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Abstract

The training and the evaluation of learning algorithms depend critically on the quality of data samples. We denote as pure the
samples that identify clearly and without any ambiguity the class of objects of interest. For instance, in pedestrian detection
algorithms, we consider as pure samples the ones containing persons who are fully visible and are imaged at a good resolution
(larger than the detector window in size). The exclusive use of pure samples entails two kinds of problems. In training, it biases
the detector to neglect slightly occluded and small sized samples, (which we denote as impure), thus reducing its detection rate
in a real world application. In testing, it leads to the unfair evaluation and comparison of different detectors since slightly impure
samples, when detected, can be accounted for as false positives. In this paper we study how a sensible use of impure samples
can benefit both the training and the evaluation of pedestrian detection algorithms. We improve the labelling of one of the most
widely used pedestrian data sets (INRIA) taking into account the degree of sample impurity. We observe that including partially
occluded pedestrians in the training improves performance, not only on partially visible examples, but also on the fully visible
ones. Furthermore, we found that including pedestrians imaged at low resolutions is beneficial for detecting pedestrians in the
same range of heights, leaving the performance on pure samples unchanged. However, including samples with too high a grade of
impurity degrades the performance, thus a careful balance must be found. The proposed labelling will allow further studies on the
role of impure samples in training pedestrian detectors and on devising fairer comparison metrics between different algorithms.
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1. Introduction

Machine Learning (ML) is the field of science researching how computers can learn from data. ML has been
successfully applied to many areas of knowledge, from medical [1, 2] to financial [3, 4], to scientific applications in
general [5, 6, 7]. The results obtained by a ML system, however, depend heavily on the quality of the data used in its
training [8, 9]. Moreover, the evaluation and comparison of such systems depend on the quality of the data used for
their testing [10]. In this paper, we focus on the application of ML to the detection of people in images.

Detecting humans in images is a challenging task that attracts the attention of the scientific community and industry
alike. The problem assumes different contours depending on whether the sensor used to capture the images is fixed
or mobile, whether the detection is performed on a single image or on a sequence of images, and whether the sensor
is a single camera or a richer sensor providing depth information. One further distinction can be made between
the methods that do and do not restrain the articulation of the persons. This work concentrates on the detection of
pedestrians, i.e., people assuming poses that are common while standing or walking, in images acquired by a mobile
camera. Detecting pedestrians is important as it enables the estimation of the presence and the position of humans
in the vicinity of a vision sensor. The task is complex mostly because of the high variability that characterizes the
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pedestrians projections on the camera image plane. The appearance of a pedestrian on the image is influenced by the
person’s pose, his or her clothing, occlusions, and the atmospheric conditions that contribute to the illumination of the
scene. Background clutter also plays a role in making the detection difficult.

The publication of data sets is an important step towards a fair comparison of the performances of Pedestrian De-
tection (PD) systems, but it is not enough. Standard evaluation code is also needed as different evaluation procedures
can lead to discrepancies in the reported performances. Data sets are created not only with the intent of comparing
the performance of algorithms, but also with the goals of exposing the limitations of contemporary algorithms and
stimulating advances in the state of the art. As such, data sets have a limited life span: as the understanding of the
problem by the scientific community grows, hurdles are conquered and data sets become obsolete.

The missed detection rate for the INRIA data set [11] at 0.1 False Positives Per Image (FPPI) has dropped from
around 50% to around 20% since its publication (see [12]). There is still room for improvement, which explains why
that data set is still widely used as a benchmark [13, 14, 15, 16]. The same data is also very popular for training: 13
out of 16 algorithms reviewed in [12] are trained on it. The labelling, like in many other PD data sets, consists of
rectangular bounding boxes each one of which tightly enclosing a person. For the purposes of this work, we choose
to enrich and extend the labelling of the INRIA person data set.

This paper is an extension of our work published in [17], in which we proposed a new labelling for the INRIA test
set to improve the comparison between different algorithms. In this work we present a new labelling for the INRIA
training set and show through experimental results the importance of the correct use of pure and impure samples
both in the training and in the testing phase. The labelling was conducted following the method proposed in [12].
The proposed annotation is available on the authors’ website1. We argue that the new test set labelling leads to a
better evaluation of PD algorithms, while the new training set labelling enables researchers to analyse the impact of
pedestrian height and visibility during training on the detection performance. In this paper we restate, for continuity of
exposition, the contributions described in [17] and build on them to present new results. In the section on the evaluation
protocol we show that a fair evaluation of detectors with the original labelling of the INRIA test set requires the use
of a minimum resolution limit: since only pedestrians taller than 90 pixels are systematically labelled, the evaluation
should ignore detections shorter than that limit. Furthermore we show that using the proposed labelling for testing
produces a more truthful evaluation of the detectors. The contributions specific to this paper are: the introduction
of the notion of sample purity, the elaboration of a new labelling for the training set, the results of Experiment 1,
confirming that visibility plays an important role for detectability, the results of Experiment 2, showing that it is worth
to include partially occluded pedestrians in the training set, even when testing on fully visible pedestrians, and the
results of Experiment 3, showing that it is important to have “short” examples in the training set when the goal is to
detect “short” pedestrians.

The remainder of the paper is organized as follows. In Section 2 we introduce the reader to the PD problem. In
Section 3 we detail how annotations for data sets are usually compiled, while in Section 4 we describe the principles
that guided the proposed labelling. In Section 5 we describe the PD used in this work and in Section 6 we define the
evaluation protocol used in the experiments. We relate results in Section 7 and draw conclusions in Section 8.

2. Related Work

Advances in Pedestrian Detection (PD) stem mostly from research in the areas of visual feature extraction and Ma-
chine Learning, the most common classifiers being based either on AdaBoost [18] or Support Vector Machines [19].
Seminal work in PD was presented in [20, 21]. The authors of [22] introduced Integral Images for faster feature com-
putation, AdaBoost for combining many weak classifiers into a strong classifier and a Cascaded Detector for speeding
the detection up. That work focused on the recognition of frontal faces and used Haar-like features, which failed to
perform as well in the person detection task. The architecture, nonetheless, became very popular for PD algorithms.
Dense features, computed on a regular grid over the image, have been very successful. One example of such features,
which is ubiquitously used in detection, is the Histogram of Oriented Gradients (HOG). Introduced in [11] and rem-
iniscent of SIFT [23], it represents gradient information in a way that enables robust classification. A recent trend

1Proposed annotation
http://users.isr.ist.utl.pt/~mtaiana/data.html
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is that of combining multiple features: the Integral Channel Features [24] exploit 10 channels of information based
on colour and gradient. The authors of [25] combine Gradient Histograms, Local Binary Patterns (to exploit texture
information), Colour Self Similarity (second order statistics of colour) and Histograms of Flow (to exploit movement
information). Another line of work concentrates on reducing the detection time, see for instance the Fastest Pedes-
trian Detector in the West (FPDW) algorithm [26]. One dualism in the literature contrasts monolithic detectors (see
[11, 13, 16]), which compute features at fixed locations on the detection window, to part-based detectors (see [27, 28]),
which explicitly model the articulation of the human body and use the features where the limbs are estimated to be.

Comparing the performance of PD systems is a fairly complex matter. Many data sets have been published over
the years. A first notable example is the MIT pedestrians data set [20], introduced in 1997. It includes frontal and
rear views of pedestrian and only positive windows, i.e., fixed-size rectangular images designed to contain a person.
The INRIA person data set [11] was introduced by Dalal and Triggs in 2005, it is divided in training set and test set
and it provides both positive and negative examples. The ETH pedestrians data set [29] was introduced in 2007. It
was recorded with a mobile platform moving along a sidewalk, equipped with a stereo camera. It presents a scenario
typical for a mobile robot. The TUD-MotionPairs/TUD-Brussels data set [30] (TUD) and the Caltech pedestrian data
set [12] were introduced in 2009 and contain sequences of images taken in automotive scenarios. The size of the data
sets has grown over time, from 924 positive examples (MIT data set) to 350 000 labels over 250 000 images (Caltech
data set). Each data set can be characterized in a number of ways, one important parameter being the range of sizes
of the annotated pedestrians. Most PD algorithms output detections in a selected range of sizes, in order to perform a
fair evaluation it is important that such ranges coincide.

The code used to evaluate the performance of a detector on a data set can considerably influence the results. Many
parameters, such as the number of classes of labels used for annotating the data and the amount of padding on the
candidate images can influence the reported results. A solution for this problem is to use the same evaluation code
on each algorithm. Dollár provides such a code2 together with a collection of data sets and the detections obtained
running several state-of-the-art detectors on such data sets. We adopt that evaluation code and describe its principles
in Section 4.

3. Labelling Strategies

The purpose of the labelling of a data set for Pedestrian Detection (PD) is twofold. First, the annotation of the
training set enables the extraction of the positive and negative examples for training the detector. Second, the annota-
tions of the validation and test sets are used during evaluation to determine which detections are correct, corresponding
to a pedestrian.

Most PD algorithms define the ground truth (GT) labelling and the detections in terms of a collection of rectangles
on the images. Such rectangles are known respectively as GT and detection “Bounding Boxes”, in short, “BB’s”.
Each detection BB is associated to a confidence value and is meant to enclose exactly one pedestrian.

Training labels are used in the training of a PD algorithm. The positive BB’s are cropped from the positive training
image set and scaled to fit the detection window size. Negative samples are chosen by randomly sampling the negative
training images (or the parts of the training images where no people appear) with BB’s of the same aspect ratio as the
positive ones. They subsequently undergo the same scaling as the positive samples do.

Test labels are used during the evaluation of the performance of a PD algorithm. Evaluating such performance
on one image consists in matching detection and GT BB’s and counting the occurrences of the result of the matching
process. Two BB’s (one detection and one GT label) are said to match if the area of intersection of the two rectangles
is larger than half of the area of their union (Pascal VOC criterion, see [31]). The possible outcomes of the matching
process are: True Positive (TP) when one GT BB matches one detection BB (and so one pedestrian is correctly
detected), False Positive (FP) when a detection does not match any GT BB, and Missed Detection (MD) when a
GT BB does not match any detection. Each GT BB can match at most one detection BB. In case there be more
detections potentially matching one GT BB, the conflict can be solved by greedily assigning the detection with the
highest confidence to the match, leaving the others unmatched.

2Caltech Pedestrian Detection evaluation code
www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/DollarEvaluationCode
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Details from the INRIA test set highlighting some limitations. (a–d) Unlabelled persons. (e–h) Ambiguous cases. (e) Reflections of
persons on a shop window, not labelled. (f) Some persons drawn on a wall, only one of them is labelled. (g) Some mannequins, all labelled. (h) A
poster depicting a man, not labelled.

The original labelling of the INRIA data set follows closely the general description. Each person is labelled with
a rectangular BB. Only one label is possible: “UprightPerson”, which includes both pedestrians and people riding a
bicycle (this stems from the automotive applications of PD). Sitting people are not included in the positive class. No
information is present on the amount of visibility each person is imaged under.

The INRIA data set was designed in 2005 to support PD research. Since then, Pedestrian Detectors have improved
dramatically and, as a result, the original labelling is now starting to show its limitations. A fair assessment of the
performance of detectors on the INRIA data set is hindered by three factors: first, many persons appearing in the
images are not labelled, second, there is no class label for the regions of the images that are ambiguous or difficult to
be classified even by a person and thus should be ignored during the evaluation and, third, an estimate of the visible
part of each person is lacking. We discuss each of these factors in the following paragraphs.

The lack of labelling of some of the people present in the data set (see Fig. 1(a–d)) affects both training and
testing. Regarding the training, the lack of such labels prevents researchers to analyse the impact of what we deem
pure and impure training samples on the performance of the detector. Regarding the testing, each detection on one
of the unlabelled persons counts as a FP, instead of as a TP. So optimizing a detector using this labelling can lead
to the undesirable effect of detecting less small and occluded people. Current state-of-the-art algorithms can detect
at least some of the partially occluded and smaller pedestrians that are not marked in the original labelling. Their
performance are thus under-reported (see Fig. 2 for an example of how the performance of the FPDW algorithm [26]
is affected). People who have parts of their bodies outside the image boundaries are also not labelled, leading to
a similar phenomenon. It is important to notice that the spurious FP’s originated by the unlabelled persons tend to
assume high confidence values, so they have a big impact on some regions of the performance curves of the detectors
(see Section 6).

There are, moreover, image patches for which it is difficult to decide whether they should be labelled as a person
or not. Such cases include the appearance on the image of a mannequin, of photographs of people, of reflections of
people. It is not clear whether an algorithm that generates a detection on one of such image areas should be rewarded
or penalized: this decision is very application-dependent. Only some of such occurrences are marked as “person” in
the original labelling, both in the training and the test set, introducing noise in the evaluation process (see Fig. 1(e–h)).

Finally, in the original labelling there is no information on the amount of visibility each person is imaged under.
Such information is not needed for a simple training or test of a PD algorithm, but it is instrumental to assess the effect
the pure and impure fraction of the data have on the detection performance.

Most of the pedestrians marked in the original labelling are fully visible and larger than the size of the detection
window used in the algorithm introduced with the data set (96 pixels), making them “pure” for our purposes. A small
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(a) (b)

Figure 2. The influence of labelling in the presence of mutual occlusion on the evaluation. (a) A part of image 20 of the INRIA test set showing the
original labelling: only 5 persons out of 11 are marked. Some partially occluded persons are merged in the annotation with a visible one. (b) The
classification of the detections produced by FPDW [26] in TP’s (green), FP’s (red) and FP’s which significantly overlap with an unlabelled person
(yellow) and thus should be considered TP’s. In the whole test set, 26 out of 292 FP’s ascribed to FPDW significantly overlap with an unlabelled
person.

fraction of the labelled pedestrians, though, are imaged under a certain degree of occlusion or are shorter than the
detection window, making them “impure”. The labelling, thus, results to be a mixture of pure and impure examples,
in unknown proportions. In this work we extend the labelling to include all, within reason, visible pedestrians and
enrich it with the visibility information, allowing experiments to be run with training and test sets characterized by
different degrees of purity.

4. Proposed Method

We propose a new annotation for the data set in which we label all the pedestrians with heights greater than 25
pixels, we associate to each person the estimate of the extent of his/her visible part and mark ambiguous cases (see
Fig. 1(e–h)) as such. The labelling was performed manually by one of the authors. As in the original annotation, we
use rectangular Bounding Boxes (BB’s) and we consider both cyclists and pedestrians as belonging to the “Person”
class. We base our annotations on the scheme introduced in [12], which consists in labelling individual persons as
“Person”, large groups of persons for which it is very difficult to label each individual as “People”, and ambiguous
cases as “Person?”. We label the test set according to such scheme. The proposed annotation is available on the
authors’ website. For the training set, we do not label groups of people and ambiguous cases as we believe such
annotations not to be useful for training. In the Caltech evaluation code “People” and “Person?” BB’s are merged
in the “Ignore” class and treated as one, but we choose to use the two labels considering that in the future the two
sets can be treated differently. The “Ignore” class was introduced to acknowledge the fact that there is a grey area
at the boundary between the “Person” and the “Non-person” categories and with the insight that both detections and
missed detections on an image area marked as “Ignore” should not be penalized. Detections that match an “Ignore”
BB’s are not counted as True Positives (TP’s) nor False Positives (FP’s) and “Ignore” BB’s which are not matched by
any detection are not counted as MD’s. The matching between a detection BB and a “Person” BB works exactly as
explained in the previous section, while matching a detection BB with an “Ignore” BB only requires that the overlap
between the two is greater than half of the area of the detection. Moreover, multiple detections can match the same
“Ignore” rectangle. In the evaluation code the Ground Truth (GT) BB’s are centred horizontally and transformed to
assume an aspect ratio of 0.41 (width/height) prior to matching (see [12] for details).

In this work we aim at determining the impact of pure and impure samples in the training and evaluation of a
detection system. We consider pure the BB’s enclosing pedestrians who are fully visible and imaged with a height
larger than the height of the detection window in use. We deem the remaining BB’s enclosing pedestrians as impure.
Labelling the training set with the visibility information (the height is implicitly encoded in each BB) enables us to
create various training sets with a different ratio between the pure and the impure samples. The proposed training
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set is filtered each time, controlling the amount of “short” and partially occluded examples used to train the detection
system.

Controlling the balance between pure and impure samples during testing is allowed by the evaluation code. The
minimum height and the minimum visibility ratio of the Ground Truth (GT) rectangles in the test set are specified as
a parameter for the evaluation, so that all the BB’s that do not match the criterion are set to “Ignore”.

5. Pedestrian Detectors

5.1. Our Implementation of a Pedestrian Detector

We implemented a version of the Fastest Pedestrian Detector in the West (FPDW) algorithm [26]. The detector
is based on a structure common to most of the pedestrian detectors in the state of the art: it combines a Machine
Learning-based window classifier, the sliding window approach, image pyramids and Non-Maximum Suppression.

The fundamental block of the detector is the window classifier, which takes as input one image window of a
specific size and evaluates whether it contains a person of the corresponding height. In our case the classifier is based
on AdaBoost in the variant of Soft Cascades [32, 33]. We use 1 000 level-2 trees as weak classifiers. The output of
the classifier is a real value expressing the confidence on the presence of a person in the window at hand. The sliding
window approach consists in applying the window classifier on a grid of locations on one image, thus obtaining a
set of confidence values. This technique allows for the detection of fixed-size pedestrians over one image, and, in
order to succeed in multi-scale detection, it must be combined with image pyramids. Running the detection window
on each layer of the pyramid allows for the detection of pedestrians of different sizes, but can give rise to multiple
detections for a single pedestrian. Non-Maximum Suppression techniques are used with the intent of merging the
positive confidence values originated by the same pedestrian, thus obtaining a detection system that returns only one
detection for each pedestrian appearing in the image. As features, we use 30 000 Integral Channel Features (see [24]),
we compute the Integral Channels using publicly available code by the author3. We train the detector on the INRIA
pedestrians training set with the original labelling. We use 4 epochs of bootstrap for mining hard negative examples.
We use our implementation of FPDW in experiments 1.

5.2. The Aggregated Channel Features Detector

The Aggregated Channel Features detector (ACF) [34] is a recent development of FPDW. In ACF the authors
substitute the rectangular features of FPDW with square ones and apply additional smoothing. This removes the need
for Integral Images, making the computation of a feature, and thus the whole detection process, faster. One important
characteristic of the ACF code is that of using a fast implementation of AdaBoost for the training: a randomized subset
of features is used for learning each node (1/16 of the total features), the values of the features are discretized to 256
bins, thus reducing the number of split points to evaluate and, finally, the number of weak classifiers is increased after
each bootstrap round. Such design choices allow for a much quicker training time compared to our implementation of
FPDW, but have the drawback of producing detectors with a higher variability in performance. We choose to use ACF
and repeat the training 10 times for each evaluated condition, using different randomizations seeds and averaging the
reported performance. We used the authors’ implementation of ACF3 in experiments 2 and 3.

5.3. Other State-of-the-Art Detectors

The Caltech Pedestrian Detection Benchmark4 provides not only annotated data sets and evaluation code, but also
detections obtained with a number of algorithms in the state of the art. This enables the users of the benchmark to
evaluate the strengths and the failure modes of the different methods and to compare their performances with those of
their own algorithms. The detections provided represent well the diversity of the approaches to PD. They include for
instance the detections obtained with the detector based on Histogram of Oriented Gradients by Dalal and Triggs [11],

3Piotr’s Image and Video Matlab Toolbox (PMT)
http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html

4Caltech Pedestrian Detection Benchmark
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
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the Discriminatively Trained Deformable Part Models detector by Felzenszwalb et.Al. [27] and the multi-feature
detector by Walk et.Al. [25].

We use the detections provided in the Caltech benchmark to assess the impact of occlusion on the detectability of
the pedestrians, as explained in Section 7.1. Having access to the detections, but not to the code of the aforementioned
detectors means that we can not train them in different conditions. Thus, we can not use them in the experiments
assessing the importance of occlusion and minimum resolution in training.

6. Evaluation protocol

In this section we motivate and describe the evaluation protocol we use in the experiments. First, we define the
parameters for running an experiment and the measures used to evaluate its results. Then, we discuss the height ranges
relevant for the evaluation and the relationships among them. Finally, we highlight the impact of a more accurate test
set labelling on the evaluation of the performance of the detectors, laying the bases for our experiments. The results
we present in this section have been published in [17], they are repeated here for completeness of the exposition.

6.1. Parameters and evaluation variables for an experiment

Performing a detection experiment consists in choosing one detection algorithm, setting the visibility and height
conditions for training and testing and finally running the training and testing of the detector. The variables we set
are: the minimum height in training (MHTR) and in testing (MHTE), and the minimum visibility in training (MVTR)
and in testing (MVTE).

For evaluating the results of one experiment we use the de facto standard measures of Missed Detection rate (MD)
and False Positive Per Image (FPPI). MD is defined as the fraction of the positive examples in the test set which
goes undetected. FPPI is defined as the total number of False Positive detections (FP’s) in the test set, divided by
the number of images that constitute it. Both MD’s and FP’s are detection errors, thus, the lower the values of MD
and FPPI, the better the performance of one algorithm. Detectors associate a confidence value (also called a score) to
each detection. Varying the value of the threshold on such confidence produces a curve in the MD/FPPI space. The
curves are usually presented in log-log plots, see Figure 3 for one example. Each point on the curve corresponds to an
operating point for the PD algorithm. Comparing PD algorithms through curves is not always straightforward, so the
performance of one detector is typically summarized by the Log-Average Miss Rate (LAMR), the average miss rate
(as computed on the logarithmic FPPI axis) between 10−2 and 100 FPPI (see [12] for details).

6.2. Height ranges matching for a fair evaluation

When testing PD algorithms, care should be taken to match several height ranges. First (A), there is the height
range of the people imaged in the test set. This is implicitly defined by the images comprised in the test set. Second
(B), there is the height range of the GT labels, which is decided by the authors of the data set. Ideally, it should
correspond with the first range, but this is not always the case. Third (C), there is the height range of the detections
generated by a particular PD system. This is typically a parameter for the algorithms and is set by the experimenters
to match the second range we mentioned. Last (D), there is the range of heights taken into account by a specific
evaluation mode. This should be selected by the experimenters to be a subset of the intersection of the other three
ranges: it is sensible to compare the performance of algorithms for a range of heights for which there are persons in
the test set, such persons are annotated and the detectors were allowed to produce detections.

It is common practice to compare algorithms on the original INRIA test set using the “Reasonable” evaluation
mode and using the detections provided in the Caltech benchmark for algorithms in the state of the art. The “Rea-
sonable” mode corresponds to setting a minimum height in testing (MHTE) of 50 pixels and a minimum visibility in
testing (MVTE) of 0.65 (see [12] for details). The visibility constraint is ignored for the original labelling, since the
latter provides no visibility information. In sum, people taller than 50 pixels are considered as “Person”, while the rest
of the Bounding Boxes (BB’s) are set to “Ignore”. For the vast majority of the detectors whose output is distributed
with the Caltech benchmark, the minimum output detection height lies at around 90 pixels (see Tab. 1, column 2).
Thus, when evaluating the performance of those detectors on the INRIA data set with the “Reasonable” mode, the
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MD at 100FPPI
Algorithm Min. det. height Reasonable

(MHTE=50)
Reasonable90
(MHTE=90)

Difference

FtrMine [35] 100.0 0.340 0.324 -0.016
LatSvm-V1 [36] 79.0 0.175 0.159 -0.015
HOG [11] 100.0 0.231 0.215 -0.015
HikSvm [37] 100.0 0.221 0.207 -0.014
PLS [38] 100.0 0.226 0.212 -0.014
HogLbp [39] 96.0 0.190 0.173 -0.017
FeatSynth [40] 100.0 0.109 0.089 -0.019
MultiFtr+CSS [25] 93.7 0.109 0.093 -0.016
FPDW [26] 100.0 0.093 0.075 -0.018
ChnFtrs [24] 100.0 0.087 0.072 -0.015
LatSvm-V2 [27] 91.3 0.081 0.058 -0.024
Our FPDW 95.6 0.093 0.081 -0.013
CrossTalk [13] 99.2 0.098 0.079 -0.020
Mean -0.017

Table 1. The performances of a set of state-of-the-art PD algorithms reported with the original INRIA labelling and the “Reasonable” or the
“Reasonable90” evaluation modes. Min. det. height refers to the minimum height for the detections produced by each algorithm, in pixels. The
minimum height for the detections provided with the Caltech benchmark lies between 90 and 100 pixels for most of the detectors. This makes
setting the lower height limit during evaluation to 90 pixels more sensible than the default 50 pixels of the “Reasonable” mode. The Miss Detection
rate at 100 FPPI is reported to be lower when testing with the “Reasonable90” evaluation mode than with the “Reasonable” one. This is due to the
latter containing GT labels with heights under 90 pixels, which are impossible to detect correctly given the detections distributed with the Caltech
benchmark. See Figure 3 for a graphical comparison of the performance of LatSvm-V2 in the two cases.

height ranges of the detections (C) and that specified by the evaluation mode (D) do not match. The GT annotations
of heights comprised between 50 and 90 pixels can never be matched by the output of most of the detectors. This
introduces a bias in the evaluation: the affected detectors can never reach a miss rate of zero.

We define an evaluation mode that matches the range of resolution of the detections, the “Reasonable90” mode,
which ignores pedestrians imaged with heights under 90 pixels or with visibilities under 0.65. We compare the
reported performance of PD algorithms using the original labelling and selecting either the “Reasonable” or the
“Reasonable90” evaluation mode. We argue that “Reasonable90” is a more appropriate test mode for the consid-
ered experimental setting since it matches the range of heights of the detections provided in the Caltech benchmark.
We evaluate the detections of a number of state-of-the-art algorithms provided with the Caltech benchmark and the
detections generated by our implementation of FPDW, trained on the original labelling.

We display the Missed Detection rate/False Positive Per Image (FPPI) curves for one representative algorithm,
for the two modes, in Figure 3. Using the “Reasonable90” evaluation mode reports slightly lower missed detection
rates, especially at relatively high (100) FPPI levels (see the results for all the tested algorithms in Tab.1, columns
3–5). This result is expected, as passing from “Reasonable” to “Reasonable90” some labels which were impossible
for the algorithms to match were removed from the test set. The number of such labels is low since in the original
test set only a small fraction of the people with heights between 50 and 90 pixels are labelled. We conclude that the
“Reasonable90” mode provides for a fairer evaluation when testing the algorithms on the INRIA test set, using the
detections from the Caltech benchmark.

A deeper analysis on the INRIA test set reveals that only a fraction of the pedestrians is labelled: the higher the
level of occlusion, the more unlikely people are to be labelled, while the smallest pedestrians are unlabelled as a
whole. We describe the a new labelling for the INRIA test set and assess its impact on the evaluation in the following
section.

6.3. The proposed test labelling and its influence on evaluation

Evaluating detection algorithms is typically done by means of annotated test sets. Ideally, the Ground Truth
annotation should be perfect. In practice though, labelling a test set is an error-prone process which reflects the goal
of the labeller. At the time of compilation of the INRIA person data set, the focus was on the detection of high-
resolution, fully visible pedestrians. Meanwhile, the performance of Pedestrian Detectors has improved and the focus
has shifted to partially occluded and low-resolution pedestrians. The original labelling of the INRIA test set can
not provide a good evaluation for the detections in such conditions. We propose a new annotation that enables the
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Figure 3. The reported performance of the LatSvm-V2 algorithm [27] using the original labelling and the “Reasonable” or the “Reasonable90”
evaluation modes, in red and green respectively. Performance is summarized in the legend with the Log-Average Miss Rate. Using the “Reason-
able90” evaluation mode instead of the “Reasonable” one reports slightly lower missed detection rates. This is expected as some GT annotations
that are impossible for the detector to match (given the detections provided in the Caltech benchmark) are accounted for in the “Reasonable” mode
and ignored in the “Reasonable90” mode.

evaluation of the performance of algorithms on pedestrians imaged at low resolutions, and improves the accuracy of
the results reported for taller pedestrians.

The proposed annotation for the test set contains a total of 879 labels, 806 of which for “Person” and 73 for
“Person?” or “People”. In comparison, the original annotation has 589 labels equivalent to “Person”. The proposed
annotation contains more labels than the original one, especially at low heights, but also at medium heights (see
the comparison between the two annotations in Fig. 4a). The fraction of “Ignore” BB’s for the new annotation is
considerable, Figure 4b illustrates the amount of labels that are set to “Person” and “Ignore” for the “Reasonable90”
evaluation mode, as a function of height. One example of the proposed annotation, together with the effect it has on
the evaluation of the detections produced by the FPDW algorithm, can be seen in Figure 5.

Comparing the performance reported by testing using either the original or the proposed annotations, we observe
that the proposed annotation reports better performances for the algorithms at low FPPI values and better differentiates
the performance of the various detectors. We use the same set of algorithms mentioned in the previous subsection
and the “Reasonable90” mode: MHT E = 90 pixels, MVT E = 0.65. We display the missed detection/FPPI plot for
one representative algorithm and the two annotations, in Figure 6. Two effects can be seen: the miss rate is minimally
higher at high FPPI values for the proposed labelling, we ascribe this to the introduction in the test set of more occluded
pedestrians, who make the problem more difficult. The other effect, the most significant one, is the average drop of
8.9% for the missed rates at low FPPI values (10−2) (see the results for all the tested algorithms in Tab. 2, columns
2–4). We ascribe this to the removal of the spurious False Positives (FP’s) generated on top of unlabelled pedestrians.
Such FP’s tend (correctly) to be associated with high values of confidence, ruining the reported performance especially
when the number of FP’s is low. A working point on the curve at (10−2) FPPI for this data set means that there we are
dealing with just three FP’s. Adding even only one spurious FP in such conditions will damage the performance in a
noticeable way. The algorithms that perform best overall are the ones that benefit the most from using the proposed
labelling (see Tab. 2, columns 4 and 5). We conclude that for a correct evaluation of the performance of a detector it
is important to label the impure examples in the test set and to treat them in a principled way.
7. Results

In this section we present the results of three experiments that measure the influence of different degrees of
impurity in the testing and training of Pedestrian Detectors and describe the proposed labelling for the INRIA training
set. The first experiment measures the impact of partial occlusion in the test set on the detection performance, while
the last two experiments assess the influence on performance of using partially occluded and low resolution examples

9
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(a) (b)

Figure 4. Characterization of the original and the proposed labellings of the test set. (a) Histograms of the height of “Person” labels for the original
(blue) and the proposed labelling (red). The proposed annotation outnumbers the original one, particularly at low heights. (b) Histogram for the
proposed labelling and the “Reasonable90” mode, showing the amount of “Person” and “Ignore” BB’s in red and yellow, respectively. The number
of “Ignore” BB’s is considerable and does influence the assessment of the detection performance.

MD at 10−2FPPI
Algorithm Original

labelling
Proposed
labelling

Difference LAMR,
proposed
labelling

FtrMine [35] 0.918 0.900 -0.019 57%
LatSvm-V1 [36] 0.806 0.835 +0.029 43%
HOG [11] 0.744 0.702 -0.042 42%
HikSvm [37] 0.766 0.681 -0.085 39%
PLS [38] 0.674 0.596 -0.078 38%
HogLbp [39] 0.665 0.629 -0.036 35%
FeatSynth [40] 0.754 0.738 -0.015 29%
MultiFtr+CSS [25] 0.469 0.425 -0.044 21%
FPDW [26] 0.576 0.386 -0.189 18%
ChnFtrs [24] 0.581 0.383 -0.198 18%
LatSvm-V2 [27] 0.448 0.319 -0.129 17%
Our FPDW 0.577 0.307 -0.270 16%
CrossTalk [13] 0.511 0.333 -0.178 15%
Mean -0.089

Table 2. The performances of a set of state-of-the-art PD algorithms reported with the original or the proposed labelling. In both cases the evaluation
mode is “Reasonable90”, which correspond to a minimum height in testing (MHTE) of 90 pixels and a minimum visibility in testing (MVTE) of
0.65. LAMR indicates the Log-Average Miss Rate for each algorithm. Using the proposed labelling reports considerably lower Miss Detection
rates at 10−2 FPPI. This effect is likely due to the pedestrians who are unlabelled in the original annotation and who are labelled in the proposed one.
The effect is stronger for the detection algorithms with a better performance (lower LAMR). See Figure 6 for a visualization of the performance of
the LatSvm-V2 detector in the two evaluation cases.
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(a) (b)

(c) (d)

Figure 5. Comparison of one evaluation performed with the original (a,b) and the proposed (c,d) test set labelling. The image is part of the INRIA
test set, the detections were obtained with FPDW. (a) The original GT labels. (b) Evaluation with the original labels: True Positives (TP’s) in green,
False Positives (FP’s) in red and yellow. The yellow FP’s significantly overlap with unlabelled persons, hence it is unfair to consider those as errors.
(c) The proposed GT labels: pink labels are the ones that the evaluation code set to “Ignore” because of excessive occlusion given the chosen
evaluation mode. (d) Evaluation with the proposed labels: TP’s in green, FP’s in red, ignored matches in pink. Two detections match “Ignore”
BB’s (dashed pink lines), while one “Ignore” BB is not matched by any detection (not shown in this image). None of these events influence the
evaluation of the performance of the detector.
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Figure 6. The reported performance of the LatSvm-V2 algorithm [27] using the original and the proposed labelling, in green and blue respectively.
The evaluation mode is “Reasonable90” in both cases. Performance is summarized in the legend with the Log-Average Miss Rate. Using the
proposed annotation instead of the original one reports considerably lower Miss Detection rates at low FPPI values. We ascribe this effect to the
pedestrians that are unlabelled in the original annotation and have been labelled in the proposed one: the corresponding detections are evaluated
as False Positives with the original annotation and as True Positives with the proposed one. Using the proposed annotation also reports slightly
increased Miss Detection rates at high FPPI values. We attribute this effect to the introduction in the test set of more occluded pedestrians, which
are arguably more difficult to detect than the fully visible ones.

Exp. # Description Train. labelling Test labelling Det. Algorithm
1 Influence of partial occlusion in testing Original Proposed FPDW + others
2 Influence of partial occlusion in training Proposed Proposed ACF
3 Influence of “short” examples in training Proposed Proposed ACF

Table 3. Summary of the experiments, The goal of each experiment, the algorithms and the training and test labelling used in each experiment are
listed. “Others” in “FPDW + others” refers to a set of algorithms whose detections are distributed with the Caltech Pedestrian Detection Benchmark
(see Section 5.3 for details and Table 1 for a list of the detectors).

during the training of the detector. Information on the goal of each experiment and the labelling and the detectors used
in each experiment is summarized in Table 3. For all the experiments we use the evaluation code by Piotr Dollár. The
original annotation of the INRIA data set and the evaluation code are available on the Caltech Pedestrian Benchmark
website5, the proposed annotation is available on the authors’ website.

7.1. Experiment 1 - Influence of partial occlusion in the test set on detection performance

In this experiment we evaluate the impact of the amount of partial occlusion of the examples in the test set on the
detection performance. We tackle, thus, a single source of impurity. It has been shown in [12] that even a modest
amount of occlusion (visibility ratio as low as 0.65) has a highly detrimental effect on the performance of Pedestrian
Detectors. Those results were obtained using the Caltech data set. We perform a similar experiment on the INRIA
data set and confirm that the finding has general validity. We use the detections generated by our implementation of
FPDW, trained on the original training set, as well as the detections of several algorithms distributed with the Caltech
benchmark. We define 7 test modes which correspond to as many test sets. We filter the proposed test set with different
constraints on the visibility to create the 7 test sets. The first test set contains only fully visible pedestrians, while the
successive sets include pedestrians imaged under an increasing degree of occlusion. We include in this experiment
only pedestrians imaged with heights greater than 90 pixels.

5Caltech Pedestrian Benchmark website
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
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We observed that lowering the minimum degree of visibility of the test examples negatively affects the detection
performance (see Fig. 7a for the MD/FPPI curves of FPDW tested with different degrees of visibility and Fig. 7c for
a visualization of the relationship between minimum visibility in testing and the Log-Average Miss Rate for various
detectors). This confirms the generality of the observation obtained on the Caltech data set.

In order to better gauge the impact of partial occlusion on detection we partitioned the INRIA test set into three
visibility classes and evaluated the performance of FPDW: detecting on pedestrians with a good visibility (at least
0.7 visibility) leads to a Log-Average Miss Rate of 15%, while detecting on pedestrians with average and scarce
visibilities (between 0.4 and 0.7, or under 0.4 visibility) leads to Log-Average Miss Rate of 59% and 75%, respectively
(see Fig. 7b).

7.2. Proposed labelling for learning
The original labelling for the training set consists of 1237 “Person” BB’s, while the proposed annotation contains

a total of 1997 such BB’s, a 60% increment. The largest increase in labelled pedestrians resides in the low height
fraction of the data, but still remains significant for heights of up to 300 pixels (see Fig. 8a). Each label in the
proposed training set is associated with a visibility ratio, enabling different training sets to be created by setting a
threshold on such quantity. Most of the newly labelled pedestrians are imaged under good visibility conditions (see
Fig. 8b).

The two following experiments are devoted to assessing the importance of including impure, e.g., small and par-
tially occluded positive examples in the training set. We evaluate the effect of partial occlusion in Experiment 2, while
we gauge the impact of including small pedestrians in the training set in the Experiment 3. We use the Aggregated
Channel Features (ACF) detector and the proposed labelling both for training and for testing. We choose to use the
ACF detector for these experiments because of the great reduction in training time it allows for, compared to our
implementation of FPDW. We filter the full training set varying two thresholds: we set 3 minimum image heights for
a person to 25, 50 or 100 pixels and we set 6 minimum visibility ratios to 0.5, 0.6, 0.7, 0.8, 0.9 or 1.0 (full visibility).
We train the detector with the training set resulting from each of the 18 combinations and, for comparison, we train
it also with the original INRIA set. To account for the stochastic parts of the ACF algorithm, we repeat each training
10 times with a different randomization seed (leading to 180 full trainings) and compute the average of the resulting
performances. For a complete analysis of the influence of positive example height and visibility on the performance
of PD, varying the training set is not enough. In these experiments we use the proposed labelling also for the test set.
This allows us to set the minimum height for a person to be considered in the test set to 25, 50 or 100 pixels. In a
similar way, we constrain the minimum visibility ratio during testing to 0.65 or 1.0 (full visibility), yielding a total of
6 evaluation modes. We adjusted the depth of the image pyramid so that it is possible to detect pedestrians 25 pixels
tall or taller.

7.3. Experiment 2 - Influence of partial occlusion in the training set on detection performance
In this experiment we evaluated the impact of varying the minimum visibility in training (MVTR) while fixing the

rest of the experiment parameters: the minimum height in training (MHTR), the minimum height in testing (MHTE)
and the minimum visibility in testing (MVTE). We repeated the test for each of the 18 fixed parameters combinations.
In each case, the minimum visibility in training (MVTR) spanned the 0.5–1.0 interval with 6 equally spaced values.

For the first analysis, we fixed MHTR to 25 pixels, MHTE to 100 pixels and MVTE to 0.65. We compared the
performance of the ACF detector when trained including examples with different degrees of visibility. We display
the performance achieved by the different training modes (as measured by the Log-Average Miss Rate, LAMR)
in Figure 9a. It can be seen that including partially occluded pedestrians (up to 0.8 visibility) in the training is
advantageous, as it leads to lower LAMR’s.

In the second part of the experiment we set the MHTR and MHTE to 100 pixels and the MVTE to 1.0, i.e., we
tested on fully visible pedestrians. The results depicted in Figure 9b show that including partially occluded pedestrians
in the training is advantageous even when testing exclusively on fully visible pedestrians. Lowering the required
training visibility past the optimal amount, however, adversely affects performance. This behaviour is common to all
the 18 combinations of training and testing constraints (see the average behaviour in Figure 9c).

Training restricting the minimum height of the pedestrians to 25, 50 or 100 pixels leads to different optimal
visibility thresholds for the training set (see Figure 9d). It is not clear at this point if this effect is due to peculiarities
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Figure 7. The effect of partial occlusion in testing on the accuracy of Pedestrian Detectors. (a) Reducing the minimum visibility of the pedestrians
in the test set decreases the detection performance of our implementation of FPDW. (b) The detection accuracy of FPDW varies greatly as a function
of visibility. The three lines represent results obtained using the good visibility, average visibility and scarce visibility partitions of the test set. In
the legends of (a) and (b) the performance of the test combinations is summarized with the Log-Average Miss Rate (LAMR, see text for details). (c)
The effect of partial occlusion on the performance of several algorithms in the state of the art. The performance of the detectors is again summarized
with the LAMR. A clear relationship holds for all the algorithms: the better the visibility, the lower the LAMR, i.e., the better the performance.
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Figure 8. Characterization of the original and the proposed labellings of the training set. (a) Histograms of the height of “Person” labels for the
original (blue) and the proposed labelling (red). The proposed annotation outnumbers the original one, particularly at lower heights. (b) Histogram
for the full proposed labelling and for the subset whose BB’s are marked with a visibility ratio of at least 0.65, in red and yellow respectively. Most
of the new BB’s correspond to pedestrians imaged with a good visibility.

Height Training Test
>25,<50 59 47
>50,<100 294 150
>100 1644 682

Table 4. The number of positive examples in the proposed labelling, in each of three height bins.

of the different training subsets, to their different numerosities (see Tab. 4), to the increasing difficulty in labelling
when dealing with smaller pedestrians or to some other phenomenon.

7.4. Experiment 3 - Influence of “short” examples in the training set on detection performance

In this experiment we assess the impact of the inclusion of examples smaller than the detection window in the
training set. We observe that including small pedestrians in the training has a strong positive effect on the detection
of pedestrians in a similar range of heights. We consider the same training modes as in the previous experiment. In
order to test for the influence of training pedestrians of different heights on the detection performance, we partition
the pedestrians in three classes. Pedestrians between 25 and 50 pixels tall form the “short” class, those between 50
and 100 pixels tall form the “medium” class and those over 100 pixels tall form the “tall” class. The numerosity for
each class in both training and testing with the proposed labelling is reported in Table 4. We introduce three new
testing modes based on this partition of the heights. We consider training with the “tall” class the baseline (as 100
pixels coincides with the detection window height) and we evaluate the effect of including smaller pedestrians in the
training. We report results averaged over the 6 training visibility ratios.

Testing on the full test set (pedestrians taller than 25 pixels) indicates little change when training with different
subsets of the proposed data set (see Fig. 10a). Testing on the “short”, “medium” and “tall” classes separately gives a
better insight: when testing on the “short” class, including elements of the same height range is very beneficial, while
including elements of the “medium” class is beneficial, but to a lesser extent (see Fig. 10b). The advantage is not
visible, though, when testing on the full set. We ascribe the lack of impact on the full set to the small numerosity of
the “short” class: in the test set its elements account for less than 1/15 of the element of the “tall” class. A comparison
of the best detection performances for the “short” range, obtained with various minimum heights in training is visible
in Figure 11. When testing on the “medium” class, including elements of the same height range has a small positive
effect on detection accuracy (see Figure 10c), while including elements from the “short” class produces little change.
When testing on the “tall” class, the inclusion of shorter examples in training produces negligible variations (see
Fig. 10d). Summarizing, including examples two octave smaller than the detection window has a positive effect on
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Figure 9. (a) The performance of ACF trained with different levels of occlusion and evaluated with a minimum visibility in testing (MVTE) of 0.65.
Including partially visible examples in training is advantageous: the best performance is obtained with a minimum visibility in training (MVTR)
value of 0.8. (b) Including partially visible examples in training is useful even when testing exclusively on fully visible pedestrians (MVTE of
1.0). (c) The result is general: averaging over the 18 combinations of fixed parameters (see text for details) still indicates that including partially
occluded examples in the training set is useful. (d) Restricting the minimum height in training (MHTR) leads to different optimal values for MVTR.
The reason generating this effect unclear at the moment (see text for conjectures).
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Figure 10. Log-average miss rate obtained varying minimum training height, ACF detector. The four plots display the results obtained with two
test modes: full visibility (MVTE = 1.0) in green and minimum visibility in testing (MVTE) of 0.65 in blue. (a) When testing on pedestrians
spanning the whole range of heights, the different training conditions fail to produce different performances. (b) When testing on short pedestrians,
it is important to include examples of similar size in the training. Including examples of medium height is also advantageous. (c) When detecting
medium height pedestrians it works to include “middle sized” pedestrians in the training set, but including the small ones does not help. Including
the smaller pedestrians doesn’t change much the detection performance on the big pedestrians (b). Overall, since in the INRIA test the pedestrians
with heights under 50 pixels are just 47 out of 879, the improvement of detection accuracy on this range has a small impact on the accuracy
measured on the full test set (c).

the detection of pedestrians in the same range. We speculate that short pedestrians contribute to the detection system
knowledge on the appearance of people when imaged at low resolutions.

8. Conclusions

In this work we discussed the importance of the sensible use of impure data in the training and evaluation of
detection systems. We partitioned the positive samples in pure and impure data, the pure samples being the ones
imaged in ideal conditions (in the Pedestrian Detection case, the ones imaged under full visibility and with high
resolution). We proposed a new labelling for the INRIA person data set which allows for measuring the effect of
impure data on Pedestrian Detectors. We showed that handling impure examples correctly is important during the
evaluation phase. We observed that including partially occluded examples (up to a certain degree of occlusion) in the
training set improves the detection performance both on fully visible and on partially visible pedestrians. Furthermore,
we observed that the inclusion of examples imaged with heights lower than that of the detection window positively
affects the detection of pedestrians in the same height range, while the performance on taller examples is unchanged.
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Figure 11. Best detection performances for the “short” range, testing with full visibility. Including pedestrians imaged at heights between 25 and
50 pixels in the training (red line) produces a detector which dominates the others for most False Positive Per Image (FPPI) values.

We are confident that the proposed labelling will allow for further studies on the effect of data purity on detection
systems, fostering improvement in the detectors.

This work was partially supported by projects SEAGULL (QREN SI IDT 34063), FCT Pest-OE/EEI/LA0009/2013
and POETICON++ [STREP Project ICT-288382].
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