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Abstract—This paper presents a novel, biologically-inspired,
approach for an efficient management of computational re-
sources for visual processing. In particular, we modulate a visual
“attentional landscape” with the motor plans of a robot. The
attentional landscape is a more recent, general and a more
complex concept of an arrangement of spatial attention than
a simple ‘‘attentional spotlight” or a ‘‘zoom-lens” model of
attention. A higher attention priority for visual processing must
be given to manipulation-relevant parts of the visual field,
in contrast with other, manipulation-irrelevant, parts. Hence,
in our model visual attention is not exclusively defined in
terms of visual saliency in color, texture or intensity cues,
it is rather modulated by motor (manipulation) programs.
This computational model is supported by recent experimental
findings in visual neuroscience and physiology. We show how
this approach can be used to efficiently distribute limited
computational resources devoted to visual processing, which is
very often the computational bottleneck in a robot system. The
model offers a view on the well-know concept of visual saliency
that has not been tackled so far, thus this approach can offer
interesting alternative prospects not only for robotics, but also
for computer vision, physiology and neuroscience. The proposed
model is validated in a series of experiments conducted with the
iCub robot, both using the simulator and with the real robot.

I. INTRODUCTION

Vision is one of the most computationally demanding mod-
ules in a robot system, representing very often a bottleneck
for manipulation applications. Most of the approaches in
robot vision are based on standard image processing tech-
niques, ignoring most, if not all, the task-relevant dynamic
information. This implies that the visual system and the
arm-hand system are usually considered as two independent
modules that communicate only in the direction from vision
to manipulation, which implies that during visual processing
the valuable information from the manipulation system is
completely ignored. In this work we show that coupling
visual processing with manipulation plans can drastically
improve visual performances, in particular, the speed of
visual computation.

If we put this in a real-world context, let us imagine
a robot bartender, equipped with an active stereo camera
system that has the task to grasp a glass, fill it with a

Luka Lukic and José Santos-Victor are with Computer and Robot
Vision Laboratory (VISLAB), IST, Portugal: luka.lukic@epfl,
jasv@isr.ist.utl.pt.

Aude Billard is with Learning Algorithms and Systems Laboratory
(LASA), EPFL, Switzerland: aude.billard@epfl.

Figure 1. Experimental setup with a natural task. The subject is instructed
to pour the tea into two cups and one bowl that are placed close to the
horizontal midline of the table. 4 pictures of various objects are placed
close to the border of the table and 2 pictures are placed on the wall
facing the subject. These pictures play the role of visually salient distractors
because they share the same visual features with the objects, but remain
completely irrelevant for manipulation through the entire task. The overt
attention, i.e. gaze movements, together with the scene as viewed from the
subject’s standpoint are recorded by using the WearCam system [1]. The
order of the figures from top to bottom corresponds to the progress of the
task. The cross superposed on the video corresponds to an estimated gaze
position. It can be seen that the gaze is tightly bound to an object that is
relevant to spatio-temporal requirements of the task. In spite of the presence
of salient distractors, the gaze remains tightly locked on the current object
of interest. This behavior cannot be predicted by the feature-based saliency
maps, even with the top-down extensions because in manipulation tasks,
perceptual processing is biased towards manipulation-relevant regions of the
visual field, not towards the most textured or distinctively colored stimulus.



beverage of choice, and serve it to a guest. In a visually-aided
manipulation, based on standard vision processing approach,
during reaching and grasping for the target object, in every
cycle of the control loop vision scans every part of both stereo
images searching for the target object and potential obstacles,
in order to update the robot’s knowledge about their state
(position, orientation and other properties of interest that
might change during a task). Assume that the motion of
the arm has been initiated and is directed toward a specific
object, say a wine glass (the obstacles will by definition be all
objects that obstruct an intended movement). Here, a question
arises: why would one want to scan the peripheral parts of
the stereo images for obstacles, since these correspond to
regions in the workspace ten meters or so from the wine
glass that is at around 30 cm from the hand? Clearly the
space scanned should be restricted to region of the space
that are task-relevant.

Contrary to robots, humans are able to rapidly and gra-
ciously perform complicated tasks with a limited amount
of computational resources. One of the reasons for the
human performance is an efficient distribution of the visual
resources to select only relevant information for reaching
and grasping among the plethora of visual information.
Humans are able to efficiently and routinely manage this
challenging task of selective information processing, in a
seemingly effortless manner, by means of highly customized
attentional mechanisms. In visual attention, two mechanisms
are recognized: covert attention and overt attention [2].
Covert visual attention corresponds to an allocation of mental
resources for processing extrafoveal visual stimuli. Overt
visual attention consists in active visual exploration involving
saccadic eye movements (Fig. 1). These two mechanisms
are instantiations of the same underlying mechanism of
visual attention, hence intermingled both functionally and
structurally, working in synchronization and complementing
each other. Covert attention selects interesting regions in the
visual field, which are subsequently attended with overt gaze
movements for high-acuity foveated extraction of information
[3]. Furthermore, visual attention (covert and overt) is tightly
coupled with manipulation. Numerous findings from visual
neuroscience and physiology provide evidence that visual
attention is bound and actively tailored with respect to spatio-
temporal requirements of manipulation tasks [4]–[8]. Fig.
1 illustrates how attention is drawn towards manipulation-
relevant regions of the visual field, even in a common, well-
known natural task such as tea serving.

In this paper, we hypothesize that such a biologically-
inspired, explicit, active adaptation of attention with respect
to motor plans can endow robot vision with a mechanism for
efficient allocation of limited visual resources. This approach
contributes to the state of the art in visual-based reaching
and grasping, tackling visual attention from a new, alternative
perspective where visual saliency is not defined in terms of
low-level visual features such as color, texture or intensity
of the visual stimuli, but rather in terms of manipulation-

relevant parts of the visual field as salient regions. In our
model, the attentional mechanism becomes a fundamental
building element of the motor planning system. At each cycle
of the control loop, the visual and motor systems modulate
each other sending each other control signals. The proposed
approach is evaluated in robotic experiments using the iCub
humanoid robot [9].

The rest of the paper is structured as follows. Section II
reviews related work on computational modeling of visual
attention, its use in robotics, and surveys the biological
evidence onto which we ground our approach to tackle the
existing problems. Section III describes our computational
model and system architecture. Section IV reports on valida-
tions of the approach in experiments with the iCub robot. In
Section V we conclude this work.

II. RELATED WORK
A. Computational modeling of attention

Most of the current work on computational modeling of at-
tention is related to the feature integration theory of attention
from physiology [10]. The feature integration theory advo-
cates the idea that low-level, pre-attentive features capture
attention. The intuition behind this approach is that a non-
uniform spatial distribution of features is somehow correlated
with their informative significance. The influence of the low-
level features on capturing attention is motivated by functions
of the neural circuitry in the early primate vision and exper-
imental findings in scene observation tasks [11]. The most
influential computational implementation grounded on this
theory is the concept of the saliency map [12]. Low-level
features such as color, orientation, brightness and motion are
extracted in parallel from the visual input. In computational
models, the visual input is represented as a digitized 2D
image. Low-level features from the visual stimuli compete
across image space and multiple spatial scales building spatial
banks of features that correspond to center-surround contrast
computed across different scales. The feature banks are
normalized and combined by a weighted sum to create the
master saliency map. The focus of attention is driven by the
interplay between a winner-take-all mechanism (WTA) and
an inhibition of return mechanism (IOR) that operates on
the final saliency map. This pure bottom-up, stimulus driven
approach has been subsequently extended to guided visual
search by an additional weighting of the feature channels
with a top-down bias that comes from the prior knowledge
about objects [13].

B. Attention in robotics

Related work in robotics is strongly influenced by the
aforementioned computational models of attention. Whereas
most of the computational models assume covert attention
shifts, i.e. no movements of the head and the eyes are
involved, most robots are equipped with an active cam-
era system, which makes them suitable for active, overt
visual exploration. Robotic applications inherently rely on
a saliency map-based scheme to evaluate visual stimuli,



and then, instead of shifting covert focus of attention, they
actively initiate saccadic movements of the cameras to bring
the fixation to the most salient point in the visual field [14]. A
number of robotic applications are primarily concerned with
implementing saliency maps in order to achieve biologically-
inspired saccadic and smooth-pursuit eye movements either
with a single pan-tilt camera or a complete robot head [15].
These schemes have been extended to biologically inspired
log-polar vision [16]. Saliency-based attention has been in-
vestigated in conjunction with exploration, development and
learning for humanoid robots [16]. Attentional-based vision
has been addressed as an aid to sociable robots to improve
human-robot interaction [17] and in imitation learning [18].

C. Current shortcomings of attention-based models for robot
vision

Although the efforts made in the robotic community have
been very fruitful, expanding theoretical foundations and
providing practical applications of attentional mechanisms,
the most prominent use of attentional schemes still remains
confined to object tracking, scene exploration, mimicking
the human visual system for robotic studies of development
and for providing human-like visual behavior for sociable
robots. The use of attention for active, real-time vision-based
manipulation that relies on reliable visual information at each
cycle of the control loop is still very limited. This is an issue
we aim to address in this work. In particular we identify the
following three issues as critical: i) speed of computation, ii)
focus of attention and iii) salient features.

1) Speed of computation: Attention in primates evolved
as a mechanism to select a small subset of low-level visual
information for further, high-level processing. This is done in
order to efficiently allocate limited computational resources.
However, as previously mentioned, most work in robotics
related to attention is inspired by the saliency model of Itti
and Koch [12]. Regardless of the massively parallel architec-
ture, constructing a saliency map is a computationally heavy
task. The best reported times on CPU-based implementations
are of an order of ~50 ms for a single map [19], the time
which doubles for a stereo system, after which some high-
level visual processing is done in the later stages in the
visual processing pipeline. This limits the applicability of the
classical saliency map approach for fast real-world robotic
problems such as real-time adaptation to perturbations in
grasping tasks with obstacle avoidance.

2) Focus of attention: The majority of models of attention
assume that a focus of attention, the so-called attentional
spotlight, is a circular shaped region of a fixed radius [20],
which is centered at a point with the highest saliency in
the visual field. Zoom-lens models extend the attentional
spotlight concept by allowing the radius of an attentional
“window” to change with respect to task demands [21].
Both the spotlight and zoom-lens models restrict applicability
of attentional mechanisms for real-world robotic scenarios
in complex tasks because only one location in the visual
field is (covertly) selected as the focus of attention, towards

which the further attentional interest is oriented (covertly or
overtly). A number of recent studies from visual neuroscience
and physiology suggest that covert attention can take on a
complex spatial arrangement [22]. Baldauf et al. have found
that covert attention supports pre-planning of a sequence of
movements towards multiple reaching goals, by distributing
peaks of attention along an intended reaching path [5], [6].
These findings show that covert attention can be distributed
not only at one location, as overt attention, but rather simulta-
neously form a complex “attentional landscape” in the visual
field.

3) Salient features: Computational models of attention
have shown good performances and significant statistical
similarity to human strategies in simple scene viewing and
in guided search tasks [11], [12], but describing human
gaze behavior in more complex tasks is far beyond their
capabilities. We hypothesize that this is due to the fact that
only low-level image features are taken into account by the
models that compute salience, whereas a strong top-down
bias from motor planning is completely ignored. This is rather
surprising, considering that there are numerous evidences that
report on very strong coupling between motor planning and
attention allocation. In studies that used overt gaze move-
ments as a measure of attention, researchers have found that
the gaze is driven by spatio-temporal task demands in simple
navigation tasks [23], by manipulation in natural, well-known
tasks [4], in moderately complex tasks involving obstacle
avoidance [24], and in very complex tasks such as ball
sports [25]. Similarly, studies that analyzed distribution of
covert attention have shown similar results. Covert attention
is drawn to objects relevant to manipulation, even when
reaching for multiple targets in a sequence [5], or in parallel
by engaging bimanual manipulation [6]. All these studies
suggest that low-level feature-based saliency is suppressed
when humans are engaged in visually-aided physical tasks,
regardless whether the task is manipulation or navigation,
whether the interaction with the object is performed in a
parallel or in a sequential manner, and regardless whether
gaze movements are suppressed or not. In simple words, in
physical tasks manipulation-relevant parts of the visual field
are visually salient.

We proceed further with the explanation of the architecture
of our computational model. We develop the model by draw-
ing inspiration from the aforementioned physiological studies
that report on strong coupling between visual attention and
motor planning. By equalizing motion-relevant as attention-
salient we aim to tackle the reviewed current weaknesses in
the existing attention models.

III. COMPUTATIONAL APPROACH AND SYSTEM
ARCHITECTURE

We first describe our robotic eye-arm-hand controller and
motor planning mechanism. A learned eye-arm-hand Coupled
Dynamical System (CDS) is used in order to “mentally
simulate” the consequences of intended actions, more specif-
ically, to compute (i.e. plan) an intended trajectory and to



identify obstacles. We then explain how we transform the
mentally-simulated trajectory to the image planes of stereo
cameras. The projected mentally-simulated trajectory is used
to compute an attentional landscape, i.e. a saliency map.
Finally, we describe how this covert attentional landscape
is used for top-down object search, how it is related to gaze
movements and control of reaching and grasping by using
the CDS framework.

A. Eye-arm-hand controller

We here briefly review the structure of an eye-arm-hand
controller, developed in our previous work [26], which we use
to generate robot motion and to plan the arm-hand reaching
trajectory.

The controller is based on the CDS framework, where the
main idea is to estimate separate Autonomous Dynamical
Systems (DS) that correspond to each body part (one DS
for the eyes, one for the arm and one for the hand), and
then couple them explicitly. This controller consists of five
building “blocks”: three dynamical systems and two coupling
blocks between them. They are organized in the following
order: eye dynamics → eye-arm coupling → arm dynamics
→ arm-hand coupling → hand dynamics, where the arrow
direction indicates the direction of control signals. The gaze
DS is the master to the arm DS, and the arm DS is the
master to the hand DS. Fig. 2 illustrates the architecture of
the CDS. We used the human motion capture data recorded
in a reaching-and-grasping task to estimate the parameters of
the controller [26]. The time-invariant properties of the CDS
allow rapid adaptation to spatial and temporal perturbations,
where the explicit coupling between each dynamical system
ensures that their behavior is correctly synchronized, even
when the motion is abruptly perturbed far from the motion
recorded in human demonstrations.

This framework allows us to perform visuomotor coordi-
nation in the presence of an obstacle, as well. We use the
CDS mechanism in order to mentally simulate the conse-
quences of planned arm movements, specifically to detect
objects that obstruct the intended reach-for-grasp actions and
to identify them as obstacles. An obstacle is used as the
intermediary target for the visuomotor system, which allows
us decompose the obstacle avoidance task in two segments:
from the start to the obstacle and from the obstacle to the
target. During obstacle avoidance, the primary modulation
of the arm is controlled in Cartesian space, which, together
with controlled hand preshape, ensures that the end-effector
avoids the obstacle. The desired arm joint postures suitable
for obstacle avoidance are provided to the IK solver. Treating
the obstacle as an intermediary target results in a simple and
computationally lightweight scheme for obstacle avoidance.
We use the mentally-simulated trajectory in order to bias
visual resources to manipulation-relevant parts of the visual
field, which we describe in the next section.

Figure 2. CDS-based eye-arm-hand controller. Left (green) part of the
figure shows how the CDS model is learned. Reproduction of motion on the
robot is shown on the right side of the figure (red part). CDS consists of
five building “blocks”: three dynamical systems (the eyes, the arm and the
hand) and two coupling models: eye-arm coupling and arm-hand coupling.

B. Workspace to the image plane projection

In order to be able to distribute visual attention with respect
to manipulation plans, we need to obtain a transformation
that will map an arbitrary point from the workspace to the
image plane. In particular, we want to map a set of points
of a mentally-simulated trajectory of the arm to the image
planes of both cameras of the robot.

1) Approach: The mentally-simulated trajectory of the
arm, from the current position towards the final position at the
current time t, is represented as xn

t ∈ R3, ∀n ∈ [1, Nt], where
Nt represents the total number of discrete samples. This
mentally-simulated trajectory at every cycle of the control
loop t is obtained from the CDS controller, explained in
Section III-A. The kinematic configuration at the current time
t of the torso-neck-arm is represented with the torso, neck,
and head joints qt ∈ R9, ∀t. The transformation function is
of the form:

pnt,i = fi(c
n
t ), ∀n ∈ [1, Nt] , (1)

where cnt ∈ R12, cnt =

[
xn
t

qt

]
, and pnt,i ∈ R2 represents the

projection of the trajectory to the image plane of the i-th
camera, where i = {left, right}.

A naive, straightforward approach would be to compute
a sequence of kinematic transformations through the torso-
neck-head kinematic chain in order to obtain the extrinsic
camera parameters, and use them together with the intrinsic
parameters of the camera to obtain this projection. The
problem associated with this approach is that the kinematic
parameters of the real robot do not exactly correspond to
the mathematical model of the robot kinematic. Even when
these differences are small, they accumulate when propagated
through the kinematic chain.

Another alternative is to rely on a machine learning ap-
proach. The robot would explore in a babbling-like manner
a set of random kinematic configurations, and during this



exploration it would segment an object (e.g. a small colored
ball) set at a randomly chosen position from a set of known
positions in the workspace. The data obtained during the
exploration (encoder readings of the joints in the torso-neck-
head chain, the position of the object in the workspace and
its projection to the camera planes) would be saved and
used to learn a mapping function. A problem associated with
this approach is that the babbling-like exploration with the
real robot is very costly because in order to build a reliable
estimate of this nonlinear mapping, the size of a training set
needs to be arbitrarily large to be representative, usually of
an order a few thousands data samples.

We take here an intermediary step that is a compromise
between the two previously described approaches. The idea
is to use the simulator of a robot in order to obtain a large
number of training samples by employing babbling, and use
this data set to estimate initial set parameters of the mapping
model. Because we know that the differences between the
simulated model and the real robot are not too big, this model
is then incrementally adapted with the data obtained from the
real robot, which accounts for only a small fraction of the
data obtained in the simulator.

2) Neural network approach to the workspace-camera
transformations: A feed-forward neural network is a suitable
machine learning algorithm for our application for several
reasons [27]. Feed-forward neural networks can compute
multi-input-multi-output functions. Their output is fast to
compute in real-time because the computation consists of a
short sequence of matrix-vector multiplications, followed by
(non)linear transfer functions. Feed-forward neural networks
are suitable for incremental learning, either in the batch or in
the stochastic, online mode. This allows us to first estimate
this function from the data in the simulator, and then adapt
it with the data from the real robot.

The parameters of an architecture of neural networks for
transformation from the workspace to the image coordinates
(i.e. number of layers and the number of hidden units, etc)
are determined by using grid-search on the mean squared
error (MSE) between the recorded image projections and
retrieved projections from the model. We tested 10 differ-
ent architectures, and for every architecture we performed
10 learning runs in order to achieve robustness with respect
to random initialization of network parameters. We used
the Levenberg–Marquardt optimization algorithm with early-
stopping in order to prevent overfitting [27]. The recorded
data set is randomly partitioned for 70 % of the data devoted
to training, 15 % data for validation, and 15 % data for testing.
The lowest MSE on the testing set is achieved with two
hidden layers with 25 nodes in each hidden layer. Transfer
functions in the hidden layer are hyperbolic tangent sigmoid,
and in the output layer are linear. The data set is normalized
to have zero mean and unity variance. In order to get the real-
time performances, a network class is implemented in C++
by using linear algebra functions from OpenCV library [28].
The time needed to transform 30 trajectory points by using

Figure 3. Nonuniform image processing based on a manipulation-relevance
saliency. The black line corresponds to a mentally-simulated (forward-
planned) arm trajectory that is projected to the image plane of a stereo
camera. The heat-map corresponds to an intensity of the saliency function.
The red rectangles are scanning image windows, for which visual features are
computed. The anchors of the scanning windows are sampled with respect
to a saliency function, i.e. more dense visual scanning is done where the
relevance function has higher values, and less dense scanning where it has
low values. The plot corresponds to the right stereo camera. The same
procedure is done for the left camera.

neural nets to the image planes of both cameras is ∼1 ms.

C. Attentional landscape

After we project the mentally-simulated trajectory to the
image planes, we construct an attentional landscape which
associates high saliency close to the mentally-simulated tra-
jectory perceived in the image coordinates. To compute the
attentional landscape, i.e. a measure of visual processing
priority (saliency map), we use a bivariate kernel smoothing
function [29], where kernels are placed at every point of the
projection of the mentally-simulated trajectory to the image
planes. Formally, we compute a saliency map for each camera
i as follows:

Ii(p) =
1

Nthhhv

Nt∑
n=1

K(p− pnt,i), (2)

where p ∈ R2 corresponds to two-dimensional pixel
coordinates of the image plane, K(p − pnt,i) =

k

(
ph−pn,h

t,i

hh

)
k
(

pv−pn,v
t,i

hv

)
, k(.) represents a kernel and

hh and hv are kernel widths along the horizontal and
vertical image dimensions. We use triangular kernels
because they are faster to compute than Gaussian
kernels. The triangular kernel is expressed as follows:

k(z) =

{
1−

∣∣∣z∣∣∣ ,
0

∣∣∣z∣∣∣ ≤ 1

otherwise
. Kernel smoothing

function assigns high values of saliency close to the
mentally-simulated trajectory projected to the images planes
of stereo cameras, which decreases in the directions away
from the trajectory (Fig. 3). The attentional landscape is used



to guide image processing in order to efficiently distribute
limited visual resources. The part of the image with higher
saliency draws more visual processing, and the opposite is
true. In the next section we explain how we distribute visual
processing with respect to saliency.

D. Image processing

We propose here two ways to use the attentional landscape
to guide visual processing. Our approach is general enough
to be used as a pre-modulating technique to any kind of stan-
dard image processing detectors and segmentation techniques
(pixel-by-pixel color segmentation, Viola-Jones, SIFT, SURF,
etc).

1) Thresholding: One simple approach suitable for pixel-
by-pixel color processing and interest point detectors-
descriptor approaches is to distribute visual processing to the
region of the image where the saliency map Ii(p) is higher
or equal that some threshold di. It is easy to empirically
estimate the computational time for processing the entire
image and from this estimate cost per pixel. By sorting
pixels with respect to ascending values of their saliency, we
can pick a number of pixels corresponding to the available
computational resources. From this sorted array, we can
easily read the threshold di on the saliency. An approximate
value of the threshold can be determined in ~3 ms for 4800
subsampled pixels by using the Quick Sort algorithm.

2) Sampling: A number of image processing techniques
employ image processing within a scanning window, e.g.
Viola-Jones detector, histogram-based detector, Rowley-
Baluja-Kanade detector, etc. Here the task is to determine
position of the scanning windows with respect to a saliency
map, in order to have more dense scanning where the saliency
is large, and less dense scanning in spatial regions with low
saliency. Because we use a kernel smoothing function to
build a saliency map, we can treat the saliency map as a
bivariate probability density function and use any kind of
sampling techniques to sample spatial locations of scanning
windows. Again, we can empirically obtain a cost associated
to process the image in each window, and from the total
visual resources calculate determine the number of points to
sample from the saliency map. We use the inverse transform
sampling method [29] and perform this independently for the
vertical and horizontal axes of the image. The procedure is
simple and works as follows:

1) compute a cumulative sum along each axis indepen-
dently: Si(a) = Σa

j=1Ii(p
a), where a = {v, h}

2) draw a random number ũa, a = {v, h} from the
uniform distribution in the interval [0, 1]

3) compute axis coordinates as: ã = S−1
i (ũa)

4) go to step 2) and repeat for a given number of scanning
windows.

The inverse transform sampling based on implementation
with look-up tables as C-arrays can be computed and sampled
from in ~1 ms for an image 320×240 for 50 sampled scan-
ning windows (Fig. 3). It is noteworthy that we recompute

the saliency maps at every cycle. This implies that there is
no need to implement the IOR mechanism and deal with
the problems of the change of coordinates associated with
standard saliency models [14], which simplifies our approach
and hence reduces the overall computational time.

E. From covert attentional landscape to overt eye movements
and manipulation

As explained in the previous section, when the saliency
map is constructed, the top-down visual scan is performed
in the spatial regions that have high salience. These two
stages correspond to covert visual attention. After the targets
(and/or obstacles) are detected, the overt gaze movements are
initiated towards the first intermediary target in a synchronous
manner together with the arm and the hand motion by using
our CDS eye-arm-hand controller [26]. In a no-obstacle
task, the eye-arm-hand system is directly driven towards the
target. In tasks with obstacle avoidance the eye-arm-hand
system is driven towards the obstacle, which is treated as an
intermediary target for the visuomotor system, as explained
in Section III-A. When the obstacle is avoided, the system is
driven towards the object to be grasped.

IV. VALIDATION OF THE APPROACH

We validate our method in the iCub simulator and with
the real robot with a task of reaching for and grasping a
kitchenware object. Resolution of the cameras in the stereo
setup is 320×240. We test this approach with two standard
image processing techniques. For the first visual detector,
we select a scanning window hue-saturation histogram-based
detector. We implement this detector by using functions from
OpenCV library [28]. The computation times are averaged
over 100 measurements. The cumulative time for calculating
a projection of the mentally-simulated trajectory to the image
plane, computing a saliency map and sampling from it for
both cameras is on average 24.5 ms. We choose to only
process image with 50 image windows of the size 20×20.
Visual processing for 50 sampled 20×20 windows takes
on average 28 ms. These times sum up to the total time
of 52.5 ms for our method. The classical method with an
uniformly sliding window, for the same setup, on average
requires 174 ms, therefore our method reduces computational
time by a factor of ~3.1×, saving 121.5 ms in every loop
cycle and still successfully completing the task (Fig. 4). The
times are reported in Table I.

For the second detector, we selected SURF [30]. SURF is
a powerful detector because it provides visual features that
are robust to moderate changes of the perspective. Because
it computes feature point descriptors, it allows to detect
partially occluded objects. However, SURF (together with a
family of similar detectors like SIFT, GLOH, etc.) is very
computationally demanding, with the cost being double for
a binocular system, hence it has limited applicability for
manipulation where the stereo vision is used in the loop.
In our runs, it takes on average 526 ms to compute SURF



Figure 4. Experiments of visually-guided reaching and grasping in the iCub’s simulator, in two different scenarios with two detectors, and with the real
robot. Visual computation is in every cycle of the of the control loop distributed to manipulation-relevant spatial locations of the stereo images. Figures
show execution of eye-arm-hand coordination from the start of the task (left) until the successful grasp completion (right). The white line corresponds
to a mentally-simulated arm trajectory that is projected to the image planes of stereo cameras. The top row of figures (a) corresponds to the no-obstacle
scenario with SURF detector. The blue circles correspond to detected strong feature points. The middle row (b) corresponds to the obstacle scenario with
histogram-based detector. The blue rectangles are scanning image windows, for which visual features are computed. The bottom row (c) corresponds to
the no-obstacle scenario with histogram-based detector with the real robot. Figures show execution of eye-arm-hand coordination from the start of the task
(left) until the successful grasp completion (right).

for the full stereo image pair1 To test our method, we
chose to devote only 30 % of the total visual resources to
processing, i.e. to process only 30 % of the image pixels with
the highest salience. The cumulative time for calculating a
projection of the mentally-simulated trajectory to the image
plane, computing the saliency map and thresholding it for
both cameras is on average 30 ms. Visual processing for the
region of images with the highest salience takes on average
269.5 ms. These times sum up to the total time of 299.5 ms,
saving 226.5 ms in every loop cycle compared to computing
SURF for the whole image. The time of 226.5 ms is still
large for some real-time applications, but if we choose to
intelligently process the images, adjusting image resources
to manipulation plans, we can speed up computation by a
factor of ~1.8×, as we show it in Table II. Fig. 4 shows the
experiments with the simulator and the real robot.

Finally, it is important to mention that, in addition to
speeding up visual processing, this approach facilitates the
accuracy of visual detections during an ongoing prehensile
movement. The common problem with visual detections in
cluttered scenes (as the one in Fig. 4c) is that there is a sig-

1We used the implementation available from OpenCV library.

nificant number of false positives. Because we bound visual
processing to motor plans of a robot, we significantly reduce
false positive detections. In the context of the conducted
experiments, there are no false positive detections of the
objects (the target and the obstacle) in the parts of visual
field that are irrelevant to motor plans, because the relevant
objects are not likely to be there.

The experiments presented here are available in the video
submitted with this paper.

V. CONCLUSIONS

In this paper we presented an approach where a saliency
is computed with respect to current manipulation plans. This
approach is inspired from recent works from physiology and
visual neuroscience that suggest that attention is bound to
spatio-temporal manipulation requirements and that covert
attention forms the so-called attentional landscape, which is a
more complex and a more general concept than an attentional
spotlight. We show that this approach can help to efficiently
distribute limited visual resources in a robot system, sig-
nificantly reducing resources compared to classical uniform
image processing, but still allowing for a robot to perform
complicated tasks, such as manipulation with perturbations



projecting trajectory
with neural nets saliency map sampling sparse image

processing
total time with
our approach

standard (full)
image processing

approach

savings with
our approach

1 22.5 1 28 52.5 174 121.5 (3.1 x)

Table I
CPU TIME FOR HISTOGRAM SLIDING-WINDOW DETECTOR

projecting trajectory
with neural nets saliency map thresholding sparse image

processing
total time with
our approach

standard (full)
image processing

approach

savings with
our approach

1 22.5 6.5 269.5 299.5 526 226.5 (1.8 x)

Table II
CPU TIME FOR SURF

CPU time required to compute motion-relevant saliency map and perform sparse histogram-based image processing (Table I) and SURF computation (Table
II) image with our approach compared to standard-uniform processing with the same detectors. We are able to save 121.5 ms for the histogram-based
detector and 226.5 ms for SURF in every cycle compared for to the standard approach. The time in the tables is provided in milliseconds, and corresponds
to computation for both cameras of the binocular setup of the iCub robot with 320×240 color input images. The times are averaged over 100 frames.

and obstacle avoidance.
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