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Motor-primed Visual Attention for Humanoid
Robots

Luka Lukic, Aude Billard, and José Santos-Victor

Abstract—We present a novel, biologically-inspired, approach
to an efficient allocation of visual resources for humanoid
robots in a form of a motor-primed visual attentional landscape.
The attentional landscape is a more general, dynamic and a
more complex concept of an arrangement of spatial attention
than the popular “attentional spotlight” or “zoom-lens” models
of attention. Motor-priming of attention is a mechanism for
prioritizing visual processing to motor-relevant parts of the visual
field, in contrast to other, motor-irrelevant, parts. In particular,
we present two techniques for constructing a visual “attentional
landscape”. The first, more general, technique, is to devote visual
attention to the reachable space of a robot (peripersonal space-
primed attention). The second, more specialized, technique is
to allocate visual attention with respect to motor plans of the
robot (motor plans-primed attention). Hence, in our model, visual
attention is not exclusively defined in terms of visual saliency in
color, texture or intensity cues, it is rather modulated by motor
information. This computational model is inspired by recent
findings in visual neuroscience and psychology. In addition to two
approaches to constructing the attentional landscape, we present
two methods for using the attentional landscape for driving
visual processing. We show that motor-priming of visual attention
can be used to very efficiently distribute limited computational
resources devoted to the visual processing. The proposed model
is validated in a series of experiments conducted with the iCub
robot, both using the simulator and the real robot.

Index Terms—Cognitive robotics, computer vision, humanoid
robots, machine learning.

I. INTRODUCTION

V ISION is one of the most important functional modules
in both artificial and biological systems, and yet one

of the most computationally demanding ones. In a humanoid
robot, the computational demands for processing stereo images
represent very often a bottleneck for real-time manipulation,
where replanning and computation of visuomotor actions are
time-locked within a time range of only a few milliseconds.
Most of the approaches in robot vision are based on the
standard, “off the shelf”, image processing techniques, ig-
noring most, if not all, the information regarding the current
motor state and planned motor actions. This implies that the
visual system and the arm-hand system are usually considered
as two largely independent modules that communicate only
in the direction from vision to manipulation, which implies
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Figure 1. The figure displays the main idea of the proposed approach:
nonuniform image processing driven by a motor-primed visual attentional
landscape. Visual space is prioritized depending on its motor relevance,
i.e., visual attention is biased toward motor-relevant parts of the workspace
projected to the stereo images. The white line represents a forward-planned
(mentally-simulated) movement toward the object to be grasped (red glass).
The reddish blend superimposed on the snapshots of the left and right cameras
is a visualization of the intensity of the visual attentional landscape. The
attentional landscape has a higher intensity closer to motor relevant parts of the
visual field. The images are processed in a manner that the spatial distribution
of their attentional landscapes is taken into account (motor-relevance is
prioritized). The anchors of the scanning windows (blue squares) are sampled
with respect to their relevance, i.e. more dense visual scanning is done where
the attentional landscape has higher values, and less dense scanning where
it has low values. Ignoring irrelevant parts of the images affords significant
computational savings, whereas the processing of motor-relevant parts of the
visual scene supports visually-guided reaching and grasping.

that during visual processing the valuable information from
the manipulation system is mostly ignored. This decoupling
of visual processing from the motor information manifests
itself in an inefficient, hence slow, visual processing. In this
work we show that modulation of visual processing, which
emerges from the motor system, can drastically improve visual
performances, in particular, the speed of visual computation,
one of the most critical aspects of the system. Fig. 1 illustrates
the main principles of this work.

If we put this in a real-world context, let us imagine a robot
bartender, equipped with an active stereo camera system that
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has the task to grasp a glass, fill it with a beverage of choice,
and serve it to a guest. In a visually-aided manipulation, based
on the standard vision processing approach, during reaching
and grasping for the target object, in every cycle of the control
loop, vision scans every part of both stereo images searching
for the target object and potential obstacles, in order to update
the robot’s knowledge about their state (position, orientation
and other properties of interest that might change during a
task). Assume that the motion of the arm has been initiated
and is directed toward a specific object, say a wine glass
(the obstacles will by definition be all objects that obstruct
an intended movement). Here, a question arises: why would
one want to scan the peripheral parts of the stereo images for
obstacles, since these correspond to regions in the workspace
ten meters or so from the wine glass that is at around 30 cm
from the hand? Clearly, space scanned should be restricted to
a region of space that is motor-relevant.

Contrary to robots, humans and non-human primates have
the ability to rapidly and graciously perform complicated tasks
with a limited amount of computational resources. One of the
reasons for their superior performances in visuomotor tasks
is an efficient distribution of the visual resources to select
only relevant information for reaching and grasping among the
plethora of visual information. Humans are able to efficiently
and routinely manage this challenging task of selective infor-
mation processing, in a seemingly effortless manner, by means
of highly customized attentional mechanisms. In dynamically
changing environmental conditions, the time pressure for rapid
computation cannot afford the computation of the full-blown
visual model of the world [1], [2]. For this reason, humans
and non-human primates use the attentional mechanisms to
select important visual information, and cheaply compute only
a relevant subset of them on the fly. In visual attention, two
mechanisms are recognized: covert attention and overt atten-
tion [3]. Covert visual attention corresponds to an allocation
of mental resources for processing extrafoveal visual stimuli.
Overt visual attention consists in active visual exploration
involving saccadic eye movements (Fig. 2). These two mech-
anisms are instantiations of the same underlying mechanism
of visual attention, hence intermingled both functionally and
structurally, working in synchronization and complementing
each other. Covert attention selects interesting regions in the
visual field, which are subsequently attended with overt gaze
movements for high-acuity foveated extraction of information
[4], [5], [6]. Furthermore, visual attention (covert and overt)
is tightly coupled with the motor system. Numerous findings
from visual neuroscience and psychology provide evidence
that visual attention is bound and actively tailored with respect
to spatio-temporal requirements of manipulation tasks [7], [8],
[9], [10], [11]. Fig. 2 illustrates how attention is drawn toward
manipulation-relevant regions of the visual field, even in a
common, well-rehearsed natural task such as tea serving.

In this paper, we hypothesize that such a biologically-
inspired, explicit, active adaptation of attention with respect
to motor plans can endow robot vision with a mechanism
for the efficient allocation of limited visual resources. This
approach contributes to the state of the art in visual-based
reaching and grasping, tackling visual attention from a new,

alternative perspective where visual attentional relevance is
not defined in terms of low-level visual features such as
color, texture or intensity of the visual stimuli, but rather
in terms of manipulation-relevant parts of the visual field
as visually relevant regions. In our model, the attentional
mechanism becomes a fundamental building element of the
motor planning system and vice versa. At each cycle of the
control loop, the visual and motor systems modulate each other
sending each other control signals. The proposed approach
is evaluated in robotic experiments using the iCub humanoid
robot [16].

The work reported in this paper was published in a pre-
liminary form in [17]. The present paper extends the previous
work in three ways: (a) we develop a novel model of periper-
sonal space-primed attention, (b) we improve the previously
proposed sampling scheme for attentional driving of visual
processing, and (c) we verify the presented approach in more
robot experiments.

The rest of the paper is organized as follows. In Section II,
we briefly review related work on computational modeling of
visual attention, its use in robotics, and the biological evidence
onto which we ground our approach to tackle the existing
problems. In Section III, we present our two approaches for
obtaining the attentional landscape. Section IV describes how
image processing is performed once the attentional landscape
is computed. Section V reports on validations of the approach
in experiments with the iCub robot. Section VI is devoted to
discussion.

II. RELATED WORK

A. Computational modeling of attention
Most of the modern work on computational modeling of

attention draws inspiration from the feature integration theory
of attention from psychology [18]. The feature integration
theory argues that low-level, pre-attentive features attract vi-
sual attention in a bottom-up, task-independent manner. The
intuition behind this approach is that a non-uniform spatial
distribution of features is somehow correlated with their in-
formative significance. The influence of the low-level features
on capturing attention is motivated by the functions of the
neural circuitry in the early primate vision and experimental
findings in scene observation tasks [19], [20], [10]. By far,
the most influential computational implementation grounded
in this theory is the concept of the saliency map [21]. In
the aforementioned model, low-level features such as color,
orientation, brightness and motion are extracted in parallel
from the visual input. The visual input is represented as a
digitized 2D image. Low-level features from the visual stimuli
compete across local neighborhoods and multiple spatial scales
building spatial banks of features that correspond to center-
surround contrast computed across different scales. The feature
banks are normalized and aggregated by a weighted sum to
create a master saliency map. The focus of attention is driven
by the interplay between a winner-take-all mechanism (WTA)
and an inhibition of return mechanism (IOR) that operates on
the final saliency map.

This pure bottom-up, approach driven by the early per-
ceptual pop-out features has been subsequently extended to
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Figure 2. Experimental setup with a natural task performed by the authors to illustrate the interaction between overt visual attention (gaze movements) and
the arm motor system. The subject is required to pour the tea into two cups and one bowl that are placed close to the horizontal midline of the table. 4
pictures of various objects are placed close to the border of the table and 2 pictures are placed on the wall facing the subject. These pictures play the role of
visually salient distractors because they share the same visual features with the objects, but remain completely irrelevant for manipulation through the entire
task. The overt attention, i.e. gaze movements, together with the scene as viewed from the subject’s standpoint are recorded by using the WearCam system
[12]. The order of the figures from left to right corresponds to the progress of the task. The cross superposed on the video corresponds to an estimated gaze
position. It can be seen that the gaze is tightly bound to an object that is relevant to spatio-temporal requirements of the task. In spite of the presence of salient
distractors, the gaze remains tightly locked on the current object of interest. This behavior cannot be predicted by the feature-based saliency maps, even with
top-down extensions because in manipulation tasks perceptual processing is biased toward manipulation-relevant regions of the visual field, not toward the
most textured or distinctively colored stimulus. The presented experiment is inspired by the experiments performed by Land et al. [13] and Hayhoe et al. [7]
and it draws similar conclusions regarding the predominance of the influence of the motor system over the influence of low-level features on visual attention
in a manual task. For more papers with similar insights obtained from human walking studies, see [14], [15].

guided visual search by an additional weighting of the feature
channels with a top-down bias that comes from the prior
knowledge about objects [22], [23]. One of the most influen-
tial top-down models of visual attention is the biologically-
inspired model by Tsotsos et al. based on optimizing the
visual search by using selective tuning of top-down, pyramidal,
hierarchically-organized winner-take-all mechanisms [24]. The
model addresses the problems of selection in an image, routing
of information through the processing hierarchy and task-
specific biases for visual attention. In their attentional model
of human visual object detection, Oliva et al. have included
the influence of the top-down prior information from visual
context (i.e. where specific objects of interest should be located
in the global scene configuration) on the saliency of spatial
regions in natural scenes [25]. When the visual target is
known beforehand, the top-down bias based on the similarity
measure between the target and scene regions, where the
features are orientation and spatial frequency histograms, can
very efficiently guide visual search [26]. Interestingly, the
model could accurately predict the distribution of human gaze
fixations recorded while observing the same real-world scenes
without having any sub-mechanism corresponding to bottom-
up saliency activations.

B. Attention for robot vision
Related work in robotics is heavily influenced by the

aforementioned Itti-Koch computational model of attention.
Whereas most of the computational models implicitly assume
covert attention shifts, i.e. no movements of the head and the
eyes are involved, most robots are equipped with an active
camera system, which makes them suitable for active, overt
visual exploration. These robotic applications inherently rely
on a saliency map-based scheme to evaluate visual stimuli,
and then, instead of shifting covert focus of attention, they
actively initiate saccadic movements of the cameras to bring
the fixation to the most salient point in the visual field [27]. A
number of robotic applications are primarily concerned with

implementing saliency maps in order to achieve biologically-
inspired saccadic and smooth-pursuit eye movements either
with a single pan-tilt camera or a complete robot head [28].
These schemes have been extended to biologically inspired
log-polar vision [29], [30]. Saliency-based attention has been
studied in conjunction with exploration, development and
learning for humanoid robots [30]. Attentional-based vision
has been addressed as an aid to sociable robots to improve
human-robot interaction [31], [32] and in imitation learning
[33], [34].

C. Current shortcomings of attention-based models for robot
vision and their biological solutions

Although the efforts made in the robotic community have
been very fruitful, expanding theoretical foundations and
providing practical applications of attentional mechanisms,
the most prominent use of attentional schemes still remains
applied to object tracking, scene exploration, mimicking the
human visual system for robotic studies of development and
for providing human-like visual behavior for sociable robots
[27]. A very significant drawback of attentional models based
on early perceptual saliency, for the purposes of visually driven
motor control, is that an attentional relevance is computed
solely on the structure determined from low-level visual stim-
uli projected on the retina, whereas neither the 3D structure of
the environment, physical constraints such as body kinematics
nor motor action plans are taken into account. The use of
attention for active, real-time vision-based manipulation that
relies on reliable visual information at each cycle of the control
loop continues to be very limited. This is an issue we aim to
address in this work. In particular, we identify the following
three issues as critical: i) speed of computation, ii) distribution
of focus of attention and iii) attentional relevance.

1) Speed of computation: Attention in primates evolved
as a cheap, efficient and inherently embedded mechanism
to select a small subset of abundant visual information for
further, high-level processing. The primary reason for this
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is to efficiently optimize the use of scarce computational
resources. However, as previously mentioned, most work in
robotics related to attention is motivated by the saliency model
of Itti and Koch [21]. Regardless of the massively parallel
architecture, constructing a saliency map is an extremely
intense computational task. The best reported times on CPU-
based implementations, highly specialized for efficiency, are
of an order of ~50 ms for a single map [35], the time which
doubles for a stereo system, after which, in addition, some
high-level visual processing is done in the later stages in the
visual processing pipeline. This prohibits applications of the
classical saliency map approaches for fast real-world robotic
problems such as real-time adaptation to perturbations in
grasping tasks with obstacle avoidance.

2) Distribution of focus of attention: The majority of
models of attention assume that a focus of attention, the so-
called attentional spotlight, is a circular shaped region of a
fixed radius [36], which is centered at a point with the highest
saliency in the visual field. Zoom-lens models extend the
attentional spotlight concept by allowing the radius of an atten-
tional “window” to change with respect to task demands [37].
Both the spotlight and zoom-lens models restrict applicability
of attentional mechanisms for real-world robotic scenarios
in complex tasks because only one location in the visual
field is (covertly) selected as the focus of attention, toward
which the further attentional interest is oriented (covertly or
overtly). A number of recent studies from visual neuroscience
and psychology suggest that covert attention can take on a
complex spatial arrangement [38]. Baldauf et al. have found
that covert attention supports pre-planning of a rapid sequence
of movements toward multiple reaching goals, by distributing
peaks of attention along an intended reaching path [8], [9].
These findings show that covert attention can be distributed
not only at one location, as overt attention, but rather si-
multaneously forms a complex “attentional landscape” in the
visual field. Schiegg et al. found that covert attention can be
split into multiple foci that are deployed in a way to pinpoint
individual locations of intended contact points of the fingers
during precision grasping [39]. The experiments with non-
human primates have shown that visual receptive fields can
even adapt after several minutes of the tool use by elongating
their shape to covertly overlay the tool held in the hand [40],
[41].

3) Attentional relevance: Computational models of atten-
tion have shown good performances and significant statistical
similarity to human strategies in simple scene viewing and
in guided search tasks [21], [20], but describing human gaze
behavior in more complex tasks is far beyond their capabilities.
The weakness of the majority of attentional models is that the
top-down influences coming from the motor information are
not taken into account. In a more recent work, Rodriguez-
Sanchez et al. have developed an attentional model under the
selective tuning framework that is able to recognize and attend
complex motion patterns in the visual field [42]. Their model,
which mimics some well-known properties of the mammalian
visual stream, is able to detect and classify moving objects in a
presented video stream, showing the behavior observed in real-
world human psychophysical visual search experiments. Going

along the line of emphasizing the importance of the motor
information for visual attention, we hypothesize the observed
mismatch between the predictions of the standard, low-level,
feature-based attentional models and the actual deployment of
attention in reach-to-grasp tasks (Fig. 2) is attributable to the
fact that only low-level image features are taken into account
by the models that compute attentional relevance, whereas the
strong top-down bias from the arm motor system in reach-to-
grasp tasks is completely ignored.

This is rather surprising, considering that there are numer-
ous evidences that report on the very significant coupling
between the motor system and attention allocation. Even in
pure perceptual tasks, where vision does not support ongoing
arm movements, the peripersonal space1 receives a prioritized
covert visual processing compared to the extrapersonal space
[44], [40], [45], with the peaks of the attentional relevance
of visual stimuli close to the hands [46], [47], [48], [49].
The importance of visual specialization of the peripersonal
space is even observed at the level of the parts of the
central nervous system. Neurophysiological studies in humans
and non-human primates have revealed specialized circuits
in the putamen, parietal cortex and ventral premotor cortex
that are devoted to processing of visual stimuli within the
peripersonal space [50], [51], [52], [40], [46]. Previc, in his
well-known theory of visual field specialization, hypothesized
that the visual prioritization of the peripersonal space emerges
from functional relationships between the vision and motor
systems [43]. In this view, the peripersonal space is inherently
more visually salient than the extrapersonal space because it
supports motor activities with the hands.

In studies that used overt gaze movements as a measure
of attention and where the gaze is used to support physi-
cal actions, researchers have found that the gaze is driven
by spatio-temporal task demands in simple navigation tasks
[53], by manipulation in natural, well-known tasks [7], in
moderately complex tasks involving obstacle avoidance [54],
and in very complex tasks such as ball sports [55]. Similarly,
studies that analyzed the distribution of covert attention in
visuomotor tasks have shown similar results. Covert attention
is brought to objects relevant to manipulation, even when
reaching for multiple targets in a sequence [8], or in parallel
by engaging bimanual manipulation [9]. The starting position
of the hand [56] and its goal position [11] receive prioritized
visual processing when preparing arm movements. Deubel and
Schneider found that deployment of covert visual attention
at an obstacle occurs when the obstacle obstructs intended
arm movements, however, in cases when it does not obstruct
intended manipulation it is not covertly attended [57]. Deploy-
ment of covert attention could be modulated by motor plans as
tightly as to support planned finger movements during grasping
[39].

Very few, if none, of the mechanisms reviewed in this
subsection are utilized in the modern computational attentional

1The peripersonal space is defined as the space around the body within
which an agent (a human, monkey or a robot) can manipulate objects without
using locomotion to move the body, whereas the extrapersonal space is
postulated as the space beyond the peripersonal space and its representation
is used for navigation and orienting, see [43] for more.
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Figure 3. Exploratory behavior used to learn an adaptable model of the visuomotor transformation. The snapshots from the simulator (a-d) show several
examples of exploratory configurations. The torso-neck-head-eye-joints (9 DoF) are sampled from the uniform distribution within their respective joint limits,
and, similarly, the position of the green ball is sampled from the uniform distribution defined within the reachable space. For each sampled configuration, the
encoders are read and the locations of the segmented ball in the stereo images are obtained. After the exploration, these data points are utilized to learn a
neural network model of the workspace to the stereo image projections. The advantage of having such a model is that the model can be easily adapted with
data points obtained from the real robot by taking similar exploratory procedure, in order to adapt the model to the discrepancies between the mathematical
model and the kinematics of the real robot.

methods embedded in robotic visually-driven reaching and
grasping. Taken together, biological studies indicate a clear
dependence and an active modulation of visual attention on
motor information. All these results suggest that low-level
feature-based saliency is suppressed when an actor is engaged
in visually-aided physical tasks, regardless whether the task is
manipulation or navigation, whether the interaction with the
object is performed in a parallel or in a sequential manner,
and regardless whether gaze movements are suppressed or not.
In plain words, in physical tasks, motor-relevant parts of the
visual field are visually salient.

The aforementioned behaviors observed in these studies
are elegantly explained and unified by the premotor theory
of attention proposed by Rizzolatti and coauthors [58]. This
theory argues that visual attention is a feature that emerges
from the motor neural circuits that generate actions, i.e.,
cortical structures that are involved in arm movements are
also responsible for constructing covert visual attention that
accompanies the movements. In developing our model, we
take the exact approach as argued by the premotor theory
of attention: the attentional landscape is primed by the mo-
tor system. By equalizing motor-relevant as attention-salient,
we aim at tackling the reviewed current weaknesses in the
existing attention models. We demonstrate in this paper that
motor-primed visual attention is a very efficient mechanism.
We proceed further with the section that describes how the
peripersonal space-primed attention and motor plans-primed

attention landscapes are computed.

III. PERIPERSONAL SPACE-PRIMED AND MOTOR
PLANS-PRIMED ATTENTION

We here first describe a method to compute projections from
the workspace to the image plane. Once this transformation
is obtained, it is used to construct two variants of visual
attentional landscapes: (a) peripersonal space attention is based
on the idea that visual attention is biased toward the reachable
space of a robot, and (b) motor plans attention is a concept
where attention is dynamically bound to motor plans of the
robot.

A. The workspace to the image plane projection

In order to distribute visual attention with respect to both
the peripersonal space and motor plans of a robot, we first
need to obtain a transformation that will map the points from
the spatial coordinates to the image planes.

1) Projections to the image plane: Let the Cartesian
workspace position be represented as x ∈ R3, and the kine-
matic configuration at the current time of the torso-neck-arm
represented with the torso, neck, and head joints as q ∈ R9,
the transformation function of the form:

pi = fi(c), (1)
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where c ∈ R12, c =

[
x
q

]
, and pi ∈ R2 represents the projection

of the trajectory, taking into account the kinematics of the
torso, neck and eye, to the image plane of the i-th camera,
where i = {left, right}.

A classical, straightforward approach would be to compute a
sequence of kinematic transformations through the torso-neck-
head kinematic chain in order to obtain the extrinsic camera
parameters, and use them together with the intrinsic parameters
of the camera to obtain the projective transformation. For a
stationary camera, calibration of all the camera parameters can
be easily accomplished by formulating the problem as linear
regression and solving it by using the least-squares approach.
However, for cameras mounted on a moving robot’s head, the
problem includes the torso-neck-head joints. This imposes the
need for calibration of the kinematic chain because most often
a real robot differs from its ideal kinematic model. Hence,
the linear problem of calibration for a static camera becomes
highly nonlinear for a camera mounted on the head as we
include the torso-neck-head joints as independent variables.

Clearly, an alternative solution is to rely on a non-linear
approximation using any of the standard machine learning
techniques for non-linear regression. The robot would explore
in a babbling-like manner a set of kinematic configurations,
and during this exploration it would segment an object (e.g.,
a small colored ball) placed at a randomly chosen position
from a set of known positions in the workspace. The data
obtained during the exploration (encoder readings of the joints
in the torso-neck-head chain, the position of the object in the
workspace and its projection to the camera planes) would be
used to learn a mapping function. A problem associated with
this approach is that the babbling-like exploration with the
real robot is very costly because in order to build a reliable
estimate of this nonlinear mapping, the size of a training set
needs to be arbitrarily large to be representative, usually of an
order a few thousand data samples.

Here we take an intermediate step that represents a compro-
mise between the two previously described approaches. The
idea is to take advantage of the simulator of a robot in order
to obtain a large number of training samples by employing
babbling, and use this data set to estimate an initial set of
parameters for the mapping model (Fig. 3). Once a neural
network workspace to the image plane projection is learned
in the simulator, we incrementally adapt the model with a
fraction of the data (∼100 data points) from the real robot in an
incremental manner. The exploratory procedure with the real
robot is identical to the one performed in the simulator (Fig. 3).
The only difference with the real robot is that the object to be
segmented, instead of the green ball programmed to be moved
in the simulator, is a green-colored marker placed on the palm
of the robot. The robot in an exploratory fashion moves the
arm and the torso-neck-head system, the 3D position of the
marker is read from the forward kinematics of the arm and
the marker image projections are obtained after a color-based
image segmentation procedure.

2) Neural network approach: A feed-forward neural net-
work is a suitable machine learning algorithm for our appli-
cation for several reasons [59]. Feed-forward neural networks

can compute multi-input-multi-output functions. Their output
is very fast to compute in real-time because the computation
consists of a short sequence of matrix-vector multiplications,
followed by (non)linear transfer functions. Feed-forward neu-
ral networks are suitable for incremental learning, either in the
batch or in the stochastic, online mode. This allows us to first
estimate this function from the data in the simulator, and then
adapt it with the data from the real robot.

The parameters of an architecture of neural networks for
transformation from the workspace to the image coordinates
(i.e. number of layers and the number of hidden units, etc.)
are determined by using grid-search on the mean squared
error (MSE) between the recorded image projections and
retrieved projections from the model. We tested 10 different
network architectures, and for each architecture, we performed
10 learning runs in order to ensure robustness with respect
to random initialization of network parameters. We used
the Levenberg–Marquardt optimization algorithm with early-
stopping in order to prevent overfitting [59]. The recorded data
set is randomly partitioned for 70 % of the data devoted to
training, 15 % data for validation and 15 % data for testing.
The lowest MSE on the testing set is obtained using two
hidden layers with 25 nodes in each hidden layer. Transfer
functions in the hidden layer are hyperbolic tangent sigmoid,
and in the output layer are linear. The data set is normalized to
obtain zero mean and unity variance. In order to get the real-
time performances, a network class is implemented in C++ by
using linear algebra functions from OpenCV library [60]. The
time needed to transform 50 points by using neural nets to the
image planes of both cameras is less than 1 ms.

B. Peripersonal space-primed attention

In order to be able to distribute visual attention with respect
to the peripersonal space of a robot, (a) we need to have
a transformation that will map the peripersonal space to the
image planes (as described in the previous section III-A), and
(b) we need to obtain a representation of the peripersonal
space that we will map to the stereo images as the robot takes
different postures. We next proceed with describing how we
obtain the representation of the peripersonal space and how
we learn the peripersonal space-primed attentional landscape.

1) Representation of the peripersonal space: For reachable
space modeling, classical methods such as polynomial discrim-
inants and geometric approaches compute the boundaries of
the robot’s reachable space (reviewed by Kim et al. [61]). The
limitations of these methods are that they can only be applied
to special kinematic chains and they model the boundary of the
reachable space, without any notion regarding which locations
of the reachable space are more likely to be attended. We take
here an exploratory, sampling based approach that overcomes
these two difficulties.

We model the peripersonal space by commanding the robot
to explore reachable positions by randomly varying the arm
joint angles. More specifically, we sample the joint values
from the uniform distribution defined over the feasible joint
ranges, and we read the achieved 3D end-effector positions
from the robot’s forward kinematics. Once this exploration is
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Figure 4. Exploratory behavior used to model of the peripersonal space for the right arm of the iCub robot. Figure (a) represents several exploratory movements
captured in the simulator and superimposed. Figures (b-d) show the sampled cloud of data points with respect to the robot’s body in XY (b), XZ (c) and YZ
plane (d).

carried out, we store recorded reachable points in a database.
Fig. 4 shows the exploratory procedure that we take and the
obtained, sampled representation of the peripersonal space.
The point cloud that models the sampled representation of
the workspace of the robot obtained in the simulator is used
without any adaptation to the real robot due to the fact that
the differences between the workspace volumes of the real
robot and the simulated one when projected to the image
planes are negligible. One additional justification for this is
that sampling the reachable space with the real robot would
be a very expensive and slow process.

2) Attentional landscape: After we obtain the representa-
tion of the peripersonal space, we model the distribution of
attention with respect to the peripersonal space. We sample
the eye-neck-head joints from the uniform distribution within
the joint limits and, for each sampled configuration, we project
the previously sampled cloud of the reachable space points by
using the previously learned mapping (presented in III-A) to
the stereo images. This procedure is shown in Fig. 5.

The bubble-shaped cloud of the end-effector locations that

models the peripersonal space (Fig. 4) projects as an ellipsoid-
shaped scatter to the left and right cameras (Fig. 5). We use
a bivariate Gaussian distribution to model the scatter of the
projected points on the image planes, which represents a para-
metric representation of a peripersonal attentional landscape,
as formulated:

Λi,t(p;µi,t,Σi,t) =

1√
(2π)

4 | Σi,t |
e−

1
2 ((p−µi,t)

T (Σi,t)
−1(p−µi,t)), (2)

where t is the index of the currently sampled configurations
and the corresponding projections, i = {left, right}, and µi,t
and Σi,t are the mean and the covariance matrix, respectively.
In this case, the bivariate Gaussians, one for the right and
one for the left image, are parametric representations of the
peripersonal space attention for the stereo setup given the
current neck-head-eye posture of a robot.

Before we proceed with learning of a function that maps the
neck-head-eye posture to the parametric representation of the
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Figure 5. Exploratory behavior used to learn a model of peripersonal space-primed attention (a-c). The figures represent several exploratory movements.
For each randomly generated neck-head-eye posture, we project the sampled set of reachable points to the stereo image planes. Using bivariate Gaussian
distributions to model the elliptical envelopes of projections of the bubble-shaped cloud to the image planes is an intuitive choice. In this case, the bivariate
Gaussians, one for the right and one for the left image, are parametric representations of the peripersonal space attention for the stereo setup given the current
posture of a robot. The reddish heat maps correspond to the values of the density of the projections. Finally, a mapping from the neck-head-eye joint angles
to the parametric representation of attention is learned by using these data. This mapping is used in the run-time to infer how peripersonal attention should
be distributed given the set of the neck-head-eye joint angles.

attentional landscape (the mean and the covariance), we must
take into account that the covariance matrix, inferred from
such a mapping and used to compute the attentional landscape,
must be symmetric and positive definite to ensure the validity
of the Gaussian distribution. One solution is to enforce this by
projecting the inferred covariance matrix (only symmetric but
no guarantees of positive-definiteness) onto the set of symmet-
ric positive definite matrices by using the constrained convex
optimization programming. However, addressing this problem
involves iterative optimization procedures, which we want to
avoid for maximizing computational efficiency. Here we use
an alternative approach. We first decompose the covariance
matrix into the product of a lower triangular matrix Li,t and
its transpose by using the Cholesky factorization:

Σi,t = Li,tL
T
i,t, Li,t =

[
L1,i,t 0
L2,i,t L3,i,t

]
. (3)

Next we proceed with learning a mapping λi,t = gi(qt),
defined from the current joint angles q ∈ R6 to the tuple
λi,t ∈ R5, λi,t = [µ1,i,t, µ2,i,t, L1,i,t, L2,i,t, L3,i,t]

T , which is
an ordered, column-vector arrangement of the elements of µi,t
and Li,t. This mapping is learned with a feed-forward neural
network, by using a similar procedure to the one explained
in Section III-A. In the run-time, for a given configuration q∗,
we infer λ̃i,t, i.e.,µ̃i,t, L̃i,t, from function gi. We then compute
the attentional landscape as follows:

Λi,t(p; µ̃i,t, L̃i,t) =
1

C
e−

1
2 ((p−µ̃i,t)

T (L̃i,tL̃
T
i,t)

−1(p−µ̃i,t)), (4)

where C is a normalization constant. The reconstructed covari-
ance matrix, computed as the product L̃i,tL̃Ti,t, is a symmetric
positive definite matrix. Considering that the Cholesky lower
triangular matrix represents the measure of deviation from the
isotropic Gaussian, we can constrain computation of the atten-
tional landscape within the ellipse obtained by multiplying the
unit circle D = {p ∈ R2 | ‖p‖2 = 1} with L̃i,t and translating
the product by µ̃i,t:

Ei,t = σL̃i,tD + µ̃i,t. (5)

σ ∈ R is a free parameter that corresponds to the number of
standard deviations at which one wants to compute the ellipse,
and it is usually set at σ = 3. The value of the attentional
landscape outside the 3σ-ellipsoid is insignificant to affect the
distribution of attention and can be neglected. For this reason,
we cut-off the attentional landscape at zero outside the 3σ-
ellipsoid to avoid computing Eq. 4 at these pixels to gain
computational efficiency.

C. Motor plans-primed attention

The peripersonal space primed attention could be seen as a
general, multipurpose technique, to compute the distribution
of attention to the image regions that correspond to the entire
peripersonal space. It might or might not involve reaching and
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grasping movements. However, because peripersonal space-
primed attention is bound by the whole reachable space, it
does not utilize particular motor plans of a robot. Additional
constraining of the attentional landscape around motor plans-
relevant regions results in additional computational savings
and more localized visual processing. We here present a way
to further constrain the attentional landscape, with respect to
motor plans of the robot. This is a more specialized technique
than peripersonal space-primed attention.

We first describe our robotic eye-arm-hand controller, de-
veloped in our previous work [62], [63], which we use to
generate reaching and grasping movements and to forward-
plan the arm-hand reaching trajectory. Learned eye-arm-hand
Coupled Dynamical Systems (CDS) are used in order to “men-
tally simulate” the consequences of intended actions, more
specifically, to compute (i.e. plan) an intended trajectory and
to identify obstacles. This mentally simulated arm reaching
trajectory is transformed to the image planes of the stereo
cameras. The projected mentally-simulated trajectory is used
to compute an attentional landscape.

1) Eye-arm-hand controller: The controller is based on the
CDS framework, where the main idea is to estimate separate
Autonomous Dynamical Systems (DS) that correspond to each
body part (one DS for the eyes, one for the arm and one
for the hand), and then couple them explicitly. This controller
consists of five building “blocks”: three dynamical systems
and two coupling blocks between them. They are organized
in the following order: eye dynamics → eye-arm coupling →
arm dynamics→ arm-hand coupling→ hand dynamics, where
the arrow direction indicates the direction of control signals.
The gaze DS is the master to the arm DS, and the arm DS
is the master to the hand DS. Fig. 6 schematically illustrates
the architecture of the CDS. We used human motion capture
data recorded in a reaching-and-grasping task to estimate the
parameters of the controller [62], [63]. The time-invariant
properties of the CDS allow rapid adaptation to spatial and
temporal perturbations, where the explicit coupling between
each dynamical system ensures that their behavior is correctly
synchronized, even when the motion is abruptly perturbed far
from the motion recorded in human demonstrations.

This framework allows us to perform visuomotor coordina-
tion in the presence of an obstacle, as well. We use the CDS
mechanism in order to mentally simulate the consequences
of planned arm movements, specifically to detect objects that
obstruct the intended reach-for-grasp actions and to identify
them as obstacles. The motion of the arm toward the target is
calculated by integrating the dynamics of the CDS until each
DS reaches its attractor. The arm end-effector is modeled as
a point that moves along the estimated trajectory. Obstacle
objects in the workspace are modeled as cylinders that enclose
the actual dimensions of the object and also account and
account for the fact that the hand was modeled as a point. By
taking this approach, we are able to reliably detect collisions
with the fingers in our forward planning scheme, even though
the hand is modeled as a point, which results in a simplistic
collision checking scheme. An obstacle is used as the inter-
mediary target for the visuomotor system, which allows us
decompose the obstacle avoidance task in two segments: from

the start to the obstacle and from the obstacle to the target. In
the first part of the task, the arm DS moves under the influence
of the attractor placed at the via-point. The hand DS is driven
by the attractor placed at the hand configuration when the palm
reaches the closest point (along the trajectory computed ahead
of time) to the obstacle. Coupling the hand motion with respect
to the obstacle is advantageous because it modulates the shape
of the hand such that collisions between the fingers and the
obstacle are avoided during obstacle avoidance. The goal hand
configuration for passing the obstacle at the closest distance
is determined by observing the average hand configurations of
our subjects in obstacle avoidance trials. The position of the
via-point is determined with respect to the obstacle, such that
its displacement vector from the obstacle position is oriented
in either an anterior or posterior direction, for the length that
corresponds to some safety distance between the centroid of
the palm and the obstacle. We choose the direction of a dis-
placement of the via-point (anterior or posterior) to correspond
to a side of the obstacle where a collision is estimated to occur.
This yields a minimum-effort obstacle avoidance strategy. In
the second part of the task, after the obstacle is passed, the
CDS is driven toward the object to be grasped. Predefining
the safety distance at which the hand passes the obstacle is
a biologically-motivated decision, motivated by a series of
studies with humans. The arm end-effector passing through
the via-point at the safety distance from the obstacle and hand
adaptation, with respect to the obstacle, ensures that the hand
will not collide with the obstacle. During obstacle avoidance,
the primary modulation of the arm is controlled in Cartesian
space, which, together with controlled hand preshape, ensures
that the end-effector avoids the obstacle. In addition to this
primary modulation, the secondary modulation consists in
suggesting the desired arm joint postures suitable for obstacle
avoidance. Favorable joint configurations are first learned from
human demonstrations, and after that, they are in the run-time
inferred and provided to the IK solver. We utilize the mentally
simulated palm trajectory obtained by integrating the CDS in
order to bias visual resources to motor-relevant parts of the
visual field, which we describe in the next section. For more
about the CDS framework, its extension to obstacle avoidance
and the biological motivations of the visuomotor controller,
see Lukic et al. [63].

2) Attentional landscape: The mentally-simulated trajec-
tory of the arm, from the current position to the final position
at the current time t, is represented as xnt ∈ R3, ∀n ∈ [1, Nt],
where Nt represents the total number of discrete samples.
This mentally-simulated trajectory at every cycle of the control
loop t is obtained from the CDS controller, explained in
Section III-C1. The kinematic configuration at the current time
t of the torso-neck-head is represented with the torso, neck,
and head joints qt ∈ R9, ∀t. We use the previously learned
transformation function, presented in Section III-A, to perform
this mapping:

pni,t = fi(c
n
t ), ∀n ∈ [1, Nt] , (6)
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Figure 6. CDS-based eye-arm-hand controller. Left (green) part of the figure
illustrates how the CDS model is learned. Reproduction of motion on the
robot is indicated on the right side of the figure (red part). CDS includes five
building blocks: three dynamical systems (the eyes, the arm and the hand)
and two coupling models: eye-arm coupling and arm-hand coupling.

where cnt ∈ R12, cnt =

[
xnt
qt

]
, and pni,t ∈ R2 represents the

projection of the trajectory to the image plane of the i-th
camera, where i = {left, right}.

After we project the mentally-simulated trajectory to the
image planes, we construct an attentional landscape which
associates high attentional relevance close to the mentally-
simulated trajectory perceived in the image coordinates. To
compute the attentional landscape, i.e. a measure of visual pro-
cessing priority, we use a bivariate kernel smoothing function,
where kernels are placed at every point of the projection of the
mentally-simulated trajectory to the image planes. Formally,
we compute an attentional landscape for each camera i as
follows:

Λi,t(p) =
1

Nthhhv

Nt∑
n=1

K(p− pni,t), (7)

where p ∈ R2 corresponds to two-dimensional pixel coordi-
nates of the image plane,

K(p− pni,t) = k

(
ph − pn,hi,t

hh

)
k

(
pv − pn,vi,t

hv

)
, (8)

where k(.) represents a kernel and hh and hv are kernel widths
along the horizontal and vertical image dimensions. Kernel
widths along the horizontal and vertical image dimensions
are the parameters of the algorithm that are hand-tuned. The
greater value of the kernel width, the larger area of the image
is to be processed in the corresponding direction and, hence,
additional computational costs become associated with it. A
good rule of thumb is to select greater kernel widths when
spatial perturbations of objects in the scene are expected,
to better cover the scene to detect target perturbations and
possible sudden obstacles entering the workspace. We tested
both Gaussian kernels and triangular kernels, and we choose
to use triangular kernels because they are faster to calculate.
The triangular kernel is expressed as follows:

k(z) =

{
1−

∣∣∣z∣∣∣ ,
0

∣∣∣z∣∣∣ ≤ 1

otherwise
. (9)

The kernel smoothing function assigns high values of at-
tentional relevance close to the mentally-simulated trajectory
projected to the image planes of stereo cameras, which de-
crease in the directions away from the trajectory (Fig. 1).
The attentional landscape is used to guide image processing
in order to efficiently distribute limited visual resources. The
part of the image with higher attentional relevance draws more
visual processing, and the opposite is true. In the next section,
we explain how we distribute visual processing with respect
to the visual attentional landscape, both peripersonal space-
primed and motor plans-primed.

IV. VISUAL PROCESSING PRIORITIZING ATTENTIONAL
RELEVANCE

In Section III, we presented two types of attentional land-
scapes that can be utilized to distribute visual attention emerg-
ing from the motor system. In order to detect objects relevant
to the task at hand, a robot must process stereo images.
In this section, we propose two ways to use the attentional
landscape to guide visual processing. These two techniques
make our approach general enough to be used as a pre-
modulating technique to almost any kind of standard image
processing detectors and segmentation techniques (pixel-by-
pixel color segmentation, histogram-based detectors, Viola-
Jones, SIFT, SURF, etc.). The two processing schemes that
will be presented apply to both peripersonal space-primed and
motor plans-primed attention.

A. Thresholding

One simple approach suitable for pixel-by-pixel color pro-
cessing and interest point detectors-descriptor approaches is
to distribute visual processing to the region of the image
where an attentional landscape Λi,t(p) is higher or equal
than some threshold di. It is easy to empirically estimate
the computational time for processing the entire image and
from this value estimate cost per pixel. By sorting pixels with
respect to ascending values of their attentional relevance, we
can pick a number of pixels corresponding to the available
computational resources. From this sorted array, we can easily
compute the threshold di on the attentional landscape. An
approximate value of the threshold can be determined in ~3 ms
for 4800 subsampled pixels by using the Quick Sort algorithm.

B. Sampling

A number of image processing techniques employ image
processing within a scanning window, e.g. Viola-Jones detec-
tor, histogram-based detector, Rowley-Baluja-Kanade detector,
etc. Here the task is to determine the position of the scanning
windows with respect to an attentional landscape Λi,t(p),
in order to have more dense scanning where the attentional
relevance is large, and less dense scanning in spatial regions
with low attentional relevance. Because we use either a ker-
nel smoothing function or a Gaussian function to build an
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attentional landscape, we can treat the attentional landscape
as a bivariate probability density function and use any kind of
sampling techniques to sample spatial locations of scanning
windows. Again, we can empirically obtain a cost associated
to process the image in each window, and from the total
visual resources, calculate the number of points to sample
from the attentional landscape. We use the Gibbs sampling
method [64]. We choose the Gibbs sampling instead of other
sampling procedures such as the general Metropolis-Hastings
algorithm2 because the acceptance rate of sampled proposed
values is 13, which makes it a very efficient procedure. The
procedure operates as follows:

1) start with an initial pixel location: pi,0 = [hi,0, vi,0]T ;
2) for j = 1, 2, . . . ,M ;
3) sample hi,j from the conditional distribution Λi,t(h |

vi,j−1) by using the inverse transform sampling;
4) sample vi,j from the conditional distribution: Λi,t(v |

hi,j) by using the inverse transform sampling;
5) store pi,j = [hi,j , vi,j ]

T , increment j and loop over steps
3-5 for the given number M of scanning windows;

6) return the set of sampled points: P = {pi,1, . . . , pi,M}
(locations of scanning windows).

The Gibbs sampler and inverse transform sampling function
embedded in it are implemented with look-up tables as C-
arrays for efficiency. The time for querying the Gibbs sampler
is ~3 ms for an attention landscape of size 320×240 for 50
sampled scanning windows.

1) Adjustment when sampling from the peripersonal space-
primed attentional landscape: In Section III-B, we presented
the method for modeling the peripersonal space attention
with one bivariate Gaussian per stereo image. The bivariate
Gaussian is suitable for modeling the projection of the 3D
peripersonal space blob to the image plane, as we illustrate
in Fig. 5. Once this representation is obtained, it is used
to perform image processing according to it. For processing
by using the thresholding-based approach, this representation
of the attentional landscape can be directly used, however,
for the sampling-based approach, we find that it is better to
slightly balance it. The steeply rising profile of the Gaussian
distribution biases sampling toward its centroid. When we
sample a smaller number of windows, this could lead to the
case that the objects that lie closer to the boundary of the
reachable space are missed. For this reason, we propose using
a balanced version of the peripersonal space-primed attention
(Section III-B) when doing sampling-based image processing.
A balanced peripersonal space-primed attentional landscape is

2The Gibbs sampling algorithm can be viewed a special case of the
Metropolis-Hastings algorithm, which belongs to a wider class of Markov
Chain Monte Carlo (MCMC) methods. The basic approach adopted in MCMC
methods is to draw correlated data points from the obtained probability
distribution based on the constructed Markov chain on the state space that
has the target distribution as its equilibrium distribution. For more, see [64].

3At each iteration, the Metropolis-Hastings algorithm picks a candidate
for the next sampled data point based on the currently sampled data point.
Then, with some probability of acceptance (i.e. acceptance rate), the candidate
point is either accepted or rejected, to ensure that the fraction of time spent
in each visited state is proportional to the target density. In the case of the
Gibbs sampling, the acceptance rate is always 1, meaning that all proposed
candidate data points are kept. For more, see [64].

defined in a form of a mixture between the obtained bivariate
Gaussian (Eq. 4) and the uniform distribution U(p):

Λi,t(p; µ̃i,t, L̃i,t) = π
1

C
e−

1
2 ((p−µ̃i,t)

T (L̃i,tL̃
T
i,t)

−1(p−µ̃i,t))+

(1− π)U(p), U(p) =

{
c,

0

c ∈ domain
otherwise

, (10)

where π ∈ [0, 1] is the mixing probability, which is a parameter
that can be hand-tuned according to desired behaviors and
domain refers to the area in the image for which Λi,t is
selected to be computed, either for the entire image or 3σ-
ellipsoid. Creating the mixture between the Gaussian and
the uniform distribution flattens the original Gaussian profile,
which results in more spread out sampling and, hence, better
coverage of image regions that correspond to the spatial
regions lying closer to the boundaries of the peripersonal
space. Again, we choose to constrain computations within the
3σ-ellipsoid Ei,t.

C. Closing the loop: from covert attentional landscape to
overt eye movements and manipulation

It is noteworthy to mention that we recompute and sample
the attentional landscapes maps at every cycle. This implies
that there is no requirement to implement the IOR mechanism
and deal with the problems with the change of coordinates
associated with standard saliency models [27], which simpli-
fies our approach and hence reduces the overall computational
time.

As described in the previous section, when the attentional
landscape is constructed, the top-down visual scan is per-
formed in the spatial regions that have high relevance. These
two stages correspond to covert visual attention. In the case
of motor-primed attention, after the targets (and/or obstacles)
are detected, the overt gaze movements are initiated toward
the first intermediary target in a synchronous manner together
with the arm and the hand motion by using our CDS eye-arm-
hand controller [62], [63]. In a no-obstacle task, the eye-arm-
hand system is directly driven toward the target. In tasks with
obstacle avoidance the eye-arm-hand system is driven toward
the obstacle, which is treated as an intermediary target for the
visuomotor system, as explained in Section III-C1. When the
obstacle is avoided, the system is driven toward the object to
be grasped.

V. EXPERIMENTAL VALIDATION

We validate our method in the iCub simulator and with the
real robot with a task of visual exploration for initial object
detection (peripersonal space-primed attention), and reaching
for and grasping a kitchenware object (motor plans-primed
attention). Resolution of the stereo cameras in the setup is
320×240. We verify this approach with two well-known stan-
dard image processing techniques. For the first visual detector,
we select a scanning window hue-saturation histogram-based
detector. We implement this detector by using functions from
the OpenCV library [60]. For the second detector, we selected
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Figure 7. Experiments of visual exploration for object detection (a-b) and visually-guided reaching and grasping in the iCub’s simulator (c-e), in two different
scenarios with two detectors, and the real robot (f). The reddish blend shows the superimposed attentional landscape used to drive visual processing (for the
peripersonal space-primed attention with the histogram-based detector (a) we are sampling from a modified version, computed as in Eg. 10 with π = 0.2).
The figures (a) and (b) represent snapshots from the experiments where visual processing is prioritized to the peripersonal space (peripersonal space-primed
attention), for histogram-based detector and SURF, respectively. The blue squares are scanning image windows for which visual features are computed. The
robot adopts a random configuration and the object adopts a random position within the reachable space. Figures (c-f) show the context of motor plans-
primed attention, namely, the execution of eye-arm-hand coordination from the start of the task (left) until successful grasp completion (right). The white line
corresponds to a mentally-simulated arm trajectory that is projected to the image planes of stereo cameras. Figure (b) corresponds to the obstacle scenario with
histogram-based detector. Figure (c) corresponds to the obstacle scenario with histogram-based detector. Figure (d) corresponds to the no-obstacle scenario
with SURF detector. The blue circles correspond to detected strong feature points. Figure (e) shows how a combination of both approaches: the peripersonal
space-primed attention is used to bootstrap initialization of the motor plans-primed attention. The bottom row (f) corresponds to the no-obstacle scenario with
histogram-based detector with the real robot.
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SURF [65]4. SURF is a powerful detector because it provides
visual features that are robust to moderate changes of the
perspective. Because it computes feature point descriptors,
it provides the ability to detect partially occluded objects.
However, SURF (together with a family of similar detectors
like SIFT, GLOH, etc.) is very computationally demanding,
with the cost being double for a binocular system, hence it has
limited applicability for manipulation where the stereo vision
is used in the loop. The total time to process a stereo pair of
images in the standard, full-blown way, is for the histogram
based detector with the window size 20×20 is 168 ms and for
SURF with the Hessian threshold set to 300 is 515.5 ms.

We first test both detectors in the context of peripersonal
space-primed attention. The time needed to infer the para-
metric representation of the attentional landscape by using
feed-forward neural networks is negligibly small, close to a
tenth of a millisecond. Computing the peripersonal attentional
landscape image requires 35.5 ms. These computations are
common for both image processing techniques. Sampling
from the relevance images, for the histogram-based detector,
requires 7 ms for the stereo setup for 50 image windows
per image. Performing sparse image processing for these
windows takes 26.5 ms. These times sum up to 69 ms for the
peripersonal-space histogram based visual detection. We can
see that with our approach we can save 99 ms for each pass
through the control loop (speed up factor ~2.4×). For SURF,
thresholding takes 6.5 ms and processing 30 % of the image
pixels with the highest salience takes 280 ms, which sums up
to the total time of 322 ms for our approach. We can see that
this saves 193.5 ms per pass (~1.6× faster). Figures 7(a-b)
show the simulated results.

For motor plans-primed attention, we use the similar ap-
proach, the only difference is that this, more specialized visual
attention, is used to aid the ongoing movements. For both de-
tectors, the common computations involve a projection of the
mentally-simulated trajectory to the image plane and comput-
ing a motor-primed attentional landscape. The cumulative time
for calculating a projection of the forward-planned trajectory
to the image planes and computing attentional image land-
scapes is 19 ms (1 ms for projection and 18 ms for computation
of the landscapes). For the histogram-based detector, sampling
time for 50 windows is the same as in the peripersonal version,
7 ms, and similarly, the image processing time is 28 ms. The
overall time for motor plans-primed histogram-based image
processing is only 54 ms, i.e. ~3.1×(114 ms) faster than the
naive image processing with a uniformly sliding window. For
motor-plans primed attention with SURF, again, thresholding
requires 6.5 ms and processing 30 % of the image pixels of
the most relevant pixels takes 281 ms. The total time for our
approach with SURF is 306.5 ms, which is ~1.7×faster than
the classical, full-blown image processing. Figures 7(c-d) show
the scenarios. Figure 7(f) presents the experiments with the
motor plans-primed attention and the histogram-based detector
with the real iCub robot.

The presented schemes could be used independently of each
other, as previously discussed and as shown here, however,

4We used the implementation available from the OpenCV library.

they could work even better if used together. In order to plan
the movements for actions (for estimation of future movements
and for updating the visual scene by using visual processing
driven by motor plans-primed attention), a robot must have
some initial guess where the object might be. Of course, to
initialize the procedure one could scan the entire images first
and then in the further iterations apply reduced processing by
utilizing the motor attention and updating the knowledge about
the object state from the vision system. However, for this initial
exploration, we could use the peripersonal space attention
to constrain the initial visual search. Once the robot starts
to move, it switches to the motor plans-primed mechanism.
Figure 7(e) shows how these two attentional mechanisms work
together.

Clearly, the presented experiments show that if we choose
to intelligently process the images, prioritizing valuable image
resources to motor relevant plans of the images, we can speed
up visual computations by up to a factor of 3 times compared
to standard uniform image processing approach, where all
pixels have the same priority and hence they are processed
accordingly, without any discrimination what is motor relevant
from what is not.

Finally, it is important to mention that, in addition to
speeding up visual processing, this approach facilitates the
accuracy of visual detections during an ongoing prehensile
movement. The common problem with visual detections in
cluttered scenes (as the one in Fig. 7 (f)) is that there could be
a significant number of false positives after image processing
is done. Because we bound visual processing to motor plans
of a robot, we significantly reduce false positive detections. In
the context of the conducted experiments, there are no false
positive detections of the objects in the parts of the visual field
that are irrelevant to motor plans, because the relevant objects
are not likely to be there.

The computation times presented here are the averages com-
puted from 200 measurements. We have included a supplemen-
tary video file which contains the experiments presented here.
The video will be available online at http://ieeexplore.ieee.org.

VI. DISCUSSION

In this paper, we have presented one general approach,
with two different, but complementary, computational realiza-
tions, where visual attention is computed by using modulation
signals originating from the robot’s motor system. In sharp
contrast to the classical approach in computational models of
attention and corresponding robotic implementations, where
visual attentional relevance is computed based on low-level
visual features such as color, edges and intensity contrast,
emphasis is put here on tuning the robot vision with respect
to the notion of the peripersonal space and forward-planned
reaching and grasping movements.

The approach presented here is inspired by the results
from psychology and visual neuroscience suggesting that
visual attention emerges from the motor system, as elegantly
summarized under the premotor theory of attention [58]. The
peripersonal space around the body (in both humans and
non-human primates) inherently attracts more visual resources
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that the extrapersonal (beyond reach) space, with and without
supporting arm movements [66], [43]. A number of more
recent studies with humans show that specialization in the
peripersonal space could be additionally fine-tuned in order
to support reaching and grasping movements [38].

According to the aforementioned results from the psychol-
ogy and neuroscience, we have developed two attentional
techniques to drive visual processing in humanoid robots:
peripersonal space-primed and motor plans-primed models of
visual attention. Peripersonal space-primed attention is based
on the idea that visual processing supporting reaching and
grasping should prioritize the reachable (peripersonal) space of
the robot. On the other hand, motor plans-primed attention is
constructed around the idea that during movements, the image
parts corresponding to the space around motor plans should
receive higher priority for visual processing. The peripersonal
space-primed attention model is a more general concept and
could be used for a variety of applications, including vi-
sual exploration of the reachable space, but also during the
ongoing movements, as well. Nevertheless, we advocate its
use for visual exploration, but not during actual movements,
because motor plans-primed attention offers a more specialized
framework, which results in higher computational savings.
We have taken a machine learning, data-driven exploratory
approach to construct the visuomotor transformations and to
obtain an implicit notion of the peripersonal space used for
guiding visual processing. The benefits of such an approach
are that learned models be adapted, if needed, to the vi-
suomotor transformations involving the imperfections of the
kinematics and cameras of real robot, and that it overcomes
limitations of the classical methods used for representation
of the peripersonal space, while still being very efficient to
compute (less than a millisecond to compute the outputs of
feedforward neural networks). Once the attentional landscape
is computed (either peripersonal space-primed or motor plans-
primed) it could be used to drive almost any kind of standard
image processing technique. We have presented experiments
with two popular techniques, with the histogram-based color
detector and SURF. For the histogram-based detector, we treat
the attentional landscape as the bivariate probability density
function and sample locations of the scanning windows by
using the Gibbs sampling technique. For SURF, we apply
a threshold-based segmentation to constrain computation of
SURF features within the parts of the image with higher motor
relevance.

Furthermore, in the presented experiments, we have shown
how the peripersonal space-primed and motor plans-primed at-
tention can work together. Peripersonal space-primed attention
is used to bootstrap initialization of the motor plans-primed
attentional mechanism. In order to use motor plans-primed
attention, the robot first needs to possess some previous belief
where the object might be. This prior information about the
object location is used in an iterative procedure: to compute
motor plans, which are used to control the robot and for visual
updating of the object location by means of motor plans-driven
visual processing. The initial guess where the object might be
placed could be obtained by first scanning the entire stereo
images in the classical way and then proceeding with the

iterative procedure until the task ends. However, peripersonal
space-primed attention offers a way to constrain the initial
visual search, which is a more efficient method than the
naive and expensive scanning of the whole images. Once the
object to be grasped (and objects to be potentially avoided) is
detected, the robot then selects its motor plans, and it switches
its visual attentional mechanism to the motor plans-primed,
more specialized and more efficient, attentional model that
supports visual processing during movements.

Considering the interplay between the motor-primed atten-
tional effects [38] and low-level scene features [18], [21] is a
very interesting topic to be assessed in future work, which
could bring better biological plausibility to the modeling,
as well. We hypothesize that it might be very likely that
some weighting scheme between the motor-primed and low-
level feature-based attentional mechanisms exists and that
the weighting is governed by some high-level, task-aware
cognitive inputs. For example, in natural scene exploration
tasks, without any motor actions, the weight associated with
the low-level feature-based saliency might be greater than the
weight corresponding to the motor-primed visual attention. In
motor tasks, the importance of these weights is expected to
be reversed. Unfortunately, at this point it is not entirely clear
how such a hybrid scheme would be beneficial to reaching and
grasping. In addition, more insight is needed from biological
studies because the investigation of the study of motor-primed
visual effects is by itself a very recently established direction in
the domain of visual attention. Some early evidence suggests
that this integration might exist [67], however, additional
work is needed to outline the computational nature of this
interaction.

In our modeling, motor-primed attentional landscapes of the
left and right camera of the robot are computed independently
of each other. The introduced simplification is common to
other attentional models, as well (e.g. [68]). In our case, we
introduce this simplification for two practical reasons. First,
during babbling-like exploratory learning of the workspace to
the image planes projection function, due to the fact that both
the kinematic chain torso-neck-head and object being visually
segmented (i.e. green ball) are moved in an exploratory
fashion, the segmented object is significantly more often seen
in only one of the cameras in the stereo setup than in both
at the same time. Considering the cameras as independent, in
our case speeds up data collecting during costly babbling-like
exploration for learning. Second, we plan to use monocular
pose reconstruction approaches (for example, POSIT) with our
humanoid robot. However, to properly address the biological
plausibility of motor-primed attention, we would need to take
into account the coupling between the eyes in our future
work. Such coupling is used in classical feature-based saliency
models in the form of introducing the stereo disparity as
a feature channel when computing the master saliency map
[69]. One interesting direction along the line of biological
modeling would be to consider the coupling effects between
the binocular rivalry and visual attention mechanisms [70].

Taken together, in this paper, we have shown that our
approach can efficiently distribute limited visual resources in
a robot system, significantly reducing resources compared to
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the classical uniform image processing, but still allowing for
a robot to perform complicated tasks, such as manipulation
with obstacle avoidance.
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