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Abstract

To follow a goal-directed behavior, an autonomous agent must be able to acquire knowledge about the causality between
its motor actions and corresponding sensory feedback. Since the complexity of such sensorimotor relationships directly
influences required cognitive resources, this work proposes that it is of importance to keep the agent’s sensorimotor
relationships simple. This implies that the agent should be designed in a way such that sensory consequences can be
described and predicted in a simplified manner. Living organisms implement this paradigm by adapting sensory and motor
systems specifically to their behavior and environment. As a result, they are able to predict sensorimotor consequences
with a strongly limited amount of (expensive) nervous tissue. In this context, the present work proposes that advantageous
artificial sensory and motor layouts can be evolved by rewarding the ability to predict self-induced stimuli through simple
sensorimotor relationships. Experiments consider a simulated agent recording realistic visual stimuli from natural images.
The obtained results demonstrate the ability of the proposed method to i) synthesize visual sensorimotor structures adapted
to an agent’s environment and behavior, and ii) serve as a computational model for testing hypotheses regarding the
development of biological visual sensorimotor systems.
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1. Introduction

In a situation where an artificial system fails to select a
sensible action despite the potential availability of required
sensory information, one could claim the system lacks the
required cognitive skills to find a solution. However, con-
versely it can be argued, the reason why the systems fails to
deduce an appropriate action is simply because the relation-
ship between sensory and motor signals is too complicated
in order for the robot to translate recorded sensory stim-
uli into a motor action adequate in the current context.

While the first formulation suggests to increase the robot’s
“brain power”, the second formulation implies an alternative
approach. Instead of striving to increase cognitive capabili-
ties, one could try to find a design for the robot’s sensorimo-
tor apparatus such that less complex operations are required
to translate sensory feedback into purposeful actions. Seen
from the latter perspective it can be conjectured: if sensory
and motor systems of a robot are well concerted and adapted
to a specific behavior and environment, then the cognitive
load imposed on the agent’s processing system is reduced.
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This view that appropriate sensorimotor morphology can
save cognitive resources, is also strongly supported by evo-
lutionary biology and research in neuroscience. A num-
ber of studies showed that for biological systems there is
high selective pressure to evolve specialized sensorimo-
tor systems which allow for simpler nervous systems and
enable efficient solutions for stimulus processing. For an
overview see for example work by Niven & Laughlin (2008),
Olshausen & Field (2004), Chklovskii (2004), Vinje & Gal-
lant (2000), and Cherniak (1995). Thus, considering the
costs associated with the development of neural tissue and
studies demonstrating the degeneration of neural structures
under relieved selective pressure, it is reasonable to assume
that as long as a problem can be solved by “cheaper” means
– like evolving a more suitable sensorimotor system – the
development of more resource-intensive cognitive abilities
is delayed in biological systems.1According to this line of
thinking, this work considers the following two points of
crucial importance for the design of autonomous agents:

• The sensory system should provide stimuli which are
meaningful with respect to the agent’s motor capabilities
and environment. Or, conversely, that sensing something
which is never relevant with respect to a possible motor
action is redundant.

• The motor system should favor actions that facilitate the
prediction of their effects in the perceptual stream. Or
conversely, actions which lead to complex or inaccurate
predictions of percepts are unfavorable since they ham-
per the linkage between consecutive sensory stimuli and
the ability to plan actions ahead in time.

In robotics and artificial intelligence, the strategy of solv-
ing a problem with less computational power through a
specifically designed body has sometimes been referred to as
“morphological computation”, see for example Paul (2006);
Pfeifer et al. (2006). A great number of examples demon-
strating this approach for arbitrary artificial systems have
been described by Pfeifer & Scheier (1999) and Pfeifer &
Bongard (2006). These examples show how the cognitive
load imposed on artificial agents can be reduced by taking

1 Of course, to what extent cognitive resources can be “saved” by imple-
menting smart adaptations depends on the specific problem to be solved
and the associated potential for specialization. Furthermore, a highly
adapted design always comes at the cost of loosing the ability to address
more general problems.

advantage of the morphological characteristics of an agent’s
body and the properties of the ecological niche inhabited.
Lichtensteiger & Eggenberger (1999) for example describe
a robot with an adjustable 1-dimensional visual sensor which
learns to change the distribution of its visual receptors such
that projected stimuli undergo a uniform translation dur-
ing straight locomotion. The proposed optimization of the
sensor relates to the idea of reducing cognitive resources
through structural changes in the sense that the resulting
receptor distribution facilitates visual distance estimation.
Other examples of artificial systems which make use of
“cheap” visual perception include robots with solve complex
tasks like navigation, visual tracking, or object recogni-
tion (Wehner, 1987; Franceschini et al., 1992, 2007; Reiser
& Dickinson, 2003; Floreano et al., 2004).

1.1. Self-similar sensorimotor structures

A particularly inspiring work with respect to the organization
of sensor topologies has been published by Clippingdale
& Wilson (1996). Due to the importance of the concepts
brought forward by this work to the comprehension of our
approach, this section provides a dedicated review.

Clippingdale and Wilson propose to organize abstract rep-
resentations of sensor topologies by maximizing a measure
for the sensor’s self-similarity under a given set of transfor-
mations. A sensor is considered self-similar if there exist
motor actions which move the sensor in a way such that
recorded visual stimuli are dispaced exactly or approxi-
mately from receptor to receptor. In this context, the work by
Clippingdale shows that a set of points, initially randomly
distributed on a planar disk, converges to a stable configura-
tion with a highly regular structure under the following rules:
i) points are conjointly transformed by rotation, dilation, and
translation actions which are applied according to a given
probability distribution, and ii) after each iteration points
are moved towards transformed points lying closest. Inter-
estingly, it was found that under the described conditions,
certain action probability distributions induce point distri-
butions which resemble closely receptor topologies found
in foveal sensor layouts of camera-type visual systems. The
results of Clippingdale and Wilson are shown in Fig. 1. The
probability distributions of transformations which lead to
the configurations shown in these figures are composed of
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(a) Trans. h = 1.0, v = 1.0 (b) Trans. h = 0.19, v = 0.2 (c) Trans. h = 0.5, v = 0.2 (d) Trans. h = 0.0, v = 0.0

Fig. 1. Geometrical point layouts obtained by the algorithm described by Clippingdale & Wilson (1996). The different plots show
layouts obtained under different layout transformation action probability distributions. Actions are sampled from a uniform distribution
of arbitrary rotation and dilation actions, and a uniform distribution of x- and y-translations of limited range. The different ranges of
translation actions are denoted below each plot. Reproduction with the kind permission of S. Clippingdale.

rotation and dilation transformations uniformly distributed
over an arbitrary range, combined with horizontal and verti-
cal translations distributed over different limited ranges.2 In
summary, Clippingdale and Wilson show that abstract sensor
layouts can be synthesized which resemble receptor distri-
butions found in biological organisms and, that these layouts
are obtained under stimulus transformations which can be
expected to be characteristic for the respective organisms. It
is important to note that the measure for self-similarity, as
introduced by Clippingdale and Wilson, directly relates to a
request for simpler feedforward sensorimotor maps. It essen-
tially favors (on average) exact receptor-to-receptor stimulus
displacements.

A number of restrictions related to the approach proposed
by Clippingdale & Wilson (1996) are noteworthy in the
context of this work. Firstly, it is assumed that there is
knowledge about the sensor topology, meaning the algo-
rithm has access to the spatial position of sensory elements.
Secondly, it is assumed that the displacement of sensor ele-
ments with respect to the sensor surface is known a priori
from a given transformation; which for a real visual sen-
sor has to be reformulated as: it is assumed that the new
locations of a previously recorded stimuli are known from a
given transformation. Both assumptions are unrealistic when
considering an autonomously developing organism or robot.
Rather, it seems appropriate to take an intrinsic perspective
of a developing system and to base self-organization of the

2 In Clippingdale & Wilson (1996) Clippingdale and Wilson extended the
same algorithm to work with 2-dimensional Gaussians instead of simple
geometrical points. To do so, the Euclidean distance measure between
two points was replaced with the inner product between two Gaussians
in the self-similarity measure.

sensorimotor apparatus on recorded stimuli and motor com-
mands directly available to the system. From this point of
view, it cannot be assumed that measurements concerning
the spatial topology of the sensory system can be obtained.
Also, it is improbable that information about the spatial
displacement of visual receptors is readily available since
motor commands and stimulus displacements are usually
connected via complex transformations. In contrast, our
work adopts a more natural approach where the sensor topol-
ogy is considered unknown and visual stimuli are recorded
with a realistic sensor model.

1.2. Contribution

The principal goal of the present work is to develop a method
which allows for the self-organized synthesis of sensori-
motor structures in artificial visual systems. Considering a
co-developmental process, it is proposed that sensory and
motor systems mutually influence each other such that the
structure of a visual sensor organizes according to the char-
acteristics of the given motor apparatus, and, vice versa, the
motor system adapts to the structure of the associated sensor.
As a common direction for such a joint development, the
present work proposes that sensor morphology and motor
primitives should concurrently adapt such as to simplify the
relationship between recorded sensory stimuli and executed
motor actions. A more concrete indication on how to qualify
“simple” sensorimotor relationships in visual systems has
been previously introduced in Sect. 1.1 through the concept
of self-similarity from Clippingdale & Wilson (1996).

In Fig. 2, a sketch of a general sensorimotor system is
shown. Dashed lines indicate components of the system
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Fig. 2. A general sensorimotor system with subsystems S and M which are coupled in two directions via sensorimotor maps B and P .
Dashed lines denote initially unknown components of the system. The policy B associates actions to recorded stimuli and is considered
to implement a given behavior. The sensorimotor system (S, M ) and its sensorimotor transformation (P ) are variables of the problem.

which are initially unknown. Thus, both, the sensory sys-
tem S, and the motor system M , are considered variables of
the proposed problem. The two arrows between S and M

indicate the two directions of possible sensorimotor trans-
formations. The arrow denoted behavioral policy B rep-
resents the map which induces a temporal distribution of
actions. This action distribution is always considered to be
known throughout this work, as in (Clippingdale & Wil-
son, 1996). In the opposite direction, the arrow denoted
forward model P represents the sensorimotor map which
estimates sensory stimuli based on selected motor actions.
This map is initially unknown and represents a variable of
the problem which depends on S and M . Having proposed
that a perceptual system with favorable properties possesses
a simplified feedforward model, the structure of P is of cen-
tral importance. Accordingly, the central idea is to adapt S
and M such that a simplified feedforward model P results.
The adaptation of the structure of an internal feedforward
model is plausible for a biologically inspired system since
forward models for stimulus prediction are ubiquitous in liv-
ing organisms. Neural circuits concerned with the prediction
of sensory stimuli from motor signals are in general termed
corollary discharge circuits. An excellent overview of corol-
lary discharge circuits is provided e.g. by Crapse & Sommer
(2008). Other work describing and modeling biologically
inspired feedforward sensorimotor maps has been described
by Wolpert & Kawato (1998); Webb (2004); Wolpert et al.
(2011).

The presented method takes as input experienced effer-
ent (motor commands) and afferent (stimuli) signals, and

evolves a spatial layout for light receptive fields and motor
movement fields as well as the prediction model. It is shown
that visual receptive fields and motor movement fields can
evolve simultaneously when minimizing a simple error mea-
sure which contemplates the prediction error for stimuli
resulting from self-initiated actions. On the sensor side,
the low spatial frequency of natural images induces the
development of spatially coherent and smoothly overlap-
ping receptive fields without any further constraint on spatial
shape. At the same time on the motor side, individual move-
ment fields evolve such as to encode actions ensuring high
temporal coherence of visual stimuli. The presented results
demonstrate how the proposed principles can be used to
develop sensory and motor systems with favorable mutual
interdependencies.

A constraint which is imposed throughout the present work
is that sensorimotor relationships are independent of the
agent’s state; i.e. changes in visual stimuli only depend on
the taken motor actions and not for example on the system’s
current position with respect to the environment. This is a
good approximation, for instance, for a visual agent that
moves in an environment where objects are far away with
respect to the motion amplitudes (low parallax effects).

2. Problem formulation

This work considers an artificial agent consisting of a sensor
S, composed of an array of light sensitive receptors s, and a
motor layer M , composed of a number of motor primitives
m. The agent lives in a static environment and works as



Visual sensorimotor structures 5

area Φs area Φm

environment E

behavioral policy B

prediction model P

topology M = {m1,m2, . . . ,mnm
}topology S = {s1, s2, . . . , sns

}

stimulus o = [o1, o2, . . . , ons ]
>

signal q : Φm → Rsignal i : Φs → R

activation a = [a1, a2, . . . , anm ]
>

Sensory System Motor System

decreasing
increasing

signalcom
plexity

lo
w

er
-l

ev
el

hi
gh

er
-l

ev
el

se
ns

or
im

ot
or

la
ye

r

Fig. 3. Schematic overview of the considered sensorimotor system with the sensory pathway on the left and the motor pathway on the
right. The figure illustrates lower-level sensorimotor layers as grids and higher-level sensorimotor layers as Gaussian shaped receptive
fields.

a closed sensorimotor loop. It observes the stimulation of
its receptor array and takes actions by activating its motor
primitives depending on the recorded stimulus. To choose
actions based on recorded stimuli the agent possesses a given
behavioral policy B which associates to any given stimulus
an action. Thus, for a sequence of discrete time steps, the
agent records at each time step a stimulus as the activation
of its receptors o and triggers an action by activating its
array of motor primitives via weights a. An action a can
induce a change in the observed stimulus which leads to the
selection of a new action in the next time step according to
the policy B. Stimuli o resulting after an action a is selected
are estimated by the agent through the sensorimotor map P

(initially unknown). A complete schematic overview of the
discussed sensorimotor system is given in Fig. 3.

The agent’s body physically implements sensory and
motor systems in areas Φs and Φm. These areas are assumed
to be given and represent the physical space where sensory
and motor signals are recorded and encoded. In a biologi-
cal system, Φs corresponds for example to the surface of a
retina recording a projection of the environment. Similarly
on the motor side, Φm corresponds to a layer or volume

of neural tissue where each location represents a particular
motor signal. Hence, considering a ds-dimensional sensor,
the sensor area Φs is a topographic map of Rds and repre-
sents the domain on which visual signals i : Φs → R are
defined. Analogously, for an agent with dm degrees of free-
dom, the motor area Φm is a topographic map of Rdm and
represents the domain on which motor signals q : Φm → R
are defined.3 In the remainder of this work, however, the
morphology of Φs and Φm can be abstracted. Of princi-
pal importance is the existence of visual signals i ∈ I and
motor signals q ∈ Q contained in the agent’s sensor space
I and motor space Q. Still, the fact that Φs and Φm are
not explicitly considered, does not mean that their struc-
ture has no influence on the organized sensorimotor system,
rather, their physical shape influences how signals i and q

are recorded, and these signals in turn influence the system
processing i and q. Also, the assumption that Φs and Φm are

3 In a physical implementation the motor area Φm is at most a volume.
Thus, if dm > 3, a mapping of Rdm to Φm is required. Such mappings
of higher dimensional spaces to volumes or layers of neural tissue is
commonly found in biological systems. For a model see e.g. Swindale
(2004).
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given, implies that part of the agent’s morphology is prede-
fined. On the sensor side, this concerns physical structures
used to form an image of the environment on the sensor. For
a camera-type eye, this is for example a lens system and the
shape of the retinal surface. On the motor side, actions are
encoded in Φm which essentially means it is assumed that
the kinematics of the considered agent is given.

The agent records visual signals i through a layer of ns

light receptive elements S = [s1, s2, . . . , sns ] where each
sj > 0 represents a positive function encoding the inte-
gration area of the respective receptor. Likewise, the agent
encodes motor signals q using a layer of nm motor primitves
M = [m1,m2, . . . ,mnm ] where each mk > 0 represents a
positive function encoding the influence area of the respec-
tive motor primitive. These layers define how visual signals
i are reduced to compact visual stimuli o and how the activa-
tion of a limited number of motor primitives a composes and
action q. The topological arrangement and physical shape
of the ns visual receptors and nm motor primitives is ini-
tially completely unknown. Their structure represents the
principal variable of the considered problem. A more in
depth discussion on visual receptors and motor primitives
and their biological prototypes follows below in this sec-
tion. A forward sensorimotor map P , later used to drive the
organization of S and M , is implicitly induced for any S

and M . In general, a predictor P can be considered a func-
tor which predicts the stimulus ot+1 for a given action q as
p (q,ot). A concrete prediction model suitable to implement
p is presented later in Sect. 3.

2.1. Input to the problem

The input to the formulated problem is solely related to sen-
sorimotor activity experienced by the considered agent. This
activity is generated by the agent’s behavioral policy which
at each time step t selects an action qt depending on the
currently experienced stimulus. The behavioral policy B is
assumed to be part of the given system and can be thought
of as a simple brain of the agent, compare also Fig. 3. Thus,
for an agent following a policy B, each time step a senso-
rimotor experience et = (it, it+1, qt) results, where it and
it+1 denote afferent signals recorded before and after the

efferent signal qt is elicited. The set of sensorimotor experi-
ences B = {et, t = 0 . . . T} is henceforth referred to as the
sensorimotor experience of the agent.

An important hypothesis of this work is that the charac-
teristic of an agent’s sensorimotor interaction described by
B is the principal driving force for the mutual development
of sensorimotor structures S and M . Thus, B represents the
input to the problem considered in this work.

2.2. Optimization

From an abstract perspective, it can be argued that
autonomous and adaptive systems – no matter if they are
of artificial or biological nature – should optimize a certain
overall cost function in order to temporally maximize their
resource-efficiency, task completion rate, or in general their
functional subsistence (Parker & Smith, 1990). Thus, in this
work it is assumed that the agent considered develops so as
to optimize an underlying cost function cagent. Clearly, such
a function strongly depends on the agent’s body and behav-
ior, and with it on the structure of its sensorimotor apparatus
(S,M). Here, it is proposed that a developmental process
for the considered artificial agent should implicitly strive to
optimize a loosely defined optimization problem

min
(S,M,B)

cagent(S,M,B,E), (1)

With the hypothesis that the agent’s behavior B and envi-
ronment E enter the problem as sensorimotor experience
B as defined in the previous section, the inner optimization
problem given in (1) can be rewritten as

(S∗,M∗) = argmin(S,M)[csm (S,M ;B)]. (2)

In this equation the predictor operatorP is implicitly present
because the sensorimotor structure (S, M ) automatically
induces a forward sensorimotor map. Thus, concerning the
further elaboration of Eq. (2), it is clear that in order to
incorporate the ideas outlined in Sect. 1, the cost function
csm must be related to the accuracy and simplicity of the
induced prediction model P .
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3. Realization

3.1. Visual stimuli and motor corollary discharge

In order to represent the above described problem on a
computer, continuous signals and functions have to be dis-
cretized. A general discretization of functions defined on
continuous domains Φs and Φm is obtained by discretizing
sensor and motor areas Φs and Φm in a grid-like manner.
Thus, defining the resolution of discretized sensor and motor
areas as Ns and Nm, visual and motor signals i and q can
be represented as a real-valued vectors i and q of size Ns

and Nm respectively. To represent motor signals q which
are of the form of a Dirac delta function, a vector with
a single non-zero entry denoting the location of the peak
of the function is used. To represent receptive fields and
movement fields in a discretized form, functions s and m

are discretized accordingly as real-valued vectors s and m.
Sensor and motor topologies S and M can thus be repre-
sented as matrices S and M of size Ns × ns, respectively
nm ×Nm.4 With this notation, the observation of stimuli o
can be written as

ot = S · it, (3)

whereS describes with each row a receptive field. The motor
corollary discharge signal of a given action q is integrated
by motor movement fields as

ã = M> · q, (4)

where M describes with each column a movement field and
an estimation ã of the actionawhich generatedq is returned.

3.2. Stimulus prediction

A general stimulus predictor has been previously introduced
as p(q,ot). Also, it was anticipated that the complexity of
p is related to the sensorimotor structure described by S

and M . Consequently, if it is desired to organize S and M ,
such as to induce a simpler sensorimotor map, it is in the
operator p where this request has to be accommodated. This
section first proposes a concrete form forp, and subsequently
outlines how to infer or enforce simplicity in p.

4 The format of M was chosen to be transposed with respect to the format
of S. In this way, a natural application of S and M to i and q results.

Regarding the formulation of the prediction operator, the
following is observed. Considering the static environmentE
and a spatially rigid sensor layout S, the class of functions
from which a stimulus predictor p should be chosen can be
restricted. In (Ruesch et al., 2012), an argument is provided
which motivates a reduction of these functions to the linear
function set.

ot+1 ≈ P(q)ot, (5)

whereP(q) is the matrix representation of a linear prediction
function p(q).

To incorporate the tendency towards simpler prediction
operators, it is now left to decide on the complexity of the
prediction model. A common and natural approach to select
simpler models is to evaluate the number of parameters
required by the model. For a linear predictor, this require-
ment can be translated by forcing the predictor to be sparse.
In this sense, equation Eq. (5) is revised as:

ot+1 ≈ P(q)ot, P(q) sparse. (6)

This equation is still ill defined since the notion of spar-
sity is vague and nothing has been said about the prediction
error. It is the authors’ belief that these cannot be canon-
ically defined, so several alternatives can be proposed as a
means of mixing or balancing the importance of sparsity and
allowed error:

• Fix sparsity and minimize some norm of the prediction
error. For example one can say that for each location q

in the function P(q), a matrix is found where each row
of the matrix Pq must have a k non-zero entry (sparsity)
and under this set the norm error is minimized.

• Minimize the prediction error and infer sparsity. A strat-
egy which first obtains the minimum norm error solution
for every location q in P(q) and subsequently deduces
sparsity.

• Simultaneously minimize both prediction error and spar-
sity. For example the well known LASSO algorithm
allows for a single parameter to weight the importance
of sparsity versus norm error Tibshirani (1996).

Any of these methods will obtain prediction matrices Pq as
well as associated prediction errorsEq from several samples
of the sensor values before and after executing a specific
action q from randomly chosen states x.
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Following the second approach listed above, in (Ruesch
et al., 2011) an empirical study is presented which investi-
gates the sparsity of prediction operators resulting from the
coupling of different sensor topologies and motor actions q.
Interestingly, the obtained results indicate that for positive
linear predictors Pq ≥ 0, the local maxima of the sparsity
measure coincide with the local minima of the mean squared
errorE. These empirical results are a hint that the request for
sparse predictors Pq ≥ 0 can be simply addressed through
a minimization of Eq . The solution presented in the next
section is based on this insight.

3.3. Proposed solution

To formulate a concrete instance of the problem outlined
in Eq. (2) two aspects are incorporated. Firstly, sensory
and motor systems should be coupled via the previously
introduced stimulus prediction mechanism. And secondly,
sensory and motor systems should organize so as to min-
imize the expected error between available signals i and
stimuli which the agent actually records as Si. Reducing
this error directly relates to the request for the sensorimotor
system to optimize available resources in favor of accurate
perception.

In order to implement the temporal coupling of sensory and
motor systems, the agent needs to implement P(q). Given
an associated predictor Pk for each movement field mk, an
approximation of the function P(q) can be constructed for
actions q as the mixture of linear predictors Pk like

P(M,q) =

nm∑
k

(
mk
>q
)
Pk, (7)

where mk
>q denotes the activation of a particular move-

ment field. This model for visual stimulus prediction has
been previously explored in (Ruesch et al., 2012) where also
the accuracy of such a linear combination has been assessed.

To enable the comparison of stimuli Si at the level of sig-
nals i, a reconstruction S+(Si) of an original signal i can
be used. Recalling that an orthogonal projection from the
domain of signals i ∈ I onto the subspace S is achieved
by the operator S>

(
SS>

)−1
S, an optimal implementation

for S+ is S>
(
SS>

)−1
. However, for situations where the

inner productSS> is expected to be close to the identity, this
reconstruction can be approximated by the adjoint operator,

which in this case corresponds to S>. In the context of the
tackled problem, the solutions forS can be expected to allow
for the use of the adjoint operator for the purpose of signal
reconstruction. The argument supporting this assumption is
based on the fact that sensor topologies with positive, non-
overlapping receptive fields s naturally fulfill the constraint
SS> = D, where D is a diagonal matrix. To assume that
SS> stays close to D appears plausible considering the fol-
lowing. On the one hand, receptive fields obey sj ≥ 0, and
on the other hand, although a constraint for non-overlapping
visual fields has not been introduced, an excessive overlap
of receptive fields would decrease the accuracy of recon-
structed signals and can therefore be expected to appear only
to a very limited extent. Also note that, in the below pro-
posed formulation, scaling factors contained in the diagonal
of
(
SS>

)−1
can be absorbed by the predictor P(M,q). In

this way, S> can be used as a reconstruction operator and
matrix inversion is avoided, which – from a biological per-
spective – is appealing since matrix inversion is an operation
unlikely to be implemented by neural tissue.

Incorporating the two proposed aspects, an optimization
problem for the organization of the given sensorimotor
system is written as

(S∗,M∗,P∗) =

argmin(S,M,P)

∑
t

∥∥S> (∑nm
k

(
mk
>qt

)
Pk

)
Sit − it+1

∥∥2
s.t. S ≥ 0, M ≥ 0, Pk ≥ 0

.

(8)

The savvy reader will notice that the apparent ambiguity
which arises by the interaction between P and M nearly
disappears with the positivity constraints.

3.4. Method

The organization of Ns = 16 visual receptive fields is con-
sidered taking place on a sensor surface in the shape of a disk
discretized at ns = 481 locations in a grid-like layout. Sim-
ilarly, experiments presented in Sect. 4 consider Nm = 16

motor movement fields evolving on 2-dimensional motor
spaces discretized at nm = 15× 15 locations in a grid-like
layout, see also Fig. 4. The environment is given as a plane
textured by a very high resolution image (2448×2448 pixels)
depicting a real world scene. The sensor surface is assumed
to be parallel to the plane recording grayscale images i and
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the sensor can interact with the environment through four
types of actions, translations in x- and y-directions, rotations
and changes in distance to the plane (zoom).

A set of 22 500 triplets (it, it+1,qt) is obtained via B,
where for the presented experiments the underlying pol-
icy B selects actions qt with sharp activation profiles (all
entries in qt are zero except one) according to a uniform
distribution over the discretized action space. Each triplet is
obtained by positioning the agent in a random position on
the environment and taking the chosen action a.

To find (S∗,M∗,P∗), the optimization problem given in
Eq. (2) is iteratively improved using a projected gradient
descent method (Absil et al., 2008). While it is no prob-
lem to find a solution with an online method, convergence is
much slower, therefore the batch approach is chosen here for
practical reasons. However, it is noted that under different
circumstances an online implementation might be prefer-
able, e.g. for a purely biologically inspired implementation
in a robot with stronger memory constraints and a longer
exploration phase. The experiments presented in Sect. 4
were initialized as follows: the motor layout M randomly
according to a uniform distribution between zero and one; S
randomly such that each discrete sensor location belongs to
exactly one receptive field (row of S), scaled so as to obey
SS> = I. The prediction matrices Pk were initialized with
given random S and M to the least squares solution to pre-
dict Sit+1 with

[∑k (
mk
>qt

)
Pk

]
Sit and subsequently

projected according to Pk ≥ 0. It is important to note that
with a randomized initialization, nothing prevents the adap-
tation process from converging to a locally optimal solution.
However, from a biological point of view, we accept these
solutions as possible branches of evolutionary development.

4. Results

On the basis of the 4-dimensional action space as intro-
duced above, two different sets of sensorimotor experiences,
B1 and B2, are considered. These two sets of sensorimotor
experiences are used to co-develop two sets of sensor and
motor topologies S∗1, S∗2 and M∗1, M∗2. In a first setup, B1
is recorded using sensor translation actions sampled from a
2-dimensional motor space as shown in Fig. 4(b). Triplets
(it, it+1,qt) in B1 are sampled choosing actions q with uni-
form probability from the available discrete actions. This

scenario relates to translational unbiased oculomotor control
causing random stimulus displacements. The second behav-
ior is composed of mixed zoom and rotation actions where
B2 samples combined sensor rotations and stimulus dilations
from a 2-dimensional motor space as shown in Fig. 4(c).
As for B1, triplets (it, it+1,qt) were sampled with uniform
probability from the available discrete actions. Behavior B2
mimics for example an object manipulating agent where the
oculomotor system stabilizes the sensor on target, mechan-
ically compensating for image translations but not image
rotations or scaling. The resulting sensor and motor topolo-
giesS1,S2 andM1,M2 are shown in Fig. 5 and Fig. 6. They
show the optimization process of S and M at three different
stages. First, the initialization of the problem is shown, then
an intermediate stage is shown, and eventually the converged
solution is plotted.

The next sections provide a discussion of the optimiza-
tion process and the emergent properties observed over the
course of the optimization. Sect. 4.1 and Sect. 4.2 discuss
the formation of spatially compact and Gaussian-like shaped
sensory and motor fields from a completely random ini-
tialization. Sect. 4.3 discusses the topological organization
of sensory and motor fields according to the two different
sensorimotor experiences B1 and B2.

4.1. Organization of coherent receptive fields

Even though the proposed algorithm is unaware of any topo-
logical relationship present in recorded stimuli i, visual
receptors cluster as spatially coherent and smoothly over-
lapping receptive fields of Gaussian-like shape. The reason
for this tendency towards spatially coherent receptive fields
can be found in the request for an accurate reconstruction
of a predicted stimulus ît+1 = S>P(M,qt)Sit. Only if S
assumes a form where its rows describe spatially coherent
areas (which together cover the entire sensor surface) the
original stimulus it+1 can be reconstructed accurately. For
a more visual understanding, one can also imagine to “see
i through S” which results in a more blurred image Si, the
less spatially compact the receptive fields described by S

are.
The development of spatially compact receptive fields

over the course of the optimization can be observed in Fig-
ures 5(a), 5(c), 5(e), and Figures 6(a), 6(c), 6(e).
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Fig. 4. (a) Discretization of the given sensor space; (b) discretization of the given motor space for a behavior with horizontal and vertical
translation actions; (c) discretization of the given motor space for a behavior with dilation and rotation actions. Sensor area and translation
distances are specified in world coordinates ranging from −1 to 1 in x- and y-direction.

4.2. Organization of coherent movement fields

Like for the receptive fields of the sensor, the shape of
motor movement fields is not defined a priori. In princi-
ple, each movement field could cover the entire or part
of the motor space in any manner allowed for by the
underlying discretization. The reason for the emergence
of spatially coherent and Gaussian-like movement fields is
related to the request for an accurate prediction Ŝit+1 =∑nm

k

(
mk
>qt

)
PkSit, where each Pk is associated to a

movement field mk, see also Eq. (7). This equation shows
that a movement field mk defines the area on which the
associated predictor Pk is valid. Consequently, the predic-
tor Pk is used to predict a future stimulus of an action qt

for any location q in the action space where (mk
>qt) is not

0. And because a linear predictor Pk can only accurately
predict a stimulus for a limited area of the motor space, spa-
tially compact motor movement fields tend to form in order
to improve stimulus prediction. In summary: only if motor
movement fields mk specialize on spatially limited areas,
accurate linear combinations of prediction operators Pk for
particular actions qt are possible. At the same time, the opti-
mization problem forces movement fields to cover the entire
motor area which experiences samples q in order to be able
to assemble predictors Pq for every q.

The formation of compact movement fields over the course
of the optimization can be observed in Figures 5(b), 5(d),
5(f), and Figures 6(b), 6(d), 6(f). In Fig. 6 it can also be
observed that movement fieldsmk do not necessarily evolve
to be radially symmetric. The reason for this is that – as
desired – the shapes of fields mk also implicitly depend on
the receptive field topology S in the following way: actions

in the motor space which translate the stimulus in direc-
tions where the sensor topology S has a coarser resolution
require a less fine-grained resolution of the action space.
Thus, along these directions motor movement fields tend to
be bigger because the coarser resolution of receptive fields
allows a linear predictor Pk associated to mk to achieve
accurate predictions over a bigger area of the motor space.
This is for example the case for the results obtained for the
dilation-rotation sensorimotor experienceB2 shown in Fig. 6
discussed in the next section.

4.3. Overall topological organization

Results presented in Fig. 5 and Fig. 6 demonstrate that with
the proposed approach varying sensorimotor experiences
induce sensorimotor structures of different macroscopic
nature. But before describing these results specifically with
respect to sensorimotor experiencesB1 andB2, the following
explanations provide a rationale for how different topologies
develop depending on a given sensorimotor experience B.

To better comprehend the organization of obtained sensor
topologies (on the left side of Fig. 5 and Fig. 6), the reader
is referred back to the work of Clippingdale and Wilson
reviewed in the last part of Sect. 1.1 where the fitness of a
layout relates directly to the distance between predicted and
original point locations. In the problem considered here, just
as in Clippingdale & Wilson (1996), a perfect sensor layout
is one where receptors exactly map one onto another for
every considered action resulting in Pq matrices where each
row contains exactly one non-zero entry. Any deviation from
this case leads to an increase in prediction error. Together
with insights gained in (Ruesch et al., 2011), this fact allows
for the replacement of the Euclidean distance as used by
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Clippingdale and Wilson by one based solely on the stimulus
prediction error with Pq ≥ 0 disregarding any knowledge
about the sensor topology.

The obtained layouts for motor movement fields (on the
right side of Fig. 5 and Fig. 6), are comprehensible if the
previously discussed optimization criteria for the evolution
of movement fields mk are considered: i) motor movement
fields attempt to cover the entire action space which expe-
riences samples q in order to provide a prediction operator
for all those actions, and ii) motor movement fields mk tend
to be spatially compact to cover a limited area of the motor
space in order to evolve an associated predictor Pk which is
specialized for that area of the motor space and which can be
used to assemble accurate predictors Pq via linear combina-
tions using predictors Pk of neighboring movement fields.
As previously described in Sect. 4.2, the shape and size of
movement fields mk also implicitly depends on the sensor
topology S. Shape and size adapt to cover an area of the
motor space which allow the associated predictor Pk of a
motor movement field mk to provide an accurate prediction
of future stimuli. Interestingly, the peak of a motor move-
ment field tends to be located at a position in the motor
space which allows for a sensor transformation which maps
receptors exactly (or best possible) one onto another. This
tendency is related to the fact that at these locations linear
predictors Pk are particularly sparse which, in the case of
positive linear predictors Pk ≥ 0, also corresponds to sit-
uations which allow for a particularly low prediction error.
This relationship has been previously described in (Ruesch
et al., 2012).

4.4. Topological organization for B1 and B2

Concluding the analysis of the results shown in Fig. 5 and
Fig. 6 in relation to sensorimotor experiences B1 and B2,
the remainder of this section discusses the characteristics
of the obtained topologies depending on the sensorimotor
experience used to synthesize them.

In the translation only case (experience B1), a tendency
for hexagonal tiling structures over the entire sensor surface
can be identified. In Fig. 5(e) complete hexagonal structures
can be observed centered around the blue and pink receptive
field. Contrarily, in the rotation and dilation case (experi-
ence B2), receptors organize radially in circular rings. The

3-dimensional perspective of the plots on the left side shows
the smooth overlapping between receptive fields. For both
cases B1 and B2, motor movement fields evolve to cover the
translational action space and have a tendency to be placed
at locations in the action space which induce sensor transla-
tions which map receptors exactly one onto another. For the
rotation and dilation case, this leads to elongated movement
fields which have a reduced extension in y-direction (rota-
tional actions) and an increased influence area in x-direction
(dilation actions). The higher resolution (small extension)
of movement fields along the rotational action dimension
reflects the higher resolution of receptive fields for rotational
actions (9 receptive fields on the outer ring). The low reso-
lution (big extension) of movement fields along the action
dimension for dilation actions reflects the low resolution of
the sensor in a radial direction (about 2 rings of receptive
fields).

5. Conclusion and outlook

Efficient autonomous robotic systems require a body which
is highly adapted to the system’s particular task and envi-
ronment. In biology, a common line of thinking proposes
that adaptation implicitly optimizes some underlying crite-
rion which is related to the overall fitness of the organism.
However, applying such optimization methods to the design
of entire artificial systems is not straight forward. The crite-
ria underlying adaptive processes in biological systems is in
general unknown, of considerable complexity, or impossible
to evaluate within a reasonable timescale.

Addressing the development of a computational method
for the automated design of behavior-dependent visual sen-
sorimotor structures, this work proposed that it is possible
to isolate a simple and at the same time computation-
ally tractable criterion encoding principal characteristics of
visual sensorimotor layouts observed in living organisms.
We have proposed a methodology that adapts the sensor and
motor layouts, as well as stimulus prediction mechanisms,
for the agents particular environment and behavioral reper-
toire. The unified approach for the co-development of these
visual sensor and motor structures is based on two main
hypotheses. The first proposes that sensorimotor structures
can develop according to a general cost function where the
agent’s behavior and environment are decoupled and enter
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Fig. 5. Sensor and motor topologies obtained for sensorimotor experience B1. Translation actions were uniformly sampled from a motor
space as shown in Fig. 4(b). Left: the evolution of S. Each color denotes a different visual receptive field, and each dot shows the
activation of that field at the respective location on the sensor area. Right: the evolution of M. Note, some motor fields happen to overlap,
and therefore appear less pronounced as their contribution is combined according to Eq. (7).
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Fig. 6. Sensor and motor topologies obtained for sensorimotor experience B2. Rotation and dilation actions were uniformly sampled
from a motor space as shown in Fig. 4(c). Left: the evolution of S. Each color denotes a different visual receptive field, and each dot
shows the activation of that field at the respective location on the sensor area. Right: the evolution of M. In this case, elongated elliptic
fields develop reflecting the higher axial resolution of sensor S∗2 compared to its radial resolution.
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the problem as the agent’s overall sensorimotor experience
B. The second hypothesis proposes that sensor and motor
topologies S and M evolve such as to optimize i) the recon-
struction of higher dimensional signals, and ii) stimulus
predictability.

Per se, it is not clear if the introduced hypotheses are
justifiable. However, the proposed framework is capable
of reproducing some characteristics of in-nature observed
sensorimotor structures, and captures inherent principles
present in phylogenetic and or ontogenetic development of
biological systems. Therefore, even though the true evo-
lutionary cost function is unknown, it might be claimed
that the made assumptions could hold, and that the pro-
posed framework with its simple underlying principles has
explanatory power not found in other computational mod-
els. Thus, the model can serve to synthesize sensorimotor
layouts for artificial visual systems as well as a model capa-
ble of explaining some morphological aspects of biological
visual sensorimotor systems.

In future work, sensory modalities other than the visual
sensory modality could be considered. With the proposed
approach this is possible without changes to the principal
concept just by replacing the observation and action model.
For example, an implementation for an auditory sensori-
motor system can be imagined where sensory stimuli and
motor actions are recorded and emitted in frequency domain.
In this case, receptive elements and motor primitives could
specialize on certain frequency bands depending on the inter-
action of the agent’s body and its environment with respect
to acoustic properties.
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