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Abstract—Melanoma is one of the deadliest forms of cancer;
hence, great effort has been put into the development of diag-
nosis methods for this disease. This paper addresses two dif-
ferent systems for the detection of melanomas in dermoscopy
images. The first system uses global methods to classify skin
lesions, whereas the second system uses local features and the
bag-of-features classifier. This paper aims at determining the best
system for skin lesion classification. The other objective is to
compare the role of color and texture features in lesion classifica-
tion and determine which set of features is more discriminative.
It is concluded that color features outperform texture features
when used alone and that both methods achieve very good re-
sults, i.e., Sensitivity = 96% and Specificity = 80% for global
methods against Sensitivity = 100% and Specificity = 75% for
local methods. The classification results were obtained on a data
set of 176 dermoscopy images from Hospital Pedro Hispano,
Matosinhos.

Index Terms—Bag of features (BoF), color, computer-aided
diagnosis, dermoscopy, melanoma, texture.

I. INTRODUCTION

THE American Cancer Society estimates that more than
76 000 new cases of melanoma will be diagnosed in 2012.

This type of skin cancer is the less common, accounting for less
than 5% of all skin cancer cases. However, it is by far the most
aggressive since it is more likely to metastasize than other skin
tumors. This characteristic makes melanoma the deadliest form
of skin cancer (it is estimated that more than 75% of deaths
related with skin cancer in 2012 will be from melanoma) [1].
Melanoma incidence rates have been significantly increasing in
the last decades, which makes this one of the cancers that has
been receiving attention both from the public health field, with
medical prevention campaigns, and from the cancer research
field.

The ultimate goal for physicians is to diagnose melanoma
in its earliest stage, since it is less probable that it has already
metastasized, thus greatly increasing the probability of survival.
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Nowadays, a technique used by dermatologists to diagnose skin
lesions and, consequently, to detect melanomas is dermoscopy.
This is a noninvasive procedure used for in vivo observation
of skin lesions. The physician places gel on the skin lesion
and inspects it with a magnification instrument (dermatoscope,
stereomicroscope, or a digital imaging system), which amplifies
the lesion 6–100×, depending on the instrument used [2]. This
magnification allows the recognition of several surface and
subsurface structures, which are not visible to the naked eye,
and that can be used to diagnose a skin lesion using one of the
several medical diagnostic algorithms, e.g., the ABCD rule [3],
Menzies method [4], and the seven-point checklist [5]. These
three algorithms have a common first step, i.e., the identification
of the inspected lesion regarding its origin as melanocytic or
nonmelanocytic; melanoma is a melanocytic lesion, since it
is a malignant proliferation of melanocytes. In their second
step, they distinguish between benign melanocytic lesions and
melanoma using different approaches. The ABCD rule assigns
a score to a lesion. This score is a combination of the scores for
four different features, namely, (A)symmetry, (B)order, num-
ber of different (C)olors, and atypical (D)ifferential structures
(atypical pigment network, dots, streaks, etc.). A score higher
than 5.45 diagnoses a lesion as melanoma [3]. Menzies method
identifies two types of dermoscopic features, i.e., negative
(symmetrical pattern, single color) and positive (blue-white
veil, atypical dots and network, etc.). The presence of positive
features signs a melanoma [4]. Finally, the seven-point checklist
also scores a lesion. However, this algorithm only inspects the
lesion for the presence of atypical differential structures. The
scores for different dermoscopic structures can be 2 or 1 and are
added up to give the final score. A score higher than 3 indicates
melanoma [5]. Fig. 1 illustrates a melanoma and some of the
common dermoscopic features considered by dermatologists.

It has been reported that dermoscopy can actually increase
the sensitivity of melanoma detection by 10%–27% [6]. How-
ever, it has been demonstrated that dermoscopy only increases
the diagnostic performance if the dermatologists have received
formal training [7]. Moreover, even with the use of the de-
scribed diagnostic algorithms, which aim to make the diagnosis
more reliable and reproducible, the diagnosis of a skin lesion
by a dermatologist is still subjective since it depends on human
vision and on clinical experience. Computerized dermoscopy
image analysis systems can be used to tackle this problem. In
these systems, a computer is used as a diagnostic tool and to
follow up on suspicious skin lesions.
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Fig. 1. Melanoma: (blue arrows) atypical pigment network; (red arrows) blue-
white veil; (white circles) atypical dots; more than one color; and asymmetric.

This paper proposes two systems for the automatic clas-
sification of melanocytic skin lesions. The first system uses
global methods to classify skin lesions. This approach evolves
in three sequential steps. First, the lesion is segmented using an
automatic segmentation method. Then, a set of features from
the ABCD rule (color and texture features) is extracted and
used to train a classifier to perform binary classification as
melanoma or benign. The second system uses local features,
following a recent trend in image analysis and recognition. This
paper is organized as follows: Section II gives an overview of
several systems proposed in the literature. Section III provides
an overall description of global and local strategies. Sections IV
and V describe the proposed systems and the type of features
extracted. The results obtained and their discussion are per-
formed in Section VI. Section VII concludes this paper with
some remarks on future work.

II. RELATED WORKS

In the last decade, several systems for melanoma detection
have been proposed. Some systems try to mimic the perfor-
mance of dermatologists by detecting and extracting several
dermoscopic structures, such as pigment network [8]–[10],
irregular streaks [11], granularities [12], regression structures
[11], blue-white veil [13], and blotches [14]. These structures
can then be used to score a lesion in a similar way to the
one adopted by dermatologists. A CAD system that mimics the
performance of the seven-point checklist method can be found
in the literature [15].

However, the vast majority of melanoma detection systems
found in the literature follows a pattern recognition approach
[16]–[25]. Most of these works use global methods to clas-
sify skin lesions [16]–[20], [22], [24]. The described systems
usually consist of three/four consecutive steps, i.e., lesion seg-
mentation, feature extraction, feature selection, and lesion clas-
sification using a trained classifier. These systems are usually
inspired in the ABCD rule [3], and the extracted features aim to
reproduce each one of the accounted scores. The most common
features used in these studies include shape features (e.g., com-
pactness, aspect ratio, and maximum diameter), which repre-
sent both asymmetry and border; color features in several color
spaces (e.g., mean and standard deviation); and texture features
(e.g., gray-level cooccurrence matrix) [22]. Interesting results

have been obtained by different authors with different sets of
features and classifiers. Ganster et al. [16] extracted shape and
color features and used a k-Nearest Neighbor (kNN) classifier
to distinguish between melanoma and benign nevi. They used
a large data set with more than 5300 dermoscopy images and
achieved a Sensitivity (SE) of 87% and a Specificity (SP ) of
92%. Rubegni et al. [18] also used shape and color features
and added texture features. They achieved a SE = 96% and a
SP = 93% in a data set with 217 melanomas and 588 images,
using an artificial neural network classifier. Celebi et al. [22]
proposed a system based on a support vector machine (SVM)
classifier to identify melanomas. They used a large feature
vector, which contained shape, color, and texture features, and
achieved SE = 93% and SP = 92%. The system proposed by
Iyatomi et al. [24] is an Internet-based melanoma screening
system that uses a feature vector of over 400 features, divided
in shape, texture, and color features. Their data set contained
more than 1200 dermoscopy images, and they achieved SE
and SP values both equal to 86%. Local methods have been
also recently proposed to classify skin lesions. Situ et al. [25]
described an algorithm for lesion classification that uses the
bag-of-features (BoF) approach. They represent each image as
a set of several patches sampled from a 16 × 16 regular grid
placed on the lesion. To describe each patch, they use wavelets
and Gabor-like filters, leading to a total of 23 features. Two
different classifiers were compared, i.e., naive Bayes and SVM
classifiers; and their best performance is 82% on a data set of
100 dermoscopy images, 30 of which were melanomas.

The aforementioned works consider that the three commonly
used types of features (shape, color, and texture) are equally
relevant for the automatic detection of melanomas. Other works
use a single class of features as a descriptor for melanoma
detection [21], [23], [26]–[28]. Color distribution in the RGB
color space (mean RGB distance, variance, and maximum
distance) was used to distinguish between melanomas, atypical
nevi, and benign nevi by Seidenari et al. [21]. They achieved an
accuracy of 86% and observed significant difference in pigment
distribution between the three studied populations. Relative
color histograms have been also used to distinguish between
melanomas and benign or atypical nevi [23], [26], both with SE
greater than 80%. The gray-level cooccurrence matrix and other
texture descriptors, such as Laws energy masks and Gabor-
like filters, were applied to classify skin lesions using texture
information only [27], [28]. The most promising results were
achieved by Sheha et al. [28], who obtained an accuracy of 92%
on a data set of 102 images (51 melanomas). Despite being very
promising and demonstrative that both types of features are
good discriminators, these cannot be compared since different
data sets and experimental conditions are employed. Therefore,
it is not possible to determine the relative importance of each
feature for skin lesion classification. To the best of our knowl-
edge, no work can be found in the literature that compares the
relevance of each type of features. Furthermore, most works
describe the lesion using global features, although it has been
shown that local features perform better in several image analy-
sis problems (e.g., object recognition and image retrieval) [29].

This paper addresses two distinct objectives. First, it aims
at determining which is the best strategy for skin lesion



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BARATA et al.: TWO SYSTEMS FOR THE DETECTION OF MELANOMAS IN DERMOSCOPY IMAGES 3

Fig. 2. Block diagram of two melanoma detection systems, using (a) global and (b) local features.

classification: global or local? Second, it aims at comparing the
performance of two classes of features (color and texture) in
melanoma identification and determining which feature is the
best discriminator in this specific problem.

III. SYSTEM OVERVIEW

The analysis of dermoscopy images is an object recognition
problem under very specific conditions. Several approaches
have been proposed to deal with this kind of problems. Some
of them characterize the object by a set of global features (e.g.,
color moments and gradient histograms) and use these features
to discriminate the object from the background. However, these
techniques fail to recognize objects in more complex settings,
e.g., when the object boundary is unknown and cannot be easily
found in the image or when the object shape, color, and texture
exhibit severe changes and cannot be easily described by global
measurements extracted from the image. A recent trend consists
in selecting local patches (small regions) in the image and
describing each patch by a set of local features. This approach
does not require a global model for the object and can easily
cope with changes in shape, color, and texture, achieving good
results in very difficult problems [30].

In this paper, we will compare two different strategies for
melanoma detection and build a recognition system based on
each of them. The first system describes the dermoscopy image
by a set of global features and uses a classifier to discriminate
melanomas from nonmelanoma lesions [see the block diagram
in Fig. 2(a)]. This is a supervised system since the classifier
learns to detect the melanoma lesions using a training set of
images, which is labeled by an expert. Each training image,
i.e., I(k), k ∈ 1, . . . , L, is characterized by feature vector xk ∈
R

n and by binary label yk ∈ {0, 1}. The classifier is trained
to discriminate both types of images using the training data
(xk, yk), k = 1, . . . , L.

The second system characterizes the dermoscopy image by
using a BoF approach [see Fig. 2(b)] [29], [31]–[34]. First,
a set of keypoints is selected inside the lesion region. Then,
each keypoint is characterized by a vector of local features.
This feature vector represents color and texture properties in

a local patch centered at the keypoint. Since the number of
keypoints and local features varies from image to image, we
cannot directly feed a classifier with these data. Instead, all local
features associated with all the training images are gathered and
used to compute a smaller set of prototypes (centroids) denoted
as visual words. Then, the local features of each dermoscopy
image are assigned to the nearest visual word, and a histogram
is computed. The histogram counts the number of times each
visual word was selected. A statistical classifier is then trained
to discriminate melanoma lesions from nonmelanoma ones,
using the histogram of visual words as input.

This paper tries to determine which of these strategies per-
forms best in melanoma detection. The answer is not simple. If
a skin lesion is homogeneous, the first approach will probably
be the best since it is able to describe the lesion by a set of
global features that use all the available information. However,
since skin lesions often have differential structures (pigment
network, vascular network, dots, streaks, etc.) that are localized
and appear in specific regions, these structures may not be well
described by global features, and local methods may represent
them better.

Both systems assume that the dermoscopy image is seg-
mented and that the lesion region is separated from healthy
skin. Several segmentation methods were proposed for this
problem [35]–[39]. A comparison among several methods can
be found in [40]. However, there is no consensus about which
one performs best. We adopted a simple adaptive thresholding
technique (see the description of the method in the Appendix),
and the output of the segmentation step was verified by an
expert and edited when necessary. This procedure was adopted
in order to make the system performance independent of the
specific algorithm used for segmentation. Otherwise, it would
be difficult to interpret the system decisions since errors might
be caused by insufficient information provided by the features
or by segmentation errors.

IV. GLOBAL LESION CLASSIFICATION SYSTEM

The global classification system consists of three processing
steps [see Fig. 2(a)]. First, the skin lesion is segmented. Then, a
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Fig. 3. (a) Original image. Computation of global features for (b) R and
(c) R1 +R2. (d) Computation of local features.

vector of global color and texture features is extracted from the
skin region. Finally, a statistical classifier is trained using a set
of images, which is labeled by an expert (training set). Three
classifiers are considered in this work, i.e., AdaBoost classifier
[41], SVM classifier [42], and kNN classifier.

Concerning the image features, medical doctors use several
visual cues, such as differential structures, number of colors,
symmetry, and border transitions. Two strategies will be consid-
ered in this paper. In the first case, image features are computed
inside the skin lesion, i.e., R [see Fig. 3(b)], whereas in the
second case, we split R into an inner part, i.e., R1, and the
border, i.e., R2 [see Fig. 3(c)]. R1 is obtained by eroding R
with a disk of radius r, which was empirically chosen to be
1/10 of the lesion smallest axis after comparing several values.
This strategy tries to capitalize the available knowledge about
medical analysis of dermoscopy images, i.e., special attention
is assigned to the border analysis.

In this paper, we will focus on two types of image features
(color and texture), and we will try to assess the role played
by each of them in the final decision: what performance is
achieved by color features only, by texture features only, and
by combining both of them. The features used in this work are
presented in the next sections.

A. Texture Features

Image texture represents the spatial organization of intensity
and color in an image, and it can be characterized in many
different ways. Some methods use pixel statistics. A classic
approach consists in computing the statistics of pairs of neigh-
boring pixels, using the cooccurrence matrix [43]. This idea
has been modified and improved in many different ways. For
example, local binary patterns perform a binary classification of
the pixels in the vicinity of each pixel and compute the statistics
of the neighboring pixel configurations [44]. Texture has been
also described by applying a Fourier transform to the image
and by characterizing the spectral energy in different frequency
bands [45]. Other image transforms have been also used, e.g.,

wavelets [46], Laplacian pyramids [47], or linear filters (e.g.,
Law texture features) [48].

Many works use the gradient histograms to characterize
texture, and these features have achieved excellent results in
several challenging problems. We will use two gradient his-
tograms in this work. First, we convert the RGB image into
a gray-level image by selecting the color channel with the
highest entropy [40]. In order to compute the image gradient,
we filter the gray-level image using a Gaussian filter with σ = 2
and then compute the gradient vector at each point g(x) =
[g1(x) g2(x)]

T using Sobel masks. The gradient magnitude and
orientation are then computed as

‖g(x)‖ =
√

g21(x) + g22(x), φ(x) = tan−1

(
g2(x)

g1(x)

)
. (1)

The histograms of the gradient amplitude and orientation are
defined as follows:

ha(i) =
1

N

∑
x∈R

bi (‖g(x)‖) , i = 1, . . . ,Ma (2)

hφ(i) =
1

N

∑
x∈R

b̃i (φ(x)) , i = 1, . . . ,Mφ (3)

where R denotes the set of pixels that were classified as lesion,
N = #R is the number of lesion pixels, and Ma and Mφ

are the number of bins used in the amplitude and orientation
histograms; bi(.) and b̃i(.) are the characteristic functions of
the ith histogram bin, defined by

bi(a) =

{
1, if a belongs to the ith amplitude bin
0, otherwise

(4)

b̃i(φ) =

{
1, if φ belongs to the ith orientation bin
0, otherwise.

(5)

When lesion region R is split into inner region R1 and border
R2, we compute separate histograms for each of these regions
using the same expressions and replacing R by Ri and N by Ni.

Fig. 4 shows the histograms of amplitude and orientation for
a set of dermoscopy melanoma images (left) and nonmelanoma
images (right). There is a significant overlap among the features
of both classes, in all the histogram bins. This means that the
binary decision is not simple.

B. Color Features

Color information is used by medical doctors in the classi-
fication of skin lesions (see Section I). Therefore, color fea-
tures have been explicitly used in most CAD systems. The
most popular features used in dermoscopy analysis are color
statistics, such as the mean color and color variance [16], [24].
Most works compute these statistics for the RGB color com-
ponents. However, other color representations have also been
adopted [22].

The RGB color space represents a target color as a mixture
of three primary colors, i.e., red (R), green (G) and blue (B).
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Fig. 4. Histograms of (top) amplitude and (bottom) orientation for (left) melanoma and (right) nonmelanoma lesions.

The mixture coefficients are denoted as color components.
However, this color space has a number of drawbacks: it is not
perceptually uniform, it depends on the acquisition setup, and
it exhibits a high correlation among the three color channels
[49]. To overcome these difficulties, other color representations
have been proposed, e.g., biologically inspired color spaces
such as the opponent color space (Opp) [50], [51], color spaces
related to the human description of color such as hue satura-
tion and brightness (HSV and HSI) [49], [52], or perceptu-
ally uniform color spaces such as the CIE La∗b∗ and L∗uv
[49]. Although there is a 1-1 map between all pairs of color
spaces, the choice of the color space modifies the recogni-
tion results since their components present different statistics
(e.g., some are more correlated than others) and different
histograms.

In this paper, we have used all six color spaces mentioned
above. We characterize the color distribution in lesion region
R (or R1, R2) using a set of three color histograms, each of
them with Mc bins. The color histogram associated to the color
channel, i.e., Ic(x), c ∈ {1, 2, 3}, is given by

hc(i) =
1

N

∑
x∈R

bc (Ic(x)) i = 1, . . . ,Mc (6)

where N = #R denotes the number of pixels in region R, and
i is the histogram bin. The bins are defined by splitting the color
component range (which depends on the color space) into Mc

subintervals with the same length.
Fig. 5 shows the concatenation of the histograms hc for four

different color spaces and splitting region R into R1 and R2.
The differences between melanoma and nonmelanoma features
are more noticeable in these cases.

V. DETECTION WITH LOCAL FEATURES

BoF methods have recently been used in complex image
analysis problems, e.g., image retrieval and object-class recog-
nition in large databases [53], [54]. Since complex objects can-
not be represented by a global model, BoF methods represent
them by a collection of local models, e.g., image patches. In
a first stage, a set of keypoints, i.e., pi ∈ R

2, is defined in
the image. In the case of dermoscopy images, we assume that
keypoints are nodes of a regular grid of size Δ×Δ defined
in the image domain. Second, each keypoint is described by
a feature vector xi ∈ R

n, which represents local information
conveyed in the image patch of size Δ×Δ centered at the
ith keypoint [see Fig. 3(d)]. The size of the patches is equal to
the size of the grid to avoid overlapping. Patches for which the
area is more than 50% outside the lesion are discarded. Given
an input image I , we will denote the family of local features
associated to I by

F = {x1, . . . , xN}, xi ∈ R
n (7)

where N is the number of keypoints inside the lesion (see
Fig. 3, bottom right).

A. Training

The training phase aims to learn the parameters of a BoF
classifier using a set of labeled dermoscopy images. Let T =
{I(1), . . . , I(L)} be a set of L images used to train the classifier
and let

F =

L⋃
k=1

F (k) (8)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE SYSTEMS JOURNAL

Fig. 5. Concatenated histograms of (first row) RGB, (second row) L∗uv, (third row) Opp, and (fourth row) HSV for (left) melanoma and (right) nonmelanoma
lesions, computed in R1 and R2.

be the set of all local features detected in the training set.
First, we will approximate the feature vectors in F by a set
of prototypes (centroids) c1, . . . , cK . This is done using a

clustering algorithm (e.g., k-means algorithm). The prototypes
are known as visual words to emphasize the similarity with the
bag-of-words method used in text analysis. After obtaining a
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set of prototypes c1, . . . , ck, all feature vectors in the training
set are classified in the nearest prototype and a label

l
(k)
i = argmin

j

∥∥∥x(k)
i − cj

∥∥∥ (9)

is assigned to each feature vector x(k)
i .

Then, a histogram that counts the occurrence of each of the
prototypes is computed for each of the training images Ik.
Therefore

h(k)(l) =
1

N (k)

N(k)∑
i=1

δ
(
l
(k)
i − l

)
(10)

where δ(.) denotes the Kronecker delta (δ(x) = 1, if x = 0;
δ(x) = 0, otherwise).

Each training image I(k) is characterized by a histogram of
visual words h(k) with K bins. The histogram is, therefore, a
feature vector that characterizes the image. Since the images in
the training set have been classified by an expert, we can train a
classifier to predict the labels (melanoma versus nonmelanoma)
given the histogram of visual words.

B. Test

In the test phase, we wish to classify a new image using
the previously learned model. Given an input image I , we
compute the keypoints inside the lesion and the corresponding
local features. Then, we classify the local features using the
dictionary of visual words and build the histogram of visual
words. Finally, the histogram is classified using the classifier
learned during the training phase.

C. Local Features

Each image patch is characterized by color and texture
features similar to the ones described in Section IV, i.e., we
use gradient histograms and color histograms to characterize
the image in each patch.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

The systems described in the previous sections were evalu-
ated using a data set of 176 dermoscopy images (25 melanomas
and 151 nevi). Each image was classified by an experienced
dermatologist. These images were taken from the database of
Hospital Pedro Hispano, Matosinhos, and were obtained by
dermatologists during clinical exams using a dermatoscope
with a magnification of 20×. They are stored in BMP and
JPEG formats, and their average resolution is 573 × 765. The
performance of each system was evaluated for each type of
feature: T1) gradient magnitude and T2) gradient orientation;
C1) RGB, C2) HSV, C3) La∗b∗, C4) HSI, C5) L∗uv, and C6)
Opp. We have also performed tests using all the color features
(C), both texture and color (T + C) and the best texture (TB)
and color (CB) feature. Since there is always a tradeoff between
sensibility (SE) and specificity (SP ), we evaluate each system
configuration using a cost function defined by

C =
c10(1− SE) + c01(1− SP )

c10 + c01
(11)

TABLE I
BEST EXPERIMENTAL RESULTS USING GLOBAL FEATURES

AND A kNN CLASSIFIER

where c10 is the cost of an incorrectly classified melanoma
[false negative (FN)], and c01 is the cost of an incorrectly
classified nonmelanoma [false positive (FP)]. Since we consider
that an incorrect classification of a melanoma is the gravest
error, we assume that c10 = 1.5c01 and c01 = 1 in this paper.

In the following subsections, we will address the specific
procedures used to evaluate each one of the systems as well
as the results obtained.

A. Assessment of the Global Lesion Classification System

The data set used has a limited number of images. There-
fore, we have tested the global system using a leave-one-out
approach. This approach requires that for each set of features,
176 classifiers are trained, each one using all the images except
one, which is used for testing. The final performance measures
are computed by averaging the individual measures obtained
for each classifier. Class unbalance is another issue that must
be addressed. To tackle this problem, we have repeated the
melanoma features belonging to each training set until we
obtained the same number of examples for both classes. To
prevent having equal examples on the training set, we have
added Gaussian noise (w ∼ N(0, σn)), with σ = 0.0001, to
each repeated feature vector.

The performance of the classifier for each feature was eval-
uated using different combinations of parameters, both in the
feature extraction process, by varying the number of bins of
the histograms (nbins ∈ {15, 16, . . . , 50}), and in the classifi-
cation process, by performing tests with different classification
algorithms (kNN, SVM, and AdaBoost). For each classifier, we
varied specific parameters, namely, the number of neighbors
(k) and distance (dist) used by the kNN algorithm to compare
feature vectors, the type of kernel used by the SVM, and the
number of combined weak classifiers (W ) by the AdaBoost.
We have considered all the combinations of these parameters
and all the possible features and tested more than 30 000
different configurations. For each configuration, we trained 176
classifiers using the leave-one-out procedure.

The best results obtained using the kNN classifier, selected
using cost criterion (11), are summarized in Table I. We tested
all the nbins for different combinations of k ∈ {5, 7, . . . , 50}.
For each k used, we computed the results for three different
distances, i.e., Euclidean, Kolmogorov, and Kullback–Leibler.
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TABLE II
BEST PARAMETERS FOR THE kNN CLASSIFIER

TABLE III
BEST EXPERIMENTAL RESULTS USING GLOBAL FEATURES

AND AN RBF-SVM CLASSIFIER

The parameters that led to the results in Table I can be seen in
Table II.

Table I shows that very good results can be achieved using
the kNN classifier and that each color feature outperforms
the texture features, which is an interesting result. Another
interesting result is that in most of the cases, the performance
of the algorithm tends to improve when lesion region R is split
into two disjoint regions (R1 and R2), which suggests that
the periphery and the inner part of a lesion contain comple-
mentary information that allows better discrimination between
melanomas and nonmelanomas. This has been also observed in
[22]. It is not clear which of the three distances used is best
for this specific problem, since all of them are selected and
considered to be the best for some of the features. We tried
to improve the results by combining the two types of features.
However, the system performance decreases when compared
with the system performance for the best single color features,
i.e., C5 (SE = 96%, SP = 79%) and C6 (SE = 100% and
SP = 72%). This change is explained by the fact that we are
increasing the number of features by more than ten times. The
number of training patterns is, therefore, insufficient to obtain
good generalization.

To overcome these difficulties, we have used two additional
classifiers that exhibit better generalization performance when
the number of features is increased. First, we have tested SVM
using two different kernels, i.e., linear and a Gaussian radial
basis function (RBF). RBF-SVM greatly outperformed the
linear one; therefore, we will only show results for the second
(see Table III).

The SVM classifier does not perform as well as the kNN
one. Nonetheless, the obtained results are still interesting
and provide some information. As before, the color features
outperform the texture ones, which reinforce the idea that this

TABLE IV
BEST EXPERIMENTAL RESULTS USING GLOBAL FEATURES

AND AN ADABOOST CLASSIFIER

TABLE V
BEST PARAMETERS FOR THE ADABOOST CLASSIFIER

kind of features is more discriminative. In this case, it is not
possible to determine if the use of a single region (R) is better
than two (R1, R2) since the results are not as clear as before.
Despite the low performance of the texture features, we are able
to improve the performance of the algorithm by combining T1

and C6, i.e., the best texture and color features. This feature
concatenation leads to the best classification results with SVM:
SE = 92% and SP = 72%.

AdaBoost has the ability to select appropriate features for a
given problem and to train a strong classifier from a combina-
tion of weak classifiers [55]. Therefore, this kind of classifier
was deemed appropriate for our classification problem since it
is able to select a set of informative features for this problem,
and it is able to discard features that do not improve the
classifier performance. AdaBoost was trained using different
numbers of weak classifiers W ∈ {2, 100}, achieving the best
overall results (SE = 96% and SP = 80% for C2/C4 and
SE = 92% and SP = 85% for C6) with combinations of only
two to five weak classifiers (see Tables IV and V). Moreover,
we also obtained the best global classification results for a
single texture feature T1 (SE = 96%, SP = 59%). Since each
weak classifier uses only one bin to classify the data, the
experimental results suggest that only a very small number
of features is enough to achieve the best scores. This is a
remarkable result, which suggests that some of the features
are much more important than others. It also suggests that best
generalization is achieved with a small number of features than
with a large feature set.
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Fig. 6. Variation of SE and SP for (first row) R and (second row) R1 +R2, using W ∈ [2, 100].

We sought to determine the impact that increasing the num-
ber of weak classifiers (number of selected bins) would have
on the classification results. To do so, we varied the value of
W , while maintaining nbins constant and equal to the one of
the best configuration for each single feature (see Table V).
The curves obtained are shown in Fig. 6. It is clear that the
performance of the classifier depends on the number of features
used. This reinforces the idea that most of the bins contain noisy
information and have a marginal influence on the classifier
output.

The characteristics of AdaBoost allows to further explore
the data set. We performed tests with the best single color
features (C2, C4, and C6) and their combinations with the
best texture feature (T1) to determine if some histogram bins
are more selected than others. This would mean that these
bins are very discriminative. The results are shown in Fig. 7.
All the tests were performed using the best configuration (see
Table V) and considering the two regions R1 and R2, since it is
clear that extracting features separately from inner and border
improves the classification results. By inspecting the results, it
is possible to notice that some bins are indeed selected most
of the time. These bins correspond to specific channels of each
color space, e.g., for C6, the two most selected bins correspond
to bins of the histogram of the second channel (O2), and for
C2 and C4, the most selected bin is from the histogram of
the second channel [Saturation (S)], whereas the two other
correspond to the third channel [Value (V ) and Intensity (I),
respectively]. An interesting result is that when a fusion of two
best features is performed, the classifier only selects bins from
color histograms, which demonstrates that color features have

more discriminative information. The classifier selects infor-
mation from R1 and R2, which suggests that both regions are
informative. We have computed the mean and median values
for the two most selected bins for each of the three best color
features (see Table VI). The most selected bin is labeled as “1”
and the second most selected bin as “2” (recall Fig. 7, to identify
the corresponding bins for each color feature). These bins have
values considerably different for the two classification classes,
which demonstrates that these bins can be used to distinguish
between melanomas and nonmelanomas.

Fig. 8 shows four examples classified by the proposed
system using Adaboost, C6, and the best combination of
parameters for this feature. These examples correspond to
the four possible cases, i.e., true negative (TN)—correctly
classified nonmelanoma, false positive (FP)—incorrectly clas-
sified nonmelanoma, false negative (FN)—incorrectly classi-
fied melanoma, and true positive (TP)—correctly classified
melanoma.

Although we do not use the same features and data sets as
the other works found in the literature, a tentative comparison
can be performed. Faziloglu et al. [26] reported the following
values: SE = 84.3% and SP = 83.0%, and Stanley et al. [23]
reported the following values: SE = 87.7% and SP = 74.9%.
Both groups use only color features, and their data sets are
larger than ours (258 and 226 images, respectively), possessing
an equal proportion of melanomas and nonmelanomas. With
our best configurations and classifier, we achieve results similar
to the ones reported by these two groups, i.e., SE = 96.0% and
SP = 80.0% using C2/C4 and SE = 92.0% and SP = 85%
using C6. Our classification results are also similar to the ones
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Fig. 7. Average frequency of selection of the most selected histogram bins for (a) C2, (b) C4, (c) C6, (d) T1 + C2, (e) T1 + C4, and (f) T1 + C6.

TABLE VI
MEAN AND MEDIAN VALUES FOR THE TWO MOST SELECTED BINS (THE MOST SELECTED BIN IS “1”

AND THE SECOND MOST SELECTED IS “2”) FOR C2, C4, AND C6

Fig. 8. Examples of classification cases. (a) TN. (b) FP. (c) FN. (d) TP.

reported by Seidenari et al. [21] (SE = 87.5%, SP = 85.7%).
The performance achieved using the best texture feature T1

(64.2% for SE = 96.0% and SP = 59%) is similar to the ones
reported by Yuan et al. [27] (accuracy of 70.0%).

B. Assessment of the Local Lesion Classification System

A similar procedure was used to optimize and test the CAD
system based on local features. The same database of images
was used in this case. However, the algorithm was evaluated
using stratified tenfold cross validation, since the increase in
computational time associated with the local methods turned
leave-one-out evaluation unfeasible. The melanoma images
were evenly distributed by all the folders, and their features
were replicated as before, in order to balance both classes.

Since the feature extraction operation and the BoF classifier
[see Fig. 2(b)] depend on a number of parameters, we have
explicitly varied each of them in order to achieve the best
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TABLE VII
BEST EXPERIMENTAL RESULTS USING LOCAL FEATURES AND BOF

TABLE VIII
BEST PARAMETERS FOR THE BOF CLASSIFIER

classification scores. In the case of features, we changed the
grid size Δ ∈ {20, 40, . . . , 100} and the number of histogram
bins in the range nbins ∈ {15, 25, 35, 45}. The visual words are
obtained by applying the k-means clustering algorithm to the
training vector features. The number of visual words was varied
in the range K ∈ {100, 200, 300}. The test image is classified
by the kNN algorithm as being melanoma or nonmelanoma.
Three distances were considered (Euclidean, Kolmogorov, and
Kullback–Leibler), and the number of neighbors was varied in
the range k ∈ {5, 7, . . . , 25}. We have tested all the possible
combinations of these five parameters for each type of feature.
This amounted to 44 928 configurations, each of them involving
the training of ten classifiers, using the stratified tenfold cross
validation.

Tables VII and VIII summarize the results achieved in this
study. Table VII shows the best results achieved by the BoF
classifier for each kind of features, and Table VIII shows the
parameters of the best configurations. In the case of texture
features, the best results are obtained with the histogram of
orientation T2. The role of the orientation seems to be much
more important when computed in local patches than when it
was obtained from the whole lesion. Color features achieve
better results as before, leading to remarkable scores, e.g.,
SE = 100% and SP = 75% or SE = 93% and SP = 85%.
The concatenation of texture and color features lead to excellent
results (SE = 98%, SP = 79%), but it does not improve the
best color feature configuration.

Table VIII also allows to draw interesting conclusions. The
best distance for these features is the Kullback–Leibler diver-
gence. This is not surprising since all the features considered

TABLE IX
COMPUTATIONAL TIME FOR THE BEST GLOBAL

AND LOCAL SYSTEMS PER IMAGE

in this study are normalized histograms. The best block size
is 80 for most features considered in these experiments. This
is a bit surprising since we would expect that smaller block
sizes would allow a better representation of local differential
structures (e.g., pigment network, dots, streaks, and blue
whitish veil). These differential structures are difficult to char-
acterize even when the analysis is made by medical experts
trained in dermoscopy and may be insufficiently described by
the automatically extracted features.

Fig. 9 shows the variations of SE and SP for the best single
color and texture features (C3, C5, and T2), using different
values of K (first row), Δ (second row), nbins (third row), and
the three possible distances (fourth row). The values that were
kept unchangeable are the ones of the best configuration for
each single feature (see Table VIII). It is clear that the number
of visual words K influences the performance of the classifier.
Furthermore, the size of the grid Δ seems to also have a great
impact on the performance of the classifier.

Although most of previously published systems use global
features, we can compare these results with the ones pre-
sented in [25], which achieved SE = 80% and SP = 78% in a
database of 100 dermoscopy images with 30 melanomas. We
stress that these results were obtained using texture features
only (Gabor filters and wavelets) with a small block size
(Δ = 16).

C. Comparison Between Global and
Local Classification Systems

Comparing local and global strategies for the detection of
melanomas (Tables IV and VII), we conclude that both strate-
gies achieve very good results in this database. The local fea-
tures with BoF achieve slightly better results. In both cases, the
color features perform significantly better than texture features.
This is a bit surprising since differential structures play an
important role in medical diagnosis of dermoscopy images, and
therefore, we would expect that this behavior could be captured
by texture descriptors.

The computational time for feature extraction and classifi-
cation of an image using the two best systems can be seen
in Table IX. Computing local features takes more time than
computing global ones; this was expected since in the case of
the local system, features are extracted for each patch, whereas
in the case of a global system, the features are only extracted
twice (the shown values are for the case of splitting the lesion
in the inner part and the border).

VII. CONCLUSION

This paper has compared two different strategies for the
detection of melanomas in dermoscopy images based on local
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Fig. 9. Variation of SE and SP using (first row) K ∈ {100, 200, 300}, (second row) Δ ∈ {20, 40, . . . , 100}, (third row) nbins ∈ {15, 25, 35, 45}, and the
(fourth row) three tested distances.

and global features. Most previous works use global features
(texture, shape, and color) associated to the whole lesion fol-
lowed by a binary classifier trained from the data. However,
local features are gaining increasing importance in many image
analysis problems (e.g., image retrieval and object recognition)
and may be seen as a promising alternative.

A second driving idea associated with this paper is the
evaluation of the role played by color and texture features in the
decision. Most works consider both types of features together,
but they do not attempt to clarify if one of these features plays a
more relevant role. This question has been explicitly addressed
in this paper.
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Fig. 10. Threshold computation from the histogram in the case of (right) two
peaks.

Both issues were tested using a data set of dermoscopy
images from Hospital Pedro Hispano, and the system
parameters were tuned by exhaustive testing of many thousands
of classifiers. It was concluded that color features perform
much better than texture features alone achieving classification
scores of SE = 93% and SP = 85%. Concerning the use of
global versus local features and classification strategies, both
systems achieve very good results. The best global system
results were achieved when the lesion region was split into
two subregions (inner and border), leading to SE = 96%
and SP = 80%. However, the local system performs slightly
better in terms of the classification cost used in this study
(SE = 100, SP = 75%).

APPENDIX

LESION SEGMENTATION

Lesion segmentation is obtained using an adaptive thresh-
olding algorithm, which comprises three steps: 1) histogram
computation; 2) peak detection; and 3) threshold estimation.
These three steps are described in the sequel.

First, the input image is converted into a gray-level image by
selecting the channel with the highest entropy [40]. Then, the
histogram of intensity, i.e., h(i), i = 0, . . . , 255, is computed
using all the pixels inside a rectangular window, which is
located at the center of the image. The histogram is then low-
pass filtered with a Gaussian filter. The filter impulse response
is G(i) = C exp{−i2/(2σ2)}, where σ = 5, and C is a nor-
malization constant.

We assume that the analysis intersects the lesion, and one of
the histogram modes is associated to the lesion. We therefore
extract the most significant peaks of the histogram (with a
maximum 2). If the histogram has a single peak located at
i1, the threshold is defined by T = i1 +ΔT . The ΔT offset
was empirically tuned and set to 15. If two significant peaks
are extracted, we choose the threshold that corresponds to the
maximum valley. The valley is defined as follows: Given two
peaks located at i1, i2, (i2 > i1), we define the valley at i as the
difference between the straight line defined by the peaks and
the histogram amplitude at i (see Fig. 10).

The only information missing is how to select the most
significant peaks in a histogram if more than two peaks are

Fig. 11. Threshold computation from the histogram in the case of (right) two
peaks.

detected (see Fig. 11). This involves two steps. First, close
peaks are merged and replaced by a single peak, i.e., the largest
one. We consider that two peaks located at i1 and i2 are close
if |i1 − i2| < Δi (Δi = 8). If the number of peaks is larger
than 2 after this step, the highest peak is selected. Then, all the
remaining ones are tested. The second selected peak is the one
that corresponds to the largest depth of the valley between two
histogram peaks.
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