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Abstract The identification of melanomas in dermoscopy images is still an up to
date challenge. Several Computer Aided-Diagnosis Systems for the early diagnosis
of melanomas have been proposed in the last two decades. This chapter presents
an approach to diagnose melanomas using Bag-of-features, a classification method
based on a local description of the image in small patches. Moreover, a comparison
between color and texture descriptors is performed in order to assess their discrim-
inative power. The presented results show that local descriptors allow an accurate
representation of dermoscopy images and achieve good classification scores: Sen-
sitivity = 93 % and Specificity = 88 %. Furthermore it shows that color descriptors
perform better than texture ones in the detection of melanomas.

Keywords Melanoma diagnosis · Dermoscopy · Bag-of-features · Feature extrac-
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Introduction

Dermoscopy is a widely used microscopy technique for the in-vivo observation of
skin lesions. A magnification instrument is used to increase the size of the lesion
and a liquid (oil, alcohol or water) is placed on top of the lesion prior to the
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Fig. 1 Melanoma with
specific dermoscopic fea-
tures: blue-whitish veil (red
arrows); pigment network
(blue arrows), dots and glob-
ules (white circles)

observation to eliminate surface reflection. This step makes the cornified layer of
the skin translucent, allowing a better visualization of several pigmented structures
located within the epidermis, dermis and dermoepidermal junction [3]. Several mag-
nification instruments are currently used by dermatologists: dermatoscope, stere-
omicroscope or a digital acquisition system. The later allows the attainment of der-
moscopy images, that can be processed and analyzed by a Computer Aided-Diagnosis
(CAD) system.

The diagnosis of pigmented skin lesions using dermoscopy is based on medical
algorithms: ABDC rule [47], 7-point checklist [2] and Menzies’ method [29]. All of
these methods have in common a set of dermoscopic criteria that can be divided in
two groups. The first group is called global features and allows a preliminary and
quick categorization of a skin lesion. Global features are a set of patterns (reticular,
cobblestone, globular, parallel, etc) that can be found in different pigmented skin
lesions. The other group of dermoscopic criteria are the local features (pigment
network, dots and globules, streaks, pigmentation related structures, vascular pattern,
etc). These features are sometimes called the letters of the dermoscopic alphabet since
they are the cues that allow a final diagnosis of the lesion (melanoma or not) [3].
Figure 1 illustrates some of the local dermoscopic features.

Both global and local features play an important role in the diagnosis of mela-
nomas. Some dermatologists perform an analysis of skin lesions using as reference
only the global dermoscopic features. This global evaluation method is called pat-
tern analysis and has received some attention in the skin research area, such as [1,
36, 40], which try to reproduce the medical analysis. The published works focus on
the identification of the different patterns but do not perform a diagnosis of a skin
lesion. However, it is undeniable that local features are the backbone of the com-
mon medical algorithms since ABCD rule, 7-point checklist and Menzies’ method
use these features and their properties (shape or number of colors) to score a skin
lesion, thus diagnosing it as melanoma or not. There are several studies which focus
on detecting one or more of these dermoscopic criteria, such as pigment network
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[6, 37], irregular coloration [10, 31, 45], irregular streaks [35] and granularity [46].
However, as far as the authors know only one study combines a set of detectors
and the 7-point checklist algorithm in a CAD system to perform a diagnosis using
dermoscopy images [15]. Two reviews on state-of-the art methods can be found in
[11, 25].

Most of the CAD systems found in literature use a different procedure, following
a pattern recognition approach to classify dermoscopy images [9, 18, 21, 34]. These
works have successfully exploited a global representation of the lesion using features
inspired by the ABCD rule (color, shape, texture and symmetry). Most of the extracted
features are able to perform a good description of the lesion regarding its shape and
global color distribution. However, localized texture and color patterns associated to
differential structures (e.g., pigment network, dots, streaks or blue-whitish veil) might
be missed since a global analysis is being performed. To overcome this situation,
this chapter describes a different approach for the analysis of dermoscopy images.
Since experts usually try to characterize local structures in the image, the described
strategy will try to mimic this behavior and represent the image by a set of local
features, each of them associated to a small region in the image. The local features
used describe the texture and color of each region and a comparative study between
the two types of descriptive features is performed, in order to assess their degree of
discrimination.

Bag-of-Features

The description of an image with local features have been successfully used in sev-
eral complex image analysis problems, such as scene recognition and object-class
classification [22, 23, 27, 42, 44, 50]. The used approach is called Bag-of-Features
(BoF) [42, 44] and it is inspired by the bag-of-words (BoW) [5], which is a well
known text retrieval algorithm. The procedure used by BoW to model documents
evolves in three different steps. The first step consists of parsing the documents of
the dataset into words, i.e., dividing the documents to smaller components. Images
can also be sampled into smaller regions (patches). Two sampling strategies are com-
monly used in BoF: sparse and dense sampling. Sparse sampling is performed by
detecting a set of informative keypoints (e.g., corners) and their respective support
regions (square patches). This detection can be done using one or more of the several
detectors proposed in literature (e.g. Difference of Gaussian [28] or Harris-Laplace
[30]). A comparative study between the six most popular keypoint detectors can be
found in [22]. For dense sampling it is assumed that each keypoint is the node of a
regular grid defined in the image domain. The patches associated with the keypoints
are extracted by sampling uniformly over the grid. Both sampling methods have been
used in different works and a comparison between the two strategies was performed
by van de Sande et al. [38]. Their experimental results showed that dense sampling
outperformed sparse sampling. The BoF approach proposed in this work uses dense
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sampling to extract the patches from a given image and only patches whose area is
more than 50 % inside the lesion are considered.

The second step in BoW document analysis is to represent each word by its stem.
The equivalent for the image analysis case is to represent each patch by a feature
vector xi ∈ R

n . Different features can be used to locally describe the patches. This
chapter focus on two specific kinds of features, color and texture, which will be
addressed in section “Local Features”. N square patches are extracted from each
image I on the dataset. Therefore, a family of local features will be associated with
I as follows

F = {x1, . . . , xN } , xi ∈ R
n . (1)

The last step of both BoW and BoF corresponds to the training process. In the
first, each discriminative word receives an unique label. Very common words, which
occur in most documents, are rejected and do not receive a label. This process can
be seen as the creation of a dictionary of representative words. Then, each document
is analyzed separately and its discriminative words are compared with the ones
from the dictionary. From this comparison will result an histogram of the frequency
of occurrence of the dictionary words within the document. This histogram will
represent the document and will be used to compare different documents and assess
their degree of similarity. Reproducing this histogram representation in the BoF case
requires some extra effort. First, assuming that there is a dataset of L images, this
dataset has associated with it set of all the extracted local features

F =
L⋃

k=1

F (k). (2)

In practice, the set F has many thousands (or even millions) of feature vectors.
Therefore, in order to obtain a visual dictionary (analogous to the dictionary of
BoW), this set has to be approximated by a collection of prototypes c1, . . . , cK ,

called visual words. The visual words are obtained using a clustering algorithm (in
this work K-means is used). After obtaining a visual dictionary, all feature vectors
in the training set are classified in the nearest visual word and a label

l(k)
i = arg min

j
‖x (k)

i − c j‖, (3)

which identifies a specific visual word, assigned to each feature vector x (k)
i . The final

step is to characterize each image I (k) by a histogram of visual words frequency

h(k)(l) = 1

N (k)

N (k)∑

i=1

δ(l(k)
i − l), (4)
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Fig. 2 Block diagram of the BoF classification system

where δ(.) denotes the Kronecker delta (δ(x) = 1, if x = 0; δ(x) = 0, otherwise).
As in BoW, this histogram will act as the feature vector that describes the image and
the set of L feature vectors obtained this way will be used to train a classifier.

For each new image I to be classified the process is similar to the one described
previously. The image is sampled and local features are extracted. Then, the local
features are compared with the dictionary of visual words obtained in the training
phase and, finally, the histogram of visual words frequency is computed. The image is
classified using the computed histogram and the classifier learned using the training
set.

All the steps of the BoF strategy described previously are summarized in Fig. 2.
There are several factors that can impact the performance of BoF. Following the

blocks sequence on Fig. 2 these factors are: the size of the regular grid (δ) used in the
patch extraction step, the type and quantity of extracted features, the size of the dic-
tionary (K ), and the classification algorithm used. All these factors are thoroughly
analyzed in this work. Several values for δ and K are tried and three classifica-
tion algorithms with different properties are tested: k-nearest neighbor (kNN) [16],
AdaBoost [17] and support vector machines (SVM) [8, 12].

Local Features

The local dermoscopic criteria used by dermatologists to diagnose skin lesions can
be represented by two different kinds of image features: texture and color features.
Local dermoscopic structures such as pigment network, dots and streaks can be char-
acterized by texture features since these features represent the spatial organization of
intensity in an image, allowing the identification of different shapes. Color features
describe the color distribution, thus they are able to characterize particular pigmented
regions such as blue-whitish veil or regression areas.
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In theory both of these features provide a good description of the extracted patches
(see Fig. 2) and both play an important role in the final classification. One of the main
objectives of this chapter is to determine if the previous hypothesis are correct. This
objective is accomplished by assessing the performance of color and texture features
separately and by combining both of them. Moreover, since both color and texture
features can be extracted using different types of descriptors, a comparison between
some of them is also performed. The several texture and color descriptors tested are
described in the next sections.

Texture Descriptors

Texture features characterize the intensity of an image. Therefore, it is necessary
to convert the original RGB image into a gray level one before extracting texture
descriptors. This is done by selecting the color channel with the highest entropy [41].

Texture descriptors can be divided into several categories depending on the
methodology used. This chapter focus on three different methods: statistical, sig-
nal processing and gradient [33]. In statistical methods, the features are extracted
by computing neighbor pixel statistics. A very well known method for computing
these statistics is the gray level co-occurrence matrix (GLCM) proposed by Haralick
et al. [20]. This matrix stores the relative frequencies of gray level pairs of pixels
at a certain relative displacement and can then be used to compute several statistics
which will be the elements of the feature vector. The results presented in this chapter
are obtained using five of the most common statistics: contrast, correlation, homo-
geneity, energy and entropy. The performance of these features is directly related
with GLCM, since it has been already proved that the performance of a classification
system is influenced by the number of gray levels (G) used as well as the way of
combining the orientations of the nearest neighbors [13]. Therefore, several values of
G and two ways of combining the orientations (average GLCM versus four GLCM)
are tested, according to what is proposed in [13].

Signal processing approaches have in common three sequential steps. First, the
image I (x, y) is convolved with a bank of N filters, with a certain impulse response
hi (x, y), i = 1, . . . , N . Then, an energy measure of the output Ji (x, y) i =
1, . . . , N , is performed

Ei =
∑

x

∑

y

|Ji (x, y)|. (5)

Finally, the energy content is used to computed statistics that are the components of
the feature vector [33]. The two statistics computed in this chapter are the mean μi

and standard deviation σi

μi = Ei

M
, σi =

√
Ei − μi

M
, (6)

where M is the number of pixels (x, y) in Ji .
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Several filter banks can be found on literature [33]. This chapter compares two
of the most well known: Laws [26] and Gabor [4] filter masks. The filter masks
proposed by Laws [26] have been widely used for texture characterization. These
masks can have a dimension 3 × 3 or 5 × 5 and result from convolving two of of the
five possible 1-D kernels. Each 1-D kernel focus on specific textural characteristics
like edges, waves or ripples. In this chapter only three kernels will be used: L , which
computes the average grey Level, E that extracts Edges (describe linear structures,
such as pigment network) and S that extracts Spots (describe circular structures,
such as dots). The 1-D kernel values are the following: L3 = [1 2 1], E3 =
[1 0 − 1], S3 = [1 − 2 1], L5 = [1 4 6 4 1], E5 = [−1 − 2 0 2 1] and
S5 = [−1 0 2 0 −1]. All the possible combinations of 1-D kernels are considered,
thus the filter bank has a dimension N = 9. Since it is not known the dimension of
the masks that leads to the best results, both 3 × 3 and 5 × 5 filter banks are tested.

Gabor filters have been used for texture classification [4] and edge detection [19].
Therefore, they can be used to characterize dermoscopic structures that have a linear
shape (e.g. pigment network or streaks). The impulse response of a Gabor filter is
the following

hi (x, y) = e
x̃2+γ2 ỹ2

2σ2
G cos

(
2π

x̃

λ
+ ϕ

)
, (7)

where γ is an aspect ratio constant. σG is the standard deviation, λ is the wavelength,
ϕ is the phase of the filter and (x̃, ỹ) are obtained from rotating (x, y) as follows [19]

x̃ = x cos θi + y sin θi , ỹ = −x sin θi + y cos θi . (8)

The angle amplitude θi ∈ [0,π] determines the orientation of the filter hi and the
step between two consecutive filters is π

Nθ
, where Nθ is the number of filters in the

filter bank [19]. This descriptor depends on several parameters. In this chapter two
of them are varied: σG ∈ {1, 2, . . . , 5} and Nθ ∈ {2, 3, . . . , 10}. All the others are
kept constant and equal to: γ = 0.5, ϕ = 0 rad and x̃

λ = 0.56 [19].
Gradient features such as gradient histograms have also been successfully used

in several classification problems [14, 28]. In this work, two gradient histograms are
used: amplitude and orientation. The image gradient g(x, y) = [g1(x, y) g2(x, y)]
is computed using Sobel masks. Then, gradient magnitude and orientation are respec-
tively computed as follows

‖ g(x, y) ‖=
√

g1(x, y)2 + g2(x, y)2,φ(x, y) = tan−1
(

g2(x, y)

g1(x, y)

)
. (9)

Finally, the histograms of gradient amplitude and orientation are obtained
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Fig. 3 Texture features for three different 60 × 60 patches: energy content for Laws (5 × 5 masks)
and Gabor (Nθ = 1, 2, . . . , 7 and σG = 1, 2, . . . , 5) filters and histogram of the gradient phase
(Mφ = 25)

ha(i) = 1

N

∑

x

∑

y

bi (‖g(x, y)‖), i = 1, . . . , Ba,

hφ(i) = 1

N

∑

x

∑

y

b̃i (φ(x, y)), i = 1, . . . , Bφ, (10)

where N is the number of pixels inside the patch and Ba, Bφ are the number of bins
of the magnitude and orientation histograms, respectively. Finally, bi (.), b̃i (.) are the
characteristic functions of the i th histogram bin

bi (a) =
{

1 ifabelongs to thei th amplitude bin
0 otherwise

b̃i (φ) =
{

1 ifφbelongs to thei th orientation bin
0 otherwise

. (11)

The parameter varied for both gradient features is the number of bins of the histograms
(Ba ∈ {15, 25, 35, 45} and Bφ ∈ {15, 25, 35, 45}).

Figure 3 shows some of the extracted texture features for three different patches
within the same lesion. The exemplified patches were selected in order to include
a specific dermoscopic structure: pigment network (patch 1), dots (patch 2) and
globules (patch 3). It is clear that the extracted descriptors (Laws, Gabor and hφ) are
different for each patches, which demonstrates that different dermoscopic structures
have different textural properties and, therefore, must be described separately.
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Color Descriptors

Several color descriptors, such as histograms and mean color, have been used in
object and scene recognition problems [39]. The descriptors are usually computed
over one or more color spaces like RGB, HSV/I [49], CIE La*b* and L*uv [49] and
the biologically inspired opponent color space (Opp) [7]. These six color spaces have
different properties, thus they might provide different information for the melanoma
classification problem addressed in this chapter. For this reason the six previous color
spaces are tested.

For each color space a set of three histograms is computed (one for each of the
three color components). For each patch, the histogram associated with the color
channel Ic, c ∈ {1, 2, 3} is given by

hc(i) = 1

N

∑

x,y

bc(Ic(x, y)) i = 1, . . . , Bc, (12)

where N is the number of pixels inside the patch, i is the histogram bin, Bc is the
number of bins and bc(.) is the characteristic function of the i th bin

bc(Ic(x, y)) =
{

1 ifIc(x, y)belongs to thei th color bin
0 otherwise

. (13)

The bins are defined by dividing the color component range into intervals with the
same width. For all histograms, the number of intervals Bc ∈ {15, 25, 35, 45} is a
tested parameter.

Another common color descriptors are color moments [48]. Color moments result
from assuming that the distribution of color in an image can be seen as a probability
distribution. Since probability distributions are usually characterized by a set of
unique moments, they can be used as color features. The general definition of the
1st order color moment for the color channel Ic, c ∈ {1, 2, 3} is the following

M1
c =

∑N
x Ic(x)

N
, (14)

where N is the number of pixels inside the patch. Higher order (p) color moments
are defined by [48]

M p
c =

(∑N
x (Ic(x) − M1

c )p

N

) 1
p

. (15)

The first three order moments are used in this chapter. These moments correspond to:
mean (M1), standard deviation (M2) and skewness (M3). Therefore, each patch will
be represented by a total of nine color moments (three for each color component).
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Fig. 4 Color histograms (Mc = 25) for three different 60×60 patches: h RG B (green), hH SI (blue),
hL∗uv (red) and hOpp (black)

Figure 4 exemplifies some of the extracted color histograms (RGB, HSI, L*uv and
Opp) for three different patches. Each patch was selected in order to represent a dif-
ferent color section of the lesion: patch 1 was extracted from the brown region, patch
2 was extracted from the brown-white transition region and patch 3 was extracted
from the white region. As in the texture features case, the three feature vectors are
different, thus each color region is characterized differently.

Experimental Results

The proposed method was evaluated with a dataset of 176 dermoscopy images
(25 melanomas and 151 nevi). These images were taken during clinical exams per-
formed at Hospital Pedro Hispano, Matosinhos, with a digital acquisition system that
allows a magnification of 20×. Images are stored in B M P and J P EG formats and
their average resolution is 573 × 765. Each image was classified by an experienced
dermatologist as melanoma or non-melanoma (ground truth label).

The evaluation metrics used are the Sensitivity (SE) and Specificity (S P). These
two measures are combined in a cost function (C)
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C = c10(1 − SE) + c01(1 − S P)

c10 + c01
, (16)

where c10 is the cost of an incorrectly classified melanoma and c01 is the cost of
an incorrectly classified non-melanoma. This cost function represents the trade-off
between SE and S P . In this chapter it is assumed that an incorrect classification
of a melanoma is worse and, therefore, the classification error costs are defined as:
c10 = 1.5c01 and c01 = 1. The selected classifiers are those which achieve the lowest
values of C .

Since the dataset is small, the different possibilities are tested using a stratified
10-fold cross validation method. Both classes were evenly distributed by the ten
folds. To decrease the impact of class unbalance, local features associated with each
melanoma in the different training sets were repeated. Gaussian noise (w ∼ N (0,σ2

n),
with σn = 0.0001) was added to each repeated local features to prevent exact match-
ing between feature vectors on the training set.

BoF depends on several parameters. The local feature extraction process relies on
the size of the patches (δ) while the classification process depends both on the size
of the codebook (K ) and the classification algorithm used. The best δ is searched in
the set {20, 40, . . . , 100} and K in the set {100, 200, 300}. Each one of the tested
classification algorithms depends on several parameters as well. In the kNN case, the
parameters tested are the number of neighbors (k ∈ {5, 7, . . . , 25}) and the distance
d used to compare the feature vectors. For two vectors x and y these distances are
computed as follows

• Euclidean
d(x, y) = ‖x − y‖ (17)

• Histogram Intersection

d(x, y) =
∑

i

min(xi , yi ) (18)

• Kullback-Leibler

d(x, y) =
∑

i

log

(
yi

xi

)
yi (19)

For AdaBoost, the parameter tested is the number of weak classifiers (W ∈ [2, 300]).
SVM is tested using the BoF default kernel χ2, defined for two vectors x and y as

K ernelχ2 = e−ρdχ2 (x,y) (20)

where width parameter ρ is searched in the set {2−9, 2−8, . . . , 28, 29} and

dχ2(x, y) =
∑

i

(xi − yi )
2

xi + yi
(21)
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Fig. 5 Best cost results (x
axis) for single features using
kNN (blue circle), AdaBoost
(red triangle) and SVM (green
square)

The optimal parameters and results are computed using a total of more than 4,90,000
possible combinations.

Single Features Comparison for the Best Configuration
of Classifiers

Figure 5 shows the cost results obtained for the different local features and classi-
fiers. These results show that good classification scores can be achieved using single
features (e.g., C = 0.094 for MOpp, C = 0.099 for hL∗uv and C = 0.104 for
hLa∗b∗).

For texture features, the two best descriptors are the signal processing ones. Both
Laws and Gabor texture descriptors achieve promising results: C = 0.155 for Gabor
and C = 0.166 for Laws. GLCM and gradient features achieve worse results, which
suggests that filter descriptors provide more discriminative information regarding
local dermoscopic features.

Color space histograms outperform the corresponding color moments for kNN and
AdaBoost classifiers. In the case of SVM, color moments perform much better than
their corresponding histograms and the best single descriptor classification result
is achieved in this case: MOpp, C = 0.094, that corresponds to SE = 94 % and
S P = 88 %. The best results achieved with color features outperform those obtained
with texture features, which suggest that the former are more discriminative.

Table 1 shows the performance measures and the best configurations for some
of the best texture and color features. Good results are achieved both with kNN
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Table 1 Classification results and configurations for best texture and color features

Features SE (%) SP (%) C Feature para-
meters

Classifier parameters

Laws 100 61 0.155 δ = 40 5 ×5 K = 100, SVM: ρ = 2−5

Gabor 98 64 0.155 δ = 80, σG =
4 Nθ = 5

K = 100, kNN: k = 19,
Histogram intersection

hL∗uv 100 75 0.099 δ = 80,
Bc = 15

K = 300, kNN: k = 13,
Kullback-Leibler

hLa∗b∗ 93 85 0.104 δ = 80,
Bc = 25

K = 300, kNN: k = 19,
Kullback-Leibler

MOpp 93 88 0.094 δ = 40 K = 100, SVM: ρ = 2−4

and SVM and, for some features, both classifiers lead to very similar results (see
Fig. 5). However, kNN appears to achieve the best overall results. It is interesting
to notice that for Gabor, hL∗uv and hLa∗b∗ the best comparative distance are the
statistical ones: Kullback-Leibler or Histogram Intersection. This occurrence is also
noted for the other tested features and can be explained by the fact that the actual
features provided for training and classification are the histograms of visual words
frequencies, i.e., distributions.

Fusion of Color and Texture Features

Combining different descriptors of the same class may improve the results. To test
this hypothesis the two best texture descriptors (Gabor and Laws) and the two types
of color descriptors (moments and histograms) were combined. The fusion strategy
used is early fusion where the feature vectors are concatenated into a single one [43].
Figure 6 shows the results achieved for each pair of descriptors using kNN and SVM
(similar performance is achieved with AdaBoost). The results for the pairs color
moments/histograms are identified with the respective color space, whilst the pair
Gabor/Laws is labeled T ex . Finally, the performance achieved with each descriptor
of the pair is also represented in the graphics (red asterisks). These results show that
the fusion of descriptors can either improve the overall results (more evident on the
SVM case) or improve the results when compared with the worst descriptor of the
pair. Moreover, the fusion of descriptors approximate the results achieved with color
and texture descriptors by significantly improving the last ones.

Table 2 shows the best results achieved for each pair as well as the configurations
that led to those results. It is interesting to notice that the best global results are
achieved with RGB despite the drawbacks of this color space. Nonetheless, this
result is worse than the one achieved with the best single descriptor (see Table 1).

Combining different classes of descriptors is an usual approach in BoF and other
pattern recognition methods. In this chapter, the best color and texture descrip-
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Fig. 6 Early fusion cost
results (x axis) for kNN
(top) and SVM (bottom).
The performance of each
descriptor of the pair is also
shown (red asterisk)

tors were combined. Due to the different properties of the feature sets and to the
large dimension of the feature vector that would result from an early fusion, a late
fusion strategy was applied in this case [43]. In this method, the final decision is
made by combining the outputs of different classifiers (in this case one classifier for
color and other for texture descriptors). The SVM classifier trained using the MOpp

(see Table 1) descriptor was combined with two classifiers that achieved similar clas-
sification results: kNN (C = 0.145) and SVM (C = 0.135), both trained using the
early fusion of Laws and Gabor descriptors (see Fig. 6). Late fusion strategies use
the posteriori probability of each class and one of several possible rules [24] to make
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Table 2 Classification results and configurations for descriptors fusions

Fusion SE (%) SP (%) C Feature
parameters

Classifier parameters

T ex 91 79 0.135 δ = 40, 5 × 5 K = 100, SVM: ρ = 2−3

σG = 1 Nθ = 5
Opp 96 77 0.121 δ = 20, Bc = 25 K = 100, kNN: k = 15,

Histogram intersection
L∗uv 93 75 0.141 δ = 20, Bc = 15 K = 200, kNN: k = 9,

Kullback-Leibler
H SI 100 67 0.131 δ = 60, Bc = 25 K = 300, kNN: k = 23,

Histogram intersection
La∗b∗ 89 86 0.124 δ = 80, Bc = 25 K = 100, SVM: ρ = 2−3

H SV 98 73 0.121 δ = 60, Bc = 45 K = 300, kNN: k = 11,
Histogram intersection

RG B 100 75 0.099 δ = 80, Bc = 45 K = 200, kNN: k = 15,
Histogram intersection

the final decision. For SVM, the probabilities are computed using the Platt’s method
[32] while for kNN, the posterior probabilities are computed as follows:

P(w|x) = kw

k
, (22)

where w represents the class that can be either 0 or 1, x is a pattern to be classified
and kw is the number of patterns amongst the total number of neighbors k that belong
to class w. The combination is computed using the Sum-Rule [24].

The best fusion result was achieved using the kNN classifier trained with texture
descriptors combined with the MOpp: C = 0.097, SE = 96 %, SP = 82 %. Since
the color descriptor performs much better than the texture descriptors (Gabor and
Laws), it is understandable that the performance of the fusion is slightly inferior to
the color descriptor alone.

Visual Words Analysis

The analysis of the identified visual words can provide important information regard-
ing the most distinctive dermoscopic structures. Therefore, a simple study of the
visual words that lead to the best results is performed in this chapter.

This study is done using the information of local color features MOpp, using
the best configuration for these features (see Table 1). The average visual words
histograms for melanomas and non-melanomas were computed using all the his-
tograms of the dataset. Figure 7 shows the obtained average histograms. These two
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Fig. 7 Average visual words histograms for melanoma (red) and non-melanoma (green), obtained
using the local color features MOpp . Most frequent visual word is highlighted (blue)

Fig. 8 Example of the most selected color visual word in melanomas: melanomas (left); 9th bin
visual word (mid); visual words histograms, with the 9th bin visual word highlighted (right)
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Fig. 9 Example of the most selected color visual word in non-melanomas: non-melanomas (left);
98th bin visual word (mid); visual words histograms, with the 98th bin visual word highlighted
(right)

histograms are significantly different and it is interesting to notice that there are some
visual words which are more common than others.

The next step is to select the most frequent visual word for melanomas (see
Fig. 6, highlighted 9th bin) and assess the patches associated with this word. Figure 8
shows three melanomas from the dataset, the patches associated with the visual
word and the corresponding histograms. Although each lesion is described by a
different histogram, the same visual word (9th bin) is present in all of them and
is one of the most frequent. The detected patches are extracted from a blue-gray
region (blue-whitish veil), which is one of the atypical pigmentations associated
with melanoma [3].

A similar analysis can be performed using the most frequent visual word of non-
melanomas (see Fig. 7). As before, the patches identified as being this specific visual
word were extracted from examples of benign lesions (see Fig. 9). This visual word
corresponds to a healthy light brown region in all the exemplified lesions. Moreover,
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this visual word is associated with a considerable number of patches, which suggests
that these lesions have a more or less uniform pigmentation. Experts usually associate
these two evidences (light brown and uniform pigmentation) with benign lesions
[3]. It is interesting to notice that, as in the previous analysis, the observations are
consistent with the medical knowledge.

The visual words analysis performed is simple. However, the results are inter-
esting and in accordance to what is expected to observe in both melanoma and
non-melanoma lesions. This suggests that BoF can be used to classify melanomas
and to identify specific dermoscopic features and patterns [3] by associating them to
visual words. Future work should focus on this task, which can be seen as a multiple
object recognition problem.

Conclusions

This chapter investigates the applicability of local color and texture features to the
melanoma classification problem. Several factors associated with the performance of
BoF were tested, namely the type of descriptors used and the classification algorithm.

The results show that individually color descriptors perform better than texture
descriptors and that good classification results can be achieved using kNN (SE =
93 %, SP = 85 % with hLa∗b∗ and SE = 100 %, SP = 75 % with hL∗uv) and SVM
(SE = 93 %, SP = 88 % with MOpp). The fusion of color and texture descriptors also
achieved good results, with a score of SE = 96 %, SP = 82 % for the combination
of Opp moments with Gabor and Laws texture descriptors.

A simple analysis of the visual words showed that the dictionary obtained using
BoF has potential to be used as a detector/identifier for specific dermoscopic features
and patterns. Future work will rely on testing this hypothesis in order to develop a
more medical oriented system. Moreover, sparse sampling methods should be tested
in order to compare their performances with that of the dense sampling used in this
chapter. Finally, high-level descriptors should be tested as well.
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