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Universidade de Lisboa, Portugal

Jorge S. Marques∗

Institute for Systems and Robotics
Instituto Superior Técnico
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ABSTRACT

A learning system that is able to predict the degradation state
of impact craters on optical images is presented in this paper.
It is based on the extraction of visual features along the crater
rim together with the decision with a SVM classifier. The
algorithm achieved a sensitivity of 89% and a specificity of
96% (preserved vs non-preserved) in a dataset of annotated
craters from Mars.

Index Terms— Impact craters, degradation measure, op-
tical images, learning system.

1. INTRODUCTION

Impact craters are the most common structure on planetary
surfaces. They have been highly studied and their number
and density allow estimating the age of a surface. This led to
the creation of complete catalogues up to a given dimension
with the location of each individual crater. Initially, these cat-
alogues were built from manual identification (e.g., Barlow
and Robbins catalogues on Mars), but more recently there
has been an effort to incorporate the results from automated
detection algorithms and many contributions have been pro-
posed [1, 2, 3, 4, 5].

Although craters density provides useful information
about the age of planetary surfaces, their deformation gives
important additional cues about the degree of erosion ex-
perienced within specific geological units (see examples in
Fig. 1) and also how those degradation rates changed with
time [6]. Unfortunately, there are no methods addressing this
issue directly on optical imagery, nor objective criteria for
a quantitative characterization of a crater degradation stage.
This paper, intends to propose a first solution to characterize
the preservation stage of craters based on the visual analysis
of the crater rim using pattern recognition.

Section 2 discusses the problem and provides a visual
preservation criterion based on the opinion of experts. Sec-
tion 3 describes an algorithm to delineate the crater rim from
optical images. Section 4 addresses the extraction of visual
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Fig. 1. Examples of Martian craters with different degrees
of degradation [image credits: NASA/JPL/University of Ari-
zona].

features along the rim and the learning algorithm used to pre-
dict the expert evaluations. Sections 5 and 6 describe the ex-
perimental setup used to evaluate the proposed method and
presents the experimental results.

2. PROBLEM STATEMENT

The quantification of the state of preservation of impact
craters is an important topic of research. Several efforts have
been developed using topographic information extracted from
digital elevation models (DEM) [7, 8]. These works sample
the crater along radial directions and characterize the shape
of the elevation profiles, e.g. trying to estimate the steepness
of the walls, the degree of completeness of the rim, or the
amount of infilling of the crater with sediments.

These approaches require the use of a DEM with very
high resolution which unfortunately only exist for limited re-
gions of planetary bodies. Therefore, this suggests the use of
optical images which are much more wide spread with higher
spatial resolution. For instance, the Context Camera (CTX)
currently operating on Mars Reconnaissance Orbiter (MRO)
provides a near complete coverage (> 90%) of the red planet
with images at 6 m/pixel resolution, while the global eleva-
tion coverage provided by the Mars Orbiter Laser Altimeter
(MOLA) is 100s of meters. One of the few attempts in this
direction is the work of Ambrose [9] for the Moon, which
proposes 7 qualitative criteria (rays of eject, rim, fractured
floor, flooded interior, major post-impacts, ejecta from other
craters, and albedo) to build a quantitative degradation index.



Fig. 2. Degradation code assignment performed by expert:
preserved (green), degraded (yellow) and highly degraded
(red) [image credits: NASA/JPL/University of Arizona].

The analysis of each of these criteria must be performed by a
specialist and has to be repeated for each new crater.

In order to use a degradation index in large scales we need
to develop an automated procedure. In this paper, we define a
degradation criterion to be applied by an expert and propose
an algorithm that learns to predict the value of the criterion in
an automated way, solely based on the analysis of the crater
rim.

Given the image of a crater with known center and ra-
dius, we divide the rim into 8 sectors with equal amplitude
and assign a ternary label (number or color) to each sector,
depending on its degradation status:

0. (green) preserved rim: pristine rim with sharp and non
deformed edges;

1. (yellow) degraded rim: smoothed edges or moderate
amount of deformation;

2. (red) highly degraded: very smoothed or absent rim.

Fig. 2 shows two examples and the respective color codes
for each of the 8 sectors of analysis, assigned by an expert.
The first crater is well preserved and the sectors are of types
0 and 1, while the second crater is more degraded and the
sectors receive labels of types 1 and 2. Of course this labeling
operation performed by an expert involves some subjectivity.

We now wish to automate this procedure by using a learn-
ing algorithm, able to extract information about each crater
sector and classify each sector in one of the three labels. The
approach proposed in this paper is based on the delineation of
the crater rim, followed by the analysis of its contour. This
will be addressed in the next two sections.

Fig. 3. Crater delineation: original image (up-left), edge map
in polar coordinates (up-right), optimal contour in polar coor-
dinates (bottom-left) and final contour (bottom-right).

3. CRATER DELINEATION

The delineation of the crater rim poses several challenging
difficulties since the edge information is usually very noisy
and incomplete. Therefore, we use a dedicated algorithm re-
cently developed by ourselves [10] to make this delineation,
which combines intensity information extracted from the im-
age with the geometric constraints imposed via Dynamic Pro-
gramming.

The algorithm involves the following steps (see Fig. 3).
First, the image of the crater is converted to polar coordinates,
assuming that the crater center is known a-priori (which is the
common situation). Then, an edge map is computed in polar
coordinates using the vertical derivative (along the crater ra-
dial directions). The edge map is obtained using the logistic
function

e(r, θ) =
2

1 + esg(r,θ)
,

which maps the vertical gradient intensity g ∈ [0,+∞[ into
an edge confidence e ∈ [0, 1[.

Then, the crater contour is extracted by the minimization
of an energy function using Dynamic Programming in polar
coordinates. Please note that a perfect circle would corre-
spond to a constant path in polar coordinates. The final step
involves the conversion of the contour to Cartesian coordi-
nates.

The algorithm is robust and performs well even in the case
on very degraded craters. For additional details and validation
please consult [10].



Fig. 4. Scatter plots of features 5, 6, 7, 8 for each of the three
degradation types.

4. FEATURE EXTRACTION

The edge map contains important information about the crater
(see Fig 3). A preserved crater should have sharp edges which
correspond to deep valleys in the edge map. The extracted
contour (in polar coordinates) should travel along the deep
valleys and avoid high intensity regions.

The intensity profile of the edge map along the contour,
p(θ), is therefore a rich source of information. We divide the
edge map into 8 sections (vertical strips) and for each section
we characterize the intensity profile using 6 percentiles, asso-
ciated to percentages p = 20k%, k = 0, . . . , 5 and using an
histogram with 11 bins

h(k) =
∑
θ∈Strip

bk(p(θ)) k = 0, . . . , 10

where bk(p) denotes the characteristic function of bin k.

The shape of the contour is also taken into account. The
delineated contour is estimated assuming that θ and r are mul-
tiple of ∆θ = 1◦, and ∆r. Furthermore, it is assumed that the
transition between consecutive values of r(θ) can take three
possible values: 0,±∆r. We characterize all pairs of con-
secutive transitions and compute a co-occurrence matrix of
all pairs of transitions (9 hypothesis). This leads to a feature
vector with 9 features.

We have also measured the differences between the con-
tour and an arc of circle in each sector, to obtain local geo-
metric deformations. To be more specific, we compared the
contour in polar coordinates with a constant in each sector
and measured the area above the constant.

These four sets of features described above lead to a fea-
ture vector of 27 features associated to each crater sector.
Fig. 4 displays the scatter plots of some of these features
showing that there is a clear distinction between preserved
(green) and highly degraded (red) craters. The degraded ones
(yellow) lie in the middle.
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Table 1. Confusion matrix of the ternary decision system.

5. EXPERIMENTAL SETUP

The system was evaluated using a database of 60 Martian
craters extracted from image ESP-011491-2090 acquired by
the High Resolution Imaging Science Experiment (HiRISE).
Each crater was divided into 8 sectors and each sector was
labeled by an expert into one of the three degradation classes.

The algorithm was tested using a leave one crater out ap-
proach. This means that we have used the data from one crater
(8 sectors) for testing and all the others for training the classi-
fiers. This procedure is repeated until all craters are used for
testing. In the training phase, we have first selected a subset of
Nf features using the correlation index between each feature
and the decision. Then, we trained two classifiers. The first
classifier discriminates preserved from non-preserved sectors
(class 0 vs the other two). The second classifier was trained
to discriminate between degraded and very degraded sectors.
Both classifiers were implemented using a Support Vector
Machine (SVM) with Gaussian kernel. The output of these
tests were evaluated using standard statistical criteria: sensi-
tivity and specificity.

6. RESULTS

Fig. 5 shows the output of the proposed method and that of
the expert labeling, assumed as ground truth. There is a good
general agreement. Concerning the statistical evaluation, the
proposed algorithm achieved a sensitivity of 89% and a speci-
ficity of 96% in the first decision (preserved vs non-preserved
sectors) and a sensitivity of 75% and a specificity of 80% in
the second decision (degraded vs very degraded). It is con-
cluded that the second decision is more difficult than the first
one. Table 1 shows the confusion matrix of the ternary clas-
sification system. There was no confusion between preserved
and highly preserved sectors. Only the middle class is some-
times confused with one of the others.

7. CONCLUSIONS

This paper presents a first attempt to quantify the degradation
state of craters from optical images. We propose a system
that extracts information from the crater rim and produces an
automated decision concerning the degree of preservation of
each sector. The results are encouraging and suggest further
improvements.



The next steps may include the testing of other image fea-
tures and an improvement of the database by including addi-
tional examples and more annotators, in order to assess the
performance of human annotators in this task.

It is also in our plans to confront this approach with those
that use elevation information that permits a more reliable de-
cision although constrained by the less amount of high reso-
lution DEM data available.
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Fig. 5. Examples: original image (left); manual (center) and
automated (right) label [image credits: NASA/JPL/University
of Arizona].


