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Abstract—Efficient, adaptive and reliable visuomotor control
system is crucial to enable robots to display flexibility in the
face of changes in the environment. This paper takes inspiration
in human eye-arm-hand coordination pattern to develop an
equivalently robust robot controller. We recorded gaze, arm,
hand, and trunk data from human subjects in reaching and
grasping scenarios with/without obstacle in the workspace. An
eye-arm-hand controller is developed, based on our extension
of Coupled Dynamical Systems (CDS). We exploit the time-
invariant properties of the CDS to allow fast adaptation to
spatial and temporal perturbations during task completion.
CDS global stability guarantees that the eye, the arm and the
hand will reach the target in retinal, operational and grasp
space respectively. When facing perturbations, the system can
re-plan its actions almost instantly, without the need for an
additional planning module. Coupling profiles for eye-arm and
arm-hand systems can be modulated allowing to adjust the
behavior of each slave system with respect to control signals
flowing from the corresponding master system. We show how
the CDS eye-arm-hand control framework can be used to
handle the presence of obstacles in the workspace. The eye-arm-
hand controller is validated in a series of experiments conducted
with the iCub robot.

I. INTRODUCTION

Humans can adapt their visuomotor actions to various
perturbations within milliseconds and also reuse and combine
existing skills to be able to solve new and more challenging
problems. A vast number of physiological studies reports
on strong evidence that visual and motor systems mutually
modulate actions, even when doing simple and well known
tasks [1]. For instance, the gaze precedes the hand and locks
on the contact points before the hand and the fingers close
on the target [2], estimates motor goals for preparation of
limb movements [3] and for movement initialization [4], and
provides visual feedback for motion correction [5], etc.

Solutions to robotic visual-based reaching follow either of
two well-established approaches: model-based control (open
loop) [6] and visual servoing techniques (closed loop) [7],
[8]. Model-based techniques are very dependent on the accu-
racy of the model. Besides, the eye-arm mapping is “rigid”
(there is no way to modulate the profile of coordination) and
the arm movement is not initiated before the gaze fixates the
target. On the other hand, solutions that use visual servoing
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are limited by the requirement for the simultaneous view of
the end-effector and the target object.

In this paper, we extend the Coupled Dynamical Systems
(CDS) framework for arm-hand coordination [9] to learn
robotic eye-arm-hand coordination from human demonstra-
tion. Our approach contributes to the state of the art in
visual-based reaching and grasping, embracing the best of the
model-based and visual servoing techniques. It uses human
demonstrations, which provide a model to guide dynamics
of motion as in model-based control. Similarly to visual
servoing, it performs close-loop control and hence guarantees
to reach the target under perturbation. Hand control in robotic
reaching and grasping usually operates separately from eye-
arm control. Here we build a single eye-arm-hand controller,
which drives synchronously and in coordination all three
systems. Furthermore, we show how the model can be
extended to handle the presence of obstacles. We estimate the
consequences of future visuomotor actions by integrating the
eye-arm CDS. The objects which are tagged as obstacles after
propagating the forward model are treated as intermediary
targets for the visuomotor system. The proposed approach
is evaluated in robotic visuomotor manipulation experiments
using the humanoid robot iCub [10].

The rest of the paper is structured as follows. Section
II reviews related work on dynamical systems, eye-arm
coordination and path planning. Section III describes the
experimental setup, the procedure of data recording with
human subjects, and provides an analysis of the human
data. Section IV explains our approach to eye-arm-hand
coordination, planning and obstacle handling. Section V
reports validations of the approach in experiments on the
iCub robot. In Section VI we conclude and propose future
extensions of this work.

II. RELATED WORK

Methods for visually-guided reaching that build estimates
of eye-arm transformation are known as model-based. One
approach learns the model of transformation from the eye
state (e.g. eye-neck angles) to the arm state (e.g. arm joints)
[6]. This model is used in a straightforward manner, such that
the arm state is computed by using the obtained mapping
after the target is visually fixated. An alternative approach
is to build a model that transforms the arm state to the
eye state, and find the goal arm state as a solution to an
optimization problem [8]. In general, model-based methods



are very appealing because of their simplicity and practical
applications. However, these methods suffer from several
drawbacks: the accuracy of the reaching movement is limited
by the accuracy of the eye-hand mapping estimate. Moreover,
the learned mapping profile cannot be modulated. Finally,
the reaching path is generated by relying on interpolation
between the starting arm state and the computed goal arm
state. By using model-based approaches the arm movement
is initiated after the gaze fixates the target. This differs from
the natural profile of visuomotor coordination since reaching
movements in humans are initialized before the gaze locks
at the target [1].

Visual servoing approaches control the speed of the arm
based on measurement of the visual error between the hand
and the target [7], [8]. This approach ensures zero-error
reaching, but it requires to have the target object and the
hand simultaneously in the field of view. Visual servoing
does not allow to produce a family of human-like motion
profiles in reaching tasks.

Recent efforts combined model-based reaching and visual
servoing [8]: the arm is driven by a model-based open loop
controller until it reaches close to the target, and then visual
servoing takes over the control of the arm motion, driving
the arm towards the target. This method has shown good
results in terms of the reaching accuracy. However, it relies
on an external, adhoc mechanism to switch between the two
modes.

Our recent work on CDS [9] has demonstrated benefits
of learning explicitly the coupling between two dynamical
systems over using a naive approach to model motions of
both physical systems with a single dynamical system. The
major strength of the CDS framework is due to the fact that
it relies on encoding motion with time-invariant Dynami-
cal Systems (DS) [11]. This approach ensures robustness
against spatial and temporal perturbations, while producing
trajectories similar to those demonstrated by humans. In
this paper we extend the original CDS framework such
that the dynamical system governing the gaze motion acts
as the master controller to the arm dynamical system, and
the arm dynamical system is the master to the dynamical
system governing the hand. Next, we review briefly the most
relevant approaches to obstacle avoidance in the context of
visuomotor coordination.

Robots operating in cluttered environments have to be able
to plan their motion avoiding collisions with objects in the
workspace. Sampling-based algorithms [12] are currently one
of the most reliable techniques for path planning. The time
needed to plan motion with these techniques is tolerable for
robotic applications where fast adaptation to perturbations
is not critical for successful accomplishment of a task.
Sampling-based algorithms cannot meet demands for rapid
motion planning which humans perform almost effortlessly
within a timescale of only a few milliseconds. In contrast,
our approach uses the ability of Dynamical Systems to
instantly re-plan motion with the presence of perturbations.
Motion generation with time-invariant DS is an alternative

Figure 1. Experimental setup to record eye-arm-hand coordination from
human demonstrations in grasping tasks with/without the presence of
obstacles. In this trial, the human subject is grasping the target object (wine
glass) avoiding the obstacle (champagne glass).

to classical path planning algorithms.
Approaches taken inspiration in neuroscience and on the

role of cerebellum in planning for the timing of motion [13]
state that forward models play a very significant role in motor
control by predicting consequences of future actions. Our
work exploits this biologically inspired notion of forward
models in motor control, and uses a model of the dynamics
of the reaching motion to predict collisions with objects in
the workspace when reaching for the target object.

III. EXPERIMENTAL PROCEDURE AND DATA
ANALYSIS

We first describe the experimental procedure to record data
from human subjects when performing reach and grasp mo-
tions. We provide an analysis of visuomotor coordination in
human subjects, which supports the development of similar
coordinated patterns of motion in our robot control, which
will be described in Section 4.

A. Methods and materials

Three right-handed subjects participated in this study.
The experimental setup is illustrated in Fig. 1. The initial
positions of the hands, the target object and the obstacle
object were predetermined, as indicated by markers on the
table. The wine glass is the object to be grasped (target) and
the champagne glass is the object to be avoided (obstacle).
Grasping during all trials was conducted with the right
hand. The left hand is rested on the table, contributing to
reduction of movements of the trunk. Initially, prior to the
onset of motion, the subject’s body is quasi stationary and the



Figure 2. Typical profiles of eye-arm coordination in human demonstrations. Distance from gaze to the target and from the arm to the target (calculated
from the hand center) in: obstacle (a) and no-obstacle (b) scenarios. Distance from gaze to the obstacle and from the arm to the obstacle (c).

subject is instructed to look at his/her hand. A sound signal
indicates the start of a trial. In the absence of the obstacle,
the subject moves the hand towards the target object and
grasps it. A trial is finished when the target is grasped. If the
obstacle is present, the procedure is generally the same, but
with obstacle avoidance during manipulation. Each subject
performed the tasks eight times for both obstacle and no-
obstacle conditions in randomized ordering.

A head-mounted eye-tracker designed in our lab, the
WearCam system [14], was used for gaze tracking and for
recording the scene in the subject’s field of view. Video
and gaze position from the WearCam were recorded at
25 Hz. XSensTM IMU motion capture system was used for
recording of trunk motion and the arm motion. It provided
information about three joints of trunk motion (roll, pitch and
jaw), three joints that modeled shoulder (flexion-extension,
abduction-adduction and circumduction), two joints in the
elbow (flexion-extension and pronation-supination) and two
wrist angles (abduction-adduction and flexion-extension).
5DTTM data glove was used for recording of finger joint
angles Data from XSensTM IMU motion capture sensors and
5DTTM data glove were recorded at 25 Hz. Stereo system
was used for tracking of a 3D position of the hand and the
objects on the scene. The speed of data recording from the
stereo camera was 100 Hz.

All signals were filtered with a preprogrammed peak-
removal technique, and with a moving average filter. Finally,
piecewise spline fitting was done, which did additional
smoothing as well. All data were synchronized and re-
sampled at 25 Hz.

B. Analysis of recordings from human trials
We started from the hypothesis that the eyes precede the

arm’s motion, so as to guide planning of arm transport.
There is ample evidence of such saccadic eye motion toward
the target during reaching; see e.g. [1], [15]. To determine
whether the same mechanism was at play in our experiment,
we plotted the relative displacement of the eyes compared
to the arm approaching the target in both the obstacle and
without obstacle condition, see Fig. 2(a) and (b).

Since we did not control for the timing of motion during
our trials, we normalized the duration of the motion in each
trial. We see that the eyes precede motion of the arm in both
the obstacle and no-obstacle scenarios. When the obstacle is
present the gaze reaches the target object at 44.45%±9.55%

of the total time needed for the arm to reach the target
object. When the obstacle is not present the gaze reaches
the target object at 46.69%±14.73% of the total duration
of the motion. There is a systematic phase lag between the
eyes and the arm, which suggest that eye and arm motion
towards the target object are synchronized even when the
obstacle is present. We observed large variation in the time
to complete motion (std. of 12.35% of the mean time to
complete motion in the obstacle case and 13.62% in the no-
obstacle case). This supports the hypothesis that this eye-arm
coordination is due to a coupling between the two systems
that is independent of the time to perform the motion. Two-
way ANOVA1 (factors: subjects, obstacle presence) yields
a significant effect for factor of subjects (F (2, 47) = 6.99,
p = 0.0024), but there is no statistically significant effect of
the presence of the obstacle (F (1, 47) = 0.58).

To see whether the same mechanism was also at play when
the arm passes the obstacle, we plotted the relative path
of the eyes and arm motion with respect to the obstacle,
see Fig. 2(c). We see that the gaze reaches the obstacle at
48.33%±14.51% of the total time needed for the arm end-
effector to reach the closest distance to the obstacle object.
The lag between gaze and the arm with respect to the obstacle
is almost the same as the lag between gaze and the arm with
respect to the target. This observation suggests that the eyes
and the arm are driven to both the obstacle and the target by
the same mechanism of coordination, and that the obstacle
acts as an intermediary target for both the eyes and the arm
when moving towards the final target.

In summary, the mechanism of the eyes leading the arm is
observed in both obstacle and no-obstacle trials. The phase
lag between the eyes and the arm with respect to the target
object is kept in both obstacle and no-obstacle scenarios,
indicating a high degree of synchronization of the eye-arm
manipulation. It can be seen that the lag between gaze and
the arm with respect to the obstacle is very close to the
value of the lag between gaze and the arm with respect to
the target. Such evidence of the same coordinated pattern of
eye-arm motion when reaching the obstacle and the target,
supports the development of a biologically inspired controller

1ANOVA (analysis of variance) is a statistical method which compares
the variances around two or more means, to determine whether significant
differences exist between distinct conditions of an experiment. See [16] for
more.



Figure 3. CDS-based robotic eye-arm-hand coordination. Left (green) part
of the figure shows how the CDS model is learned. Reproduction of motion
on the robot is shown on the right side of the figure (red part). CDS consists
of five building “blocks”: three dynamical systems (the eyes, the arm and the
hand) and two coupling models: eye-arm coupling and arm-hand coupling.

for coordinating eye-arm-hand in robots, which we describe
next.

IV. CDS EYE-ARM-HAND CONTROL AND
OBSTACLE HANDLING

In the first part of this section, we introduce the principle
of robot control using time-invariant DS and the probabilistic
approach taken to estimate the parameters of the system.
Extension of this formulation to model and control coupled
dynamics is presented. Furthermore, we show how the basic
model of eye-arm-hand coordination in the obstacle-free
grasping can be extended to handle the obstacle in the
workspace.

A. Single Dynamical System and GMM/GMR

The motion of our system is represented through the state
variable ξ ∈ Rd. N recorded demonstrations of the task yield
the data set

{
ξnt , ξ̇

n
t

}
, ∀t ∈ [0, Tn] ; n ∈ [1, N ], of robot’s

states and state derivatives at particular time steps t, where
Tn is the number of samples in the n-th demonstration. We
posit that recorded data samples are instances of motion that
is governed by a first-order autonomous differential equation:

ξ̇ = f(ξ) + ε (1)

where f : Rd → Rd is a continuous and continuously
differentiable function, with a single equilibrium point ξ̇∗ =
f(ξ∗) = 0. ε is a zero-mean Gaussian noise. The noise term
encapsulates both sensor inaccuracies and errors inherited
from human demonstrations. Time-invariance provides inher-
ent robustness to temporal perturbations. In order to achieve
robustness to spatial perturbations, the robot’s state variable
ξ is represented in the target’s reference frame.

We use Gaussian Mixture Model (GMM) to encode dy-
namics in a probabilistic framework. GMM define a joint

probability distribution function P(ξnt , ξ̇
n
t ) over the set of

data from demonstrated trajectories, as a mixture of K
Gaussian distributions (with πk, µkand Σk being the prior
probability, the mean value and the covariance matrix of the
k-th Gaussian, respectively):

P
(
ξnt , ξ̇

n
t

)
=

K∑
k=1

πkN (ξnt , ξ̇
n
t ;µk,Σk), (2)

where each Gaussian probability distribution is defined as:

N (ξnt , ξ̇
n
t ;µk,Σk) =

1√
(2π)

2d | Σk |
e−

1
2 (([ξnt ,ξ̇

n
t ]−µk)T (Σk)−1([ξnt ,ξ̇

n
t ]−µk), (3)

where the mean and the covariance matrix are defined as:

µk =

(
µkξ
µk
ξ̇

)
and Σk =

(
Σkξξ Σk

ξξ̇

Σk
ξ̇ξ

Σk
ξ̇ξ̇

)
. (4)

Stable Estimator of Dynamical Systems (SEDS) [11] is used
to compute the GMM parameters. SEDS ensures global sta-
bility of the noise-free estimate of the underlying dynamics,
which will be denoted as f̂ .

Taking the posterior mean estimate of P(ξ̇nt | ξnt ) yields an
estimate of ˙̂

ξ = f̂(ξ), function that approximates the model
dynamics:

˙̂
ξ =

K∑
k=1

πkN (ξ;µk,Σk)∑K
i=1 π

iN (ξ;µi,Σi)

(
µk
ξ̇

+ Σk
ξ̇ξ

(Σkξξ)
−1(ξ − µkξ )

)
.

(5)

B. Coupled Dynamical Systems

Our recent work [9] has shown the benefits of learning
explicitly a coupling between the arm DS and the finger
DS over modeling motions of the physical systems with a
single, extended DS. The problem associated with learning
one high-dimensional dynamical model that guides motion
of two physical systems is the fact that explicit following
of correlations shown in demonstrations between the two
coupled dynamics is not guaranteed. This could be a problem
if the robot is perturbed far from the region of demonstrated
motion, since the behavior of the dynamical systems may
not be correctly synchronized. An approach adopted in [9],
is to learn separately two dynamics and then learn a coupling
between them. This approach assures that CDS follows the
same synchronized pattern of motion as observed in human
demonstrations.

1) Extended CDS architecture and learning: We extend
the original CDS architecture, having in total five building
blocks: three dynamical systems and two coupling blocks
between them. They are organized in the following order:
eyes → eye-arm coupling → arm → arm-hand coupling
→ hand. The gaze DS is the master to the arm DS, and
the arm DS is the master to the hand DS. There is a



Figure 4. Learned CDS eye-arm-hand coordination model: a) eye dynamics, b) eye-arm coupling, c) arm dynamics, d) arm-hand coupling and e) hand
dynamics. For simplicity of graphical representation, we plotted CDS model for one gaze position, one arm position and one hand position. The eye state
is presented with horizontal gaze coordinate, denoted as ξ1e .The arm state is presented with Cartesian coordinate that corresponds to the direction of the
major hand displacement in the task, denoted as ξ2a. The hand state is represented with thumb proximal joint, denoted as ξ3h. Superposed to the datapoints,
we see the regression signal (plain line) and the different Gaussian distributions (elliptic envelopes).

coupling block between each master and its slave. The major
assumption is that the modulation signals between them flow
only in the direction from the master to the corresponding
slave, i.e. dynamics of the slave is modulated with control
signals coming from its master, not vice versa. The master
system evolves independently of its slave. Fig. 3 illustrates
the architecture of CDS, and the principles of learning and
reproduction of coordinated motion.

The state of the eyes is denoted with ξe ∈ R2, the
state of the arm is ξa ∈ R3, and the state of the hand is
ξh ∈ R9. The eye state ξe is represented as the distance
between the position of the gaze and the position of a visual
target in retinal coordinates (i.e. retinal error). The arm state
ξa is represented as the distance in Cartesian coordinates
between the arm end-effector (the palm center) and the target
object. The hand state ξh is expressed as the difference
between the current hand configuration and the goal hand
configuration, i.e. grasp configuration. In other words, the
attractors are placed at the target projection in the retinal
plane, its Cartesian position in the workspace and at the
corresponding hand configuration when the target is reached,
which is formally expressed as: ξ∗e = 0, ξ∗a = 0 and ξ∗h = 0.
The arm state vector can be extended to encompass both
position and orientation variables of the end-effector, which
could be beneficial for more complex coordinated tasks.

CDS model of eye-arm-hand coordination is built in
the following manner: joint probability distributions that
encode the eye dynamics P(ξ̇e, ξe | θe), the arm dynamics
P(ξ̇a, ξa | θa) and the hand dynamics P(ξ̇h, ξh | θh) are
first learned separately. Then we learn the joint distribution
for eye-arm coupling P(Ψe(ξe), ξa | θea) and arm-hand
coupling P(Ψa(ξa), ξh | θah), where θe, θa, θh, θea and θah
denote the GMM parameters, and Ψe(ξe) and Ψh(ξh) denote
the coupling functions. GMMs that encode dynamics of the
eyes, the arm dynamics and the hand dynamics are learned
using the SEDS algorithm, for more details [11]. GMMs that
model coupling are learned with Expectation-Maximization
(EM) algorithm [17].

Two open parameters, α and β allow additional fine-
tuning of the characteristics of the slave response (a and h

subscripts denote whether they modulate arm or hand motion,
respectively). The speed is modulated with the scalar α, and
the amplitude of motion is tuned by changing the value
of the scalar β. Fig. 4 illustrates CDS model learned from
demonstrations.

Algorithm 1 CDS eye-arm-hand coordination

do
General :
− query frames from cameras
− read the current hand position from forward kinematics
− read the hand joints from encoders
− recognize and segment the target object
− estimate the position of the target in both retinal

and Cartesian coordinates
− compute ξe, ξa and ξh
Gaze :
if gaze is not at target then

ξ̇e ← E
[
P
(
ξ̇e | ξe

)]
ξe ← ξe + ξ̇e∆t
− look at new gaze point

end if
Eye− arm coupling :
ξ̃a ← E [P (ξa | Ψe (ξe))]
Arm :
if the arm is not at target then

∆ξa ← ξa − ξ̃a
ξ̇a ← E

[
P
(
ξ̇a | βa∆ξa

)]
ξa ← ξa + αaξ̇a∆t
− solve inverse kinematics
− move the arm and the torso to new joint conf.

end if
Arm− hand coupling :
ξ̃h ← E [P (ξh | Ψa (ξa))]
Hand :
if the hand is not at target then

∆ξh ← ξh − ξ̃h
ξ̇h ← E

[
P
(
ξ̇h | βh∆ξh

)]
ξh ← ξh + αhξ̇h∆t
− move the hand to new joint conf.

end if
until object grasped



Figure 5. Experiments of visually-guided reaching and grasping in the iCub’s simulator, with the presence of the obstacle and with perturbations. The
obstacle is an intermediary target for visuomotor system, hence obstacle avoidance is divided in two sub-tasks: from the start position to the obstacle
(via-point), and from the obstacle to the grasping object. Figures show execution of eye-arm-hand coordination from the start of the task (left) until the
successful grasp completion (right). Figures in the upper row (a) present scenario when the target object (red champagne glass) is perturbed during motion
(perturbation occurs in the third frame from left). Visuomotor coordination when the obstacle is perturbed during manipulation is shown in the bottom
row (perturbation in the second frame). The orange line shows the trajectory of the hand if perturbation did not happen, and the purple line is the actual
trajectory of the hand from the start of unperturbed motion, including the path of the hand after perturbation until successful grasping. In both scenarios
(target perturbed and obstacle perturbed), visuomotor system instantly adapts to the perturbation, and drives motion of the eyes, the arm and the hand to
new position of the object.

2) CDS reproduction: The DS that drives the eyes evolves
independently in time, and leads the whole system. The eye
state velocity ξ̇e is generated by conditioning the learned
distribution of eye dynamics on the current eye state, as
shown in Eq. 5. The eye state variable is incremented by
adding the velocity multiplied by the time step ∆t to its
current value ξe. The eye system modulates the behavior of
the arm system via the coupling function Ψe. The “desired”
arm state value ξ̃a is inferred from the eye-arm coupling
model by conditioning on Ψe(ξe). The arm velocity ξ̇a is
generated by conditioning the distribution of arm dynamics
on the difference between the current arm state and the
“desired” arm state.

The desired hand state value ξ̃h is obtained by conditioning
arm-hand coupling model on Ψa(ξa). Finally, the hand
velocity ξ̇h is inferred by conditioning the hand model on the
difference between ξh and ξ̃h. Algorithm 1 shows how the
robotic eye-arm-hand coordination is performed with CDS.

3) Eye-arm-hand coordination for obstacle avoidance:
The use of a CDS-based visuomotor controller for obstacle
avoidance is grounded on our hypothesis that the obstacle
acts as an intermediary target for visuomotor system in
reaching and grasping tasks, see Section III.

In order to define which objects in the workspace are
obstacles for the realization of the intended reach-and-grasp
tasks, we use a planning scheme to estimate consequences
of future actions. More specifically, the motion of the arm
towards the target is estimated by integrating the dynamics

of the extended CDS until each DS reaches its attractor.
We integrated only the eye-arm part of the whole CDS,
ignoring the hand’s DS, since our collision checking scheme
is relatively simple. The arm end-effector is modeled as
a point which moves along the estimated trajectory, and
each object in the workspace is modeled as a cylinder. An
object is tagged as an obstacle when the trajectory of the
end-effector intersects with a cylinder modeling the object
(certain collision), or when the cylinder lies within the area
where it is very likely that is may collide with the forearm
(very likely collision). For motions we consider here and
observing the iCub’s body, this area is defined as the slice
of the workspace enclosed by the estimated trajectory of the
end-effector and the coronal plane of the body.

As suggested earlier on, we consider the eye-arm-hand
coordination as a composition of two segments: motion
from the starting position towards the obstacle and from the
obstacle towards the target object. Individual segments of
coordinated motion (from the starting point to the obstacle,
and from the obstacle to the target) are performed in a
manner presented in Algorithm 1. In the first part of the
task, the arm DS moves under the influence of the attractor
placed at the via-point. The hand DS is driven by the attractor
placed at the hand configuration when the palm reaches the
closest point (along the trajectory computed ahead of time)
to the obstacle. The position of the via-point is determined
with respect to the obstacle, such that its displacement vector
from the obstacle position is oriented in either anterior or



ventral direction, for the length that corresponds to some
safety distance dsafety between the palm and the obstacle.
The direction of a displacement of the via-point (anterior or
ventral) is chosen to correspond to a side of the obstacle
where a collision is estimated to occur. In the second part
of the task, after the obstacle is passed, CDS is driven
towards the object to be grasped. Hand adaptation with
respect to the obstacle provides a configuration of the hand
such that collisions between the fingers and the obstacle
are eluded during obstacle avoidance manipulation, whereas
hand adaptation with respect to the target assures coordinated
and stable grasping of the target as the arm reaches it.

The arm end-effector passing through the via-point at
dsafety from the obstacle and hand adaptation with respect
to the obstacle ensures that the hand will not collide with
the obstacle. However, the end-effector obstacle avoidance
has no means to modulate the arm (and torso) posture such
that collisions with the remaining arm links are avoided. We
benefit from controlling the arm in Cartesian coordinates, and
having an efficient inverse kinematics (IK) solver [18] which
is able to handle two tasks: to find suitable joint configuration
(primary task) while keeping solutions as close as possible
to a desired arm rest posture (secondary task). By having IK
that can solve for reaching Cartesian position trying to keep
joints close to a given rest posture, one can modulate the
robot’s motion in operational space by providing joint rest
postures suitable for obstacle avoidance. Our approach to the
problem of finding suitable joint postures is to learn these
joint postures from human demonstrations, since human
demonstrations in obstacle avoidance tasks encode inherently
favorable joint configurations.

Here we learn correlations between those joints, which
provide major contributions in obstacle avoidance manipula-
tion, and arm position in the operational space. The joints,
for which we observed statistically significant differences
in trunk and shoulder joint effort2 with respect to the
factor of obstacle presence, define the rest position, namely:
torso pitch and yaw, and shoulder joints corresponding to
adduction-abduction and flexion-extension. Hence, we pro-
ceed with learning the joint probability distribution P(q, x),
where q ∈ R4 denotes the joint rest posture and x ∈ R3

denotes the Cartesian position of the arm.

Adaptation of the arm posture for obstacle avoidance is
done in the following manner. When performing reaching
for a visuomotor target (the obstacle object or the grasping
object) the CDS system infers the state velocities, as ex-
plained earlier. By integrating the arm velocity, a new arm
state is obtained. By taking the posterior mean estimate of
P(q | x), we infer the favorable rest posture. Finally, the
IK solver optimizes for joint angles that correspond to the
desired Cartesian position, while trying to keep the four joints
as close as possible to the suggested values from the model.

2Joint effort is measured as the amplitude of recorded joint motion.
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Figure 6. Visuomotor adaptation to perturbation during the task, generated
by a sudden displacement of the target object. The upper part of the graph
shows how the eye state variable, represented with ξ1e , adapts to perturbation.
The middle graph part of the graph shows the arm state variable denoted
with ξ2a, and the lower part shows the hand state variable ξ2h. Gaze DS
adapts independently to spatio-temporal perturbations, whereas DS guiding
arm motion is modulated via the coupling function Ψe(ξe), and arm motion
modulates hand DS via Ψa(ξa). The figure shows that all three systems
successfully reach the target when perturbed.

V. VALIDATION OF THE MODEL FOR ROBOT
CONTROL

The CDS model is learned using the data gathered during
the human trials, described in Section III. The parameters
of SEDS algorithm (i.e. maximum number of iterations,
optimization criterion, etc) and a number of Gaussians in
mixtures are determined by using a grid-search with 10-fold
crossvalidation on RMSE between the recorded motion and
retrieved trajectories from the model. In all our experiments,
we used Ψe(ξe) =‖ . ‖, Ψa(ξa) =‖ . ‖, and the values of
parameters αa, αh, βa and βh were set to 1.

We validate the ability of the CDS controller on the iCub
robot to reproduce the same task of visually guided obstacle-
free reaching and grasping to the one that humans performed
in our trials, together with the advocated robustness of the
model to perturbations and the ability to handle the obstacles
in the workspace. In each run, the object to be grasped is
placed at a randomly computed position within a 15 cm-
cube in the workspace. Fig. 5 shows performed coordinated
manipulation in obstacle scenario with sudden perturbations
of the target object and the obstacle, respectively. The robot’s
end-effector avoids the obstacle during reaching for grasping
in two task segments: 1. start position→ via-point at dsafety
from obstacle, and 2. via-point at dsafety from obstacle →
grasping object. This safety distance in our human trials is
dsafety = 0.142 ± 0.01 m. We rescaled the safety distance
from human trials by 2, since the dimensions of the iCub
are similar to those of a 3.5 year old child, hence it has
smaller workspace than our adult subjects. Once the obstacle
has been reached, the target for the visuomotor system is



changed, and the eye-arm-hand motion is directed to the
object to be grasped. The IK solver adapts the arm rest
posture to be as close as possible to the output inferred from
the model learned from human demonstrations.

Since the eye state is the distance between the position of
gaze and the position of a visual target in retinal coordinates,
and the arm state is represented with respect to the position
of the object in Cartesian space, both variables are instantly
updated when the perturbation occurs, see Fig. 6. DS of the
eyes adapts independently to the perturbation. Behavior of
DS of the arm is modulated via eye-arm coupling function,
and hand DS is modulated via arm-hand coupling. Such
modulation ensures that the learned profile of eye-arm-
hand coordination will be preserved, and that the hand will
re-open as the object is perturbed away from it. Besides
the anthropomorphic profile of visuomotor coordination, the
gaze-arm lag allows enough time to foveate at the object, re-
estimate object’s pose and compute suitable grasp configura-
tion for the hand before it approaches too close to the object.
Results presented here, with several additional experiments in
simulation and experiments with the real robot are recorded
in the video submitted with this paper.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a CDS approach for learning
robotic eye-arm-hand coordination from human demonstra-
tion. This approach harvests the major benefits of encoding
motion with time-invariant DS: robustness to spatio-temporal
perturbations and instant re-planning of motion when per-
turbations occur. We show that the CDS framework makes
use of learned motion constraints as model-based visuomotor
coordination does and assures parametrized reaching of the
target with the zero-error like visual-servoing techniques.

We used forward planning by integrating the CDS model
in order to estimate which objects collide with the arm
when reaching for the target. The extension of the eye-arm-
hand coordination for obstacle avoidance is based on our
hypothesis that the obstacle acts as an intermediary target in
reach-and-grasp motions. It is important to mention that our
obstacle avoidance scheme does not have the full strengths
of methods like RRTs for solving reaching in very complex
workspaces, but it endows the visuomotor system with in-
stant reactions to perturbations, providing means for rapid
handling of a relatively simple obstacle in the workspace.

Our approach relies on using an efficient IK solver, cali-
brated stereo cameras and reliable encoder readings, but these
days the demands for the aforementioned funcionalities are
not very difficult to achieve, especially when using robotic
platforms like the iCub.

The flow of modulating signals in our controller is mono-
directional, from the eyes to the arm, and from the arm to the
hand. There is, however, strong evidence of shared control
between the different modalities in humans, meaning that
control signals also flow from the hand to the eyes, not only
in the opposite direction [19]. We will investigate potential

benefits of such bidirectional visuomotor control schemes for
robots in our future work.
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