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Gonçalo Cruz, Maria Bento

CIAFA, Portugal
{gccruz,mfbento}@academiafa.edu.pt

Abstract

In this paper we present a sea vessel detection algorithm
in aerial image sequences acquired by an unmanned aerial
vehicle. The proposed method is robust to variable back-
ground lighting, highlights due to sun reflections, vehicle
self motion and scale changes. By relying in simple blob
analysis rules, based on both spatial and temporal con-
straints, the algorithm is capable of real-time operation on-
board the vehicle, even with non optimized code. We eval-
uate our method on three sequences labeled with ground
truth vessel position, with more that 2900 frames. Overall
we are able to achieve very low false positive rates even in
heavy sun reflection conditions.

1. Introduction

The scientific world uses unmanned aerial vehicles for
ocean and climate research, environment and Earth re-
search, magnetic, radiological, gravimetric mapping, and
geophysical monitoring of natural processes, among oth-
ers. Unmanned Aerial Vehicles are also used as platforms
to develop new technologies and operation concepts. In
this research we have used them for acquiring aerial im-
age sequences, to answer the challenge of detecting vessel
using airborne images in an affordable way. Other sensing
technologies, such as air- or space-borne synthetic Aperture
radar systems, are available, but just for medium and large
UAVs. These technologies are still an unrealistic option for
small UAVs due to the heavy weight and excessive power
requirements of the equipment. However, since most UAVs
carry an onboard camera, it makes sense to use these small
and lightweight sensors to acquire information about the sea
surface. However, the big problem, and also the big chal-
lenge, is to create a non-complex, efficient, robust and real
time computer vision algorithm capable of detecting a ves-
sel from the images of a moving camera, onboard a UAV
flying over the ocean.

This paper addresses the detection of vessels in the
ocean, using unmanned air vehicles (UAVs) equipped with

Figure 1. Vessel detection difficulties: moving camera, non sta-
tionary and dynamic background, sun reflections and sky.

color cameras. This is a challenging problem since the cam-
era is moving and the ocean surface presents non station-
ary and dynamic behaviors, due to the presence of waves,
wind and illumination changes. These properties prevent
the use of straightforward techniques such as background
subtraction [3, 5]. In this problem, the background image
moves and cannot be represented by a stationary model. In
addition, airborne images often contain sun reflections and
highly illuminated regions of sky (see Fig. 1) that turn ves-
sel detection into a challenging problem.

The presence of a vessel in the ocean modifies the im-
age texture and color. This suggests that texture and color
features may provide useful cues to discriminate the ves-
sel from the ocean surface. However, the visual difference
between the vessel and the sun reflections or the sky is of-
ten small, meaning that a single feature (e.g., pixel color) is
not enough to detect vessels and we must rely on additional
information.

The main contributions of this work are the following:

• it proposes a novel algorithm for vessel detection and
verification in ocean surveillance applications, with
low computational cost capable of running in the hard-
ware embedded in small UAVs.



• it proposes a set of rules based on both spatial and tem-
poral constraints to discriminate vessel blobs from im-
age artefacts such as reflections and sky.

The rest of the paper is organized as follows. Section 2
presents a brief overview of related work. Section 3 de-
scribes the proposed system. Section 4 presents experimen-
tal results with real data and section 5 concludes the paper.

2. Related Work
The problem of vessel detection from airborne images

has not been very deeply analysed in the literature. Most
systems use air- or space- borne Synthetic Aperture Radar
systems (SAR) [15, 1] or optical Satellite images [2, 16].
Current SAR systems are very expensive and cannot be car-
ried by lightweight UAVs. The use of UAVs with automatic
vessel detection capabilities would be of major importance
for the surveillance of large maritime areas for the control
of economic activities, illegal operations and environmental
monitoring. Due to the constrained price, dimensions and
payload of these systems, video cameras are the sensors of
choice for remote detection.

Maybe due to the lack of aerial datasets on maritime sce-
narios, as well as the difficulties of operation of UAVs over
the sea, very few works on vessel detection from UAVs have
been reported. Some works tackle the vessel detection prob-
lem from cameras installed in the coast or on other ships
[6, 7, 9], focusing on foreground/background separation,
detection of objects above the horizon and saliency meth-
ods. Anyway, the majority of systems that operate visible
cameras for target detection from aerial images concentrate
on land surveillance [11, 13], for instance to detect targets
like buildings, cars and people. Typical model free tech-
niques include background modeling via image registra-
tion to detect independently moving objects [12]. In model
based approaches, the objects to detect are typically charac-
terized by their shape, color and texture content, or trained
from examples using features like Haar [4] or histograms of
oriented gradients [10].

One of the few works considering ship detection in UAV
imagery is [8]. They use the assumption that the appear-
ance of the ship does not change significantly among two
frames taken a few seconds apart, whereas the sea surface
changes enough to become almost uncorrelated. Then, us-
ing image correlation, they can detect the parts of the image
that did not change, expectedly the ships and boats. In fact,
using time consistency is one of the main contribution of
our paper but instead of using only two images at a rela-
tively large time separation, we use temporal windows with
consecutive images at high frame rate to “decorrelate” the
sea surface time varying texture from the vessel more stable
image characteristics. Beyond temporal cues, we also use
spatial cues to remove image regions not matching vessel’s

Figure 2. Block diagram of the vessel detection system.

Figure 3. Vessel detection: original image (top-left), vessel detec-
tion mask (top-right), reflection & sky elimination using spatial
constraints (bottom-left) and time consistency (bottom-right).

shape characteristics.

3. Proposed System

We wish to discriminate vessels from the ocean surface,
discarding sun reflections and sky. This is not an easy task
since sky and reflection pixels are characterized by high
RGB values and the same happens with many vessel pix-
els. So, there is no way to distinguish the three types of
pixels using color features only. In addition we wish to find
fast algorithms that are able to operate in real-time inside a
UAV. The strategy used to solve this problem is shown in
Fig. 2.

First, we apply a vessel detection algorithm to obtain a
set of tentative regions (blobs) which may be classified as
vessels. Then, we estimate the sky & reflection blobs us-
ing spatial constraints and eliminate those blobs. Finally,
we use additional frames acquired at different instants of
time, in order to check for the time consistency of vessel
estimates.

Figure 3 shows typical results obtained with this system:
the top-left block shows the original image; the top-right
block displays the output of the vessel detection algorithm;
the bottom-left block exhibits the tentative vessel blobs af-
ter reflection and sky elimination and bottom-right block
shows the final results combining multiple frames. A lot
of spurious clutter is detected by the vessel detection algo-
rithm. However, the clutter is efficiently eliminated by the
other processing blocks that will be described in the sequel.



3.1. Vessel detection

Ideally, the vessel detection block should detect all the
vessels in the image, keeping the number of false alarms as
small as possible. This is a difficult task that was addressed
by two alternative methods. The first method is a simple
thresholding algorithm applied to the RGB components of
each pixel. We assume that vessels have bright pixels with
high RGB values. A pixel x is marked as active if the two
following conditions are met

max
c

Ic(x) > Tm , max
c

Ic(x)−min
c

Ic(x) < Td ,

where Ic(x) denotes the amplitude of the c− th color com-
ponent of the input image I at position x, and Tg, Td are
two thresholds. The output of this task is a binary image.

The second method follows a block based approach. The
image is divided into non-overlapping blocks. Each block
is characterized by a set of color features (color histograms,
entropy, average color) and classified as vessel or back-
ground. The output of this method is also a binary mask
as before, but all the pixels inside each block receive the
same label.

Since computation time is an important issue and block
based approaches presented some additional difficulties (the
choice of the block size is difficult since it depends on the
size of vessels in the image), we chose the pixel based ap-
proach in this paper. The results obtained with the thresh-
olding algorithm are shown in Fig. 3 (top-right). The boat is
detected as expected but a lot of clutter is detected as well.

3.2. Spatial validation

As we saw, sky and sun reflections blobs are detected by
the thresholding operation and we need further processing
to separate vessel blobs from the artifacts. In order to re-
move the sky and reflections, we use the binary mask B,
computed by the vessel detection block. First, we dilate
B, in order to link neighboring reflection regions and then
apply a connected component algorithm. Each connected
region Ri (blob) is characterized by Blobi = (xi, Ri, Ai),
where xi is the blob center and Ri is the radius and Ai the
blob area.

We classify each blob as sky and reflection if it meets
at least one of the following conditions: i) the blob area
is larger than a threshold; ii) the blob touches the image
boundary or iii) the blob is not isolated. The first condition
selects regions larger than the maximum vessel area. The
second condition selects regions touching the image bound-
ary, typically sky. These two conditions eliminate many
artefacts but they are not enough to eliminate the sun reflec-
tions since they often spread into large set of small regions.
Therefore we add an additional criterion to eliminate such
reflections by assuming that the true target is isolated in the

Spatial Validation Algorithm

Input: binary mask B

Parameters: Amax, R

Dilate B and determine the blob parameters Blobi =
(xi, Ri, Ai).

For each blob Blobi,

• 1st test: check if Ai < Amax;

• 2nd test: check if does not touch image boundary;

• 3rd test: check if it is isolated i.e., the distance to the
nearest blob is larger than R.

• accept blob if all conditions are valid;

The new binary mask B′ is the union of the accepted
blobs.

Table 1. Spatial validation algorithm

Time Validation Algorithm

Input: Blobi(t) = (x(t)i, R(t)i, A(t)i).

Parameters: D,D∗

For each blob Blobi(t)

• check if it persists in time, i.e., count the number of
times a region was detected with approximately the
same area and at the same location, in D past frames
(time horizon). The number of occurrences, Oi, is
compared with a threshold D∗. Accept Blobi(t) if
Oi ≥ D∗.

Table 2. Time consistency

ocean and no other region should be detected in a neighbor-
hood of radius, R.

The first and third conditions require the use of thresh-
olds that are empirically chosen. The proposed algorithm is
summarized in Table 1.

3.3. Time consistency

The active regions detected in each frame still contain
many false alarms that are not acceptable in a routine op-
eration of the system. Some of these regions are located
at random positions and they may be easily eliminated by
comparing the results obtained at consecutive frames. This
will be done by using a buffer of D past frames and count
how many times the active region is detected in this set of
frames. Only the persistent blobs that are detected multiple



Figure 4. Center of the Detected blobs: original (top), with spatial constraints (middle) and after time consistency (bottom)). Ground truth
blobs are displayed as red points and detected blobs as blue points. Data relative to sequence 2.

times are considered as valid candidates. This operation in-
volves the ability to match corresponding blobs detected at
different times. Several criteria can be used (e.g., see [14]).

The time consistency algorithm based on a buffer of D
frames is summarized in Table 2.

Figure 4 shows the xy coordinates of all blobs detected in
a video sequence and the output of the two validation steps.
The spatial constraints remove most of the outliers and the
time validation eliminates the rest. We conclude that a reli-
able detection of the vessel is therefore possible. It should
be emphasized that most applications don’t require vessel
tracking along multiple frames but only a reliable detection
of the vessel in one of the frames. The number of false
alarms should of course be kept as small as possible.

4. Experimental Results
The proposed algorithm was tested using three video se-

quences, acquired by a UAV, flying at an altitude of 50
meters, equipped with a 1/2.3′′ format color camera and

a wide angle lens. All of these sequences display a ves-
sel with a length of 27 meters and a maximum width of 6
meters, and two of them show sun reflections and sky (see
Table 3).

The images were acquired at a frame rate of 30 fps and
have a spatial resolution of 480× 640 pixels. Since the ves-
sels move slowly in the image, we process every 5 frames,
discarding the others. In addition, the images are subsam-
pled with a factor 2 : 1 to reduce the computation time. The
proposed algorithm performs in real time in a standard PC,
despite the fact that it was programmed in Matlab.

The following values were adopted in all the experi-
ments: maximum vessel area, Amax = 6000 pixels, small-
est distance between blobs, R = 10 pixels, time horizon,
D = 5 subsampled frames, and threshold, D∗ = 4 subsam-
pled frames. These values were chosen by trial and error
and were not changed during the experiments.

Figure 5 shows images extracted from three video se-
quences (left) and the output of the detection system (right),



Figure 5. Vessel detection: images extracted from three test se-
quences (left) and the output of the detection algorithm (right).

No frames Target Sky Refl.
Seq. 1 505 Small Yes No
Seq. 2 1070 Medium Yes Yes
Seq. 3 1400 Large Yes Yes

Table 3. Video data

showing the ability of the system to cope with vessels of dif-
ferent sizes and large amounts of reflections and sky.

To assess the algorithm, the target position and size
(bounding box) was manually annotated for all the test im-
ages. Then we compute recall and precision

recall =
TP

TP + FN
, (1)

precision =
TP

TP + FP
, (2)

where TP (true positives) denotes the number of detected
vessels, FN (false negatives) the number of non-detected
vessels and FP (false positives) the number of detected non-
vessels, aka false alarms. We consider the boat as detected
if the overlap between the detected bounding box and the
bounding box of the true vessel together with its trail is
larger than 30%.

Table 4 shows the recall and precision achieved by the
system after each of the main processing blocks. The first
block detects most of the vessel in most of the frames
(95.6%). However, the precision is very low (11.8%) i.e.,
there is a very high number of false alarms that makes this

Algorithm Recall Precision
Initial vessel detection 95.6 11.8
Spatial constraints 88.7 77.5
Time consistency 74.6 99.7

Table 4. Performance of artifact elimination algorithms (statistics
over all sequences).

Sequence Recall Precision
Seq. 1 69.3 100.0
Seq. 2 74.7 100.0
Seq. 3 76.7 99.4

Table 5. Performance of the overall system.

a useless output. Fortunately, most of the false alarms are
removed in the two following steps using spatial constrains
and time consistency. Both steps play a major role in outlier
elimination, especially the spatial constraints.

Table 5 shows the performance (recall vs. precision) of
the proposed system for each of the three video sequences
showing that the vessel is detected in most of the frames
with a low false alarm probability. The final output can be
considered as very robust since we do not need to detect the
vessels in all the frames, we need to detect the vessels in all
video sequences without false alarms and this can be eas-
ily achieved without errors by performing a majority voting
along multiple frames.

5. Conclusion
This paper proposes a simple and efficient algorithm for

the detection of vessels in the sea, using color images ac-
quired by an unmanned aerial vehicle. Vessel detectors typ-
ically produce a high number of false alarms caused by sun
reflections, sky and other dynamical artefacts. These false
alarms cannot be avoided at the pixel level since the sta-
tistical properties of vessel pixels are often identical to the
statistical properties of the reflections and sky.

To overcome these difficulties, false alarms are elimi-
nated by using spatial and temporal constraints based on
simple heuristic rules. Geometrical properties of the de-
tected blobs are used to discard artifacts as well as time
consistency. The proposed algorithm exhibits a remarkable
robustness in the tests performed with real data annotated
by an expert. Furthermore, it is computational efficient and
runs in real-time in the embedded UAV hardware.
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