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Abstract—Estimation of velocity fields from a video sequence is
an important step towards activity classification in a surveillance
system. It has been recently shown that multiple motion fields esti-
mated from trajectories are an efficient tool to describe the move-
ment of objects, allowing an automatic classification of activities
in the scene. However, the trajectory detection in noisy environ-
ments is difficult, usually requiring some sort manual editing to
complete or correct them. This paper proposes two novel contri-
butions. First, an automatic method for building pedestrian trajec-
tories in far-field surveillance scenarios is presented not requiring
user intervention. This basically comprises the detection of mul-
tiple moving objects in a video sequence through the detection of
the active regions, followed by the estimation of the velocity fields
that is accomplished by performing region matching of the above
regions at consecutive time instants. This leads to a sequence of cen-
troids and corresponding velocity vectors, describing the local mo-
tions presented in the image. A motion correspondence algorithm
is then applied to group the centroids in a contiguous sequence of
frames into trajectories corresponding to each moving object. The
second contribution is a method for automatically finding the tra-
jectories from a library of previously computed ones. Experiments
on extensive video sequences from university campuses show that
motion fields can be reliably estimated from these automatically
detected trajectories, leading to a fully automatic procedure for the
estimation of multiple motion fields.

Index Terms—Region matching, trajectories, vector fields, video
segmentation.

I. INTRODUCTION

T HE goal of a video surveillance system is to be able to
detect and track moving entities (e.g. people, vehicles),

to characterize typical behaviors and to detect abnormal sit-
uations, depending on the context. An automatic surveillance
system should be able to learn typical behaviors from video data
in an unsupervised manner, without involving specific knowl-
edge about the actions performed by humans in the monitored
environment. Such a system involves the following three steps:
(a) segmentation of the video sequence to detect the objects of
interest; (b) extraction of features (e.g. position, motion, shape);
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(c) features tracking; and (d) classification of the observed be-
havior based on the extracted features [38].
In outdoor applications, the object trajectories play an impor-

tant role since they allow the system to characterize typical be-
haviors and discriminate abnormal ones. There are several ways
to model trajectories in an image. For example, it was recently
proposed the use of multiple motion fields, each of them rep-
resenting a specific type of motion [25], for the static camera
case. This model was applied with success to several problems.
However, some of the training trajectories were hand edited to
compensate for object detection and tracking errors.

II. RELATED WORK

We now describe most relevant published work in the field.
Since our proposal combines different methods proposed in
quite different contexts, we will describe the main contributions
in those contexts that our proposal is enrolled, namely: seg-
mentation, optical flow, region matching, and multiple motion
fields.

A. Segmentation

Surveillance and monitoring systems require the segmenta-
tion of all moving objects in a video sequence. Indeed, segmen-
tation is a key step since it influences the performance of the
other modules. It aims to detect objects of interest in the video
stream, using their visual and motion properties. It plays a key
role since it reduces the amount of information to be processed
by higher processing levels, e.g. object tracking, classification
or recognition; and locates the position of the targets. A large
spectrum of detection algorithms have been proposed, that can
be broadly classified into the following classes: (i) statistical ap-
proaches, (ii) non-statistical approaches, and (iii) spatio-tem-
poral approaches.
1) Statistical Based Approaches: In this class of works the

background is modeled using a normal pdf e.g. [23], [36], [40],
where each pixel is modeled as a Gaussian distribution [40] or a
mixture of Gaussians [23], [36]. Also, minimization of Gaussian
differences has been used [29]. Other type of statistical frame-
works is the use of dynamic belief network dedicated to ana-
lyzing traffic scenes [18], or learning the chronological changes
in the observed background scene in terms of distributions of
multi-dimensional image vectors [31]. A combination of frame
differences and statistical backgroundmodels has also been pro-
posed [9].
2) Non-Statistical Based Approaches: Some works use a de-

terministic background model e.g., by characterizing the admis-
sible interval for each pixel of the background image as well
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as the maximum rate of change in consecutive images or the
median of largest inter-frames absolute difference [15], [16].
Background subtraction is a simple approach to detect moving
objects in video sequences. The basic idea is to subtract the
current frame from a background image and to classify each
pixel as foreground or background by comparing the difference
with a threshold [14]. Morphological operations followed by a
connected component analysis are used to compute all active
regions in the image. In practice, several difficulties arise: the
background image is corrupted by noise due to camera move-
ments and fluttering objects (e.g., trees waving), illumination
changes, clouds, shadows, and other extraneous events. Another
difficulty is the presence of ghosts [33], i.e., false active regions
due to static objects belonging to the background image (e.g.,
cars) which suddenly start to move.
Several methods have been proposed, depending on the dif-

ficulty to be addressed. For instance, to deal with the ghosts
several works are available, e.g. [8], [10], [11]. Concerning the
shadowswith non-stationary backgrounds, two types of changes
have to be considered: slow changes (e.g., due to the sunmotion)
and rapid changes (e.g., due to clouds, rain or abrupt changes in
static objects). Adaptive models and thresholds have been used
to deal with slow background changes [4]. These techniques re-
cursively update the background parameters and thresholds in
order to track the evolution of the parameters in nonstationary
operating conditions. To cope with abrupt changes, multiple
model techniques have been proposed [4] as well as predictive
stochastic models (e.g., AR, ARMA [24], [41]).
3) Spatio-Temporal Based Approaches: Another class of al-

gorithms is based on spatio-temporal segmentation of the video
signal. These methods try to detect moving regions taking into
account not only the temporal evolution of the pixel intensities
and color but also their spatial properties. Segmentation is
performed in a 3D region of image-time space, considering
the temporal evolution of neighbor pixels. This can be done in
several ways e.g., by using spatio-temporal entropy, combined
with morphological operations [22]. This approach leads to
an improvement of the systems performance, compared with
traditional frame difference methods. Other approaches are
based on the 3D structure tensor defined from the pixels spatial
and temporal derivatives, in a given time interval [35]. In this
case, detection is based on the Mahalanobis distance, assuming
a Gaussian distribution for the derivatives. This approach has
been implemented in real time and tested with PETS 2005 data
set. Other alternatives have also been considered e.g., the use
of a region growing method in 3D space-time [37].

B. Optical Flow and Region Matching

Optical flow is a measure of the apparent motion of local
regions of the image brightness pattern from one frame to the
next. With some exceptions, it is an estimate of the motion field
[3], [34]. Denoting the image intensity at position and
time by , the optical flow equation is

(1)

where is the velocity vector at the position , and
, , and respectively denote the image gradient

along the and directions. The differential operators

, , and assume that the image is continuous on
the - and -coordinates, and over time, but these operators
can be approximated by differences or discrete filters in case
is a discrete image. This equation is not enough to obtain

the velocity vector associated to each image point since
it has an infinite number of solutions, that is, the problem is
ill-posed. This is known as the aperture problem [1]. Additional
constraints have to be added (e.g., smoothness constraints).
There are several methods for computing the optical flow.

Gradient based methods solve the optical flow (1), by imposing
smoothness constraints on the field of velocity vectors. The
Horn and Schunck method [17] uses a global smoothness
constraint, requiring global optimization. The Lucas-Kanade
method [21] assumes that the velocity is constant locally and
combine local constraints over local regions. These methods
are considered more accurate than the ones based on region
matching, but work well for small displacements only [3].
There are also region-matching based methods which do not

actually solve (1), but try to find the most likely position for an
image region in the next frame. These methods are intuitively
simple and relatively easy to implement.
Yet another method is the Bayesian multi-scale coarse to fine

algorithm [34], that gets around the limitation of small displace-
ments in the gradient based methods. A coarse to fine warping
scheme involving two nested fixed point iterations for mini-
mizing an energy functional that combines the assumptions of
constant brightness and gradient, and a discontinuity-preserving
spatio-temporal smoothness constraint was proposed in [6]. A
variant of this method was proposed in [30], wherein video mo-
tion is represented using a set of particles and particle trajecto-
ries are optimized yielding the displacements as well as trajec-
tories representing their motion.
The region matching is one of the main components of the

proposed methodology. Region or template matching is an in-
tuitively simple concept of locating a given region/template/
object in an image. Logically, it can be used in a variety of
problems—image registration, object detection, tracking, etc. In
[7], a template matching based method was proposed for seg-
menting cell nuclei from microscopy images. Given an unla-
belled image, template matching is used to determine which pre-
determined model for a nucleus best fits the new image, based
on the Normalized Cross Correlation criterion. A hierarchical
template matching based method was proposed in [20], to de-
termine human activity by matching with a series of shapes ex-
tracted from known poses. The normalized histogram intersec-
tion was used as a similarity measure between active regions,
used for region matching in a moving camera situation, in [13].
In [5], a method for region matching was proposed based on
identifying the longest, best matching boundary parts of two re-
gions in successive frames. Patch-wise self similarity measures
for regions in images and video sequences, based on the sum of
square differences (SSD) between patch colors were proposed
as the criterion for matching in [32].
To our knowledge, related work closer to the method herein

presented is proposed in [25], [26]. In these two works, the tra-
jectories are also obtained via region matching, where the re-
gion association is achieved by a nearest neighbor mechanism.
Here, we go further and able at building the trajectories in a ro-
bust fashion, since the region matching is based on a motion
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correspondence (contrasting with nearest neighbor above men-
tioned). First, region matching between consecutive frames is
achieved by minimizing a cost function. Then, motion corre-
spondence is performed using the Veenman algorithm [39]. This
will bring advantages over the previous work [25], [26] as stated
in Section II-D.

C. Multiple Motion Field Model

Multiple motion fields were recently proposed as a tool to de-
scribe objects motion in a scene and to statistically characterize
their trajectories [25]. The main characteristic of the method is
that the object motion depends on the position in the image, i.e.
each position is assigned a displacement vector that de-
pends on . More specifically, this method takes in consider-
ation a set of vector motion fields , with

, for . Denoting the velocity
vector at position by , each object trajectory is gener-
ated according to the model

(2)

where is the label of the active field at
time ; are independent samples of a
zero-mean Gaussian random vector with covariance matrix
. The label sequence is assumed to be

a Markov chain of order one with space-dependent transition
probabilities where

is a field of stochastic matrices. Thus,
this model allows the switching probability to depend on the
location of the object. The complete set of model parameters
is . These model parameters are defined in a

grid, and they have to be estimated at each node of the
grid. Say that, the image is divided in a grid of nodes.
In each node the vector field is estimated, and in general, they
are different since they depend on the current object position.
Since the label sequences of active fields,

of the trajectories
are unknown, the parameters are obtained using the EM
algorithm [12]. Recall that, the label sequence is the sequence
of the active fields in the samples of the trajectory. This is
dependent of the object motion. Thus, each trajectory may
contain different active fields through its samples that depends
on the object displacements in the image.
The complete log-likelihood that characterizes the EM is

where each
term has the form1

(3)

that contains the generation and switching of the trajectories.
The E-step the expectation log-likelihood function (objective
function) becomes

1dropping the superscript for simplicity.

and in the the M-step, the model parameter estimates are up-
dated according to

(4)

where is the prior. It is assumed that the motion fields
are smooth, thus a Gaussian prior is used, where
is a global variance (i.e. regularization term) that weights the
strength of the prior.
See [25], [27] how computation weights (E-step) as well as

the maximization (M-step) is performed.

D. Contributions

Our contribution is to provide an efficient tool to automat-
ically detect pedestrian trajectories from the video. Also, we
show that these trajectories are a reliable input to further esti-
mate the motion fields.
In this paper, we propose an automatic method for extracting

object trajectories from the video sequence and compute the
vector fields, without user intervention. We first detect the ac-
tive regions by background subtraction, find the centroids of
each 8-connected contiguous active region, and then compute
the displacement at each centroid through region matching to
estimate the motion fields. After computing the centroids of
moving objects and their associated velocity fields for the en-
tire sequence, we then perform a motion correspondence step to
group matching points into trajectories.
The above methodology presents several advantages over

existing work. For instance, in [25], [26], all the trajectories
are collected first, then the estimation of the vector fields takes
place. This happens, since the trajectories by simply performing
a naive region association using a nearest neighborhood mecha-
nism. This of course is prone to errors, requiring further manual
intervention to correct these errors that this association may
provide. Thus, detection failures may occur originating gaps
within trajectories. This step (building the trajectories) is done
off-line. After this task being accomplished, the estimation of
the VF is performed.
Here, we surpass the difficulties above. Now, we are able to

build the trajectories in a robust fashion, since we are using a re-
gion based algorithm based on a motion correspondence. First,
the velocity fields are computed (see Section III-B) providing
the best region matching between consecutive frames. Then,
motion correspondence is performed using the Veenman algo-
rithm [39]. The advantages of this procedure are the following:
1) We can perform the estimation of the VF in an on-line
fashion (opposing to the off-line strategy). Since we do not
find the need of any manual correction of the trajectories.
Thus, we can estimate the VF as the trajectories are formed;

2) Also, we can avoid the gaps in the trajectories. If the active
region is not detected at time instant, we can assume
the existence of an active region (with the size equal to
the region in the previous step) and located in the vicinity
given by the previous velocity city vector. The best loca-
tion of the region at is achieved using (6), (7).

We also propose a method to automatically find the trajectory
from the ground truth set that corresponds to each trajectory
computed by our method, where the ground truth is the set of
trajectories used in [25]–[27].
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To testify the usefulness of the approach we provide an ex-
perimental methodology, in which (i) we validate the obtained
trajectories (see Section V-A) and (ii) the resulting motion fields
(see Section V-B).
The first and second tasks are accomplished as follows:
1) To accomplish (i) we perform a comparison between the
trajectories used in [25]–[27], , taken as the ground
truth and the obtained trajectories .2 Here we compute
the error statistics and we will show that in-
deed a small error is obtained (see Tables II, III),

2) For the second task in (ii) the following steps are
accomplished:
a) We first estimate the vector fields, say using the
EM algorithm as described in Section II-C with the
ground truth trajectories ,

b) As above, we also estimate the vector fields using
the EM and taking the trajectories (as the input)
that are obtained with the propose approach.

c) To ascertain the accuracy of the above vector fields
for describing the trajectories, we plug in

these fields, into the predictive model (2),
obtaining and , respectively.

d) Finally, we compute the signal to noise ratio
and (see

(20)).
From the aforementioned steps, it will be possible to certify how
the methodology is accurate at estimating the trajectories. More
specifically, obtaining similar values in , means
good performance. In this way, it is possible to show the relia-
bility of the obtained trajectories that permit us to overcome the
problems found in [25]–[27], where some trajectories required
manual intervention.

E. Organization of the Paper

The paper is organized as follows. In the section above, we
introduced preliminary concepts necessary for the complete-
ness of the exposition of the proposed approach. In Section III,
we present the details of the proposal. Section IV describes
the way how we perform a comparison regarding the ground
truth. Section V presents experimental results with real data
concerning two different far-field scenarios and Section VI con-
cludes the paper. Our approach assumes that the video frames
are grayscale images.

III. PROPOSED APPROACH

In this section, we describe the segmentation and feature ex-
traction processes. We first perform background subtraction to
detect the active regions in a frame, and then estimate the ve-
locity fields at the centroid of each active region using the re-
gion matching algorithm. The result of these steps is a sequence
of vectors containing the spatial coordinates of the centroids of
the active regions, over the entire set of frames, and also the cor-
responding velocity fields.

2the subscripts “gt” and “rm” stands for the “ground truth” and “region
matching”, respectively.

A. Active Region Detection

We represent a frame at time with rows and columns
by a matrix . Given a sequence of frames

, we can estimate the background image ,
if not known, by pixel-wise median filtering a sub-sampling of
the frames. We segment each frame , by subtracting the back-
ground and thresholding the difference image with a predefined
positive value , to produce a binary image
with the value at pixel ,

if ,
otherwise.

(5)

For multiple moving objects, this requires finding the connected
pixels above this threshold. We also do not assume beforehand,
the number of moving objects. We therefore apply a clustering
algorithm on this binary image to find connected regions (as-
suming 8 neighbors), each cluster corresponding to a moving
object.
In practice, because of the empirical nature of the threshold

value , there may be false active regions (i.e. the threshold
being exceeded where there is no motion) or the active region
corresponding to a single moving object may get split into two
or more clusters. We solve the second problem by dilating the
binary image before clustering, and solve the problem of
false active regions by discarding the clusters with fewer than
a certain threshold value of connected pixels. The structuring
element used is a ball with a radius of 3 pixels, to have a
smooth, rounded structure. We could also apply any algorithm
that would make the binary image more piece-wise smooth.
The number of active regions detected at the frame , will be de-
noted by . Fig. 6 illustrates some active regions or bounding
boxes (in yellow rectangles, that are the current position of
the pedestrians) and the corresponding trajectories (dots in the
images) corresponding to past position of the pedestrians.

B. Region Matching

Region based matching approaches define the velocity vector
of an object moving across successive frames as the vector of
displacements that produces the best fit between image re-
gions at different times. The best fit means that a distance mea-
sure between a region in a frame, , and its possible location
in the next frame, , is minimum for the vector , or a
similarity measure such as cross-correlation is maximum. These
methods are intuitively simple and relatively easy to implement,
and the computational load is low since it has to be computed
only for the active regions.
Let the bounding box of the -th active region be .

Then assuming suitable boundary conditions (to handle the case
when the template moves towards or close to the frame edges),
the velocity vector is computed by solving the following opti-
mization problem,

(6)

(7)
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Fig. 1. Velocity field between 2 frames, for a man walking. (top left) grayscale
frame at time , (top right) grayscale frame at time , (bottom left), (bottom
right) active regions corresponding to the moving person in the two consecutive
frames and .

where is the maximum displacement, and is the
regularization parameter that controls the relative weight of the
penalty term, which in this case promotes sparsity of the so-
lution; is a vector containing the admissible displacements
regarding the centroid of the bounding box (i.e. active region).
Each value of measures a possible displacement of the active
region at time step. For each possible location of the
active region, we obtain a different value for the cost E. Thus, it
is possible to obtain the best location (i.e. the best displacement
of the active region)—the minimum of .
Since the entire block is assumed to be displaced by the vector

, we assume that this is the velocity at the centroid of the
-th region. It must be noted that the size of the block depends
on the active region detected, and varies from frame to frame
within a sequence.
Fig. 1 illustrates the velocity field between two frames, for

a man walking with the velocity vector shown at the center of
mass. The velocity vector is displayed as being concentrated at
the centroid of the active region corresponding to the moving
body. The figures on the left show the video frame and the binary
image with the active region at time , and those on the right
show where the person has moved to at time .

C. Motion Correspondence

At the end of the segmentation step and computation of the
region matching, we have for a frame , a set of centroid
locations and their respective mo-
tion vectors . We therefore need to
apply a region association algorithm to integrate the centroids
in successive frames into trajectories. This differs from the ap-
proach presented in [28], where the pre-processing consists of
two steps: active region detection using the Lehigh Omnidi-
rectional Tracking System (LOTS) algorithm followed by re-
gion association. The approach herein proposed is threefold re-
garding the pre-processing in [28]: (1) it computes directly the

vector fields, (2) it reduces drastically the errors that may arise in
the region association mechanism, and (3) consequently avoids
manual corrections to obtain the trajectories. In this paper, we
apply the so called Greedy Optimal Assignment (GOA) tracker
as proposed in [39] to perform the motion correspondence.
More specifically, let the vector denote the

position vector of the centroid of active region in frame . For
the centroids of two regions and in two successive frames
and , the association cost is

(8)

where is the -norm of a vector, which for a vector
, is .

This measure can be improved by taking into account the ve-
locity vector at the centroid of active region
in frame , as follows [39]

(9)

Let be the size matrix whose entries are computed
using the above cost function. In general, the number of cen-
troids in successive frames is not the same, that is, .
A column of this matrix corresponds to a centroid in frame
and a row corresponds to a centroid in frame . A centroid
in frame may have a corresponding point in frame be-
longing to its trajectory or it may be the last point belonging to
that particular trajectory. Likewise, a centroid in frame
may belong to a trajectory having an associated point in frame
, or it could be the starting point of a new trajectory. To be able
to account for the “birth” or “death” of trajectories, we pad the
matrix with entries equal to to form a square cost matrix
of size ,

(10)

where stands for a matrix whose entries are all 1, is the
cost of starting a new trajectory or ending an existing one. The
next step, is to determine for a given th row which is the cor-
responding th verifying a minimum entry condition, and thus,
assigning the th centroid in frame to an existing trajectory
from frame (if ), or to begin a new trajectory (if ).
To accomplished this goal, the Hungarian matching algorithm
[19] is used. More specifically, this is done by minimizing the
assignment cost

(11)

under the constraint

(12)

(13)

(14)
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IV. MATCHING WITH GROUND TRUTH

This section describes the methodology used to perform
a comparison between the generated trajectories as above
described, and the ground truth trajectories.
Assuming the availability of a computed object’s trajectory

in a given video sequence (as described in Section III-C), we
would like to compare it with the trajectory for the same ob-
ject from the ground truth set. In the absence of such set, the
ground truth is considered as the set containing the trajectories
provided in [27], [28] with partial manual correction. This task
should be automatically done without the user intervention, i.e.
to manually locate the sequence of frames corresponding to the
trajectory, in the video sequence. This has the possible problems
that the trajectory and its counterpart from the ground truth may
not exactly coincide in terms of starting and ending frames, may
have some missed detections in some frames, or a single tra-
jectory may have multiple trajectories in the ground truth cor-
responding to different segments (e.g. of an object moving in
loops).
We denote an automatically detected trajectory by ,

defined over a subset of frames of the video
sequence. Similarly, a trajectory from the ground truth set is
denoted as , with being the set of relevant frames.
If there are some frames in common between and , we de-
fine the set of overlapping frames, , and compute
the mean square error (MSE) between the two trajectories at the
times corresponding to the overlapping frames

(15)

If we have ground truth trajectories which have some overlap-
ping frames with trajectory , we compute this cost for each
ground truth trajectory , leading to the following
-length vector:

(16)

The matching trajectory from the ground truth set is the one that
has the least MSE, that is,

(17)

with the th element of .
During the matching procedure, three cases may happen in

practice. This is illustrated in Fig. 2. In this figure the posi-
tion of the object centroids is shown along the y-axis, with the
x-axis corresponding to the frame number. The solid blue curve
shows the evolution of an estimated trajectory over time, and
the dashed red curve shows the match from the ground truth
set. The three case are as follows:
• case #1: The simplest case is shown in a synthetic ex-
ample in Fig. 2(a), i.e. whenwe have one estimated and one
ground truth trajectories, eventually with different lengths.
Here, the matching is straightforward, i.e. performed be-
tween the two above trajectories.

• case #2: When trajectory is longer, it is possible that
there are more than one ground truth trajectories that cor-
respond to different segments of , which are disjoint in
time (that is overlap with over different sets of frames).
This can happen, for instance, when the person or object

Fig. 2. Finding matching trajectories from the ground truth. (a) exactly one
match, (b) multiple matches over non-overlapping segments, (c) overlaps be-
tween possible matches.

moves in a loop or complete circuit which corresponds to
two separate ground truth trajectories, for outbound and
returning movement (see Fig. 5(b)). This situation is illus-
trated in Fig. 2(b). In this case, since the two ground truth
trajectories correspond to non-overlapping segments of the
estimated trajectory, we need to select both as matching
trajectories.

• case #3: The process of matching is further complicated if
the trajectories from the ground truth set have overlapping
frames between them, as shown in Fig. 2(c). This is the
general situation. In this case, we need to ensure that each
point in corresponds to another in at most one ground
truth trajectory. Therefore, we first find all trajectories in
the ground truth for which the MSE is within a limit of
times the minimum value, , .
The assignment of matching trajectories is then done as
follows:

Algorithm Matching with Ground Truth

1. Assign ground truth set .

2. repeat

3. Select the th trajectory, , from
corresponding to the lowest MSE in .

4. Assign trajectory as a match to the overlapping
segment from the estimated trajectory .

5. Remove trajectory and all trajectories
overlapping with it from and the corresponding
elements of the vector .

6. Remove corresponding MSE values from the vector
. If there is only one trajectory in the ground truth

( is singleton), assign it to the overlapping segment
from .

7. until the set is empty.
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V. EXPERIMENTAL EVALUATION

This section illustrates the effectiveness of the proposed ap-
proach on a set of video sequences of university campuses, Insti-
tuto Superior Técnico (IST), Lisbon and Universitat Politècnica
de Catalunya (UPC), Barcelona.3 Both sequences were recorded
with a single static camera.
Several activities are considered depending on the scenario.

Thus for the IST the following pedestrian’s activities classes are
(see Fig. 8(a)): (i) crossing park down (red) (ii) passing through
cars (blue) (iii) walking along (cyan) (iv) entering (yellow) and
(v) leaving (magenta). These are the most common trajectories
performed by the pedestrians.
For the Barcelona scenarios the following activities are as

follows (see Fig. 9(a)): (i) up the steps (cyan), (ii) up the steps
and turn right (magenta), (iii) walking along (yellow) and (iv)
cross diagonally (green).
Notice that, in both scenarios we are able to extract multiple

trajectories and work with several trajectories at the same time.
Fig. 6 shows several such situations. In Fig. 6(a) it is shown two
pedestrians performing walking along (yellow) and cross diag-
onally type trajectories in the UPC scenario at the same time.
Fig. 6(b) shows two pedestrians performing a walking along ac-
tivity taken at different times.
Comparing the two scenarios, we see that (see Figs. 8(a), 9(a))

the trajectories in the UPC scenario exhibit higher dynamic per-
turbation than in the IST scenario. This means that the centroids
of the bounding boxes in the UPC scenario fluctuate largely. The
reason behind is that, when detecting the active regions, we may
obtain partial detections, i.e. one bounding box that represents
only the torso, or the legs. In this case, the association provides
larger variations of the centroids in consecutive active regions
when comparing with an ideal situation where the whole body
is detected. This is illustrated in Fig. 6(c), (d). Notice that the
detection of the pedestrian performing walking along activity
varies significantly. In (c) we see yellow dots corresponding to
the detection of the torso, and green dots corresponding to the
detection of the legs. After a few frames, we can see that this
trajectory is formed by the torso (yellow and cyan color) and
legs (green color) detections. This makes the trajectory fluctuate
largely.4

Another reason is that, we may have a group of two or five
pedestrians. Here, the centroid can fluctuate between the pedes-
trians in the group, motivated by some partial detections. This
situation is illustrated in Fig. 6(e). Here, the centroids may fluc-
tuate within these pedestrians during awalking along trajectory.
As such, the region association provides less smoothness in the
trajectory. Since in the UPC scenario, the pedestrians are closer
to the camera, than the IST scenario, these dynamical perturba-
tions are more significant.
Additional information about these sequences is summa-

rized in Table I. Because of the relatively long duration of the
Barcelona sequence (9 hours), we estimate the background
over each interval of 4000 frames, to account for changes in
illumination conditions and shadows. Each background image

3The sequences at the UPC campus were acquired in the scope of the Euro-
pean Union project URUS, (FP6-EUIST-045062), http://urus.upc.es/.
4The colors used in this Fig. are not the same as shown in Figs. 3, 11, 10 for

the sake of the explanation.

TABLE I
INFORMATION ABOUT THE UNIVERSITY CAMPUS (IST AND UPC) SEQUENCES

TABLE II
IST SEQUENCE. STATISTICS OF THE ERROR IN THE TRAJECTORIES,

WITH RESPECT TO THE GROUND TRUTH

is computed by median filtering over 40 frames. The value of
the threshold in the segmentation step (5) was 12 for the IST
sequence, and 50 for the UPC sequence. The minimum number
of connected pixels to form an active region used was 40 for
both sequences.

A. Validation of Trajectories

In this section, we compare the accuracy of the trajectories
obtained using our method by computing the error statistics
with respect to the ground truth of the trajectories. We com-
pute the mean and standard deviation of the error, averaged
over all trajectories which correspond to ground truth trajec-
tories belonging to each of the classes of activities above de-
scribed. These values, the overall error mean and standard devi-
ation (over all the trajectories), and the best and worst case error
values for the IST campus scenario are presented in Table II.
Fig. 3 shows examples of trajectories from the ground truth

set (indicated by black solid curves) and their corresponding
trajectories obtained by the proposed method (colored dashed
curves) for both scenarios. It can be seen a trustfully matching
is obtained for the estimated trajectories.
Fig. 4 shows two trajectories from the IST sequence, corre-

sponding to people walking, detected over a segment of 2000
frames, and their respective velocity vectors superimposed. The
velocities were scaled by a factor of 10 and subsampled by a
factor of eight for the purpose of display, so that the arrows
would be noticeable but not to crowd the display with too many
arrows. The trajectory in Fig. 5(a) was found by the library
search method corresponding to a single trajectory from the
ground truth library, with a root mean square error (RMSE) of
4.53 pixels. The other trajectory of a person leaving the building
and entering it again, which appears as a loop in Fig. 5(b) was
found to have two non-overlapping matches in the ground truth
(corresponding to activities “entering” and “leaving”), which
are 70 frames apart. Therefore, for the estimation of the mo-
tion fields using the EM algorithm, we split this trajectory into
two segments corresponding to the two ground truth trajecto-
ries, “leaving” with an RMSE of 3.99, and “entering”, with an
RMSE of 2.97.
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Fig. 3. Examples of matched trajectories for each class of activities. The
solid black curves indicate ground truth trajectories and the colored dashed
curves indicate the trajectories estimated using the proposed approach. (a) IST
Campus. Colors indicate: entering: yellow, leaving: magenta, walking along:
cyan, crossing park up: green, crossing park down: red, passing through cars:
blue; (b) UPC Barcelona. Colors indicate:up the steps and turn right: magenta,
walking along: yellow, up the steps: cyan, upper cross diagonally: green.

Fig. 4. Motion fields computed using region matching superimposed over the
corresponding trajectories (scaled by a factor of 10 for display).

Figs. 8 and 9 show all the trajectories from the ground truth
set and set of trajectories obtained with the proposed method,
for the IST campus and Barcelona sequences, respectively. The

Fig. 5. Extracted trajectories using the proposed approach (blue solid curves)
and their corresponding trajectories from the ground truth (red dotted curves).

top rows show the trajectories superimposed on the starting
frame as captured by the camera, and the bottom rows show the
superimposed trajectories after applying the homography (see
Section V-B). The left and right columns of the Figs. 8, 9 show
the ground truth and the estimates trajectory sets, respectively.
Each color corresponds to a class of activities.
Tables II, III show the error statistics for both scenarios. The

mean and standard deviation are averaged over all trajectories.
It is seen that the method presented herein allows at obtaining
remarkable accuracy. These results (results are in pixels) should
be compared taking in consideration the image size of the sce-
nario (see Table I). For instance, in the IST scenario a small
error of 2–5 pixels is obtained for the 370 trajectories of the IST
scenario.

B. Validation of Motion Fields

In this section we aim to validate the motion fields obtained
with the proposed approach.
Before estimating the vector fields, we apply a projective

transformation (homography) between the image and a plane
parallel to the ground. This is done to achieve viewpoint invari-
ance, by projecting all image measurements onto a view orthog-
onal to the ground plane. We find this pre-processing manda-
tory, since in the absence of the homography, the performance
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Fig. 6. Several situations shown during the extraction of multiple trajectories:
(a) walking along (yellow) and cross diagonally (green) activities, (b) two si-
multaneous walking along activities, (c,d) perturbations in the walking along
trajectory, where the detection occur at different body parts (also other trajec-
tories occur at the same time), (e) fluctuations of the centroid in a group of
pedestrians (also note for some false positives detected).

TABLE III
UPC BARCELONA SEQUENCE. STATISTICS OF THE ERROR IN
THE TRAJECTORIES, WITH RESPECT TO THE GROUND TRUTH

of theEM decreases when estimating the vector fields. This hap-
pens when the pedestrian(s) are far from the camera view-point.
Under these circumstances, the velocity is almost null. This
hampers the accuracy in estimating the velocity fields. With the
homography we can circumvent this difficulty.
Basically, this works as follows. To achieve viewpoint in-

variance, all image measurements are projected onto a view
orthogonal to the ground plane (bird’s eye view), using a pro-
jective transformation (homography) between the image and a
plane parallel to the ground. The parameters of this projection
were obtained by considering a set of points in the scene with
known ground-plane coordinates. The homography is defined
as follows

(18)

where and are the coordinates in the real world
and in the image plane respectively. Since the non singular
homogeneous matrix has 8 degrees of freedom, four points
are needed to determine them uniquely. Figs. 7 illustrates the
homography of the two scenarios used in the experimental
evaluation.
For the validation of the vector fields we use the EM al-

gorithm as described in Section II-C using the homography of
the ground truth trajectories. Using the same procedure,
we also estimate the vector fields using the obtained re-
gion matching trajectories . We then plug in the obtained
fields into (2) allowing to obtain the sets of trajectory
estimates, and , respectively. We then compute the

and .
Notice that, when estimating the vector fields we do not know

beforehand, what is most suitable number of models (i.e. model
order) to estimate them. This happens since, we have a training
set in which the samples from different class of trajectories are
mixed together (i.e., some class-trajectories may require higher
number of models than the others). In a classification context,
the common strategy [25], [26] is to vary the model order in
a pre-defined range and estimate the model
parameters for each value of . Then, it is performed a classi-
fication task in a disjoint test set also varying in the above
range. Finally, the value of that maximizes the classification
is chosen. This is a discriminative model selection for density
models which aims at choosing the model order that achieves
the best recognition accuracy. For this reason we also adopt a
similar strategy (i.e. we vary the model order) since the perfor-
mance at validating the vector fields depends on the value of .
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Fig. 7. Two images showing the UPC scenario before (a) and after (b) the
projective transformation. The four points (shown in red dots) in the real
world (a) and in the image plan (b) contain the coordinates to perform the
transformation.

Fig. 8. IST campus scenario. Trajectories from (a),(c) the ground truth and
(b),(d) extracted set, superimposed on the starting frame, before (top) and after
(bottom) applying a homographic transformation. Colors indicate: entering: ma-
genta, leaving: yellow, walking along: cyan, crossing park up: green, crossing
park down: red, passing through cars: blue.

Also note that, it is not possible to directly compare the vector
fields obtained from both sets of trajectories, since the field esti-
mates depend on the initialization of the EM method. We there-
fore, evaluate each set of vector fields by measuring its ability

Fig. 9. UPC, Barcelona campus scenario. Trajectories from (a),(c) the ground
truth and (b),(d) extracted set, superimposed on the starting frame, before (top)
and after (bottom) applying a homographic transformation. Colors indicate: up
the steps and turn right: magenta, lower left to upper right: yellow, up the steps:
cyan, upper right to top: green.

to predict the target position at the next time instant. According
to the dynamic model in (2) the prediction error can be written
as

(19)

In practice, we do not know which field is
active at time instant . Therefore, we select the error with the
smallest norm (ideal switching). We can now define an SNR
measure given by

(20)

where can be either “gt” or “rm” depending on which trajec-
tories are used (i.e. ground truth or region matching). The same
number of trajectories per activity was used to train the model
for both the ground truth trajectories and those extracted using
the proposed approach.
For illustration purposes, Fig. 10 shows the motion fields es-

timated using the EM algorithm, trained with trajectories cor-
responding to a single activity from the IST set, using a single
model. Fig. 10(a) and 10(b) show the motion fields for the ac-
tivity “entering” using the trajectories from the ground truth set,
and using the trajectories obtained using the proposed approach,
respectively. Similarly, Figs. 10(c) and 10(d) present the corre-
sponding motion fields for the activity “passing through cars”.
Two activities from the Barcelona set and their corresponding
motion fields are similarly presented in Fig. 11.
One of the goals of this work is to evaluate how well the

motion fields obtained from the trajectories in the training set
describe the trajectories from the test set. To obtain the SNR
measure in (20), we need to ensure that the trajectories used for
training are not present in the test set. We therefore use five fold
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Fig. 10. IST campus scenario. Motion fields for trajectories corresponding
to 2 different activities. “Entering”: (a) estimated from the GT trajectories,
(b) estimated from trajectories extracted using the proposed approach. “Passing
through cars”: (c) estimated from the GT trajectories, (d) estimated from
trajectories extracted using the proposed approach.

Fig. 11. UPC Barcelona scenario. Motion fields for trajectories corresponding
to 2 different activities. “up the steps and turn right”: (a) estimated from the
GT trajectories, (b) estimated from trajectories extracted using the proposed
approach. “lower left to upper right”: (c) estimated from the GT trajectories,
(d) estimated from trajectories extracted using the proposed approach.

cross validation strategy, in which the set of trajectories (ground
truth or estimated) are split into five folds (one for test and the
remaining for training). Also, the SNR (see (20)) depends on the
number of models. So we define the range for .

TABLE IV
IST SEQUENCE. SNR OBTAINED IN 5-FOLD CROSS

VALIDATION, FOR DIFFERENT NUMBERS OF MODELS WITH
THE DISTANCE PARAMETER SET TO

TABLE V
IST SEQUENCE. SNR OBTAINED IN 5-FOLD CROSS

VALIDATION, FOR DIFFERENT NUMBERS OF MODELS WITH
THE DISTANCE PARAMETER SET TO

In this procedure, the data partition is balanced, such that, in
each training round all the trajectories classes are considered.
For fairness of training data size, we discard the ground truth

trajectories which do not have a match from the set estimated
using our method, found using the library search method de-
scribed in [2]. Hence, both our data sets have trajectories,

, and .
Tables IV and V present the SNR values obtained for each

fold and the average SNR value (over the five folds), for the
IST sequence. We varied the distance threshold parameter

from algorithm Matching with Ground Truth in the in-
terval .5 The Tables IV and V show the
obtained results for the two limit values of this interval. We see
that the average value of the SNR (over the 5 folds) obtained
with the proposed method was comparable to that achieved
with the ground truth, and that there was no significant change
in using a tighter criterion for matching trajectories between the
ground truth and estimated set. This happens since the distance
between the pedestrians and the camera is significantly large.
Tables VI and VII present the corresponding results for the
UPC Barcelona data set with parameter ,
respectively. Here too, the average SNR obtained with the
proposed method was comparable to that achieved with the
ground truth. Also, we observe that the performance has a
larger variation (regarding the IST scenario) with , since

5The range of the parameter depends on the relative distance of the pedestrian
to the camera, i.e. the size of the foreground region regarding the size of the
image.
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TABLE VI
UPC BARCELONA SEQUENCE. SNR OBTAINED IN 5-FOLD CROSS
VALIDATION, FOR DIFFERENT NUMBERS OF MODELS WITH

THE DISTANCE PARAMETER SET TO

TABLE VII
UPC BARCELONA SEQUENCE. SNR OBTAINED IN 5-FOLD CROSS
VALIDATION, FOR DIFFERENT NUMBERS OF MODELS WITH

THE DISTANCE PARAMETER SET TO

now the pedestrians are placed closer to the network camera. In
both of the scenarios, we conclude that the proposed framework
exhibits a good SNR regarding the trajectories of the ground
truth, testifying its truthfulness at the trajectory recovering.
As a final remark we should highlight that the methodology

herein proposed is in accordance with the ground truth data.
Notice that the SNR using the ground truth and the SNR using
the proposed region matching criterion, reach the best scores
for the same value of . In the Campus scenario we obtained
the best score for , and for the UPC scenario we obtained
the best SNR for .

C. Activity Classification

In this section we present additional experiments which
aim to illustrate activity (trajectory) classification. We report
classification results using the ground truth trajectories and
the trajectories obtained with the proposed region matching
framework. More specifically, we compare the results using
the method in [25], in which non-parametric vector fields are
used to describe the trajectories. We adopt the UPC scenario
where, at the same time we hope to achieve similar accuracy
for trajectory classification.
This example is challenging due to the similarity of the mo-

tion between trajectory classes. For instance, the motion be-
tween the activities up the stairs and up the stairs and turn right
are similar. Both contain a “left” motion (when stepping the
stairs). Similarly, for the classes walking along and up the stairs

TABLE VIII
ACCURACY (IN %) FOR THE GROUND-TRUTH (GT) TRAJECTORIES
(TOP) AND REGION MATCHING (RM) TRAJECTORIES (BOTTOM)

TABLE IX
CLASSIFICATION RESULTS USING NON-PARAMETRIC MODELS USING [25]
WITH THE GROUND TRUTH TRAJECTORIES (TOP TABLE) AND WITH THE

PROPOSED REGION MATCHING METHOD (BOTTOM TABLE). FOUR ACTIVITIES
ARE CONSIDERED AT THE UPC SCENARIO: walking along, up the

steps, up the steps and turn right, cross diagonally

and turn right where the “up” motion is present in both. This of
course, makes difficult the classification task.
As in [25], the procedure to perform the classification fol-

lows the same strategy.6 We used a five fold cross validation
strategy to obtain the performance accuracy. For each of the five
rounds, a training and a testing sets are used. The data partition
is balanced, such that, in each training round all the trajectories
classes are considered. In the training stage, the model param-
eters that characterizes the multiple vector fields are estimated.
The model includes (i) the motion fields, (ii) noise standard de-
viations and (iii) spacevarying switching matrices. Besides this
set of parameters, we also have to specify the number of mo-
tion models . To accomplish this, the underlying assumption
is that, we make use of the knowledge that the obtained model
is going to be used for a specific task, in this case, a classifica-
tion task. The goal, is thus, to select the generative model that
achieves the best classification accuracy. In practice we varied

. For we obtained accuracy of 20%
for both of the methodologies. This means that the number of
models do not suffice to describe all motion regimes presented
in the four trajectory classes. Thus, we do not detail the results
for these two values. Table VIII shows a comparison between
the two methods for . Although, the classifica-
tion accuracy using the proposed region matching trajectories
is lower for all values of , we can say that indeed the obtained
performance is competitive regarding the ground truth trajecto-
ries. Notice that once more, the two methodologies are compat-
ible when choosing the best model order to describe the vector
fields, i.e. .7 Table IX details the performance for each

6We refer to the reader [25] for an in deep review concerning the trajectory
classification methodology.
7The values of the Table VIII correspond to the mean value of the diagonal

entries of the confusion matrix.
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TABLE X
COMPUTATION TIMES FOR THE VARIOUS STEPS (IN SECONDS)

activity in the scenario for the best model order (third column
of the Table VIII).
We present the computation times for each of the steps—re-

gion matching, motion correspondence, library search, and the
EM algorithm (with the number of models varying from 1 to 7),
in Table X.

VI. CONCLUSIONS

We have proposed a method for automatically computing the
trajectories and velocity fields of multiple moving objects in
a video sequence, using region matching. The trajectories ob-
tained were found to be close to the manually edited ground
truth trajectories, for a large set of activities occurring in the
video sequences. The motion fields estimated from the auto-
matic trajectories using the EM method were found to lead to
an SNR close to that obtained with the ground truth trajectories.
Also, we conclude that for the trajectory classification the pro-
posal achieves comparable results. This suggests that the pro-
posed methodology is reliable for a fully automatic extraction
of multiple motion fields. This is encouraging for the extension
of this framework to denser environments such as crowds of
moving people.
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