value recorded by the motor

primitive (Eq. (3.1), Eq. (3.7)).

nm Number of Motor Primitives. A given number of motor primitives, each described

by a movement field function m (Assumption (7) in Sect. 3.9).

M Motor Topology. A set of nm movement fields m describing the topology of the

motor system. The topology M is the principal variable of interest on the motor side

of the sensorimotor system considered in this work. Any instance M = {m1,m2,

. . . ,mnm} is a valid motor layout (Eq. (3.4)).
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M Motor Topology Space. A nm-dimensional function space describing a set of possi-

ble motor topologies M . An element M ∈ M is a set of nm functions, where each

function m : Φm → R describes a motor movement field.

Nm Resolution of a Discretized Domain for Motor Signals. The number of discrete

elements when considering a discretized domain for motor signals q ∈ Q. A dis-

cretization of the domain of motor signals is used to represent otherwise continuous

functions q or m on a computer (Sect. 4.1).

m Discretized Movement Field. A discretized representation of m. In this representa-

tion, a movement field m is represented as a real-valued vector of size Nm (Sect. 4.1).

M Discretized Motor Topology. A discretized representation of M . In this representat-

tion, a motor topology M is described as a real-valued matrix M = [m1,m2, . . . ,mnm ]

of size Nm×nm where each column represents a movement field (Sect. 4.1, Eq. (4.1)).

q Discretized Motor Signals. A discretized representation of q. In this representation,

a motor signal q is described as a real-valued vector of size Nm (Sect. 4.1, Eq. (4.1)).

Q Batch of Discretized Motor Signals. A batch of motor signals where each column

of the matrix Q describes a motor signal q.

a Motor Activation. A motor command triggered by the agent on top of a given motor

topology M , see also Eq. (3.4). An activation a is a real-valued vector of size nm

and entries ak ≥ 0 describing a weighted activation of all nm movement fields m.

Because a is a weight vector it holds
∑nm

k=1 ak = 1 (Sect. 3.3 Internal Perspective,

Sect. 3.4, Eq. (3.4)).

A Motor Activation Space. A set of possible motor activations a ∈ A issued by an

agent through a motor topology M . Due to the constraint
∑nm

k=1 ak = 1 on motor

activations a, the space A is a nm-simplex (Sect. 3.5).

χ State Transition Function. Returns the resulting state x+1 when taking an action q

in a given state x. (Sect. 3.5, Fig. 3.4).
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Prediction

P General Stimulus Prediction Model. Notation for a general stimulus prediction

model without specified representation.

p General Stimulus Prediction Function. A prediction function to predict future stim-

uli ox+1 from actions q and current stimuli ox. Refers to a prediction function for a

specific action q when written as pq (Sect. 3.6).

P Linear Prediction Operator. A linear prediction operator which predicts a future

stimulus ox+1 from a current stimulus ox for a specific action q (Sect. 4.2).

Behavior

B Behavioral Policy. A given rule how the agent selects motor activations a given

sensory stimuli ox.

C Sensorimotor Experience Sampling Function. A function which samples actions

q and experienced signals i over the lifetime of the agent. The function returns an

unordered set of triplets {(i0, i1, q)} = C(B,E) with visual signals i0 and i1 recorded

before and after taking an action q (Sect. 3.7, Eq. (3.10)).

B Overall Sensorimotor Experience. A characteristic of the agent’s behavior defined

as B = C(B,E). The sensorimotor experience B serves as input to the problem

formulated in this work (Sect. 3.7, Eq. (3.10)).

Special Operators

ρ Dimension Reduction Operator. An operator which defines how fields s or m trans-

form input to a single output value (Sect. 3.4).

ǫ Dimension Expansion Operator. An operator which defines how fields s or m can

project their activation value back to the original input domain (Sect. 3.4).

Sensor–Motor Analogies

When considering a sensorimotor systems described by the above given dictionary, a number of inher-

ent analogies and dualities exist between sensory and motor subsystems. These are briefly summarized

in what follows. The comparison lists for each symbol its counterpart. To emphasize the relationship
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between analogous or dual properties, a slightly more abstract terminology is used. (For a more com-

pact overview, analogies between discretized representations are omitted.)

i, q Signals emitted by (q), or available to (i) the agent. These signals are independent of

a subsequent layer of sensorimotor structures S and M .

I,Q Function spaces describing the set of possible peripheral signals.

ds, dm The dimension of the domain of peripheral signals. On the sensor side, ds denotes the

dimensionality of the physical structure recording the signal i. On the motor side, dm

denotes the degrees of freedom of the considered agent.

y, w A location in the domain of a peripheral signal. A point in a topologically organized

sensor / motor domain.

s,m A description of the morphology of sensorimotor primitives. Both, s and m describe

the influence area of a sensory or motor primitive.

ns, nm The number of sensory and motor primitives. For a well balanced sensorimotor sys-

tem, it can be conjectured that ns and nm should be of the same order of magnitude

for similar dimensions ds and dm.

S,M A description of the morphology of sensorimotor structures. Both, S and M describe

the topology of a sensory or motor structure.

S,M Function spaces describing the set of possible sensorimotor structures.

o,a Signals recorded or emitted through a layer of sensorimotor structures S and M .

These signals are internal to the agent and their effect, or meaning, is defined only

in conjunction with topologies S and M .

O,A Sets of possible signals recorded or emitted by the agent.

ρ, ǫ Operators which define how signals traverse sensorimotor layers. The two operators

are dual in the sense that ρ defines an operation on afferent signals and ǫ defines an

operation on efferent signals.
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3.3 An Adaptive Visual Sensorimotor System

This section discusses in depth the principal aspects and components of the considered sensorimotor

system. In particular, it also provides a perspective on the relationship of sensorimotor structures S,

M and P with respect to biological prototypes. A schematic overview is given in Fig. 3.1.

Embodiment. The agent’s body physically implements sensory and motor systems in areas Φs and

Φm. These areas are assumed to be given and represent the physical space where sensory and motor

signals are recorded and encoded. In a biological system, Φs corresponds for example to the surface

of a retina recording a projection of the environment. Similarly on the motor side, Φm corresponds

to a layer or volume of neural tissue where each location represents a particular motor signal. Hence,

considering a ds-dimensional sensor, the sensor area Φs is a topographic map of Rds and represents the

domain on which visual signals i : Φs → R are defined. Analogously, for an agent with dm degrees

of freedom, the motor area Φm is a topographic map of Rdm and represents the domain on which

motor signals q : Φm → R are defined.1 Commutative diagrams in Fig. 3.2 illustrate the relationships

between a physical area, its parametrization, and a signal encoded on top of it. In the remainder of

this work, however, the morphology of Φs and Φm can be abstracted. Of principal importance is the

existence of visual signals i ∈ I and motor signals q ∈ Q contained in the agent’s sensor space I
and motor space Q. Note that the fact that Φs and Φm are not explicitly considered, does not mean

that their structure has no influence on the organized sensorimotor system, rather, their physical shape

influences how signals i and q are recorded, and these signals in turn influence structures processing i

and q. However, the assumption that Φs and Φm are given, implies that part of the agent’s morphology

is predefined. On the sensor side, this concerns physical structures used to form an image of the

environment on the sensor. For a camera-type eye, this is for example a lens system and the shape

of the retinal surface. On the motor side, actions are encoded in Φm which essentially means it is

assumed that the kinematics of the considered agent is given.

Adaptive Sensorimotor Structures. The agent records visual signals i through a layer of ns light

receptive elements S = [s1, s2, . . . , sns ]. Likewise, it encodes motor signals q using a layer of nm

motor primitves M = [m1,m2, . . . ,mnm ]. These layers define how visual signals i are reduced to

compact visual stimuli o and how the activation of a limited number of motor primitives a composes

1In a physical implementation the motor area Φm is at most a volume. Thus, if dm > 3, a mapping of Rdm to Φm is

required. Such mappings of higher dimensional spaces to volumes or layers of neural tissue is commonly found in biological

systems. For a model see e.g. [124].
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Figure 3.2: Sensor and motor spaces I and Q are defined on physical areas Φs and Φm in the given

agent. Visual signals i ∈ I and motor signals q ∈ Q, are functions defined on domains Φs and Φm.

The given functions φs and φm describe the parametrization of Φs and Φm in R
ds and R

dm . For a

computational approach on how to represent higher dimensional spaces in lower dimensional cortical

maps, see e.g. [124]. Note that a R
dm and Φm are connected in one direction only, since, if dm > 3, a

surjective function results for an agent embodied in 3-dimensions.

the agent’s sensorimotor system, however, this is not a necessary assumption. The considered layers

could be located at an arbitrary depth along the sensorimotor pathway of the processing system.

From an Internal Perspective. From an internal perspective, the agent records with its current

sensor topology S a visual stimulus o which appears to the agent as a display of ns orderless pixels.

Similarly, motor primitives can be thought of as nm strings which the agent can pull by specifying

a motor activation a, and which in consequence can change pixel values in an unknown way. This

means the morphological configuration of the agent is completely unknown to the agent itself and no

information whatsoever is available about the topological organization S of the sensor. Likewise, the

arrangement of the agent’s motor primitives M is unknown, and their effects can only be observed via

changes in the observed stimulus. Hence, initially also the forward sensorimotor map P is unknown

for the given agent. Furthermore, in the sense of a purely reactive sensorimotor loop, the agent has no

information about past events nor does it know about its state within the world. It is assumed, though,

that the agent possesses a given behavioral policy B specifying how motor primitives are activated

based on recorded visual stimuli.

From an External Perspective. From an external perspective, the agent is not stateless but is found

at each time step in a particular state x ∈ X depending on the agent’s configuration and its absolute

location and orientation in its environment. Sect. 3.5 provides the details on a view of the agent’s

sensorimotor system from an external perspective.

Visual Receptors S. A visual receptor is specified by a visual receptive field function which linearly

integrates luminance from the sensory area it covers. This area can be the sensor surface onto which

an image of the environment is projected. In this case the receptive field integrates luminance directly
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at the periphery of the agent. If the visual receptor belongs to a layer further away from the periphery

of the visual system, then the input area of the receptive field function is a previous layer of receptors.

Accordingly, a visual receptor is defined as a real-valued function on a given ds-dimensional domain

where ds typically equals 2. The receptive field functions for all ns visual receptors are described

by the variable S. An example of visual receptors at the very periphery of a biological visual system

are the photoreceptor cells located in the retina of camera-type eyes. A next layer of visual receptors

integrating input from the photoreceptor cell layer is the ganglion cell layer. Other layers of visual

receptors follow in the superior colliculus and the visual cortex. In essence, visual receptive fields can

appear anywhere along the visual pathway, no matter at which hierarchical level, even as distant from

the periphery of the visual system as the receptors in the frontal eye field (FEF) discussed in Sect. 2.

The definition of a visual receptor solely requires an input domain and a receptive field function.

Motor Primitives M . In biological systems, the equivalent of a sensory receptive field is the influ-

ence area of an efferent neuron on the domain of a considered motor space. Analogously to a sensory

receptive field function, this influence area can be described by a function, typically of Gaussian-

like shape, which attributes a “preference” to certain locations in the domain of the motor space, see

e.g. [100, 38, 116, 64]. Classic studies such as the one by Lee et al. used the term movement fields

to address such influence areas of neurons in the motor layers e.g. of the superior colliculus. This

term is adopted in this work. A movement field represents the dual of a visual receptive field. It is

defined as a real-valued function on a dm-dimensional domain of a given motor space which either

covers a subsequent layer of motor primitives or lies at the periphery of the considered agent where it

maps to a particular motor signal. The movement field functions for all motor primitives nm are de-

scribed by the variable M , analogous to the variable S describing visual receptive fields. In biological

systems, recordings in the motor cortex and the motor layers of the superior colliculus have shown

that motor signals are typically encoded as the activation of not only one but a set of neurons. Such

an encoding of motor signals is called population coding. A popular model originally introduced in

[38] proposed that a specific target location in the motor space is related to the activity of a population

of neurons via a weighted linear combination of active locations. This model is commonly referred

to as the Population Vector method, where the population vector denotes the target location of the

resulting motor command. Despite the popularity of this model, a number of questions remain un-

solved [66, 75, 108, 110]. In [108, 109] and [3], alternative models were proposed where movement

fields are modeled as probability distributions which can be combined in a multiplicative way. In this

sense, a population code represents a probability density function over the underlying motor space.
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However, to the best knowledge of the author, no final consensus has been reached so far regarding

how a specific motor command is selected or read out from a population of active neurons. The present

work assumes that for an active motor primitive, a location in the underlying motor space or motor

layer is selected stochastically according to a distribution defined by the movement field function of

the respective motor primitive.

Stimulus Prediction Model P . The stimulus prediction model, or forward sensorimotor map, is a

mechanism which provides a prediction of a future visual stimulus based on the current visual stimulus

and a motor signal. In a biological system such a stimulus prediction mechanism corresponds to

a corollary discharge circuit as reviewed in Chapter 2. The artificial agent considered in this work

implements a corollary discharge circuit via a stimulus prediction model parametrized by the variable

P . This predictive circuit takes input signals from both, sensory and motor areas. In biological

systems, the signals originating in the motor area are elicited by corollary discharge neurons which

record motor activity according to their receptive fields. In this work, it is assumed that corollary

discharge is recorded by the same elements which trigger motor signals, i.e. the motor primitives

described in the previous paragraph. This means, motor primitives work in two directions. In one

direction motor signals are triggered, in the other direction motor activity is recorded and provided

as input to the forward sensorimotor map. In the latter case, the movement field of a motor primitive

linearly integrates motor activity from the underlying motor space or motor layer analogous to the

receptive field function of visual receptors.

3.4 Observation and Action Model

Stimuli. To observe the world, the agent’s sensor works in two steps. First, the given sensor space

I records light projected from the environment. How the environment E is projected onto the sensor

is defined by a function ι : X → I, where each element i ∈ I is a function i : Φs → R returning the

projected intensity at each point of the light receptive area Φs of the sensor. When the agent records

such a visual signal in a particular state x ∈ X it is written as ix. In a second step, the ns receptive

elements spatially integrate projected intensity over the light receptive area of the sensor according to

their receptive field functions sj : Φs → R
+ which integrate intensity ix(y) like

oj(ix) =

∫

sj(y)ix(y)dy, (3.1)
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where oj(ix) is the value observed by the j-th receptor. In this sense the following notation is used

henceforth to refer to visual stimuli and sensor topologies:

ox =











o1(ix)

o2(ix)
...

ons(ix)











, S = {s1, s2, . . . , sns} , sj > 0. (3.2)

Note that it is assumed here that luminance cannot be subtracted, and hence receptive field functions

sj(y) are defined on a positive range R
+.2 The transformation of i through a sensor topology S, is

implemented via an integration operation, which means the operator ρ as listed in Sect. 3.2 takes in

this case the form of an integral. To describe the complete structure of the involved sensor, the two

steps of the described observation model – the projection ι and the sensor topology S – have to be

considered. The first part of the observation model, the transformation ι is considered to be given

and is defined by the physical laws governing the agent’s world and the shape of its sensor area Φs as

described in Sect. 3.3.

Actions. On the motor side, the equivalent to the sensor space is the action space Q spanned by the

given dm degrees of freedom of the agent. Similar to receptive field functions, each motor primitive

is defined by a movement field function mk. Instead of integrating input like receptive fields sj , the

function mk : Φm → R
+ defines a probability for choosing a particular output location in the action

space, or a particular primitive in an underlying layer of motor primitives. Dual to the recording of

stimuli, the execution of an action works in two steps. First, the agent specifies an activation a for all

nm motor primitives composing a probability density function according to which a particular motor

signal q : Φm → R is generated like

q = ǫ

(
∑

k

akmk

)

, (3.3)

where the operator ǫ defines how an action q is sampled from a probability density
∑

k akmk. The

way the operator ǫ is implemented is related to the discussion in the paragraph on motor primitives in

Sect. 3.3. One possibility which is later adopted, is that ǫ samples a location according to the given

probability density function and a motor signal q is defined as the Dirac delta function at that location

2Although, in biological systems, more complex receptive fields are common too, this work does consider positive

receptive field functions only.
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in the sense of a spike of activity. In a second step, the agent executes the motor signal denoted by q

which changes the agent’s state according to the state transition function χ. Similarly to the function

image projection function ι on the sensor side, χ depends on the physical laws governing the agent’s

world, the agent’s kinematics and its current state x. The notation used to describe activation of motor

primitives and the topology of the motor system is

a =











a1

a2
...

anm











, M = {m1,m2, . . . ,mnm} , mk > 0 (3.4)

Like sj , the field functions mk are defined on a positive range R
+. Being probability distributions,

this is a natural constraint.

Prediction. Regarding a stimulus prediction operator P for the described observation and action

model, it is assumed in this work that q changes ix in a predictable way to fq(ix), where f is a functor

modifying ix. The stimulus observed by the agent after taking an action q is therefore

oj (fq(ix)) =

∫

sj(y)fq(ix)(y) dy, ox+1 =











o1(ix+1)

o2(ix+1)
...

ons(ix+1)











, (3.5)

where for convenience the definition ix+1 = fq(ix) is introduced. The request for a predictable change

in I poses a constraint on the action model. This constraint and how it relates to an agent acting in

a 3-dimensional world is discussed in Sect. 3.5. The action model in Eq.3.5 also imposes that f be

linear. However, since f is actually an operator acting from a function space to a function space, this

is not as limiting as it might seem at first glance. Consider the example f(i)(y) = fs(y)i(fp(y))

where fs(y) : R2 → R and fp(y) : R2 → R
2 are any linear or nonlinear functions. The first one

(fs), modifies for example the intensity of the given image i, and the second one (fp), warps i in an

arbitrary way. The corresponding operator f is linear as can be quickly checked for all y:

(αi1 + βi2)(y) = fs(y)(αi1 + βi2)(fp(y))

= αfs(y) i1(fp(y)) + βfs(y) i2(fp(y))
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Compare also Fig. 3.3. With Eq. (3.6), the complete corollary discharge signal can be written as

ã =











ã1(q)

ã2(q)
...

ãnm(q)











. (3.7)

3.5 From an External Perspective

In general, an action q induces a change in state x represented by the state transition function χq :

X → X . In Sect. 3.4 it is stated that functions χ must induce a predictable change of ix. This poses

a constraint on χ, requiring that it induces a transformation fq : I → I in sensor space. Thus, the

projection on the sensor surface after taking an action fq must be perfectly reconstructable solely from

the previous projection. If the set of actions is constrained to have this property, then for all agent

purposes an action can be fully described as the function fq instead of considering the full agent state

model acted on by functions χq. This requirement is too strict to satisfy exactly for most general

applications. However, one particular exception arising in many biological systems are eye movement

actions in camera-type eyes. In this case the surface onto which the world is projected is a sphere and

the eye movement rotates the projection on the sphere. A counter-example for actions q which do not

induce a χq with a camera-type eye are actions which lead to motion parallax. In this case the resulting

projection ix+1 in I contains information (from previously hidden locations in the environment) which

cannot be predicted from ix. Also notice that the existence of an action χq does not guarantee that the

observed stimuli o ∈ O are predictable in the observation space O. For this to happen, the action must

be such that the integrating receptors are transformed nicely one to another before and after the action

is taken, corresponding to a permutation of the observed stimulus. This is of particular importance in

this work as the sensor topology S is considered a variable and for a given action q, predictability in

O is dependent on S, or vice versa. The relationships between X , I, and O are depicted in Fig. 3.4.

3.6 Stimulus Prediction Models

A forward sensorimotor map capable of predicting a future visual stimulus from a current stimulus

and a selected motor signal corresponds to a prediction model P . Following the central idea outlined

in Sect. 1.4, the characteristics of such a stimulus prediction model will be of central concern for the

organization of sensorimotor structures S and M . This section sketches the basic form of a suitable
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Figure 3.4: Relationships and constraints between the state space X , the sensor space I, and the

space of sensor stimuli O for a given action q. Functions χq, fq and pq denote action transitions with

χq defined by q, the agent’s body and the environment. The function ι describes how a visual signal

i ∈ I is recorded as a projection of the environment depending on the agent’s state x ∈ X . This

transformation is implicitly given by the agent’s body. The function o defines how a stimulus o ∈ O is

recorded from a visual signal i ∈ I via a sensor topology S. This transformation is defined in Eq. 3.1

stimulus prediction model.

In general, given an action functor pq and a stimulus ox, the stimulus ox+1 can be approximated

with functions pq : Rns → R
ns . Applying pq to the initially observed sensor values ox, the sensor

values obtained after applying the action q can be approximated like:

ox+1 ≈ pq (ox) . (3.8)

Considering a motor signal q a parameter of p, a functor for all possible actions q can be written as

os+1 ≈ p (q,ox) . (3.9)

With respect to the questions formulated later in Sect. 3.10, the following can be anticipated. If

it is requested that the prediction operator p does work well specifically for a sensor topology S and

a motor layout M , then it can be expected that the complexity of p depends on S and M , where

complexity refers to the number of parameters required to describe the operator.

3.7 Input to the Problem

The input to the formulated problem is solely related to sensorimotor activity experienced by the

considered agent. This activity is generated by the agent’s behavioral policy which at each time step

t selects an action q depending on the currently experienced stimulus. The behavioral policy B is

assumed to be part of the given system and can be thought of as a simple brain of the agent, compare

also Fig. 3.1. Thus, for an agent following a policy B, each time step a sensorimotor experience et =

(i0, i1, q) results, where i0 and i1 denote afferent signals recorded before and after the efferent signal

q is elicited. Considering a function C which can sample sensorimotor experiences et = Ct(B,E), a
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characteristic of the sensorimotor activity of an agent living in an environment E can be obtained as a

set of triplets {(i0, i1, q)} like

B = Clifetime(B,E). (3.10)

This set of sensorimotor experiences B is henceforth referred to as the sensorimotor experience of the

agent. In line with observations discussed in Sect. 1.3, an important hypothesis of this work is that

the characteristic of an agent’s sensorimotor interaction described by B is the principal driving force

for the mutual development of sensorimotor structures S and M . Thus, B represents the input to the

problem considered in this work.

3.8 A General Cost Function

A common line of thinking in biology proposes that evolutionary adaptation implicitly optimizes some

underlying criterion which is related to the fitness of an organism, see also Sect. 1.1 and in particu-

lar [83]. From an abstract perspective, it can be argued that similarly any autonomous and adaptive

artificial system should optimize a certain overall cost function in order to temporally maximize its

resource-efficiency, task completion rate, or in general its functional subsistence. It is therefore as-

sumed that the agent considered in this work develops so as to optimize an underlying cost func-

tion cagent. Clearly, such a function cagent strongly depends on the agent’s body and behavior, and

with it on the structure of its sensorimotor apparatus (S,M). Here, it is proposed that a develop-

mental process for the considered artificial agent should implicitly strive to optimize a loosely defined

optimization problem

min
(S,M,B)

cagent(S,M,B,E), (3.11)

which can always be separated into

min
B

[

min
(S,M)

cagent(S,M ;B,E)

]

. (3.12)

Note that in this form, the full problem can be locally solved by iteratively optimizing first variables S

and M while keeping B constant and then optimizing B while keeping S and M constant. When con-

sidering a given and fixed behavior B, sensorimotor structures (S,M) can be optimized independently

by addressing the inner problem in (3.12), compare also Fig. 3.5.

With the hypothesis that the agent’s behavior B and environment E enter the problem as senso-

rimotor experience B as defined in Sect. 3.7, the inner optimization problem given in (3.12) can be
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S,M

B

Figure 3.5: An abstract illustration of an optimization for sensorimotor structures (S,M) according to

a hypothetical cost function csm as proposed in Eq. (3.13). For a fixed behavior and environment re-

flected by B, the optimal sensorimotor structure (S,M) is found along the red line. The plot illustrates

dimensions of (S,M) collapsed on the x-axis, and dimensions of B collapsed on the y-axis.

rewritten as

(S∗,M∗) = argmin(S,M) [csm (S,M ;B)]

s.t. B = C(B,E)

. (3.13)

In this equation the predictor operator P is implicitly present because the sensorimotor structure

(S, M ) automatically induces a forward sensorimotor map. Thus, concerning the further elabora-

tion of Eq. (3.13), it is clear that in order to incorporate the ideas outlined in Chapter 1, the cost

function csm must be related to the accuracy and simplicity of the induced prediction model P .

3.9 Assumptions

In summary, the problem considers an artificial agent which complies with the following assumptions:

1. The agent lives in a given, static world.

2. The agent can record visual signals i : Φs → R, where Φs is a given ds-dimensional input domain

defined by the physical structure of the agent’s sensor.

3. The agent can trigger motor signals q : Φm → R, where Φm is a given dm-dimensional input

domain defined by the kinematics of the agent and its degrees of freedom.

4. The agent executes a given and fixed action selection policy B.
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5. The agent executes actions which induce predictable transformations of visual signals i. This

means future visual signals i1 are perfectly predictable solely from previous signals i0 and exe-

cuted actions q, irrespectively of the agent’s state x.

6. The sensor topology S of the agent consists of a fixed number of ns light sensitive receptors.

7. The motor topology M of the agent consists of a fixed number of nm motor primtives.

8. The agent’s sensory and motor primitives work according to the specification given in Sect. 3.4.

3.10 Questions Addressed

For a sensorimotor system as described in this chapter, a given sensorimotor structure (S,M) im-

plicitly induces a forward sensorimotor map P . As outlined in Sect. 1.4, this work proposes that the

quality of the considered sensorimotor system is related to the accuracy and simplicity of P . These

requirements are reflected by a cost function csm introduced in Sect. 3.8. Together with the remaining

definitions specified in this chapter, the principal questions addressed in this work are:

1. Given a sensor topology S and sensorimotor experiences B, what motor layout M optimizes csm?

2. Given a motor layout M and sensorimotor experiences B, what sensor topology S optimizes csm?

3. Given the sensorimotor experiences B, does a process which optimizes 1.) and 2.) concurrently

converge? What sensorimotor topology (S,M) results?
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Chapter 4

Solution
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This chapter proposes a solution to the principal questions posed in Sect. 3.10. The first section

introduces a discretization of the addressed problem such as to represent it on a computer. In Sect. 4.2

a concrete model for visual stimulus prediction is instantiated and Sect. 4.3 reviews a number of

elements which hold promise with respect to the formulation of a cost function csm for the evolution

of sensor and motor topologies S and M . Eventually, Sect. 4.5– 4.7 follow the approach formulated

in Sect. 1.4, addressing questions (1), (2) and (3) from Sect. 3.10 in Sections 4.5, 4.6, and 4.7. In

Sect. 4.8 the different characteristics of the proposed cost functions are discussed, and in Sect. 4.9

methods to solve the resulting optimization problems are described.
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4.1 Discretization

In order to represent the problem described in Chapter 3 on a computer, continuous signals and func-

tions have to be discretized. This section describes the chosen discretizations.

Grid Discretization. A general discretization of functions defined on continuous domains Φs and

Φm is obtained by discretizing sensor and motor areas Φs and Φm in a grid-like manner. Thus, defining

the resolution of discretized sensor and motor areas as Ns and Nm, visual and motor signals i and q

can be represented as a real-valued vectors i and q of size Ns and Nm respectively. To represent

motor signals q which are of the form of a Dirac delta function, a vector with a single non-zero entry

denoting the location of the peak of the function is used. To represent receptive fields and movement

fields in a discretized form, functions s and m are discretized accordingly as real-valued vectors s

and m. Sensor and motor topologies S and M , as introduced in Eq. (3.2) and Eq. (3.4), can thus be

represented as matrices S and M of size Ns × ns, respectively nm × Nm.1 With this notation, the

observation of stimuli o and triggered motor signals q as described in Eq. (3.1) and Eq. (3.3) can be

written as

ox = S · ix, q = ǫ (M · a) , (4.1)

where S describes with each row a receptive field, and M describes with each column a movement

field. The estimation of an activation ã having generated q as described by Eq. (3.7) becomes now

ã = M⊤ · q. (4.2)

When batches of signals ix are recorded, signals ix and stimuli ox can be arranged in columns of

matrices O and I, which allows for the following notation when computing visual stimuli o from

discretized visual signals ix:

O = S · I. (4.3)

Gaussian Model. A simpler way to discretize functions describing the sensor and motor topologies

S and M , is to use a particular model to describe visual receptive fields or motor movement fields s

and m. A well accepted approach is to use multivariate Gaussians to describe receptive field functions,

1The format of M was chosen to be transposed with respect to the format of S. In this way, a natural application of S

and M to i and q results in Eq. (4.1).
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both for biological plausibility as well as for their amenable mathematical properties [92]. This ap-

proach was adopted to represent M in an approach to organize the motor layer of a corollary discharge

circuit as described in the first part of Sect. 4.5. With a Gaussian model, a motor movement field mk

can be represented via two variables µk and Σk describing mk like

mk(w) = e−
1

2
(w−µk)

⊤Σ−1

k
(w−µk), (4.4)

where µk is a real-valued vector of length dm specifying the location of mk on Φm, and the covariance

matrix Σk of size dm × dm describes the shape and size of the receptive field.

A representation for the forward sensorimotor map p is developed in the next section.

4.2 Stimulus Prediction

In Sect. 3.6 in the previous chapter, a forward sensorimotor map for the considered visual system

was introduced as a visual stimulus predictor P , written pq(o) for a specific action q and stimuli o,

or p(q,o) for any action q and stimuli o. It was anticipated that the complexity of such a prediction

operator is related to the sensorimotor structure described by S and M . Consequently, if it is desired

to organize S and M , such as to induce a simpler sensorimotor map, it is in the operator p where this

request has to be accommodated. This section first proposes a concrete form for p, and subsequently

outlines how to infer or enforce simplicity in p.

Regarding the formulation of the prediction operator, the following is observed. Considering the

static environment E and a spatially rigid sensor layout S, the class of functions from which a stimulus

predictor p should be chosen can be restricted. In Appendix B.3, an argument is provided which

motivates a reduction of these functions to the linear function set. The argument relies on assumption

(5) listed in Sect. 3.9, which requires that the actions executed by the agent lead to perfectly predictable

changes of a visual signal i on the sensor area Φs. Taking into account linear prediction functions,

Eq. (3.9) can be rewritten as

ox+1 ≈ P(q)ox, (4.5)

where P(q) is the matrix representation of a linear prediction function p(q).

To incorporate the tendency towards simpler prediction operators, it is now left to decide on the

complexity of the prediction model. A common and natural approach to select simpler models is to

evaluate the number of parameters required by the model. For a linear predictor, this requirement can
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be translated by forcing the predictor to be sparse. In this sense, equation Eq. 4.5 is revised as:

ox+1 ≈ P(q)ox, P(q) sparse. (4.6)

This equation is still ill defined since the notion of sparsity is vague and nothing has been said about the

prediction error. It is the author’s belief that these cannot be canonically defined, so several alternatives

can be proposed as a means of mixing or balancing the importance of sparsity and allowed error:

1. Fix sparsity and minimize some norm of the prediction error. For example one can say that for

each location q in the function P(q), a matrix is found where each row of the matrix Pq must

have a single non-zero entry (sparsity) and under this set the norm error is minimized. Other

sparsity sets can be chosen such as Pq having at most k non-zero entries or that Pq must be

permutation matrices.

2. Minimize the prediction error and infer sparsity. A strategy which first obtains the minimum

norm error solution for every location q in P(q) with a rule which grounds entries of this solution

to zero and subsequently deduces sparsity.

3. Simultaneously minimize both prediction error and sparsity. For example the well known

LASSO algorithm allows for a single parameter to weight the importance of sparsity versus

norm error [127].

4. Empirically, it is found in this work that, requesting P ≥ 0 is often sufficient to drive P towards

a sparse solution. This conclusion is motivated by results presented in Sect. 5.3 and Sect. 5.4.

Any of these methods will obtain prediction matrices Pq as well as associated prediction errors Eq

from several samples of the sensor values before and after executing a specific action q from randomly

chosen states x. In Sect. 5.2 an empirical study is presented which investigates the sparsity of pre-

diction operators resulting from the coupling of different sensor topologies and motor actions q. Of

course, solutions Pq for particular locations q do not define a function P(q) for the entire motor space.

An approach how P(q) can be approximated over the entire motor space is part of Sect. 4.5.

4.3 Elements of the Cost Function

When addressing the questions posed in Sect. 3.10, the principal difficulty is to find a formulation for

a cost function csm which reflects the properties sketched in Sect. 1.4 and detailed in Sect. 4.2. Such
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a cost function must not only be sensitive to the accuracy of a sensorimotor map induced between S

and M , but also to the map’s simplicity or sparsity. How to assess or induce a sparse and at the same

time accurate prediction model has been previously outlined in Sect 4.2. This section first describes

two possible hierarchical levels along the sensorimotor pathway on which a costfunction csm can be

implemented. Subsequently, it is shown that a particular and recurrently appearing correlation term is

invariant on both levels and might play an important role with respect to a measure for sensorimotor

structures adapted to a specific temporal behavior.

Considering the sensorimotor pathway depicted in Fig. 3.1, the accuracy and sparsity of the linear

predictor P can be evaluated at two different levels. Either a comparison between predicted signals

and effectively experienced signals is done at a level of visual stimuli o and motor activations a, or

the comparison is done at the level of visual and motor signals i and q. The level of stimuli o and

activations a encodes a more compact representation further away from the agent’s periphery. It is

referred to as the higher-level sensorimotor layer. The level of signals i and q records the raw signals

closer to the agent’s periphery. It is referred to as the lower-level sensorimotor layer.

Higher-Level Sensorimotor Layer. At the level of stimuli o and motor activations a, the quality of

a linear prediction operator Pq can be directly assessed via

Eq =
∑

q

∥
∥
∥P

q
S,MSi

q
0 − Si

q
1

∥
∥
∥

2
. (4.7)

where, with the notation introduced in Sect. 4.1, i0 and i1 refer to visual signals recorded before and

after taking action q. Importantly, this measure can be written using only stimuli oq = Siq. Signals iq

do not appear isolated. The notation P
q
S,M indicates that the linear predictor P depends on the current

sensorimotor structure S and M, and also on the executed action q.

Lower-Level Sensorimotor Layer. Different from the error measure in Eq. (4.7) which operates on

stimuli oq = Siq in observation space O, the comparison of predicted and experienced signals iq at

the sensorimotor level closer to the agent’s periphery has to be done in sensor space I. To enable such

a comparison of stimuli Si at the lower-level sensorimotor layer of signals i, a reconstruction S+(Si)

of an original signal i can be used. Recalling that an orthogonal projection from the domain of signals

i ∈ I onto the subspace S is achieved by the operator S⊤
(
SS⊤

)−1
S, an optimal implementation for

S+ is therefore S⊤
(
SS⊤

)−1
. However, for situations where the inner product SS⊤ is expected to

be close to the identity, this reconstruction can be approximated by the adjoint operator, which in this
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case corresponds to S⊤. In what follows, it is motivated that in the context of the tackled problem,

the solutions for S can be expected to allow for the use of the adjoint operator for the purpose of

signal reconstruction. First, note that sensor topologies with positive, non-overlapping receptive fields

s naturally fulfill the constraint SS⊤ = D, where D is a diagonal matrix. To assume that SS⊤ stays

close to D appears plausible considering the following. On the one hand, receptive fields obey s ≥ 0 as

stated in Eq. 3.2, and on the other hand, although a constraint for non-overlapping visual fields has not

been introduced, an excessive overlap of receptive fields would decrease the accuracy of reconstructed

signals and can therefore be expected to appear only to a very limited extent. In a second argument,

it remains to be explained why the adjoint operator S⊤ can be applied in situations where SS⊤ ≈ D

as opposed to SS⊤ ≈ I. To this end, it is important to note that the reconstruction operator directly

interacts with the prediction operator as can be seen when writing the accuracy of a predictor at the

sensorimotor level closer to the periphery as

Eq =
∑

q

∥
∥
∥S

⊤P
q
S,MSi

q
0 − i

q
1

∥
∥
∥

2
. (4.8)

In this formulation the predictor P
q
S,M can absorb scaling factors contained in the diagonal of

(
SS⊤

)−1
.

Furthermore, matrix inversion is avoided, which – from a biological perspective – is appealing since

matrix inversion is an operation unlikely to be implemented by neural tissue. Different from Eq. (4.7),

visual signals i appear here explicitly as experienced future sensor signals i1, suggesting that the agent

requires access to these signals. However, in the next paragraph it is shown that an optimization

problem with a cost function according to Eq. (4.8) does not require access to signals i explicitly.

The viability of using Eq. (4.8) in the context of an optimization problem will be verified in

Chap. 5. At this point it can be anticipated that with respect to the design of a cost function csm,

Eq. (4.8) differs from Eq. (4.7) in that it does not only include a request for an accurate prediction of

visual stimuli Si, but it is also sensible to the error between available signals i and stimuli Si recorded

by the agent. Note that, when working with Eq. (4.8), the structure of S is exposed, meaning the agent

has to know about S. Interestingly though, to optimize S and M the agent does not require access to

signals i, even though i1 appears explicitly in Eq. (4.8). Why becomes clear in the next paragraph.

Related to Spatiotemporal Correlation. In this paragraph, the structure of Eq. (4.7) and Eq. (4.8) is

compared. By expanding both formulations, it is found that an intrinsic term related to spatiotemporal

correlation of visual stimuli is invariant at both of the addressed sensorimotor levels.

Considering in a first step the error measure at the higher-level sensorimotor layer, the summand
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on the right side of Eq. (4.7) can be expanded into three terms as

tr

{(

P
q
S,MSi

q
0 − Si

q
1

)⊤ (

P
q
S,MSi

q
0 − Si

q
1

)}

=tr
{

i
q
0
⊤
S⊤P

q
S,M

⊤
P

q
S,MSi

q
0

}

− 2 tr
{

i
q
0
⊤
S⊤P

q
S,M

⊤
Si

q
1

}

+ tr
{

i
q
1
⊤
S⊤Si

q
1

}

=tr

{(

P
q
S,MSi

q
0

)⊤ (

P
q
S,MSi

q
0

)}

︸ ︷︷ ︸

Term 1: spatial correlation

(predicted stimuli)

−2 tr

{(

P
q
S,MSi

q
0

)⊤

(Siq1)

}

︸ ︷︷ ︸

Term 2: spatiotemporal correlation

(predicted stimuli, future stimuli)

+ tr
{

(Siq1)
⊤
(Siq1)

}

︸ ︷︷ ︸

Term 3: spatial correlation

(future stimuli)

. (4.9)

In this form it can be seen that each term relates to a correlation between different pairs of stimuli.

Searching for a term which relates to the agent’s temporal behavior, it is found that a temporal re-

lationship is established by the second term which correlates a prediction of future stimuli P
q
S,MSi0

with actually experienced future stimuli Si1. Intuitively it is clear, that this term, as opposed to the

first and the third term, which merely correlate either predicted or future stimuli among themselves,

is an important component in Eq. (4.7) and addresses the relationship of the spatial structure of the

considered sensorimotor system with its behavioral characteristics.

Expanding Eq. (4.8) in the same manner as done above for Eq. (4.7), it is found that the second

term remains identical:

tr

{(

S⊤P
q
S,MSi

q
0 − i

q
1

)⊤ (

S⊤P
q
S,MSi

q
0 − i

q
1

)}

=tr
{

i
q
0
⊤
S⊤P

q
S,M

⊤
SS⊤P

q
S,MSi

q
0

}

− 2 tr
{

i
q
0
⊤
S⊤P

q
S,M

⊤
Si

q
1

}

+ tr
{

i
q
1
⊤
i
q
1

}

=tr

{(

S⊤P
q
S,MSi

q
0

)⊤ (

S⊤P
q
S,MSi

q
0

)}

︸ ︷︷ ︸

Term 1: spatial correlation

(predicted signals)

−2 tr

{(

P
q
S,MSi

q
0

)⊤

(Siq1)

}

︸ ︷︷ ︸

Term 2: spatiotemporal correlation

(predicted stimuli, future stimuli)

+ tr
{

i
q
1
⊤
i
q
1

}

︸ ︷︷ ︸

Term 3: spatial correlation

(future signals)

.

(4.10)

The first and third term spatially correlate predicted signals respectively future stimuli at the close

peripheral level. The expanded notation also shows that peripheral signals i enter in the first and

second term always as visual stimuli Si seen through the sensor topology S. Explicitly, visual signals

i appear only in the third term which is independent of S and M. For an optimization problem

concerned with S and M, this means the third term is constant and visual signals i need not to be

available to an agent dealing with such an optimization. Note that since Eq. (4.7) and Eq. (4.8) are

formulated as the sum of samples generated by motor signals q, the same independence from q cannot

be assumed. However, access to q can be assumed to be plausible via proprioceptive feedback.
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The conclusion drawn in this paragraph is that correlation between predicted stimuli and actual

future stimuli appears naturally in Eq. (4.7) and Eq. (4.8) as

(

P
q
S,MSi

q
0

)⊤

Si
q
1, (4.11)

and hence, is a component of principal interest with respect to a cost function addressing the problem

formulated in Chap. 3.

4.4 A Measure of Visual Sensorimotor Coupling

Before effectively dealing with the optimization of sensorimotor topologies S and M in Sect. 4.5 and

Sect. 4.6, it is first investigated in this section how a given sensor topology S affects the sparsity of

predictors associated to motor actions q. This work has been published in [102].

To quantify the relationship between an action q and a sensor topology S in terms of sparse pre-

diction, a performance score for the given sensor topology is introduced. For a given action q, this

score is a function τ q(Pq, Eq) depending on the prediction matrix Pq and the prediction error Eq. A

given sensor topology S is considered to go well with a given action q if it induces a high performance

score. The choice of this performance score is usually tied with the choice of the sparsity / prediction

optimization algorithm, see also the different possibilities outlined in 4.2.

For the experiments described next, approach (2) from Sect. 4.2 was used, where first the predic-

tion error is minimized while entries of Pq are constrained to be greater or equal to zero. To provide

the performance score, the Gini index is employed [51]. This index is a well known sparsity measure

which complies with a number of desirable properties. Among them the following three: i) changes

in smaller coefficients affect the measure more than changes in larger coefficients, ii) the measure is

independent of the number of coefficients considered, and iii) the measure is 0 for the least sparse case

and 1 for the most sparse case. Thus, in short:

Pq = argmin
∑

a

∥
∥Pq oax − oax+1

∥
∥2

s.t. Pq ≥ 0

(4.12)

τ q(Pq) = Gini (Pq) , (4.13)

where Pq is defined as an average over a number of samples a for an action q. This combination

was found to provide good invariance to sampling noise and overall results consistent with what was
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to be expected. Note that as privileged observers we, the reader and the authors, have access to the

underlying sensor topology hence can judge what is to be expected, but this information is not given

to the algorithm. Also, the constraint Pq ≥ 0 feels natural in a biological context and the chosen

approach does not require any further parameter as it is the case when fixing sparsity (number of non-

zero entries in Pq), or when implementing a regularized version of the least squares solution such as

the LASSO method (regularization parameter).

Results for the score τ q are presented in Sect. 5.2. In Fig. 5.6 also a comparison of measures τ q

versus prediction errors Eq is presented. Interestingly, the obtained results indicate that for positive

linear predictors Pq ≥ 0, the local maxima of the sparsity measure τ coincide with the local minima

of the mean squared error E. These empirical results are a hint that the request for sparse predictors

Pq ≥ 0 can be simply addressed through a minimization of Eq.

4.5 Organizing Motor Topologies

This section relates to question (1) in Sect. 3.10 for which a given sensor topology S is considered and

a layout of motor primitives optimal according to a (still to be defined) cost function is sought. The

solution is organized in two parts. First, the organization of motor topologies for a given sensor topol-

ogy S is addressed with motor movement fields following the Gaussian model described in Sect. 4.1

and a cost function in the sense of Eq. (4.7) at the higher-level sensorimotor layer. This work has been

published in [104]. In a second part, the constraint that S must be composed of multivariate Gaussian

movement fields is relaxed and the more general grid discretization introduced in Sect. 4.1 is used

in conjunction with a cost function according to Eq. (4.8) at the lower-level sensorimotor layer, see

also [103].

Higher-Level Sensorimotor Layer. This approach is a direct implementation of the model derived

in Chap. 2 shown in Fig. 2.3. In this model, motor movement fields correspond to corollary discharge

neurons labeled (c), and work according to the description given in Chap. 3, illustrated in Fig. 3.3(c).

The cost function follows Eq. (4.7) and aims at reducing the prediction error directly at the level of

recorded visual stimuli o by adapting the weights of feed forward connections (b) and the layout and

shape of corollary discharge neurons (c) as depicted in Fig. 2.3.

Starting with the graphical model introduced in Chap. 2 and the assumptions from Chap. 3, a

prediction model can directly be written as described next: feed forward connections shown in gray in

Fig. 2.3 are interpreted as manipulators controlling the discharge rate of receptor-receptor connections
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(yellow); and when grouping the connections of a single corollary discharge neuron (CDN) together,

the feed forward connection weights of the j-th CDN can be written in the form of the previously

introduced linear predictor Pk. Thus, with respect to the model shown in Fig. 2.3, the entry in Pk(j, l)

specifies how much the observation oj,x of receptor j contributes to the predicted observation ol,x+1

of receptor l. Combining contributions of different corollary discharge neurons according to the CDN

layer (c) of Fig. 2.3, the eventually predicted sensor stimulus is composed as a linear combination

Si
q
1 =

(
nm∑

k

mk(q)Pk

)

︸ ︷︷ ︸

Pq

Si
q
0, (4.14)

where mk(q) denotes the activation of a particular CDN depending on the action q coded by the un-

derlying layer. Hence, matrices Pk and their activation functions mk together define the prediction

function P(q) defined over the entire action space. Because the function mk models the receptive

field of a CDN k on the underlying population of motor neurons, the previous assumption is followed

and each mk is implemented as a multivariate Gaussian according to Eq. (4.4). Measurements mo-

tivating a Gaussian model for movement fields in the SC-MD-FEF pathway can be found in [118].

Results comparing the approximated Gaussian model to the actual required shape for movement fields

according to the model discussed here are presented in Sect. 5.3 and illustrated in Fig. 5.9.

In conclusion, the free parameters of the model introduced in this approach are Pk, Σk, and µk,

compare also Eq. (4.4). These parameters define the plasticity of the modeled corollary discharge

circuit. Pk defines a prediction operator for each movement field or corollary discharge neuron mk,

Σk and µk code for topological plasticity in the CDN layer allowing for changes in position and shape

of each movement field mk with respect to the underlying motor space Q.

To learn the free parameters Pk, Σk, and µk, the agent collects a set of sensorimotor experiences

{(i0, i1,q)} as described in Sect. 3.7. The adaptation of movement fields mk is then chosen to follow

a minimization on the prediction error like

(Σ∗,µ∗,P∗) = argmin(Σ,µ,P)

∑

q ‖(
∑nm

k mk (q
q)Pk) Si

q
0 − Si

q
1‖

2

s.t. Pk ≥ 0

(4.15)

As in Eq. (4.7), signals i do not appear isolated in this formulation, but are only “seen through” the

sensor topology S. How a solution can be found to this optimization problem is described in Sect. 4.9.
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Lower-Level Sensorimotor Layer. In a second approach, an implementation of a cost function

based on Eq. (4.8) is used to find a solution for a motor topology represented by the matrix M. In

this approach, movement fields are modelled according to the more general model where fields m are

discretized in a grid-like manner as described in the first part of Sect. 4.1. The reason why a similar

implementation using a cost function based on Eq. (4.7) is set aside is explained in Sect. 4.7. The

approach presented here is an evolution of the previous one, in the sense that it will later allow for an

extension which addresses question (3) posed in Sect. 3.10.

Like in the previous approach, a predictor Pq for a particular action q is considered to be a linear

combination of predictors Pk as described by Eq. (4.14). Different from the previous approach, how-

ever, the constraint that movement fields mk must follow a Gaussian model as described in Eq. (4.4)

is relaxed. Movement fields are now discretized in a general grid-like manner as described in the

first part of Sect. 4.1. With this discretization of a motor topology M , where location and shape of

movement fields mk are encoded in columns mk of a matrix M, Eq. (4.14) becomes

Si
q
1 =

(
nm∑

k

(

mk
⊤q
)

Pk

)

︸ ︷︷ ︸

Pq

Si
q
0, (4.16)

Then, using Eq. (4.8) as the basic structure to formulate an optimization problem, a cost function for

the organization of M can be written as

(M∗,P∗) = argmin(M,P)

∑

q

∥
∥S⊤

(∑nm

k

(
mk

⊤qq
)
Pk

)
Si

q
0 − i

q
1

∥
∥2

s.t. M ≥ 0, Pk ≥ 0

. (4.17)

The savvy reader will notice that the apparent ambiguity which arises by the interaction between

Pk and M nearly disappears with the positivity constraints. In Sect. 4.9, two different methods are

described on how to address this problem.

4.6 Organizing Sensor Topologies

This section relates to question (2) in Sect. 3.10 and is organized in two parts, analogously to the

previous section. First, the organization of sensor topologies S for a given motor topology M is

addressed using a cost function at the higher-level sensorimotor layer as introduced in Eq. (4.7). This

part focuses in particular on a cost function based on correlation as introduced in Eq. (4.11). Results

have been published in [105]. In a second part, the organization of sensor topologies S is addressed
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(a) Coherent Receptive Fields (b) Scattered Receptive Fields

Figure 4.1: Spatially coherent and scattered receptive fields. The illustration shows two different

example sensor layout. Each layout is composed of three receptive fields with receptive field functions

non-zero at six discrete spatial locations on the sensor area. Both sensor topologies are perfectly

predictable under certain rotational actions but are composed (a) of spatially coherent receptive fields,

and (b) of spatially scattered receptive fields. While both layouts comply with the request for self-

similarity under certain transformations, layout (b) is undesirable as a visual sensor since it is unable

to extract spatial details from a visual signal projected onto the sensor area.

at the lower-level sensorimotor layer via a cost function similar to the one proposed in Eq. 4.17 in the

previous section. This approach has been described in [103].

In Sect. 1.3, it was argued that an underlying principle for the organization of sensory structures is

related to self-similarity. In particular, the last part of Sect. 1.3 reviewed work described in [21] where

a measure for self-similarity was used to organize an abstract sensor layout based on experienced sen-

sor displacements. Here, this potential principle for the organization of sensor topologies is resumed

and incorporated into an optimization problem as advertised in step (3) of the approach described in

Sect. 1.4. In this sense, a cost function has to be found which induces the following two principal

properties in sensor topologies:

1. Spatially coherent visual receptive fields develop. For an illustration of coherent receptive fields

versus scattered receptive fields, see Fig. 4.1

2. The topological layout of visual receptive fields reflects stimulus translations induced by the

agent’s behavior according to the self-similarity criterion discussed in Sect. 1.3.

How the first property is stimulated is investigated with two different methods in the two parts of

this section. With a cost function formulated at the higher-level sensorimotor layer, spatially coherent

receptive fields are formed driven by maximizing the correlation of light stimuli integrated by each

single visual receptive field. With a cost function formulated at the lower-level sensorimotor layer,

the formation of spatially coherent visual receptive fields is naturally induced by minimizing the re-

construction error of recorded stimuli o with respect to original signals i. The implementation of

64



the second property is addressed via the maximization of spatiotemporal correlation as introduced in

Eq. (4.11). This component of the cost function naturally appears at the lower-level and higher-level

sensorimotor layer.

Higher-Level Sensorimotor Layer. Considering the formulation of an optimization problem fol-

lowing a cost function constructed from Eq. (4.7), the following is foreseeable: the minimization of

the stimulus prediction error does not lead to the desired development of spatially coherent receptive

fields. For example, a sensor layout consisting of rotationally symmetric but spatially completely inco-

herent receptive fields can be imagined, and still, the activation of its receptors is perfectly predictable

under a number of rotational sensor displacements, compare also Fig. 4.1. Thus, the capability to

predict a future stimulus and the tendency towards spatially coherent receptive fields are not directly

related. This has been confirmed empirically; via Eq. (4.7), property (1), spatially coherent recep-

tive fields, cannot be induced. However, the spatiotemporal correlation term implicitly contained in

Eq. (4.7) can be expected to be sensitive to the spatial coherence of visual receptive fields, because,

given the predominantly low spatial frequency of natural images, visual receptive fields s which are

scattered – i.e. cover a wide spatial area – record essentially blurred gray values, whereas more com-

pact receptive fields are able to provide sharper stimuli from the underlying signal. According to these

thoughts, the cost function at the higher-level sensorimotor layer is developed around spatiotemporal

correlation as introduced in Eq. (4.11). In this context, it is clear that the search space of the problem

has to be constrained, since a correlation measure is per se unbounded. For this purpose, a constraint

set R for S is chosen as R = {S : S ≥ 0, S⊤1 = 1}, such as to guarantee that the visual receptive

fields occupy the whole sensor area and luminance cannot be subtracted. In the remainder of this

paragraph, an optimization problem based on spatiotemporal cross-correlation is formulated incorpo-

rating properties (1) and (2) outlined in the beginning of this section. For the sake of clarity, the two

properties are addressed step-by-step.

First, the development of spatially coherent receptive fields is addressed by considering an im-

mobile agent with a reduced set of sensorimotor experiences B = {(I,q)}. In this case, a reasonable

sensor topology S is considered to be one which leads to high correlation within a batch SI of recorded

stimuli. The rational behind this is that bigger differences between receptive field activations recorded

in a spatial neighborhood indicate that the agent is able to pick-up more information from images

contained in I. A first version for a cost function csm is thus proposed like

csm(S) = −
∑

x

(

Ŝix

)⊤ (

Ŝix

)

, Ŝ =
S√
S11⊤

, (4.18)
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where correlation is normalized with respect to the size of a receptive field such that different sized

receptive fields are comparable. The notation of Ŝ implies that the division and square root operators

are applied element wise.

For a mobile agent, the organization of sensor topologies related to motor activity is addressed

with an active agent and a full set of sensorimotor experiences B = {(I0, I1,q)}. To establish a

temporal relationship between receptive fields, the previous cost function is adapted to compute cor-

relation between pre- and post-action stimuli. The reader is reminder that it is a priori unknown how

to temporally relate receptive fields and how stimuli change under an action q. However, this problem

is naturally solved by the predictor Pq which describes a mapping of receptors for a given action,

allowing for a comparison of stimuli at different points in time. Thus, Eq. 4.18 is revised like

csm(S) = −
∑

q

∑

x

(

Ŝi
q
x,1

)⊤ (

P
q

pls(S)Ŝi
q
x,0

)

, Ŝ =
S√
S11⊤

, (4.19)

where, in accordance with the results obtained in Sect. 4.4, it is proposed that the prediction operator

P
q
pls is the solution to a positive least squares problem computed for each action q from a batch of

samples (Iq0, I
q
1) as

P
q
pls = argmin(Pq) ‖PqI

q
0 − I

q
1‖

2

s.t. Pq ≥ 0

. (4.20)

The request for a self-similar sensor layout – or in other words a simple prediction model – is intrinsi-

cally present in the cost function given in Eq. (4.19) because correlation can be expected to be higher

if translated receptive fields match well with the location and size of receptive fields at the previous

time step (on average). Thus, the Euclidean distance measure used in [21] to assess self-similarity is

replaced in Eq. 4.19 with a correlation measure between predicted and future stimuli PqSi0 and Si1.

Eventually an optional cost on the growth of receptive fields can be added to Eq. (4.19) in the form

of C(S) = ω‖S‖22. This term provides control over the smoothness of the receptive field boundaries.

For ω = 0 solutions with hard receptive field boundaries are obtained. For ω > 0 solutions with

increasingly overlapping receptive fields result.

Collecting the introduced components, the final optimization problem at the distant sensorimotor

layer is written as

S∗ = argmin(S) −
∑

q

∑

x

(

Ŝi
q
x,1

)⊤ (

P
q

pls(S)Ŝi
q
x,0

)

+ C(S)

s.t. S⊤1 = 1, S ≥ 0

, Ŝ =
S√
S11⊤

. (4.21)
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Solutions for this optimization problem can be found with methods described in Sect. 4.9.

Lower-Level Sensorimotor Layer. The formulation of an optimization problem based on Eq. 4.8 is

straight forward. Using sensorimotor experiences B = {(I0, I1,q)} and prediction operators P
q

pls(S),

it can be written as

S∗ = argmin(S)
∑

q

∥
∥
∥S⊤P

q

pls(S)SI
q
0 − I

q
1

∥
∥
∥

2

s.t. S ≥ 0

. (4.22)

Interestingly, this formulation implicitly addresses both properties requested for the organization of

sensor topologies through a single mechanism: the development of spatially coherent receptive fields

(property 1) is directly induced by penalizing inaccurate reconstructions of visual signals I1 from

predicted stimuli P
q

pls(S)SI0 via the adjoint operator S⊤, and at the same time, the organization of

sensor topologies related to motor activity (property 2) is addressed via the comparison of predicted

visual signals with future signals. Thus, different from the solution at the higher-level sensorimotor

layer (where the clustering of receptive fields is induced through correlation), a solution at the lower-

level sensorimotor layer can be formulated as a prediction error (because the formation of spatially

coherent receptive fields is induced through the reconstruction of signals I
q
0).

Why (4.22) also encodes a tendency towards self-similar sensor layouts dependent on the agent’s

motor activity becomes clear when recalling the relationship between sparsity and accuracy for pos-

itive linear predictors P
q
pls as investigated in Sect. 4.4. According to the hypothesis stated there, and

the empirical results presented in Sect. 5.2, it can be expected that the mean squared error in Eq. (4.22)

reaches a minimum for sensor topologies which not only feature compact receptive fields, but also in-

duce particularly sparse prediction operators P
q
pls. This in turn means, the cost function in Eq. (4.22)

is minimized by sensor layouts which increase (on average) the self-similarity property of stimulus

translations experienced under the considered set of motor actions.

Solutions for 4.22 can be found using the method described in Sect. 4.9. A major advantage of

the problem formulated in 4.22 is that its cost function naturally constrains S. No normalization or

additional constraints apart from S ≥ 0 are required.

On a final note, different from solutions proposed in the previous and the next section, in (4.21)

and (4.22) the prediction operator Pq is not an optimization variable. Instead, it is a function dependent

on the current sensor topology S and the sensorimotor experiences recorded for actions q. Thus it

is assumed in this section, that for each action q a batch Iq of visual signals i is available, and a

predictor Pq can be written as a function of a triplet (I0, I1, q), as in Eq. (4.20). The assumption
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that sensorimotor experiences consist of batches of sensory recordings (Iq0, I
q
1) per action q (instead of

single recordings (iq0, i
q
1) per action) will be relaxed again in the next section.

4.7 Organizing Sensor and Motor Topologies Conjointly

This section addresses the third and final question formulated in Sect. 3.10 with the goal of showing

that sensor and motor topologies S and M can be developed conjointly with a unified approach. To

do so, solutions from sections 4.5 and 4.6 are revised, and a cost function is proposed which enables

the organization of motor and sensor topologies in a single problem. This approach is part of the work

described in [103].

Initial attempts to formulate a unified problem at the higher-level sensorimotor layer by fus-

ing (4.15) and (4.21) were not successful. The reasons can be summarized as follows. On the one

hand, the cost function of problem (4.15) is formulated as a pure error measure on stimulus predic-

tion and is therefore not suitable for organizing sensor topologies S as pointed out in the first part of

Sect. 4.6. On the other hand, despite the initial appeal of the simple spatiotemporal cross-correlation

measure, attempts to integrate M in a cost function according to (4.21) were discontinued due to the

difficulties of constraining the optimized arguments and the necessity for non-trivial normalizations.

Considering problem (4.17) and (4.22), a formulation to address the concurrent organization of

sensor and motor topologies in one single optimization problem seems feasible. Both cost functions

are based on the same formulation and can either evolve S or M. Thus, an optimization problem

on the same basis incorporating the organization of sensor and motor topologies concurrently can be

written as

(S∗,M∗,P∗) = argmin(S,M,P)

∑

q

∥
∥S⊤

(∑nm

k

(
mk

⊤qq
)
Pk

)
Si

q
0 − i

q
1

∥
∥2

s.t. S ≥ 0, M ≥ 0, Pk ≥ 0

. (4.23)

As in Eq. (4.17), stimulus prediction is implemented in this formulation as a combination of nm linear

predictors Pk each associated to a motor movement field mk. Thus, different from problem (4.22),

predictors are not a direct function of S and q, but are learned conjointly with S and M. Also, sen-

sorimotor experiences enter the problem as a set of triplets B = {(i0, i1,q)} as proposed in Sect. 3.7,

such that for each action q a single sensory recording (i0, i1) is sufficient. Finally, it shall be recalled

here that to optimize (4.23) the agent does not require access to individual visual signals i. Signals i

appear in (4.23) only as visual stimuli Si in relation to S, M and P, see also Sect. 4.3. On the motor
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side, the agent does require access to motor actions q, although, this can be considered plausible since

actions q are self-initiated motor commands. Methods to find solutions for Eq. (4.23) are described in

the next section.

4.8 Comparison of Optimization Criteria

This section summarizes two thoughts comparing cost functions formulated according to Eq. (4.8) at

the level of signals i and q, and cost functions formulated according to Eq. (4.7) at the level of stimuli

o and activations a.

The first comment relates to the desired property of spatially coherent receptive fields. It has

been argued in Sect. 4.6, that a problem based on Eq. (4.7) is not suitable for the organization of

visual sensor topologies since it has no means to induce spatially coherent receptive fields. However,

comparing the basis for the finally proposed solution (Sect. 4.7) in its expanded form Eq. (4.10) to

Eq. (4.9), it can be seen that the only difference between the two formulations consists of the additional

expression SS⊤ in the middle of the first term in Eq. (4.8). With this observation, it becomes apparent

that it is precisely this expression which favors non-overlapping receptive fields and induces spatially

coherent sensory primitives in S. The reason for this to happen can be explained in two steps: Firstly,

non-overlapping receptive fields lead to a diagonal matrix SS⊤ = D, previously discussed in Sect. 4.3,

and secondly, diagonal matrices are favored by the considered minimization problem since they lead

to small values for the first term in Eq. (4.10).

The second comment concerns the internal perspective of the considered agent. In cost functions

based on Eq. (4.8), visual signals i appear in isolation, implying the agent requires access to the

physical layer where signals i are recorded. However, considering Eq. (4.10), it can be seen that in an

optimization problem, the agent does not require access to signals i because those signals appear in

isolation only in the third term which is independent of the optimized variables S and M. Everywhere

else signals i appear as Si “seen through” the sensor topology S.

4.9 Optimization Methods

The optimization problems proposed in this work can be addressed by a number of methods. For

example, to find a (locally optimal) solution, different gradient descent methods are applicable and

readily available in both batch and online versions. All results presented in Chapt. 5 were obtained

with gradient descent methods via a batch approach which takes a full set of sensorimotor experiences
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B = {(i0, i1,q)} as input.2 While it is no problem to find solutions for S∗, M∗ and P∗ with an online

method, convergence is much slower and the batch approach was therefore preferred for practical rea-

sons. However, it should be noted that under different circumstances an online implementation might

be preferable, e.g. for a purely biologically inspired implementation in a robot with stronger mem-

ory constraints and a longer exploration phase where triplets {(i0, i1,q)} are sequentially becoming

available as experienced.

To find S∗, M∗ and P∗ in optimization problems (4.17), (4.21), (4.22) and (4.23), the cost function

is iteratively minimized using a projected gradient descent method [1]. With this method, constraints

on S, M or P are respected by projecting the gradient of the respective problem onto the constraint

set. In problems (4.21) and (4.22) where prediction operators are not considered variables but directly

depend on the sensor topology S and actions q, a linear predictor P
q
pls ≥ 0 is learned for each action q

such that it best satisfies SI
q
1 = P

q
plsSI

q
0 in a positive least squares sense using the optimization method

known from [9]. In problems (4.17) and (4.23), where prediction operators Pq ≥ 0 are arguments

of the optimization, the derivative of the cost function with respect to Pq is required. Note that, even

though Pq ≥ 0 cannot be obtained as a closed form solution, a partial derivative with respect to

Pq can still be found in closed form by applying the implicit function theorem to the Karush-Kuhn-

Tucker optimality conditions of the positive least squares optimization problem [12]. The stepsize of

the gradient descent was adapted in all cases according to the Armijo rule [4].

Slightly different from the rest of the optimization problems, Eq. (4.15) was solved using the

Levenberg-Marquardt algorithm which was found to have nice convergence properties for this prob-

lem while being relatively simple to implement, see for example [95]. The constraint Pk ≥ 0 was

implemented in this case by adding an exponential penalty function to the optimization.

To conclude, it is important to note that all the proposed cost functions are expected to be non-

convex, which means nothing prevents a gradient descent from converging to a locally optimal so-

lution. From a biological perspective, locally optimal solutions can be accepted. In some cases, the

privileged perspective of the observer allows for the detection of undesirable solutions. In these cases,

additional empirical tests are conducted to verify for example the validity of a suspected global mini-

mum. Such checks are described when discussing the results in Chap. 5.

In addition to locally optimal solutions, the existence of non-isolated minima is expected, due to

symmetries of S∗ and M∗ on sensor and motor areas Φs and Φm. However, this is of no concern since

different (e.g. rotational) symmetric sensor or motor layouts are equivalent in a topological sense and

actually desired to support self-similar stimulus translations.

2For problems (4.21) and (4.22) input is considered to be available as B = {(I0, I1,q)}.
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This chapter presents results obtained with solutions proposed in Chap. 4. In a first section, a

concrete instance of the problem described in Chap. 3 is introduced. This setup was used to obtain all

presented results. The remaining sections discuss results corresponding to the problems formulated

in the previous chapter. Sect. 4.5– 4.7 are directly associated to the three principal questions posed in

Sect. 3.10. Each section provides an individual discussion with respect to the presented results.

5.1 A Concrete Instance of the Problem

This section introduces the particular setup used to obtain the results described in subsequent sections.

The considered configuration is an instance of the model described in Chapter 3 where an agent with

four degrees of freedom observes a planar environment textured by a very high resolution image e

(2448×2448 pixels) depicting a real world scene, see Fig. 5.3. The agent’s sensor area Φs, is a bounded

and flat area assumed to be parallel to the environment. From an external perspective, the agent is

found at each time step in a state x, which is defined by the agent’s absolute position, orientation,

and current distance from e. The agent records in each state x a signal vector ix with a sensor area

71





−0.05 0 0.05

−0.05

0

0.05

extension x (world units)

ex
te

ns
io

n 
y(

w
or

ld
 u

ni
ts

)

(a)

−0.04 −0.02 0 0.02 0.04
−0.04

−0.02

0

0.02

0.04

shift x (world units)

sh
ift

 y
 (

w
or

ld
 u

ni
ts

)

(b)

0.5 1 1.5 2

−1

0

1

dilation (zoom factor)

ro
ta

tio
n 

(r
ad

)

(c)

Figure 5.2: (a) Discretization of a sensor space defined on a disk (481 discrete locations); (b) dis-

cretization of a motor space for a behavior inducing horizontal and vertical translation actions (225
discrete locations); (c) discretization of a motor space for a behavior inducing dilation and rotation

actions. Sensor area and translation distances are specified in environment coordinates ranging from

−1 to 1 in x- and y-direction (225 discrete locations).

Coding of Stimulus Dilation Actions. Note that slightly different from translation and rotation

actions, the action ∆ζ which dilates stimuli recorded by the agent is encoded like ζ = log(z), where

z can be seen as a zoom factor, while ζ can be interpreted as the distance of the visual sensor to the

observed scene. Thus, an action ∆ζ means moving the sensor along the vertical direction changing

the distance to the observed image e. With this choice, a situation independent, and at the same

time energetically plausible representation of an action dilating the stimulus is obtained. Situation

independence is achieved in the sense that an action composition like +∆ζa − ∆ζa leaves a sensor

stimulus ix invariant. This means the agent’s current state x does not influence the effect of an action

∆ζa. Energetically plausible refers to the fact that in a physical setup, ∆ζ might directly relate to

voltage or current applied to an actuator moving the agent for example towards or away from an

observed scene. Thus, encoding dilation as ζ = log(z) appears reasonable, as moving away (−∆ζa)

or towards (+∆ζa) a scene requires the same amount of energy, which would not be reflected by the

zoom factor z.

Note on the Action Space from a Biological Perspective. From a biological point of view the cho-

sen action space includes degrees of freedom which are not directly implemented by the oculomotor

system e.g. of primates and other animals with binocular vision. This concerns in particular the two

action dimensions which lead to rotation and dilation of visual stimuli. However, despite not being di-

rectly supported by anthropomorphic oculomotor systems, actions which induce rotation and dilation

of visual stimuli do play a very important role, e.g. during locomotion, or in visual sensorimotor sys-

tems of airborne insects. They also typically appear in sensorimotor interaction patterns of binocular

vision systems engaged in object manipulation. Therefore, it is considered important in this work to
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Figure 5.3: The environment e of the setup considered in this chapter. The illustration also shows three

example situations where the agent is taking actions from the considered 4-dimensional action space.

Top left: rotation by 45◦. Top right: translation of 15 discrete steps in x-direction, and 6 discrete steps

in y-direction. Bottom: dilation with z = 1.5. The taken samples and their associated actions q are

shown in Tab. 5.2. The underlying image has a resolution of 2448 × 2448 pixels and was taken in

Guerrero / México, courtesy of Fam. Urióstegui-Arellano.
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Table 5.2: Example sensorimotor experience triplets (i0, i1,q) as obtained from agent states depicted

in Fig. 5.3. Each visual signal i is sampled at 2877 discrete locations in the environment. For each

discrete location a gray-scale value was obtained by filtering the underlying image with a Gaussian

filter with standard deviation corresponding to the radius of depicted signal pixels. Discretized actions

are visualized as reshaped vectors q with a single non-zero entry as introduced in Sect. 4.1.

include actions inducing rotation and dilation of recorded stimuli.

Given Sensor Topologies. For experiments conducted with given sensor topologies, such as the ones

presented in Sect. 5.3, two different sensor layouts have been investigated. A regular grid-like config-

uration, and a non-uniform, fovea-inspired layout with a logarithmic parametrization, also commonly

used to describe growth spirals found in nature, see also Sect. 1.3.

The grid configuration was chosen because of its relevance with respect to basically all artificial

image sensors, e.g. CCD sensors available off-the-shelf. The logarithmic distribution was chosen to

analyse stimulus change patterns for foveating visual systems. The two layouts are shown in Fig. 5.4.

The foveal layout shown in Fig. 5.4(b) was generated according to a logarithmic spiral. Retinotopic

layouts found in living organisms with binocular vision follow closely such a density distribution up
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(b) Fovea

Figure 5.4: Two sensor topologies considered for experiments with fixed sensor topologies. Each

visual receptive field is implemented with a Gaussian model. Circles are drawn with the radii of the

standard deviation of each receptive field function. Axis units refer to the size of the 2-dimensional

environment e as depicted in Fig. 5.1. a) Uniform grid-like 5 × 5 layout with 25 receptive fields. b)

Foveal layout parametrized in polar coordinates (ρ, φ) according to a growth spiral with 12 branches

each with 3 receptive fields following ρ = 0.0063e0.33φ.

to a small area in the very center which deviates from this law. In [117] an approximation of this

deviation is formulated, however this area is not considered in the layout shown in Fig. 5.4(b).

5.2 A Measure of Visual Sensorimotor Coupling

This section presents results regarding the evaluation of a coupling between sensor topologies and mo-

tor actions in the sense of a sparsity measure as introduced in Eq. (4.13). Measures were obtained for

the two sensor layouts shown in Fig. 5.4 with respect to the 4-dimensional action space as introduced

in Sect. 5.1. To allow for a visualization of the results in three dimensions, both sensor layouts were

measured for two 2-dimensional subspaces of the full 4-dimensional action space, one subspace cov-

ering translations in x- and y-direction, the other including rotations and dilations. For each subspace,

measurements τ q were obtained for 10 000 randomly chosen motor actions q. Each measurement was

obtained by sampling a particular action 1.4 · ns times from randomly chosen states x in environment

e. Fig. 5.5 visualizes the measurements for all combinations of the two sensor layouts and action

subspaces. The results are discussed in detail below.

In an empirical investigation, the results obtained for the sparsity measures on linear predictors Pq

are compared to results for the mean squared error Eq of linear predictors Pq. By visual inspection

evidence is found that the local maxima of the sparsity measure coincide with the local minima of the

mean squared error. Results for Eq are plotted in Fig. 5.6.
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(a) Grid layout x- /y-translation (b) Grid layout rotation / dilation

(c) Foveal layout x- /y-translation (d) Foveal layout rotation / dilation

Figure 5.5: Sensorimotor coupling of two visual sensor topologies and two 2-dimensional action

spaces. sensor topologies. The sensor layouts “grid” and “fovea” are shown in Fig. 5.4. The two

action spaces cover i) translation actions in x- and y-directions, and ii) rotation and dilation actions

as introduced in Sect. 5.1. In each plot, the z-coordinate shows the sparsity measure τ q introduced in

Eq. (4.13) for 10 000 randomly chosen actions q.

Uniform Grid Sensor Layout. Measurements for horizontal and vertical translation actions of the

uniform grid sensor layout are shown in Fig. 5.5(a). The plot shows clear peaks when a translation

equals a combination of horizontal and vertical receptor distances. The peaks corresponding to larger

action steps are slightly smaller because larger displacement actions lead to a bigger number of pe-

ripheral and unpredictable receptors, provoking noise in the prediction operator which is responsible

for less sparse solutions. This is a desirable effect, since actions with a bigger number of unpredictable

receptors should qualify less well in the sense of self-similar stimulus translations. The results for the

grid layout under rotation and dilation are shown in Fig. 5.5(b). Excluding the peak for the zero-action,

only two significant peaks are visible, located at zoom level z = 1 and 90◦ and −90◦ rotation. This

makes sense, as these are the actions which achieve a perfect permutation of receptors. In between,
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the scores are significantly lower with certain angles achieving a slightly better score than others.

In summary, while this sensor achieves good measures for x- and y-translation actions with step-

sizes related to receptor distances, the topology does not qualify well for zoom and rotation actions.

Thus, with this layout stimulus prediction for x- and y-translations can be computed using a reduced

amount of parameters and operations, whereas prediction for actions inducing stimulus rotations and

dilations requires more resources.

Foveal Sensor Layout. Measurements for horizontal and vertical translation actions of the foveal

sensor layout are shown in Fig. 5.5(c). Disregarding the peak for the zero-action, this plot does not

show clear peaks except for a ring of local optima corresponding to shifts of the center location to

receptor positions on the second ring; although, these shifts are assigned a significantly lower score

than the peaks in Fig. 5.5(a)). Much in contrast, the measurements for the rotation and scale action

space shown in Fig. 5.5(d) show strongly expressed peaks at zoom levels z = 1, z = 0.60 and

z = 1.68. The number of peaks in angular direction corresponds to the number of receptors on the

semicircle between −90◦ and 90◦ in the foveal sensor layout shown in Fig. 5.4(b). The three rows of

peaks in the direction of stimulus dilation actions correspond to a mapping of the three receptor rings

of the foveal layout.

In conclusion, a foveal sensor favors simplified linear prediction operators for rotational stimulus

transformations but sacrifices on the other hand sparsity under translational displacements.

Discussion. A clear shift in the characteristics of τ -scores is observed when moving from the grid

sensor layout to the foveal layout. While the grid layout achieves higher scores under translation,

the foveal sensor requires a more descriptive prediction function for the same actions. This coincides

with the fact that animals with a foveating visual system usually compensate image translations by

appropriate sensor movements, e.g. saccadic gaze shifts or smooth pursuit of foveated objects. Hence,

the handling of image translations is “outsourced” to active sensor repositioning allowing for reduction

of image transformations for which the sensor itself is badly optimized. Contrariwise, the grid-like

sensor does not qualify well for rotation and scaling while the foveal sensor significantly facilitates

the description of stimulus changes for these actions. Again, this matches well with observations in

living organisms. Foveating visual systems can be assumed to frequently experience image rotation

and scaling because foveal sensors are typically used to engage in object-oriented behavior ranging

from prey-catching to in-hand manipulation; activities which typically involve self-induced actions

resulting in approximation, adjustment or repositioning of an object. Assuming the oculomotor system
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(a) Grid layout, τ sparsity measurements (b) Grid layout, E error measurements

(c) Foveal layout, τ sparsity measurements (d) Foveal layout, E error measurements

Figure 5.6: A comparison of sparsity scores τ q and mean squared errors Eq for both sensor layouts

and two selected cut-sections of the investigated action spaces.

compensates for horizontal and vertical translations of the target object, these behaviors mostly induce

rotation and scaling of the object’s projection on the observing sensor – transformations for which the

foveal sensor layout is well adapted in the sense that they can be compensated by a computationally

inexpensive post-processing step. Giving consideration to these observations, it seems reasonable to

assume that the morphology of a sensor has strong ties to the agent’s behavior (and vice versa).

Relationship Between Sparsity Measure and Mean Squared Error. At the end of Sect. 4.4, it

was conjectured that for positive linear prediction operators Pq ≥ 0, the most accurate prediction

operators might be achievable for actions q for which the operator Pq is also particularly sparse.

For the sensor layouts and motor spaces considered in this section, this expectation was empirically

confirmed. Fig. 5.6 illustrates the results; for visualization purposes, the figure shows for each sensor

layout a particularly relevant dimension of the full action space (left side), and compares the same
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cut-section to previously obtained sparsity measures (right side). While these results cannot replace

an analytical proof, they are a strong hint that the minimization of the prediction error in problems

proposed in Chap. 4, not only leads to more accurate predictors, but also discovers locations in the

action space where prediction can be achieved with particularly sparse matrices Pq. This mechanism

can be seen at work in the next section where it is used to organize the movement fields of the motor

layer.

5.3 Organizing Motor Topologies

This section presents results for the optimization of motor topologies according to problem (4.15).

Because problem (4.17) is part of the unified approach formulated in problem (4.23), motor topologies

obtained on the basis of problem (4.17) are presented in Sect. 5.5.

The results described in this section are organized in two groups. For each sensor layout shown

in Fig. 5.4, a 2-dimensional sub-space of the action space described in Sect. 5.1 was considered. For

the grid layout, it was chosen to analyze the adaptation process of movement fields under translational

actions. The foveal layout is used to train a motor layer for rotation and zoom actions. Since in prob-

lem (4.15), the motor topology M is composed of motor movement fields mk modeled as multivariate

Gaussians according to Eq. (4.4), the shape of movement fields mk is described by covariance matrices

Σk and their location is encoded by the mean µk. The results presented in this section were obtained

with an implementation where Σk was reduced to a diagonal matrix thereby constraining movement

fields mk to be axis-aligned Gaussians. This reduction in dimensionality is based on empirical evi-

dence collected as a part of the result validation discussed at the end of this section. To find a solution

for all variables Σ∗, µ∗ and P∗ of problem (4.15), a set of sensorimotor experiences B = {i0, i1,q}
is collected and the Levenberg-Marquardt optimization algorithm is used, see also the optimization

procedures described in Sect. 4.9.

The obtained results are illustrated in Fig. 5.7 and Fig. 5.8. Plots on the left depict initial and final

configuration of movement fields on the motor area showing position and size of the movement fields.

Prediction matrices Pk are shown on the right for a number of selected movement fields. For each

experiment the positions µk were initialized according to a uniform random distribution. The shapes

of the movement fields Σk were all initially set to a fixed value. The prediction matrices are initialized

to zero. It is important to note that with a randomized initialization, nothing prevents the adaptation

process from converging to a locally optimal solution. Eventually, one has to be aware of boundary

effects when inspecting the results of the organization of motor movement fields. This is due to the
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fact that one inevitably has to rely on a finite range for action sampling. Thus, some disturbances are

expected to be observed for motor primitives located at the sampling border.

Grid Layout. When solving problem (4.15) using the grid sensor layout under translational actions,

it is found that motor movement fields converge to a configuration where they are distributed in the

action space on a regular grid. This is visible in Fig. 5.7(c), in particular for non-boundary movement

fields. Notably, the positions of motor movement fields on the motor area coincide with the spacing of

receptors in the sensor layout. It is noted that the prediction matrix of the motor primitive with index

14 converged to zero which has the same effect on the final cost function as if this motor primitive had

been removed. From the privileged perspective of the reader, it can be seen that motor primitive 14

should have been placed somewhere between motor primitives 16 and 4 to improve the present solu-

tion. In the shown case, the algorithm converged to a local optimal solution where motor primitive 14

has no contribution and the area between motor primitives 16 and 4 is covered by slightly more out-

stretched neighbor movement fields. This slightly increases the prediction error in this neighborhood

of the action space but has no severe impact on the prediction ability.

In Fig. 5.7(d), the learned prediction matrices of nine selected motor primitives are shown. In-

terestingly, the entries for unpredictable receptors 1 to 5 converged to be non-zero in the diagonal.

This is due to the fact that for natural images with low spatial frequency and small sensor translation

distances, the future activation of a receptor with unpredictable input is best described by values of

previously close receptors. Despite the fact that matrices Pk are expected to be sparse in general due

to spatiotemporal relationships between visual receptors, it is found that the converged configuration

features prediction matrices with an exceptionally small number of non-zero entries.

To address questions regarding the global optimal solution, a number of optimizations were run

where each run started from a different randomly initialized configuration. Measuring for each con-

verged configuration the total prediction error over all sampled actions, it was possible to confirm with

a high degree of certainty that the globally optimal configuration is the one where all 25 CDNs are

arranged on a regular 5× 5 grid. No other configuration with a smaller overall prediction error could

be found for the setup addressed here.

Foveal Layout. When solving problem (4.15) using the foveal sensor layout under rotational actions

and stimulus dilations, it is found that motor movement fields converges to a configuration where they

are regularly distributed on concentric circles. This configuration can be seen in Fig. 5.8(c). The

movement fields are aligned in three columns which correspond to three different dilation levels and
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(a) Initial configuration of the motor movement fields (iter. 0).
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(b) Prediction matrices after 1 iteration.
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(c) Final configuration of the motor movement fields after 1 000
iteration. Note, CDN 14 was suppressed during the optimiza-

tion, see also explanations in the text.
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(d) Prediction matrices after 1 000 iterations. The num-

bering of prediction matrices corresponds to the number-

ing of movement fields on the left.

Figure 5.7: Translations. Initial and final configurations of an optimization problem as formulated in

Eq. (4.15). The problem is iterated with the Levenberg–Marquardt algorithm and optimizes 25 motor

movement fields located on a motor layer Φm covering translational actions. Left: Representation of

the motor area Φm for translations where each point represents a shift relative to the sensor’s original

position. In grey, 5 000 sampled displacements used to train the model are shown. In black, the

movement fields (visualized as ellipses) of each motor primitive (Σ,µ). Right: Prediction matrices

Pk of nine selected motor movement fields. Each matrix is shown as a table where entries are color-

coded in grayscale (black = 0, white = 1). Note, without any specific assumptions, motor movement

fields converged to locations in the motor area which correspond to translational actions which match

exact shifts of visual receptive fields, and which allow for particularly sparse prediction operators Pk).
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span 180◦ along the rotational dimension. As for the grid layout, the organization of movement fields

on the motor area happens to reflect the spatial layout of the visual receptive fields in the sensor area.

In Fig. 5.8(d) the learned prediction matrices of nine selected motor primitives are shown. As for

the grid layout, visual receptors which cannot be predicted accurately (e.g. the ones at the periphery

of the sensor) happen to be approximated by their own previous value (diagonal matrix entries). Also,

it is observed again that all Pk are exceptionally sparse.

Unlike the solution in Fig. 5.7(c) which converged to a local optima, the results presented for the

foveal setup represent what can be suspected to be the globally optimal solution. This assumption is

supported by the fact that no other solution could be found which led to a smaller overall prediction

error. Thus, it is likely that the positioning of the movement fields shown in Fig. 5.8(c) corresponds to

the globally optimal one.

Result Validation. In this paragraph the hypothesis is validated that for the discussed motor spaces

and sensor topologies, multivariate Gaussians are a suitable model of motor movement fields. For this

purpose, it is useful to first inspect the underlying function P(q). This is difficult sinceP(q) defines

for every action q a matrix Pq of size ns × ns. Nonetheless, to get an impression of what the trained

model is actually approximating, a particular entry of this matrix was visualized for a number of ran-

dom actions. In Fig. 5.9(a) the selected entry is plotted using prediction matrices Pq learned by linear

regression from multiple samples for each action q. For a comparison, Fig. 5.9(b) shows the same ma-

trix entry obtained from our model
∑

k mk(q)P
k using the parameters learned for the foveal layout.

Comparing the two plots, two things become apparent: first of all, the values plotted in Fig. 5.9(a) re-

semble closely a multivariate Gaussian and are therefore well approximated by the linear interpolation

shown in Fig. 5.9(b); secondly, even though a selected prediction matrix entry for the non-uniform

sensor layout and the rotation-zoom action space was sampled, the resulting distribution resembles an

axis-aligned Gaussian. The second observation justifies the previous decision to restrict Σk to be di-

agonal matrices. Thus, in conclusion, the Gaussian model approximates well the underlying function

for the sensorimotor system considered here. However, it shall be noted that the applicability of this

model also depends on the receptive field functions of the given sensor (which are Gaussian in this

case). Also note that the constraint that movement fields must be multivariate Gaussians has been re-

laxed in problems (4.17) and (4.23). Corresponding results where arbitrary movement field functions

develop are shown in Sect. 5.5.
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(a) Initial configuration of the motor movement fields (iter.

0).
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(b) Prediction matrices after 1 iteration.
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(c) Final configuration of the motor movement fields after

600 iterations.
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(d) Prediction matrices after 600 iterations. The numbering

of prediction matrices corresponds to the numbering of move-

ment fields on the left.

Figure 5.8: Rotation and Dilation. Initial and final configurations of an optimization problem as for-

mulated in Eq. 4.15. The problem is iterated with the Levenberg–Marquardt algorithm and optimizes

15 motor movement fields located on a motor layer Φm covering rotational and dilating actions. Left:

Representation of the motor area Φm for rotations and dilations where each point represents a rotation

and change in distance z relative to the sensor’s original position. In grey, the sampled displacements

used to train the model (5 000). In black, the movement fields (visualized as ellipses) of each motor

primitive (Σ,µ). Right: Prediction matrices Pk of nine selected motor movement fields. Each matrix

is shown as a table where entries are color-coded in grayscale (black = 0, white = 1). Note, with-

out any specific assumptions, motor movement fields converged to locations in the motor area which

correspond to rotational actions and dilations which match exact shifts of visual receptive fields, and

which allow for particularly sparse prediction operators Pk.
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Figure 5.9: Activation of the receptor-receptor connection (18, 18) in the foveal layout plotted over the

rotation-zoom motor area. The left plot shows P(18,18), where for each location q a Pq was explicitly

computed by linear regression. The right plot shows P(18,18) approximated by
∑

k mk(q)Pk(18,18)

with parameters learned as shown in Fig. 5.8(c) and 5.8(d).Other entries in P than (18, 18) show

similar activation distributions centered at different locations.

Conclusion. On the basis of the obtained results, it is observed that optimal motor layouts for prob-

lem (4.15) feature movement fields which have particularly sparse prediction matrices associated.

Hence, the optimization discovers and takes advantage of locations in the action space where visual

stimulus prediction can be done with an especially simple prediction model. Even though it is ex-

pected that the prediction operators be sparse in general, due to spatio-temporal constraints between

visual receptors, the number of non-zero entries in linear prediction operators in the found solutions

is sparser than expected. Since problem (4.15) can directly be interpreted as an implementation of

the model of a corollary discharge circuit as deduced and depicted in Fig. 2.3, the results described

in this section also influence the physical implementation of such a circuit. The fact that the obtained

solutions tend to feature particularly sparse prediction matrices means the feed forward network of a

corollary discharge circuit can be built with a particularly small number of neural connections. Thus, a

majority of the feed forward connections shown at layer (b) in Fig. 2.3 can be removed. Furthermore,

in a computational sense, the calculation of predicted stimuli requires a smaller number of operations

due to the reduced number of connections.

5.4 Organizing Sensor Topologies

This section presents results for the optimization of sensor topologies according to problem (4.21).

Because problem (4.22) is part of the unified approach formulated in problem (4.23), sensor topologies
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Figure 5.10: Emergent clustering of receptive fields. Left: A converged but topologically orderless

matrix S as seen by the algorithm; each entry specifies the contribution of a location on the sensor

surface to a receptive field; the sensor area is discretized into 2877 pixels (x-axis), and the matrix S

codes for 48 receptive fields. Right: The sensor area and the coverage of 7 selected receptive fields

at spatial locations where their contribution is predominant; this view reveals the implicitly present

topological clustering in S.

obtained on the basis of problem (4.23) are presented in Sect. 5.5.

To demonstrate the correlation principle introduced in Eq.(4.18), first the results for an immobile

agent are shown. This example – although for now discarding any meaningful behavior – shows

a crucial capability of the proposed method, namely the development of spatially coherent visual

receptive fields. Figure 5.10 highlights the discovery of topological order from the orderless sampling

of underlying visual signals. The figure takes the privileged perspective of an external observer. From

this perspective, the spatial locations where the sensor surface was sampled are known and as such it is

possible to plot the topological ordering of receptive fields on the sensor area as shown in Fig. 5.10(b).

In this 2-dimensional visualization it was chosen to show at each discrete sensor area location the

predominant receptor. The clustering property of the receptive field elements is clearly demonstrated.

Since in this case no action is taken, this clustering is a sole consequence of the interaction between

the correlation based cost function of problem (4.21) and the low spatial frequency of the observed

environment (which is characteristic for natural images). Note that the agent does not have access to

the sampling locations of the sensor surface and is thus unaware of the final topological ordering. The

proposed algorithm operates solely on matrix S which is absent of any topological meaning even in

the final converged state. For illustration purposes, the matrix S is shown in Fig. 5.10(a).

For active agents two different behaviors as shown in Fig. 5.11(a) and Fig. 5.11(b) are considered.

The first consists of a uniform action probability distribution of 2-dimensional translations over the
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(a) Translation (b) Rotation and Dilation

Figure 5.11: Two different behaviors represented as action distributions. Left: uniform 2-dimensional

translations in a given range covering 10 times the distance between discrete sampling locations on

the sensor surface in each direction. Shift units are normalized with respect to the environment. Right:

independent zoom and rotation actions distributed uniformly on each axis. Rotations are given in

radians and dilations are given as a scale factor. Both operate with respect to the center of the sensor

surface. Zoom actions range from 0.6 to 1.66 and rotations cover −π to π.

sensor area in a given range. This scenario relates to translational unbiased oculomotor control causing

random stimulus displacements. The second behavior is composed of independent zoom and rotation

actions distributed uniformly on each axis. This mimics the behavior of an object manipulating agent

where the oculomotor system stabilizes the sensor on target, mechanically compensating for image

translations but not image rotations or scaling. These setups demonstrate that the agent’s behavior

induces different topologies of receptive fields on the sensor surface. In Fig. 5.12 the converged layouts

for the two considered action distributions are shown. The nature of the two converged topologies

exhibits macroscopic differences: in the translation only case a tendency for hexagonal tiling structures

over the entire sensor surface can be identified (apart from boundary effects), whereas in the rotation

and zoom case the receptors organize radially in clear circular rings. Unlike in Fig. 5.10(b), the 3-

dimensional perspective shows the smooth overlapping between receptive field elements. Such overlap

is obtained for ω > 0 in the C-term of Eq. (4.21).

To better comprehend the resulting sensor layouts, the reader is referred back to the work of

Clippingdale and Wilson [21] reviewed in the last part of Sect. 1.3, where the fitness of a layout relates

directly to the distance between predicted and original point locations. In the problem considered here,

just as in [21], a perfect sensor layout is one where receptors exactly map one onto another for every

considered action resulting in P
q
pls matrices where each row contains exactly one non-zero entry. Any

deviation from this case leads to an increase in prediction error and lowers correlation. This fact allows
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(a) Translation (Iteration 1) (b) Rotation and Dilation (Iteration 1)

(c) Translation (Iteration 7) (d) Rotation and Dilation (Iteration 7)

(e) Translation (Iteration 55) (f) Rotation and Dilation (Iteration 40)

Figure 5.12: Evolution of sensor topologies optimized for behaviors visualized in Fig. 5.11(a) and

Fig. 5.11(b). Left: translations. Right: dilation and rotation. Converged configurations are shown in

the last row, figures (e) and (f).
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for the replacement of the Euclidean distance as used by Clippingdale and Wilson by one based solely

on correlation between sensory readings disregarding any knowledge about the sensor topology.

5.5 Organizing Sensor and Motor Topologies Conjointly

This section presents results for a joint optimization of sensor and motor topologies according to prob-

lem (4.7). On the basis of the 4-dimensional action space introduced in Sect. 5.1, two different sets of

sensorimotor experiences, B1 and B2, are considered. These two sets of sensorimotor experiences are

used to co-develop two sets of sensor and motor topologies S∗
1, S∗

2 and M∗
1, M∗

2. In a first setup, B1

is recorded using sensor translation actions sampled from a 2-dimensional motor space as shown in

Fig. 5.2(b). Triplets (i0, i1,q) in B1 are sampled choosing actions q with uniform probability from the

available discrete actions. This scenario relates to translational unbiased oculomotor control causing

random stimulus displacements. The second behavior is composed of mixed zoom and rotation actions

where B2 samples combined sensor rotations and stimulus dilations from a 2-dimensional motor space

as shown in Fig. 5.2(c). As for B1, triplets (i0, i1,q) were sampled with uniform probability from the

available discrete actions. Behavior B2 mimics, for example, an object manipulating agent where the

oculomotor system stabilizes the sensor on target, mechanically compensating for image translations

but not image rotations or scaling. Note, different from the sensorimotor experience recorded accord-

ing to the actions shown in Fig. 5.11(b), the set of sensorimotor experiences B2 considered in this

setup is composed of combined dilation and rotation actions sampling the entire motor space shown in

Fig. 5.2(c). The resulting sensor and motor topologies S1, S2 and M1,M2 are shown in Fig. 5.13 and

Fig. 5.14. The results demonstrate that different behaviors B1 and B2 induce sensorimotor structures

of different macroscopic nature. Note that even though the proposed algorithm is unaware of the topo-

logical order present in recorded stimuli i, visual receptors cluster as smoothly overlapping receptive

fields and motor primitives appear as spatially coherent Gaussian-like areas.

Development of Spatially Coherent Motor Movement Fields Previous results on the organization

of motor topologies presented in Sect. 5.3 confirmed the evolution of a topological arrangement of

movement fields according to given sensorimotor experience. However, movement fields mk shown

in Fig. 5.7 and Fig. 5.8 are modeled according to multivariate Gaussians. Thus, while on the sensor

side, the results on the organization of visual receptive fields presented in Sect. 5.4 showed that it

is possible to develop compact visual receptive fields considering a more general discretization, the

problem of forming spatially coherent movement fields using a grid-like discretization has been omit-
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ted so far on the motor side. The results discussed in this section demonstrate now, that when solving

problem (4.23) using a grid-like discretization of the motor topology, spatially coherent movement

fields evolve concurrently with compact visual receptive fields. The reason for this tendency towards

spatially coherent movement fields can be found in the request for an accurate prediction of future

stimuli i1 in problem (4.23): only if motor movement fields mk specialize on spatially limited areas,

accurate linear combinations of prediction operators Pq for particular actions qq are possible. At the

same time, the optimization problem forces movement fields to cover the entire motor area Φm which

experiences samples q in order to be able to assemble predictors Pq for every qq.

Conclusion. The unified approach for the co-development of visual sensor and motor structures is

based on two main hypotheses. The first (Sect. 3.7 and Sect. 3.8) proposes that sensorimotor structures

can develop according to a general cost function csm where the agent’s behavior and environment are

decoupled and enter the problem as the agent’s overall sensorimotor experience B as in

(S∗,M∗) = argmin [csm (S,M ;B)]

s.t. B = {(i0, i1,q)}

.

The second hypothesis proposes that sensor and motor topologies S and M evolve such as to opti-

mize i) the reconstruction of higher dimensional signals, and ii) stimulus predictability. Per se, it is

not clear if the introduced hypotheses are justifiable. However, the proposed framework is capable of

reproducing some characteristics of in-nature observed sensorimotor structures, and captures inherent

principles present in phylogenetic and or ontogenetic development of biological systems. Therefore,

even though the true evolutionary cost function is unknown, it might be claimed that the made as-

sumptions could hold, and that the proposed framework with its simple underlying principles has

explanatory power not found in other computational models.
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Figure 5.13: Sensor and motor topologies obtained for translation actions uniformly sampled from a

motor space as shown in Fig. 5.2(b). Left: the evolution of S. Each color denotes a different visual

receptive field, and each dot shows the activation of that field at the respective location on the sensor

area. Right: the evolution of M. Note, some motor fields happen to overlap, and therefore appear less

pronounced as their contribution is combined in problem (4.23) according to Eq. (4.16).
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Figure 5.14: Sensor and motor topologies obtained for rotation and dilation actions uniformly sampled

from a motor space as shown in Fig. 5.2(c). Left: the evolution of S. Each color denotes a different

visual receptive field, and each dot shows the activation of that field at the respective location on the

sensor area. Right: the evolution of M. In this case, elongated elliptic fields develop reflecting the

higher axial resolution of sensor S∗
2 compared to its radial resolution.
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Chapter 6

Discussion & Outlook
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Efficient autonomous robotic systems require a body which is highly adapted to the system’s

particular task and environment. In biology, a common line of thinking proposes that adaptation

implicitly optimizes some underlying criterion which is related to the overall fitness of the organism.

However, applying such optimization methods to the design of entire artificial systems is not straight

forward. The criteria underlying adaptive processes in biological systems is in general unknown, of

considerable complexity, or impossible to evaluate within a reasonable timescale.

Addressing the development of a computational method for the automated design of behavior-

dependent visual sensorimotor structures, this thesis proposed that it is possible to isolate a simple

and at the same time computationally tractable criterion encoding principal characteristics of visual

sensorimotor layouts observed in living organisms.

The two main hypotheses evaluated throughout the work are, i) an animal’s lifelong sensorimotor

experience is the principal driving force for the development of sensorimotor layouts, and ii) the crite-

rion optimized throughout the development of visual sensorimotor layers is related to simple stimulus

prediction models, which for visual sensors is shown to be related to sparse linear predictors and self-

similarity in stimulus transformations. These hypotheses were tested for different evaluation criteria

applied to both, the organization of sensor layouts, as well as the organization of motor topologies.

Exploiting a number of analogies between sensory and motor systems, the thesis eventually pro-

posed a solution which addresses the organization of sensor and motor layouts in a unified manner.
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The developed method can serve in two ways: Firstly, it can be used to synthesize sensorimotor layouts

for artificial visual systems and secondly, it represents a model capable of explaining morphological

aspects of biological visual sensorimotor systems.

6.1 Discussion

This section comments on a number of points addressed throughout this thesis. Some points resumed

here have been addressed conclusively, others are still open for discussion or relate to limitations in

the proposed approach.

Violating the Assumption of Perfectly Predictable Stimuli. An important assumption associated

to the problem formulated in Chap. 3 is the perfect predictability of future visual signals i for executed

motor actions q, see also point (5) in Sect. 3.9. However, this assumption can be restrictive, and

in fact not all presented results have been obtained in experiments which adhere to this assumption.

In particular actions which translate the sensor violate the request for perfect predictability since after

taking the action, the boundary of the sensor records information which was not available before taking

the action. For such actions, the fraction of unpredictable sensor area increases with the step size of the

action. A similar effect appears in 3-dimensional environments for agent states x and actions q which

lead to motion parallax in the projected signals i. This has been previously discussed in Sect. 3.5.

Although situations leading to motion parallax do not arise with a problem instance as introduced

in Sect. 5.1, the experience with unpredictable stimuli at the periphery of investigated sensor areas,

has shown that the proposed solution is robust with respect to unpredictable stimuli. Visual signals

which are (partly) unpredictable with the considered linear model merely increase the level of noise

present when learning prediction operators Pk or P
q
pls. For unpredictable peripheral visual receptors

(e.g. under translation actions), prediction operators have been observed to converge to configurations

where those receptors estimate their future activation value equal to the currently experienced signal.

Considering the predominantly low spatial frequency of natural images, this makes sense as a best

guess for unpredictable receptors and actions of limited step size. According to these observations,

it can be expected that the proposed solution will also be robust with respect to partly unpredictable

stimuli due to motion parallax.

Motor movement fields. In Sect. 3.4 which describes the observation and action model, it has been

defined by Eq. (3.3) that from a given motor activation a, a low-level action q is sampled via motor
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movement fields mk as q = ǫ [
∑

k akmk] where ǫ is a sampling function and actions a obey
∑

k ak =

1. In the opposite direction, movement fields mk estimate motor activation ã in the sense of corollary

discharge as described in Eq. (3.6). While the latter is perfectly dual to the integration of visual

stimuli on the sensor side as described by Eq. (3.1), a similar analogy between the generation of low-

level actions q from activations a and a process on the sensor side is not equally clear. However,

it could be argued that on the sensor side, the dual operation to generating low-level actions q is

the reconstruction of visual signals i. In this case, a duality between a projection operator S+, as

discussed in Sect. 4.3, and the generation of actions q from motor activation a as defined by Eq. (3.3)

is expected. Along these lines, it could be argued further that Eq. (3.3) should consider an inverse

operator M+ which generates some combined probability density function imposed on the higher

dimensional motor space of actions q. This probability density function would not exactly correspond

to the linear combination of movement field functions mk as proposed by Eq. (3.3) which can be

considered a simplified approximation of the true probability density function similar to the adjoint

operator S⊤ approximating the optimal reconstruction S⊤
(
SS⊤

)
. However, more work is required to

formally justify an approximation for an operator M+ dual to S+.

Limitations. Two important topics which recurrently surfaced while working on this thesis, but

proved to be hard to tackle, are i) agents, environments, and actions which induce state-dependent

changes in sensory stimuli, and ii) the encoding of a task in the considered agent which features a

temporally variable sensorimotor system. These two points are still unsolved. A summary is provided

in what follows. For related directions in future work, see also Sect. 6.2.

• Encoding of the Agent’s Task: Assumption (4) in Sect. 3.9 states that the considered agent

follows a given action selection policy B. Given this policy B, the input to problems addressed

in this work is a set of sensorimotor experiences B sampled in a given environment E according

to Eq. (3.10). With assumption (4), the behavior of the agent enters the problems addressed

through the given action selection policy B. This is in accordance with the hypothesis that

sensorimotor structures develop according to the agent’s overall sensorimotor experience as

formulated in Sect. 3.7. However, for robotic applications it is in general difficult to specify B.

Typically it is desirable to implicitly induce a policy B by defining a task at a more abstract

level and using e.g. a reward driven learning strategy. Furthermore, considering the addressed

problem at a larger scope, it can be questioned if it is suitable to encode behavior at the level of

an action selection policy for an agent with a temporally variable morphology. A more abstract

encoding of the agent’s task is thus considered an open problem which has to be addressed in
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future work.

• State-dependent Stimulus Changes: Assumption (5) in Sect. 3.9 states that future visual stim-

uli i1 must be predictable solely from previous stimuli i0 and executed actions q irrespectively

of the agent’s state x. This assumption is crucial in this work and allows for prediction functions

p(q,ox) independent of x as introduced in Eq. (3.9). However, in most robotic setups, changes

in recorded stimuli are often dependent on the system’s state. In these cases, state-independence

needs to be dropped from assumption (5) in Sect. 3.9 and prediction functions become depen-

dent on x. A possible approach in this direction is outlined in the next section under the topic

termed state dependent sensorimotor contingencies.

6.2 Future Work

This section proposes a number of topics which are beyond the scope of this thesis but are considered

branches of future work well worth exploring.

Other Sensory Modalities. This work explored the organization of visual sensorimotor structures.

However, nothing constrains the proposed concept to visual perception. Other sensory modalities

could be considered without changes to the principal concept just by replacing the observation and

action model. For example, an implementation for an auditory sensorimotor system can be imagined

where sensory stimuli and motor actions are recorded and emitted in a frequency domain. In this case,

receptive elements and motor primitives would specialize on certain frequency bands depending on

the interaction of the agent’s body and its environment with respect to acoustic properties. Picturing

a frequency space mapped onto a spiral inspired by the cochlea found in the mammalian auditory

system, Fig. 6.1 sketches the idea of an auditory sensor by illustrating a number of auditory receptive

fields placed on the spiral shaped sensor area.

Hierarchical Organization of Sensorimotor Structures. In the present work, usually the intuition

is given that visual signals i are directly recorded at the periphery of the agent, and motor actions q are

at the lowest level of topologically coded motor signals. However, this does not necessarily need to

be the case. In an approach where several layers of sensorimotor structures S and M are considered,

signals i and q could be located at an arbitrary depth along the sensorimotor pathway. In this case,

the idea is that sensory and motor primitives in sensorimotor layers further from the agent’s periphery

would code for more and more abstract stimuli and motor actions. Such structures with layered levels
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Figure 6.1: The concept for the organization of sensorimotor structures as proposed by this thesis

could be applied to other sensory modalities. The illustration sketches twelve auditory receptive fields

covering a given frequency range with increased resolution around 2000Hz.

of abstraction have been extensively studied in nervous systems of living organisms, see e.g. [52].

A hierarchical approach is also imaginable to support state-dependent sensorimotor contingencies as

proposed for investigation in the next paragraph.

State Dependent Sensorimotor Contingencies. Sensorimotor contingencies are considered to be

laws governing the sensory changes induced by motor actions [81]. In other words, a contingency

is a descriptor for the changes observed when an action is taken in a certain situation. Sensorimotor

theory as promoted in [81] suggests that an agent equipped with a number of learned sensorimotor

contingencies can inquire about its state by probing which sensorimotor contingencies are obeyed in

its current situation. In this work, a prediction operator Pq can be considered a sensorimotor con-

tingency for the action q being true irrespective of the state x the agent is in. This independence of

predictors Pq from the agent’s state is deliberate in this work. In this sense, descriptors Pq are general

state-independent sensorimotor contingencies of the considered agent. State-dependent sensorimotor

contingencies naturally appear if state-dependent prediction functions pq(ox, x) are introduced, e.g.

when attempting to overcome the limitation imposed by assumption (4) from Sect. 3.9. Therefore, re-

laxing the assumption for state-independent stimulus changes and working towards an implementation

of a perceptual system based on evaluating state-dependent sensorimotor contingencies go naturally

together. In a concrete implementation this means, depending on the state of the agent, changes in

sensory stimuli are described by a different operator pq for a given action q. A first attempt in this

direction might try to deal with 3-dimensional depth perception where different states x relate to the
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distance of the agent to an observed scene. For a biological prototype employing such a strategy of

active depth perception, see also the Praying Mantis described in Appendix A.

Task Encoding. As outlined in the previous section, a particular difficulty encountered in this work

is the encoding of a task which would allow for a more flexible definition of the agent’s behavior. Ulti-

mately, this problem was postponed by considering a given action selection policy according to which

sensorimotor experience is sampled. However, in future work, it is desirable to induce the agent’s be-

havior in a more abstract way, e.g. via a given task. In the literature, a wide variety of techniques and

methods to evolve task-specific behaviors have been described but, their application to the problem

at hand is in general difficult for a number of reasons. On the one hand, one might try to employ a

type of reinforcement learning method which directly rewards particular situations encountered by the

agent. Apart from typically encountered problems such as hard-to-find desired states and therefore

slow learning processes, another major difficulty arises for agents with variable morphologies: it is

challenging to define desired states. In particular when trying to formulate rewards from an agent

intrinsic perspective, a changing body complicates the situation considerably. Trying to steer clear of

these problems, one might try to induce behavior via a more abstract approach which simply rewards

“survival” or a similar criterion related to the functional subsistence of the agent. Considering biolog-

ical evolution, such an approach bears great potential, both for a flexible development of the agent’s

body as well as for its behavior [107]. However, in the end it is unlikely that this approach eradicates

arising difficulties. A principal problem is that, requiring rewards to be based on the evaluation of

an agent’s entire lifespan poses big problems with respect to computational and temporal resources.

Furthermore, assigning rewards at a more abstract level naturally results in a reduced ability to de-

fine a specific task. Although, it is the author’s belief, that when the adaptivity of an agent’s body is

increased, the rigidity of the agent’s task definition must be relaxed simultaneously.
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Appendix A

Visual Sensorimotor Systems in Nature

During the course of this work, a collection of animals with specifically adapted visual sensorimotor

systems for visual perception have been reviewed. These are listed in this chapter along with a short

description of their visual sensorimotor system. Of course, the present list can represent only a very

limited selection from the many different visual systems found in living organisms. It is restricted to

some examples which appeared to be of particular interest at different stages of this work. Thus, the

list does not aspire to be conclusive in any way nor is it presented in any particular order. For a more

in depth introduction on the evolution of visual perception, see e.g. [115] or [82]. Here, the intent is

to provide the reader with a few samples contributing to a broad perspective on adaptation in visual

sensorimotor systems. In accordance with the arguments in favor of “simple brains” as presented at the

beginning of this thesis, this perspective essentially reveals that less complex animals tend to develop

more specifically adapted visual sensorimotor systems whereas animals with a larger nervous system

tend to possess a visual sensorimotor apparatus which supports more general usage strategies.

Trilobites. Fossils of trilobite eyes represent today the oldest preserved visual system [20, 126].

They date back to the early Cambrian period and have been found in many different species of the

highly successful class of Trilobita which existed over more than 250 million years. Similar to the

compound eyes of modern arthropods, their visual organs were composed of individual eyelets ranging

in number from a few dozen up to several thousand. Each of these eyelets captured light through a

small lens made of calcite. These calcite structures have been preserved in fossil records and have

enabled paleontologists to reconstruct the shape of trilobite eyes. Two examples are shown in Fig. 1.6.

As can be seen there, a big diversity in eye morphology existed between different trilobite species.

Some of them show lens topologies where equally sized eyelets are arranged according to a hexagonal,
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or less frequantly square packing. Other trilobite eyes have more complex but still highly regular

sensor topologies, e.g. eyes where receptors are placed in patterns of intersecting logarithmic spirals

as described in Sect. 1.3.

How trilobites moved their visual sensors with respect to the environment is mostly unknown.

Fossils basically reveal that most trilobite eyes were fixed with respect to the front part of the animal’s

body, except for some species which developed eye stalks. In terms of visual sensorimotor properties

relevant in the context of the present work, the configuration of sensory organs and motor apparatus

can be considered similar to the one found in modern insects. In both classes of animals the visual

sensor is composed of photoreceptors arranged on a convex surface and is moved together with the

body of the animal. Thus, it can be expected that the characteristics of raw stimulus changes, induced

for example through locomotion in free swimming or floating trilobites, is in principle comparable

to the optic flow patterns processed by the visual system of flying insects. Interestingly, however,

recent evidence suggests that some trilobite eyes might have implemented a system of muscles which

was able to move the receptor areas inside each eyelet with respect to the fixed lenses [112]. But, if

such a system might have allowed the animal to execute some kind of saccading behavior or image

stabilization is currently unknown (B. Schoenemann, personal communication, July 2012). Today, the

closest extant relative of trilobites is the horseshoe crab (Limulus). Its visual sensor consists of about

1000 ommatidia and is particularly well suited for neurophysiological studies. For a review on the

extensive work done by Hartline and Ratliff in this area, see e.g. [7].

Nematodes. Several nematode species (roundworms) exhibit positive phototaxis which is the ability

to discover a light source and direct their body movement towards it. To achieve this, the worms use a

simple but effective sensorimotor strategy. They continuously oscillate the anterior tip of their body in

order to sense a gradient in light intensity. With this strategy the worms manage to navigate through

difficult terrain covered by grass or other low vegetation using only a couple of photoreceptors. In [16]

for example, Burr et al. describe this behavior for the gravid female nematode Mermis nigrescens

which attempts to move towards a bright area to place its eggs at locations where grasshoppers feed.

For a detailed description of the visual sensor of Mermis nigrescens see also [70].

From the perspective taken in this work, it can be argued that the worm augments the limited

capabilities of its sensory system by combining it with appropriate motor actions such that it can

perceive a phenomenon which otherwise cannot be assessed by solely analyzing sensory feedback

from an immobile position. By moving its sensor, the worm can detect a light gradient with a very

limited sensor and minimal signal processing. In fact, the visual sensor of Mermis nigrescens consists
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of only two photoreceptors and its nervous system is composed of 302 neurons.

The Copepod Copilia. Copepods are group of small crustaceans which live in sea and freshwater

habitats and are about one to two millimeters long. Some are planctonic, and thus float passively in the

sea, while others are parasitic and attach themselves to other animals. Still others are predators of their

smaller relatives. To the later group belongs Copilia, a tiny but ferocious predator with a sophisticated

visual sensorimotor system. Similar to the strategy employed by the nematodes discussed in the

previous paragraph, it employs an active signal recording strategy using two very limited visual sensors

which it moves in fast scanning movements horizontally across its field of view. Fig. A.1 illustrates

Copilia’s visual sensorimotor system. Each of the two sensors consists only of seven visual receptors.

Both of them are placed inside the animals body and recording light which is guided through two

fixed lenses located at the front of the animal. A single muscle pulls the two sensors rhythmically

together and generates the horizontal scanning movement. In this way the animal achieves to add “an

additional dimension” to the otherwise point-like vision of it sensors. By scanning along a horizontal

line the animal can detect and eat plankton which passes in front of it when migrating in a vertical

direction. The eye of Copilia has been described by several authors, among them [34, 42, 29, 114].

Muscle

Anterior Lenses

Photoreceptors

Crystalline Cone

Figure A.1: Sketch of Copilia’s visual sensorimotor system seen from above. Ellipses marked in red

denote light receptive areas inside the animal. Each is composed of seven photoreceptors. The two

anterior lenses collecting light from the environment are shown in gray. The photoreceptors of the

animal’s light receptive structures are embedded in a crystalline cone which is suspended in a system

of ligaments and muscles. By contracting those muscles, the animal can move its photoreceptors

generating a horizontal scanning movement with a “saw-tooth” temporal profile.

Similar to Copilia, the copepod Labidocera has two two eyes composed of only ten visual recep-

tors each and executes a scanning movement covering about 35◦ of the dorsal visual field. In addition

to these rhythmic scanning movements the eyes of Labidocera also execute a kind of stabilization

movement coupled with the tail of the animal which might serve to compensate for movements to
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which the animal is exposed while floating in the open water. See also [61].

The Seasnail Oxygyrus. The Oxygyrus is a heteropod mollusc, a sea snail which also uses a scanning

strategy for visual perception. However, different from the copepod Copilia which scans along a

horizontal line with a point-like sensor, Oxygyrus added an additional dimension to its field of view

by scanning in two-dimensions with a one-dimensional sensor. Its eye consists of a horizontal band of

about 410 by 6 receptors which in some species expands along a straight line and in others is formed in

a horseshoe shape. To find food, the snail moves this band of receptors continuously up and down [60].

Fig. A.2 illustrates this mechanism.

Scanning Movement ≈ 90◦

Keel of Shell

Foot

Mouth (Proboscis)

Eye

Figure A.2: Sketch of Oxygyrus in its normal orientation (swimming upside down). The elongated

part in the upper right corner of the image is the animal’s mouth. The black area indicates its left eye.

The Mantis Shrimp (Stomatopoda). Mantis Shrimps or Stomatopods (not really shrimps) are crus-

taceans with a complex compound eyes which feature a horizontal band of color sensitive. They can

move their eyes independently and with three different degrees of freedom: horizontal, vertical, and

rotation. Their eye movements are attributed to three different types of movements, i) target track-

ing, ii) scanning, and iii) stabilization via a optokinetic nystagmus. The second type of movements,

scanning is most often executed in a direction approximately perpendicular to the color sensitive band

of receptors. Thus, although mantis shrimps have a two-dimensional receptor surface, their color vi-

sion is limited to one-dimension but is extended to two-dimensions via specific sensorimotor patterns,

see [57].

The Fiddler Crab (Uca). The Fiddler crab has two compound eyes, each of them located on a eye-

stalk. Contrary to typical vision systems, the center of the eyes points at the sky while the periphery of

the eyes observes the crab’s direct surroundings. Not surprisingly, the receptor density distribution of
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these eyes is very different compared to eyes featuring e.g. a central fovea. In fact exactly conversely,

resolution is highest around the eye’s edges and lowest in the eye’s center. This is useful for the crab

since it uses the periphery of its visual sensor to detect other crabs and the center to observe the sky

where it is highly sensitive to movements in order to detect airborne predators [138].

The Praying Mantis (Mantodea). The compound eyes of insects are fixed to the animal’s exoskele-

ton. Thus, animals with compound eyes are not able to estimate distance using convergent eye move-

ments or lens accommodation as animals with binocular camera-type visual systems do. Instead, some

species make use of a behavior referred to as peering movements to estimate depth. By translating their

head and body from side to side, these animals slightly change their perspective with respect to a target

object and estimate its distance by observing the effects of induced motion parallax. Such movements

can be particularly well observed in some locust species like the gregarious locusts or the praying

mantis. These species execute clearly visible pendulum movements of head and body before jumping

or attacking a target. Peering movements have also been observed in other insects like crickets, the

fruit fly Rhagioletis cerasi or the wasp Mellinus arvensis. For a review on the topic see [56].

Jumping Spiders (Salticidae). Instead of building webs, jumping spiders hunt their prey by attack-

ing it with an accurate jump. For this purpose they heavily rely on their visual capabilities. In total

they feature eight camera-type eyes. While the lateral and much simpler eyes are mainly used for

motion detection, the much larger anterior eyes evolved a very particular architecture which is highly

specialized to the purpose of the particular visual task faced by jumping spiders. The lenses of these

eyes is fixed in the spider’s carapace, but the retina inside the eye is mobile and can move horizontally

and vertically in a large range. Furthermore, it is also able to rotate about +/ − 30◦. In addition to

this advanced motor capabilities, the topology of the spider’s retinae is equally peculiar. Each eye

has its receptors arranged in a boomerang-like layout where the density of the receptors is highest in

the narrow region of the “knee” of the boomerang. Also, the retina is composed of several (partially

transparent) layers of receptors, which have been found to play an important role in depth percep-

tion. Eventually, when the recording area of the two eyes are put together, the field of view of the

spider is revealed to have an x-like shape with the two bent regions of the retinae facing each other.

During normal behavior, the animal moves this “template” with continuous scanning movements in a

coordinated manner. It has been suggested, that in this way the spider classifies other spiders by an-

alyzing their legs distinguishing if they are prey, predators, or mating partners. Thus, using a built-in

“line detector”, jumping spiders deduce the kind of opponent they face with an active sensorimotor
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strategy [30, 58, 59].

Mammals with a Visual Streak. In a number of mammals, for example sheep, pigs, horses, or the

red kangaroo (Macropus rufus) a horizontally elongated region of high ganglion cell density, a visual

streak, can be observed [44, 49, 50]. Such distributions could account for the fact that horizontal image

translations are more frequently experienced by these animals, because as opposed to predators, they

have very limited binocular vision and their behavior is less “object oriented”. For these species it is

more important to observe the horizon, a behavior which induces horizontal image shifts. Compare

also Fig. 1.7.

The African Elephant (Loxodonta Africana). Like the mammals described above, elephants also

feature a ganglion cell distribution which forms a horizontal visual streak. However, in addition they

also have an area of high receptor concentration in the upper temporal area of their retina. It is assumed

that this part of the retina is pointed at the trunk of the animal which is used for complex object

manipulation tightly coupled to visual feedback. See also [123, 85].
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Appendix B

Derivations

Contents
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For a gradient descent approach to problems proposed in Chap. 4, partial derivatives of the dif-

ferent cost functions must be computed. Sect. B.1 provides the derivatives required to address the

final problem proposed in Sect. 4.7. Additionally, Sect. B.2 provides a derivation of the derivative of

the positive least squares prediction operator P
q
pls with respect to a changing sensor topology S. This

derivative is not required in the final problem proposed in Eq. (4.23), but is required to solve some of

the proposed problems. It is also of importance with respect to the relationship between sparsity and

mean square error as discussed at the end of Sect. 5.2. Sect. B.3 provides an argument for the appli-

cability of linear functions for visual stimulus prediction. Sect. B.4 discusses the reason why linear

predictors P
q
pls converge to locations in the motor area which allow them to be particularly sparse.

B.1 Derivatives for the Proposed Sensorimotor Optimization Problem

This section provides the partial derivatives for problem (4.23) with respect to S, M, and P. To

facilitate derivation, a slight change in notation is introduced first. The linear combination of predic-

tion operators can be written using a matrix multiplication, if all nm predictors Pk are represented in
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vectorized form as the columns of a matrix P̄ like

c(4.23)
sm (S,M, P̄) =

∑

q

∥
∥
∥S

⊤
[

P̄M⊤qq
]

✷

Si
q
0 − i

q
1

∥
∥
∥

2
. (B.1)

Note that, when using this notation, a prediction operator Pq is first computed in vectorized form and

then reshaped into the usual matrix form. The reshape from a vector of length n2
s to the final matrix

Pq of size ns × ns is denoted using square brackets. For any matrix X, this operator is defined as

[vec (X)]
✷
= X. For a full specification, a reshape operation requires the declaration of the dimension

of the resulting matrix, however, since these dimensions are usually known in the given context, they

can be omitted.

To provide the reader with a compact notation, the final result will be written in a hierarchical

manner. Derivatives for S, M, and P are assembled by consecutively applying the chain rule. For this

purpose, Eq. (B.1) is first decomposed into subfunctions as in

c(4.23)
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. (B.2)

The chain rule to compose the final result from derivatives of subfunctions introduced above is

∂Z (Y (X))

∂vec (X)⊤
=

∂Z (Y )

∂vec (Y )⊤
· ∂Y (X)

∂vec (X)⊤
. (B.3)

Additionally, the following relationship is repeatedly applied to simplify intermediate results

vec (ABC)⊤ = vec (B)⊤
(

C⊗A⊤
)

. (B.4)

When applying the chain rule in the present context, the first multiplicand is always a vector, and thus,

this relationship given in Eq. (B.4) can always be used to eliminate Kroenecker products which appear

when deriving subfunctions of the cost function. In some cases the definition of the commutation

matrix Kmn defined as

vec
(

X⊤
)

= Kmn vec (X) (B.5)
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is used for matrices Xn×m. Note that, in the case where m = 1 or n = 1, the commutation ma-

trix equals the identity. To facilitate replication, each step of the derivation procedure provides page

number and index of applied rules according to [68].

Partial Derivative for S
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Partial Derivative for M
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Partial Derivative for P
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B.2 Derivatives for the Linear Positive Least Squares Predictor

Even though the solution for a positive least squares solution P
q
pls cannot be computed analytically,

its derivative with respect to S can still be found in closed form by applying the implicit function

theorem to the Karush-Kuhn-Tucker optimality conditions of the positive least squares optimization

problem [12].

Karush-Kuhn-Tucker Optimality Conditions. The prediction operator P
q
pls can be written as a

system of implicit functions (equations and conditions) g(Pq
pls;Γ,S) = 0 using the Karush-Kuhn-

Tucker Optimality Conditions (KKT), where in the case of the given optimization problem, P
q
pls and

Γ are both functions of S.
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With [68], using p. 178 (11) for the first summand and p. 177 (2) for the second and third summand,

the KKT can be written as:

∂ vec (L)

∂vec
(

P
q
pls

)⊤
= 2 ·Pq

pls

(

Si0i
⊤
0 S

⊤
)

− 2 · Si1i⊤0 S⊤ + Γ = 0

P
q
pls ≥ 0

Γ ≤ 0

P
q
pls ◦ Γ = 0 (B.25)

where “◦” is used to denote the Hadamard product.

Obtaining Γ from the KKT conditions is easy for the addressed problem, it simply is:

Γ = 2 ·
(
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)

. (B.26)

Applying the Implicit Function Theorem. According to the implicit function theorem the deriva-

tive of the two sets of functions P
q
pls and Γ with respect to the sensor topology S can be written using

the Jacobian Dg of a function g as:
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q
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With the notation
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︸ ︷︷ ︸

g2










, (B.28)
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the Jacobian Dg writes

Dg =











∂ vec(g1)

∂vec(S)⊤
∂ vec(g1)

∂vec(Pq
pls)

⊤

∂ vec(g1)

∂vec(Γ)⊤

∂ vec(g2)

∂vec(S)⊤
∂ vec(g2)

∂vec(Pq
pls)

⊤

∂ vec(g2)

∂vec(Γ)⊤

X Y

. (B.29)

To derive g1 [68] p. 190 (6) can be applied

∂ vec (g1)

∂vec (S)⊤
= 2 ·

(

Si0i
⊤
0 ⊗P

q
pls

)

+ 2 ·
(

Im ⊗P
q
plsSi0i

⊤
0

)

Kmn

− 2 ·
(

Si0i
⊤
1 ⊗ Im

)

− 2 ·
(

Im ⊗ Si1i
⊤
0

)

Kmn (B.30)

which with [68] p. 183 (3) yields

∂ vec (g1)

∂vec
(

P
q
pls

)⊤
= 2

(

Si0i
⊤
0 S

⊤
)

︸ ︷︷ ︸

E

⊗ Im
︸︷︷︸

F

(B.31)

∂ vec (g1)

∂vec (Γ)⊤
= I. (B.32)

To derive g2, [68] p. 185 (16) can be applied like

∂ vec (g2)

∂vec (S)⊤
= 0

∂ vec (g2)

∂vec
(

P
q
pls

)⊤
= diag (vec (Γ))
︸ ︷︷ ︸

d1

(B.33)

∂ vec (g2)

∂vec (Γ)⊤
= diag

(

vec
(

P
q
pls

))

︸ ︷︷ ︸

d2

. (B.34)

Note, in this particular situation, the sub-matrices
∂ vec(g2)

∂vec(Pq
pls)

⊤
and

∂ vec(g2)

∂vec(Γ)⊤
of X are not invertible as

they carry zeros in the diagonal due to P
q
pls being sparse. But on a closer look, it can be seen that it

is sufficient to invert
∂ vec(g1)

∂vec(S)⊤
to compute

∂ vec(Pq
pls)

∂vec(S)⊤
with Eq. (B.27). This is true because i) only the

upper part of Y⊤X is required, and ii) the lower part of X is 0, and therefore when multiplying Y⊤X

the top right corner of Y is multiplied by 0.
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To invert the upper left block of Y blockwise inversion can be used. If a matrix is devided in four

blocks A, B, C and D its inverted form can be written as




A B

C D





−1

=




A−1 +A−1B

(
D−CA−1B

)−1
CA−1 · · ·

· · · · · ·



 (B.35)

Taking into account Eqs. (B.31), (B.32), (B.33), and (B.34), the required part of Y−1 is

Y−1 =








(
E−1 ⊗ F−1

)
+
(
E−1 ⊗ F−1

)
·
[
d2 − d1

(
E−1 ⊗ F−1

)]−1 · d1 ·
(
E−1 ⊗ F−1

)

︸ ︷︷ ︸

Y−1

tl

· · ·

· · · · · ·







,

(B.36)

and due to i) and ii) from above:

∂ vec
(

P
q
pls

)

∂vec (S)⊤
= Y−1

tl

∂ vec (g1)

∂vec (S)⊤
. (B.37)

B.3 Proof of Linearity for Visual Stimulus Prediction

Here it is demonstrated that under the assumptions summarized at the end of Chap. 3, the class of

functions from which a stimulus predictor pq should be chosen can be restricted to the linear function

set. The argument relies on assumption (5) listed in Sect. 3.9, which requires that the actions executed

by the agent lead to perfectly predictable changes of a visual signal i on the sensor area Φs.

First it is noted that the observation function Eq. (3.1) is linear in i. Then, with perfectly pre-

dictable observations, equation Eq. (3.8) is perfectly satisfied, meaning that each receptor value satis-

fies

ox+1 = pq(ox) ⇐⇒











o1(q(i))

o2(q(i))
...

ons(q(i))











= pq





















o1(i)

o2(i)
...

ons(i)





















. (B.38)

Since q and oj are linear, given any two images i1 and i2, and any two scale factors, α and β, the
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previous satisfies











o1(q(αi1 + βi2))

o2(q(αi1 + βi2))
...

ons(q(αi1 + βi2))
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...
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α











o1(q(i1))
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...

ons(q(i1))











+ β
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o2(q(i2))
...

ons(q(i2))











= pq











α











o1(i1)

o2(i1)
...

ons(i1)











+ β











o1(i2)

o2(i2)
...

ons(i2)





















,

which, when equation (B.38) is replaced on the left hand side

αpq


























o1(i1)

o2(i1)
...

ons(i1)











︸ ︷︷ ︸

x
















+ βpq


























o1(i2)

o2(i2)
...

ons(i2)











︸ ︷︷ ︸

y
















= pq
















α











o1(i1)

o2(i1)
...

ons(i1)











︸ ︷︷ ︸

x

+β











o1(i2)

o2(i2)
...

ons(i2)











︸ ︷︷ ︸

y
















αpq(x) + βpq(y) = pq (αx+ βy) ,

proves linearity of pq whenever the action is perfectly predictable.

B.4 Sparsity of Prediction Operators.

It has been argued in Sect. 5.3 that when solving problem (4.15), particularly sparse matrices Pk

result. This paragraph provides a hint for why this is the case.

In problem (4.15), but also in problem (4.23), nm prediction matrices Pk are learned, such that

for linear combinations Pq =
∑nm

k mk(q)Pk the most accurate predictor results for every action

q executed by the agent. Considering the constraint Pk ≥ 0 and thinking of predictors Pk in a

vectorized form, all vec (Pk) are constrained to the positive orthant. In this case, linear combinations

can only assemble predictors Pq which lie within the area spanned by all vec (Pk). Thus, to cover

a bigger area in the positive orthant in order to assemble a bigger variety of predictors, matrices Pk

must be chosen such that they are closer to the boundaries of the positive orthant, which in turn means
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vec (Pa
3)

vec (Pa
1)

vec (Pa
2)

vec
(
Pb

2

)

vec
(
Pb

3

)

vec
(
Pb

1

)

Figure B.1: Visualization of a 3-dimensional positive orthant with two sets of prediction operators a
and b, shown in vectorized form vec (Pk). The first set a spans a smaller set of possible linear com-

binations Pq =
∑nm

k mk(q)Pk. The second set b spans a bigger set of possible linear combinations

Pq. The illustration shows that the set b, which can account for a bigger variety of prediction operators

Pq, is composed of Pk which are closer to the corners of the positive orthant, and thus sparser.

choosing sparser Pk. This argument further supports the empirical finding that requesting Pk ≥ 0 is

sufficient to drive predictors Pk towards particularly sparse solutions, see also point (4) in Sect. 4.2.

Fig. B.1 provides an illustration in 3-dimensional space of a positive orthant and two sets of pre-

dictors a = {vec (Pa
1) , vec (P

a
2) , vec (P

a
2)} and b = {vec

(
Pb

1

)
, vec

(
Pb

2

)
, vec

(
Pb

3

)
}, where the

first set a spans a smaller set of possible linear combinations, and the second set b spans a bigger set

of possible linear combinations. The nodes of set b are closer to the corners of the positive orthant and

thus sparser. 1

1Note that, for example, for the results presented in Fig. 5.7, the space visualized in Fig. B.1 is 252-dimensional, since

prediction matrices for the presented experiment are of size 25× 25 for a sensor with 25 receptors.
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