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Abstract Three-dimensional active shape models use a set

of annotated volumes to learn a shape model. Using unique

landmarks to define the surface models in the training set,

the shape model is able to learn the expected shape and

variation modes of the segmentation. This information is

then used during the segmentation process to impose shape

constraints. A relevant problem in which these models are

used is the segmentation of the left ventricle in 3D MRI

volumes. In this problem, the annotations correspond to a

set of contours that define the LV border at each volume

slice. However, each volume has a different number of

slices (thus, a different number of landmarks), which

makes model learning difficult. Furthermore, motion arti-

facts and the large distance between slices make interpo-

lation of voxel intensities a bad choice when applying the

learned model to a test volume. These two problems raise

the following questions: (1) how can we learn a shape

model from volumes with a variable number of slices? and

(2) how can we segment a test volume without interpolating

voxel intensities between slices? This paper provides an

answer to these questions by proposing a framework to

deal with the variable number of slices in the training set

and a resampling strategy for the test phase to segment the

left ventricle in cardiac MRI volumes with any number of

slices. The proposed method was evaluated on a public

database with 660 volumes of both healthy and diseased

patients, with promising results.
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1 Introduction

The 3D segmentation of the left ventricle (LV) in cardiac

MRI is part of the routine procedure of evaluating cardiac

function [20]. This task is typically performed by cardiol-

ogists by manually tracing the LV border in each slice of

the MRI volume, at two different time instances: the end-

systolic and the end-diastolic phases. This procedure con-

sumes valuable clinical time, which is why there has been a

lot of research in automatizing the LV segmentation.

However, several problems associated with cardiac MRI

image modality hamper the performance of these methods,

such as distinguishing the endocardium (inner border of the

LV) from papillary muscles and trabeculations [35].

A popular approach is to use shape model methods [35]

that learn the expected shape of the LV from a training set

of annotated images. This information is then used to

constrain the segmentation process and prevent unexpected

shape estimates. Among the shape model methods, the

most common is the Active Shape Model (ASM) [10],

which is able to capture the expected shape and its main

modes of deformation in a simple linear model. The ASM

methodology is based in a two-phase strategy: (1) a train-

ing phase, in which statistical information about the shape

is extracted from a training set to learn the shape model,

and (2) a test phase, in which the learned shape model is

applied to an unseen image by fitting the model to obser-

vation points extracted from that image.

The downside of ASM is that this method assumes the

border of the target object is described by a set of unique

points, typically called landmarks, such that each landmark
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is located at a specific 3D position on that object. Under

this assumption, it is possible to establish correspondences

between the landmarks in two different representations of

the object—a necessary condition to learn the shape model

in the training phase. In the context of cardiac MRI seg-

mentation, the assumption that the LV can be described by

unique landmarks is not valid for two reasons. First, there

are not enough anatomical landmarks within each slice of

the MRI volume to define the LV contour with specific

contour points [38]. Previous methods have all dealt with

this problem by simply resampling the slice contours in

arc-length starting at a specific point [2, 32]. Second, the

number of slices in the MRI volume varies from patient to

patient and along the cardiac cycle [40], which means that

the number of contours used to define the LV (one for each

slice) also varies. This leads to the following question: how

can we learn a shape model from volumes with a variable

number of slices? One of the focuses of this work is to

provide an answer to this question, by proposing a frame-

work to resample the LV models in the training set to a

predefined number of contours.

Once the training phase has been completed, and shape

model has been learned, another issue arises in the test

phase. The test volume may have a different number of

slices than the learned shape model, which means the slice

contours will not be located at the same positions as the

volume slices. One approach would be to interpolate the

test volume intensities to obtain new slices. However,

motion artifacts and the large distance between slices make

this approach a bad choice, meaning that another alterna-

tive is required. This leads to a second question: how can

we segment a test volume without interpolating voxel

intensities between slices? This work also addresses this

problem by proposing an alternative approach based on

resampling the learned shape model.

In summary, the contribution of this work is twofold: (1)

a framework to learn the shape model is proposed, which is

able to deal with the variable number of slices in the

training phase, and (2) in the test phase, a resampling

scheme is also proposed that allows the mean shape and the

main modes of deformation of the shape model to be

sampled at different positions along the LV axis. A pre-

liminary version of this work was published at IbPRIA

2015 [40], with the difference that, in this new version, a

comprehensive review of the state of the art is provided and

the experimental evaluation of the method has been

extended to include the segmentation of more than 600

additional cardiac MRI volumes.

The remaining of the paper is as follows. Section 2

presents a review of the state of the art in automatic cardiac

MRI segmentation strategies. Section 3 describes the pro-

posed methodology. Section 4 describes the experimental

setup used to evaluate the proposed method, and Sect. 5

shows the results obtained. Finally, Sect. 6 concludes the

paper with final remarks and future work.

2 State of the art

This section provides an overview of the main approaches

in medical image segmentation problems, with particular

focus on cardiac MRI segmentation.

The most common approaches can be subdivided into

the following categories: (1) bottom-up methods [11, 21,

41, 46], (2) active contours or deformable models [3, 16,

17, 22, 31, 39, 44], (3) active shape/appearance models

(ASM/AAM) [2, 10, 23, 30, 32, 37], database-guided

methods [6, 7, 15, 45, 47, 48], and atlas-based methods [24,

25, 28, 49, 50]. Each one of these approaches is different

in: (1) the prior knowledge used to constrain the problem,

(2) how they search for the target organ in the image, and

(3) the amount of a priori training required. This makes

them have intrinsic advantages and drawbacks, depending

on the application. A brief review of each approach is

presented next.

Bottom-up approaches [11, 21, 41, 46] mainly rely on

standard image processing techniques to detect the border

of the target organ. Among those techniques are edge

detection methods, morphological operators, and thresh-

olding. The main advantage of these methods is their low

computational complexity. However, they are sensitive to

initial conditions and to image quality.

Deformable models have been popularized by two dis-

tinct approaches: active contours [22] and level sets [27],

both of which were able to increase the robustness of the

segmentations while keeping the computational complexity

low. Nonetheless, the former approach was still sensitive to

the initialization, and the latter was sensitive to image

conditions. Later developments aimed at further improving

the segmentation results under difficult image conditions

by using more robust estimation methods [8, 31, 37, 44].

Alternatively, other methods proposed using shape and

texture priors [12, 13, 26, 33, 34]. However, the prior

knowledge embedded in the optimization function of these

approaches was often designed by hand or learned using a

small training set. This means that they were most likely

unable to capture all the information about the shape or

texture required to perform well in more diverse datasets,

particularly if both diseased and healthy patients were

analyzed.

The above issues led to the development of more

sophisticated supervised learning models, in which training

sets of annotated data were used to fully learn the shape

and appearance of the target object. One of the most

popular methods developed using this approach is the

Active Shape Model (ASM) [10]. The main idea behind
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ASMs is to describe the shape of an organ using a set of

unique landmarks and the corresponding statistics, i.e.,

mean shape and main modes of deformation. The shape

statistics are learned in a training phase, using an annotated

training set. Then, in the test phase, the learned shape

model is applied to a test image. The segmentation is

obtained by, first, extracting edge points using a boundary-

driven method, and then fitting the shape model to those

edge points. Since the performance of the boundary-driven

method greatly depends on image quality, later approaches

either started combining ASMs with models the appear-

ance of the target organ, namely using Active Appearance

Models (AAM) [5, 9, 29], or proposing robust estimation

methods [1, 36, 37]. Recently, 3D ASM/AAMs have been

developed to address volumetric segmentation of 3D

medical images [2, 18, 32]. However, the higher dimen-

sionality increases the difficulty of describing the organ

shape using unique landmarks and requires a larger dataset

to fully capture the 3D shape and texture variations.

Another main issue with ASM and AAM methods is that

they need the model to be initialized close to the desired

boundary.

On the other hand, database-guided methods are com-

pletely independent of an initial guess [6, 7, 15, 45, 47, 48].

Instead, these methods search the whole parameters space,

which guarantees reproducible results, but with the disad-

vantage of greatly increasing the computational complex-

ity. Furthermore, these methods also require a large

number of training data to estimate the model parameters

and are not robust to image conditions that are not repre-

sented in the training set.

Finally, atlas-based approaches rely on a labeled atlas of

a cardiac MRI to obtain the segmentation of the LV. The

atlas is typically generated from one manually segmented

volume or by combining information from multiple seg-

mented volumes [35]. Then, a new volume is segmented by

mapping its coordinate space to the atlas through a non-

rigid registration process [42]. This type of methods have

been widely used in brain-related applications, and there

are several software tools available for this purpose (e.g.,

SPM1 and FSL2). For cardiac MRI, there has also been

some research [24, 25, 28, 49, 50], because these methods

allow more flexible segmentations for shapes that are not

represented in the training set, compared to shape model

approaches. However, they do not impose anatomical

constraints on the transformation that maps the test volume

to the atlas, and the intensity values of the transformed

volume have to be computed through interpolation, which

should be avoided as is explained in Sect. 3.

The focus of this work is to propose a framework for

using an ASM to obtain the 3D segmentation of cardiac

MRI volumes. In particular, this framework is able to deal

with the problem of finding the unique landmarks in the LV

models in the training data and proposes a method of

resampling the learned shape model, i.e., the mean shape

and the main modes of deformation.

3 Proposed method

Consider the diagram shown in Fig. 1. During the train-

ing phase, the annotations of the MRI volumes in the

training set consist of manually drawn contours of the LV

border in each slice of the volume. These contours are

located at equally spaced positions along the LV axis

(perpendicularly to the volume slices) and define the LV

surface. However, the number of slices in the volumes is

different, which means the number of contours that define

the LV surface also varies (first stage in Fig. 1, under

training Phase). Consequently, it is not possible to

establish correspondences between the landmarks in dif-

ferent LV surfaces; thus, the shape model cannot be

learned using the standard ASM approach. To circumvent

this problem, a polynomial interpolation scheme is used

to describe the position of a surface landmark along the

LV axis (second stage in Fig. 1). This allows each

training shape to be resampled in a predefined number of

slices and guarantees that all of them have the same

landmarks. The outcome of the training phase is, thus, a

shape model with a previously specified number of slices

(third stage in Fig. 1).

When we proceed to the test phase, the variable

number of slices may cause another issue to arise. If the

test volume has a different number of slices than the

specified value used in the training phase (fifth stage in

Fig. 1), then the position of the shape model contours will

not match the position of the test volume slices. One

possible approach would be to interpolate the test volume

to determine the intensity values at the same positions as

the shape model contours. However, the low spatial res-

olution of MRI along the LV axis and motion artifacts

can cause significant displacements in the location of the

LV contour in consecutive slices. Therefore, the LV

border in the resulting interpolated image will often be

blurred, as shown by the example in Fig. 2. In these

cases, it is very difficult to accurately determine the

location of the LV border, which means interpolating

voxel intensities is not a good approach. An alternative

approach is proposed that consists in resampling the shape

model instead (going from the third to the forth stage in

Fig. 1). In this way, the new shape model contours will be

located at the same positions as the volume slices, and the

1 http://www.fil.ion.ucl.ac.uk/spm/.
2 http://fsl.fmrib.ox.ac.uk/fsl/.

Neural Comput & Applic

123

http://www.fil.ion.ucl.ac.uk/spm/
http://fsl.fmrib.ox.ac.uk/fsl/


segmentation can proceed as normal (last two stages in

Fig. 1).

3.1 Training phase

In order to learn the shape model, we resample the surface

models in the training set using an interpolated model of

landmarks’ position along the LV axis. Under the

assumption that, for any training volume v, the first (basal)

slice is located at the s1 ¼ 0 and the last (apical) slice at

sSv ¼ 1, the axial position of the slices is given by

sm ¼ m� 1

Sv � 1
; ð1Þ

where m ¼ 1; . . .; Sv, and Sv is the number of slices in vol-

ume v. Assuming that the LV contours have all been pre-

viously sampled, in arc-length, with N points, we define

xvðsmÞ 2 R2N�1 as the LV contour on themth slice, such that

xvðsmÞ ¼ x1
>ðsmÞ; x2

>ðsmÞ; . . .; xN
>ðsmÞ

h i>
; ð2Þ

where xiðsmÞ ¼ xi1; x
i
2

� �>2 R2�1 is the position of the ith

point. We also assume that there is a correspondence

between the ith point, xiðsmÞ, and the ith point of another

contour, xiðsm0 Þ, m0 6¼ m, i.e., they represent the same

landmark but in different slices. We wish to model the slice

contour as a function of the axial position, bxvðsÞ, for any
s 2 0; 1½ � in order to resample the surface models in the

training set. The next section describes the proposed

methodology.

3.1.1 Interpolation methodology

In this work, the position of the contour points in a specific

volume v, bxvðsÞ, is interpolated by using a combination of

K polynomial basis functions, wðsÞ 2 RK�1,

bxvðsÞ ¼ CvwðsÞ; ð3Þ

where Cv 2 R2N�K is the coefficient matrix associated to

volume v, defined by

Cv ¼

c11
c12
..
.

cN1
cN2

2
666664

3
777775
; ð4Þ

where cij 2 R1�K is the line of Cv associated with the jth

coordinate of the ith contour point. The coefficient matrix,

Cv, is specific of volume v and does not depend on the slice

position s. On the other hand, the polynomial basis func-

tions, wðsÞ ¼ 1; s; . . .; sK�1½ �>, depend only on the slice

position, s.

This representation provides an estimate of the LV

contour for any position s 2 0; 1½ �, i.e., it is a continuous

representation of the contour points along the LV axis, as

shown in Fig. 3, that allows the surface models in the

training set to be resampled with a predefined number of

slice contours. However, first, the coefficient matrices Cv

have to be estimated for each volume using the corre-

sponding annotations.

TRAINING PHASE

Training set with
variable number of
slices (7, 4 and 5)

Continuous models
resampled with 6 

slices

Learned shape
model with 6 slices

TEST PHASE

Segmentation of
test volume

Test volume 
with 4 slices

Interpolated shape
model with 4 slices

Fig. 1 Diagram of the proposed

approach: (1) training phase—

learning an ASM from volumes

with a variable number of slices,

and (2) test phase—applying the

learned model to a test volume

Fig. 2 Example of an interpolated image, at s ¼ s4þs5
2

, obtained by linear interpolation between two consecutive slices, s4 and s5
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Let Xi
v 2 R2�Sv denote the known position (trajectory)

of the ith point in the contour along the axial position s,

Xi
v ¼

Xi
1v

Xi
2v

2
4

3
5 ¼

xi1ðs1Þ; . . .; xi1ðsSvÞ

xi2ðs1Þ; . . .; xi2ðsSvÞ

2
4

3
5

¼ xiðs1Þ; . . .; xiðsSvÞ
� �

:

ð5Þ

The coefficient line cij 2 R1�K is associated with the tra-

jectory points Xi
jv and is computed by finding

cij ¼ argmin
c

kXi
jv

> �Wc>k2 þ ckck2; ð6Þ

where W ¼ wðs1Þ; . . .;wðsSvÞ½ �>2 RSv�K is the concatena-

tion of the polynomial basis functions wðsmÞ for

m ¼ 1. . .; Sv, and c is a regularization constant. This is a

ridge regression formulation [19], which has the following

solution

ci>j ¼ W>Wþ cI
� ��1

W>Xi>
jv ; ð7Þ

where I is the K � K identity matrix. The regularization

term constrains the solution and allows the estimation of cij
for any value of K, which differs from the ordinary least

squares approach which only allows solutions for K � Sv.

The solution (7) can be computed for all the lines in Cv

simultaneously, leading to

C>
v ¼ W>Wþ cI

� ��1
W>X>

v ; ð8Þ

where Xv ¼ xvðs1Þ; . . .; xvðsSvÞ½ � 2 R2N�Sv .

After computing Cv for each volume v in the train-

ing set, the corresponding surface models are sampled

using (3) at the positions sm ¼ m�1
Sr�1

, m ¼ 1; . . .; Sr, where

Sr is the desired number of slices. This guarantees that

all the surface models have the same number of

landmarks.

3.1.2 Learning the shape statistics

Once all the surface models in the training set have

been resampled, it is possible to learn a shape model

(from the second to the third stage in Fig. 1). Following

the standard ASM methodology [10], we assume any

surface model results from deforming the mean shape

and applying a transformation associated with the pose

of the LV. Therefore, before computing the shape

statistics, all the surface models have to be aligned.

This is done by finding, for each surface, a global

(pose) transformation Th that minimizes the following

sum of squared errors

EðhÞ ¼
XSr

m¼1

XN
i¼1

Th bxi m� 1

Sr � 1

� �� �
� xiref

m� 1

Sr � 1

� �����
����
2

;

ð9Þ

where bxi m�1
Sr�1

� �
is the ith point in the slice contour located at

the position m�1
Sr�1

, xiref m�1
Sr�1

� �
is the corresponding point in a

reference surface model (for instance, one of the training

surface models randomly selected) located at the same

axial position, and Thð�Þ is a 2D similarity transformation

with parameters h ¼ fa; tg, applied to all slices, such that

Th bxiðsÞ� �
¼ bX iðsÞaþ t; ð10Þ

where

bX iðsÞ ¼ bxi1ðsÞ � bxi2ðsÞ
bxi2ðsÞ bxi1ðsÞ

	 

; a ¼ a1

a2

	 

; t ¼ t1

t2

	 

:

We are only interested in the translation, rotation and

scaling within the axial (slice) plane to guarantee that the

slice contours remain orthogonal to the LV axis. The

minimization of (9) leads to a standard least squares

solution similar to [10].

After the training surfaces have been aligned, the mean

shape of each slice, xðsÞ, is computed as the average slice

contour over all the volumes in the training set. The first

L main modes of deformation, DðsÞ ¼ d1ðsÞ; . . .; dLðsÞ½ � 2
R2N�L, and the corresponding eigenvalues, klðsÞ, are

obtained by principal component analysis (PCA), where

dlðsÞ 2 R2N�1 is the lth main mode of deformation at the

axial position s, and L� 2N is the number of main defor-

mation modes that are used.

Fig. 3 Continuous representation of the surface model using a

polynomial interpolation of the position of the contour points along

the LV axis. The red lines represent the slice contours, the green dots

are the contour points, and the blue lines are the interpolated position

along the LV axis (trajectories) (color figure online)
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3.2 Test phase

The shape model learned using the method described in the

previous sections is used to segment other cardiac MR

volumes (test volumes). As mentioned above, the number

of slices in a test volume, which we denote as St, may not

be the same as the learned shape model, Sr 6¼ St.

Since resampling volume intensities is not a good

approach (recall Sect. 3), we propose a different approach

that consists in resampling the shape model (mean shape

and deformation modes) to have the same number of slices

as the test volume (from the third to the fourth stage in 1).

The following subsections describe: (1) the interpolation of

the shape model and (2) the estimation of the model

parameters that segment the LV in a test volume.

3.2.1 Resampling the learned shape model

The mean shape can be easily interpolated using the

methodology described in Sect. 3.1. We compute the cor-

responding coefficient matrix, C, using

C
> ¼ W>Wþ cI

� ��1
W>X

>
; ð11Þ

which is similar to (8), except the trajectories used in this

case correspond to the trajectories of the points in the mean

contour, X ¼ xðs1Þ; . . .; xðsSvÞ½ �. Then, the mean shape is

resampled using (3) at St slices, located at s ¼ m�1
St�1

, with

m ¼ 1; . . .; St. Thus, a mean shape with St equally spaced

slice contours is obtained.

Regarding the interpolation of the main modes of

deformation, applying the previous methodology will

likely lead to unwanted results. For instance, if we want to

determine the first mode of deformation in a specific slice

position, s, that does not coincide with the positions of the

learned shape model, we cannot simply interpolate using

the known first modes in the other positions. The reason is

that the deformation modes are learned independently for

each slice, and then, they are sorted according to the value

of the corresponding eigenvalues. Therefore, it is not

possible to guarantee that the first mode describes the same

deformation in all the slices.

In this work, we use a simpler approach that consists in

finding the correspondences between deformation modes in

consecutive slices and use the resulting pairs of deformation

modes to perform a linear interpolation. Consider a slice

position, s 2 sm; smþ1½ �, located between slices sm and smþ1.

The deformation modes at this slice, DðsÞ ¼ d1ðsÞ; . . .;½
dLðsÞ�, are determined using linear interpolation between

corresponding deformation modes in sm and smþ1. Let a 2
0; 1½ � be the relative distance of slice s to sm,

a ¼ s� sm

smþ1 � sm
: ð12Þ

Without loss of generality, we assume that sm is the closest

slice (i.e., a � 0:5). The lth deformation mode and corre-

sponding eigenvalue are given by

dlðsÞ ¼ ð1� aÞdlðsmÞ þ adFðlÞðsmþ1Þ ð13Þ

klðsÞ ¼ ð1� aÞklðsmÞ þ akFðlÞðsmþ1Þ; ð14Þ

where Fð�Þ maps the correspondences between the defor-

mation modes in sm to smþ1. This mapping is achieved by

searching for the deformation mode in the ðmþ 1Þth slice

that is most similar to dlðsmÞ, according to the Euclidean

distance,

FðlÞ ¼ argmin
n

dlðsmÞ � dnðsmþ1Þk k: ð15Þ

The interpolation process is repeated for all the deforma-

tion modes at all the required slices, i.e., for l ¼ 1; . . .; L

and for s ¼ m�1
St�1

, with m ¼ 1; . . .; St.

Once all the deformation modes and eigenvalues have

been computed, we define the LV surface as

xðsÞ ¼ Th xðsÞ þ DðsÞbðsÞð Þ; ð16Þ

where Thð�Þ is defined in (10). This means that the seg-

mentation of the test volume is obtained by finding the

parameters for the pose transformation, h ¼ fa; tg, and the

deformation coefficients, bðsÞ, that better defines the LV

border. This final step is addressed in the following section.

3.2.2 Segmentation of a test volume

Given the test volume, the segmentation of the LV is

obtained by estimating the pose, defined by transformation

Th with parameters h ¼ fa; tg, and deformation coefficients

of the shape model, bðsÞ. However, automatically obtaining

these parameters is difficult due to the presence of other

structures in the images, such as the epicardium (outer

border of the LV), papillary muscles and trabeculations

[35], that should be considered as noise or outliers.

In this work, the estimation of the shapemodel parameters

in the test phase is achieved by using a robust estimation

method called EM-RASM [37]. The algorithm iteratively

updates the model parameters as shown in Fig. 4. First, an

initial guess of the pose parameters is provided—a rough

location of the LV center in the basal slice (first block in

Fig. 4).We assume that the initial values for the deformation

coefficients are bðsÞ ¼ 0, i.e., that the mean shape is a good

initialization. With these parameters, we can determine the

location of the slice contours. Then, observation points,

ideally located at LV border, are detected in the vicinity of

the model (second block in Fig. 4). These observation points

are searched in each slice of the volume, along lines

orthogonal to the contour model, by applying an edge

detector (see [4] Sect. 5.2 for details).

Neural Comput & Applic

123



The approach used to extract the observation points

often leads to the detection of observation points that do

not belong to the LV border (outliers), e.g., on intensity

transitions associated with the epicardium or papillary

muscles. The EM-RASM is able to handle these outliers by

assuming that each observation point may be an outlier or a

valid point. It assigns each observation point a weight

based on the probability that it belongs to the LV border.

The weights determine their influence in the estimation of

the model parameters, h and bðsÞ. Since outliers typically

get lower weights, their influence in the estimation proce-

dure is reduced and the results are more robust. The final

update equations correspond to the weighted least squares

solution to the problem of minimizing the distance between

each observation point and the corresponding model point

(see [37] for an in-depth description), computed over all

the slice contours simultaneously (third block in Fig. 4).

Once the parameters have been updated, the new posi-

tion of the slice contours is computed and new observation

points are extracted from the volume. This process is

repeated until no significant changes in the parameters

occur. The final position of the slice contours determines

the segmentation of the LV in the MRI volume (fourth

block in Fig. 4).

4 Experimental setup

The proposed method was evaluated on the publicly avail-

able dataset [2], containing 33 sequences of 3D cardiac MRI

short axis volumes. Each sequence covers one cardiac cycle

with 20 volumes of a different patient, whose age ranges

between 8 and 15 years old. Out of the 33 patients, only two

are healthy and two have unknown diagnosis, which means

most of them are diseased patients. However, not all the

diseases are related to the LV (e.g., enlarged right ventri-

cle). Manually drawn endocardial contour are also provided

and will be used to evaluate the proposed algorithm.

For each test sequence, the shape model was trained

using the remaining 32 sequences, i.e., the results were

obtained in a leave-one-sequence-out scheme. The slice

contours in the training set were resampled, in arc-length,

with N ¼ 40 points, and the shape model was learned with

Sr ¼ 10 slices. Empirical experiments (see Sect. 5.1)

showed that the best parameters for the polynomial inter-

polation were K ¼ 8 and c ¼ 10�4. The number of

deformation modes used was L ¼ 10, which corresponded

to over 95 % of the variability in the training set.

In the test phase, the segmentations obtained were

quantitatively evaluated using the average Dice similarity

coefficient [14], dDice, and the average minimum distance

between the shape model points and the ground truth, dAV,

measured in mm. These metrics are computed as follows.

Let ex ¼ fexðs1Þ; . . .; exðsStÞg and g ¼ fgðs1Þ; . . .; gðsStÞg
denote the set of contours that define the segmentation

obtained using the proposed method and the ground truth,

respectively, of a test volume with St slices. Also, let RðexÞ
be the 3D region delimited by the contours in ex and RðgÞ
be the 3D region delimited by the ground truth segmenta-

tion. The Dice similarity coefficient is given by

dDice
�
RðexÞ;RðgÞ� ¼ 2

V
�
RðexÞ \ RðgÞ

�

V
�
RðexÞ�þ V

�
RðgÞ

� ; ð17Þ

where Vð�Þ denotes the volume of a region, and \ denotes

the intersection. A Dice coefficient of 1 means there is a

perfect match between the two segmentations, and a value

of 0 means the corresponding regions do not even overlap.

Regarding the average minimum distance metric, the

smallest distance between the ground truth and the ith

point of the shape model on the mth slice, exiðsmÞ, is defined
as

d
�exiðsmÞ; gðsmÞ

�
¼ min

j

��jgjðsmÞ � exi��j2; ð18Þ

where gðsmÞj is the jth point of the ground truth segmen-

tation of the mth slice. Thus, the average minimum distance

between the two segmentations is

dAV
�ex; g� ¼ 1

NSt

XSt

m¼1

XN
i¼1

d
�exiðsmÞ; gðsmÞ

�
: ð19Þ

5 Results

In this section, statistical results are presented and dis-

cussed for three scenarios: (1) sensitivity of the proposed

method to parameter variation, namely the parameters

associated with the resampling scheme used in the training

set to normalize the number of slices in each volume; (2)

sensitivity of the EM-RASM to the model initialization in a

synthetic case; and (3) the segmentation of the left ven-

tricle in cardiac MRI.

Initial Guess of the 
Pose Parameters

Detection of 
Observation Points 

(LV border)

Update of the 
Parameters 

and 
LV Segmentation

Fig. 4 EM-RASM: estimation

of the model parameters that

segment the test volume
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5.1 Sensitivity to parameter variation

The performance of the resampling scheme described in

Sect. 3.1 depends on two main parameters: (1) the number

of polynomial basis functions, K, and (2) the regularization

constant, c, used to estimate the coefficient matrix in (8).

The first parameter is related to the degree of the polyno-

mial used to model the trajectory of a contour point along

the slices. There are two possible scenarios: (1) K is

smaller than the number of slices in the volume, Sv, in

which case the polynomial is not able to accurately

describe the trajectories of the contour points, i.e., the

interpolated model is an approximation of those trajecto-

ries, and (2) K � Sv, in which case the accuracy of the

interpolated model is only limited by the regularization

term. On the other hand, the regularization parameter, c, is
responsible for keeping the entries in the coefficient matrix

small, which keeps the trajectories estimates smooth.

Figure 5 shows the dAV metric between the original

contours in the training set and the corresponding

interpolated contours (using the same number of slices),

for different values of K ¼ f2; 4; 6; 8; 10; 12g and

c ¼ f0; 10�4; 10�3; 10�2; 10�1g. The figure shows that

higher values of K lead to better results. It is possible to see

that for each curve, there is a value of K beyond which the

accuracy improvement is not significant. As for the regu-

larization constant, it is possible to see that smaller values

lead to better results. However, it is important to note that

for c ¼ 0, the computation of the coefficient matrix has

Fig. 5 Sensitivity to parameter variation. Each line shows the dAV
metric between the original contours and the interpolated ones for

different values of K and c

Fig. 6 Synthetic example used to evaluate the sensitivity of the

algorithm to initialization
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initialization using Dice

coefficient. Each plot shows the

performance of the algorithm

(ML) for different initial values

of the transformation parameter:

t1, t2, scale, and rotation

Neural Comput & Applic

123



numerical issues for K[ Sv, because W>W becomes non-

invertible. In such cases, the dAV was not computed and the

volume was removed from the results. Since Sv � 10 for all

the volumes in the dataset, it was not possible to compute

any coefficient matrix for K ¼ 12. Based on these results,

the choice of parameter values to use in the following

sections was K ¼ 10 and c ¼ 10�4.

5.2 Sensitivity to initialization

The synthetic example shown in Fig. 6 was used to

evaluate the sensitivity of the algorithm to the initializa-

tion. The example consists of a stack of 5 slices with the

same gray-scale image depicting a white rectangle in a

gray and black background. The several initial values for

the transformation parameters h (which define the rota-

tion, scaling, and translation of the shape model) were

tested and, for each case, the Dice coefficient of the final

segmentation was computed. Figure 7 shows the results

obtained of varying each transformation parameter sepa-

rately. In this example, the parameters that lead to the

correct segmentation are t1 ¼ t2 ¼ 0, a scale of 1 and a

rotation of 0 degrees. It is possible to see that, for each

plot, there is a wide plateau within which the algorithm is

able to converge to the correct solution. This shows that

the algorithm is robust to the initialization conditions and

that it is able to obtain the expected segmentation unless

the initial parameter estimates are very far from the cor-

rect values.

Fig. 8 Examples of the

obtained segmentations. Each

line shows a different volume

and each row a different slice,

starting at the basal slice (left)

and ending at the apex (right).

The red and dashed green lines

are the output of the proposed

algorithm and the ground truth,

respectively (color

figure online)
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5.3 Left ventricle segmentation

This subsection presents the results of the segmentations

obtained using the proposed algorithm in the LV segmen-

tation problem. Comparative results are also presented, to

evaluate the benefits and disadvantages of the proposed

method against its two state-of-the-art counterparts: the

standard ASM approach and the Active Appearance Model

(AAM) approach.

Figure 8 shows examples of the segmentations obtained

using the proposed method. In most cases, the algorithm is

able to accurately determine the location of the LV and

disregards papillary muscles and other misleading struc-

tures. This is due to the robust parameter estimation pro-

vided by the EM-RASM algorithm, which assigns low

weights to these outliers. However, the model has diffi-

culties in dealing with the LV border whenever the volume

has misaligned slices (e.g., see bottom row of Fig. 8), as

these random variations are not captured by shape model

(i.e., they cannot be represented using the available

deformation modes). Furthermore, the proposed method

does not always provide accurate segmentations in the

apical slices, due to: (1) the lack of contrast between the

intensity inside and outside the LV (first and second rows

in Fig. 8) and (2) the variability in both size and position of

the LV contour in these slices (fourth row in Fig. 8). Since

in this work, the detection of the LV border is based on

edge detection, obtaining accurate segmentation of apical

slices is a challenging task.

Figure 9 shows a quantitative evaluation of the proposed

algorithm (bottom row) for 60 volumes with discriminative

results for each slice. It is possible to see that the algorithm

achieves good segmentations for the majority of the vol-

ume slices. However, some of them are not quite accurate,

particularly in the apical slices. This is due to the already

mentioned problems: (1) inability to fit misaligned slices

and (2) difficulty in finding evidence of the LV border in

the apical slices.

These results are compared with two other approaches:

(1) the standard ASM, proposed in [10], and (2) the AAM

methodology proposed in [43]. Figure 9 shows that the

former is not always able to problem the correct segmen-

tations, mainly due to its inability to distinguish the LV

border from other anatomical structures in the image, such

as papillary muscles. Furthermore, it also struggles with the

correct segmentation of the LV in the apical slices, for the

same reasons as the proposed method. On the other hand,

the AAM methodology provides more reliable results for

the apical slices, since it uses texture information instead of

an edge detector. However, the accuracy of the AAM in the

remaining slices is more variable.

Statistical results for the overall performance are

depicted in Table 1. It is possible to see that the proposed

method outperforms the standard ASM and achieves sim-

ilar result to the AAM methodology. A slightly lower

performance is expected since the AAM approach uses

texture information to guide the segmentation, which is a

significant advantage over the edge detector used in this

work.

6 Conclusions

This paper proposes a 3D Active Shape Model (ASM) for

the segmentation of the left ventricle in cardiac MRI.

Although ASM-based approaches are common in medical

image segmentation problems, this approach requires the

number of slices in each training surface models to be

normalized first.

A
SM

EM
-R

A
SM

A
A

M

1.0

0.9

0.8

0.7

0.6

0.5

Fig. 9 Quantitative evaluation of 60 volumes of the dataset using the

Dice coefficient. Each column corresponds to one volume, and each

pixel in the columns is associated with a volume slice. The colors are

defined by the colorbar (greener is better) (color figure online)

Table 1 Statistical results of the overall performance, for the 660

volumes in the dataset [2], using the proposed method and compar-

ison with: (1) the standard ASM [10] and (2) the AAM methodology

proposed in [43]

ASM [10] AAM [43] EM-RASM

Dice (%) 73.1 81.7 79.4

(13.1) (3.6) (8.1)

AV (mm) 4.7 2.9 3.5

(3.0) (0.8) (1.4)

Each table entry shows the mean (above) and standard deviation

(below)
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We propose to deal with this issue by using a continuous

representation for the surface model, which allows the slice

contour in any position to be obtained. This approach is

used to resample all the surface models in the training set,

thus establishing a correspondence between the landmarks

(surface points) in different models.

The same problem arises in the test phase, where the

learned shape model may have to be applied to a test

volume with a different number of slices. The proposed

approach interpolates the learned model, i.e., the mean

shape and the main modes of deformation, to avoid inter-

polating intensity values between the volume slices. Then,

the segmentation is obtained by estimating the shape model

parameters using the EM-RASM technique [37], which

increases the robustness in the presence of outliers.

The results show that the proposed method achieves

good segmentation results, outperforming the standard

ASM approach and achieving similar results to the AAM

methodology proposed in [43].

Future work should focus on improving the proposed

methodology by: (1) allowing local translations of each slice

contour, to account for possible misalignments between con-

secutive slices, and (2) using a more robust method to extract

observation points from the volume slices, such as using texture

information (similarly to the AAM), in order to improve the

accuracy in the slices where the LV border is harder to detect.
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