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Abstract. Statistical shape models have been extensively used in sev-
eral image analysis problems, providing accurate estimates of object
boundaries. However, their performance degrades if the object of interest
is surrounded by a cluttered background, and the features extracted from
the image contain outliers. Under these assumptions, most deformable
models fail since they are attracted towards the outliers, leading to poor
shape estimates. This paper proposes a robust Active Shape Model, based
on a sensor model that takes into account both valid and invalid obser-
vations. A weight (confidence degree) is assigned to each observation. All
the observations contribute to the estimation of the object boundary but
with different weights. The estimation process is recursively performed
by the Expectation-Maximization method and the weights are updated
in each iteration. The algorithm was tested in ultrasound images of the
left ventricle and compared with the output of classic Active Shape Mod-
els. The proposed algorithm performs significantly better.

1 Introduction

The segmentation of human organs in medical images is a challenging problem
that has been addressed in several ways. Deformable models are amongst the
most popular approaches since they separate geometric modeling of the con-
tour from the visual features of the organ and background. Active Shape Models
(ASMs) proposed in [1] are especially interesting since the shape model is trained
from annotated data and the model learns not only the average shape of the ob-
ject but also its deformation modes. This information is conveyed in a Gaussian
prior that improves contour estimates and avoids unusual shapes.

Active Shape Models have been improved with respect to the way information
is extracted from the image, trying to obtain more reliable features [2–7]. How-
ever, if the model is initialized far from the object contour and if the background
is textured, a high number of outliers may be observed, attracting the elastic
contour towards erroneous configurations. The performance of ASMs is therefore
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hampered by invalid features since the model is not robust in the presence of
outliers

Few works tried to address the robustness of ASMs. One notable exception
is the work of Rogers et al. [8], which tries to overcome this problem by using
a random sampling consensus method, RANSAC [9]. Another contribution to
improve robustness was proposed by Nahed et al. [10] based on Robust Point
Matching (RPM)[11] which tries to solve the matching problem between model
points and observation points detected in the image. This algorithm is able to
discard the observations considered as outliers in the matching process.

In this paper, we propose an alternative approach to estimate the ASM pa-
rameters in cluttered images. We explicitly assume that the feature points de-
tected in the image contain outliers which do not belong to the object boundary.
Each observation is associated to a binary label (valid/invalid) which is un-
known; different sensor models are adopted to describe valid data and outliers.
The estimation of the model parameters (global motion and shape deforma-
tion) in the presence of unobserved variables (binary labels) is carried out by
the Expectation-Maximization method. The method developed in this paper is
inspired in the work presented in [12] to improve the robustness of the snake
algorithm. Experiments with ultrasound sequences of the heart show that the
proposed method performs better that classic ASM in these experiments.

The remainder of this paper is organized as follows: Section 2 describes the
problem and the proposed model; Section 3 describes parameter estimation by
the Expectation-Maximization method; the application to ultrasound images of
the heart is described in Section 4; and Section 5 concludes the paper.

2 Problem Formulation

Active Shape Models (ASM) [1] try to approximate the boundary of objects in
images by sequences of 2D points (landmarks), x = (x1, . . . ,xN ) with xi ∈ R

2.
Since the model is very flexible, a probabilistic model is adopted to constrain
the set of admissible shapes. The 2D points are considered as a realization of
random variables with joint Gaussian distribution, characterized by an average
shape, x̄, and by a covariance matrix, R. The covariance matrix defines the
deformation modes that can be obtained by principal component analysis (PCA)
R = WΛWT where W is a matrix of eigenvectors and Λ is a diagonal matrix
of eigenvalues, λk. The average shape and the deformation modes are estimated
in a two-stage training process involving [1]: (i) alignment of all training shapes
and (ii) Principal Component Analysis (PCA).

This leads to a generative shape model in which the object contour is randomly
generated by

x � x̄+Db , (1)

where D ∈ R
2N×K is a matrix with K main deformation modes extracted

from W, and b ∈ R
K is a Gaussian vector of coefficients (local deformation).
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In addition, the contour undergoes a geometric transformation Tθ (Euclidean
similarity): each contour point is transformed by

x̃i = Tθ(x
i) = A(x̄i +Dib) + t , (2)

where Di ∈ R
2×K is the mode deformation matrix associated to the i − th

landmark and θ = (A, t) are the transformation parameters (global motion).
When we wish to estimate the boundary of an object in a test image, an

initial contour, x̃ = (x̃1, . . . , x̃N ), is required to initiate the estimation process.
Then, we search for edges (intensity transitions) along search lines orthogonal

to the contour at each model point x̃i. Edge detection is performed along each
line providing a set of edge points Yi = {yij , j = 1, . . . ,M i}. Multiple edges
are detected in each line and many of them are outliers. Therefore, a binary
label kij ∈ {0, 1} is assigned to each edge point. We define kij = 1, if yij

is a valid observation and kij = 0, otherwise. The probabilities of invalid and
valid data p0 = P (kij = 0), p1 = P (kij = 1) need to be estimated. Therefore, the
model parameters comprise: global transformation parameters, local deformation
parameters and the sensor probabilities ψ = (θ,b,p), with p = (p0, p1).

Two sensor models will be considered. If an observation yij is valid (kij = 1),
we assume that

yij = x̃i + vi = A(x̄i +Dib) + t+ vi (3)

where vi ∼ N (0, σi2I) is a Gaussian random variable with zero mean and vari-
ance (σi)2I, estimated from the training set. Therefore,

p
(

yij
∣

∣kij=1
)

= N (

yij ;A(x̄i +Dib) + t, (σi)2I
)

. (4)

If the observation yij is invalid (kij = 0), we assume it follows a uniform distribu-

tion U(Vx̃i) within a validation gate Vx̃i in the vicinity of x̃i, i.e. p
(

yij
∣

∣kij=0
)

=
U(Vxi).

These sensor models allow us to write a generative model for the observed
data. Let Y = {yij} be the set of all observations and K = {kij} the hidden
labels. Assuming conditional independence, the complete likelihood function is
given by

p(Y,K|ψ) =

N
∏

i=1

Mi
∏

j=1

p(yij |kijψ)p(kij) . (5)

The likelihood function p(Y|ψ) is obtained by marginalizing p(Y,K|ψ) with
respect to the hidden variables K, leading to

p(Y|ψ) =
∑

K

p(Y,K|ψ) . (6)

This marginalization step is unfeasible in practice since the number of config-
urations of the variables K grows exponentially with the number of unknown
labels. A direct estimation of the model parameters ψ by the Maximum Like-
lihood Method is unfeasible. Fortunately, this difficulty can be solved by using
the Expectation-Maximization method.
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3 Expectation Maximization Framework

Instead of maximizing the likelihood function (6), we use the Expectation-
Maximization (EM) method [13]. The EM method computes an auxiliary func-

tion Q(., .) (E-step) and updates the parameter estimates ̂ψ by maximizing the
auxiliary function (M-step). These two steps are repeated until convergence is
achieved.

3.1 E-step

The auxiliary function Q(., .) is defined as the expected value of the complete
log-likelihood function, given the observations Y and the most recent estimates
of the parameters ̂ψ

Q
(

ψ, ̂ψ
)

= EK

[

log p (Y,K|ψ)
∣

∣

∣Y, ̂ψ
]

. (7)

The log-likelihood function is given by (see (5))

log p (Y,K|ψ) =
N
∑

i=1

Mi
∑

j=1

log p
(

yij
∣

∣kij ,ψ
)

+ log p
(

kij
)

.

Therefore,

Q
(

ψ, ̂ψ
)

=

N
∑

i=1

Mi
∑

j=1

wij
0

[

log p
(

yij
∣

∣kij=0,ψ
)

+ log p0
]

+ wij
1

[

log p
(

yij
∣

∣kij=1,ψ
)

+ log p1
]

,

(8)

with
wij

1 = p
(

kij=1
∣

∣

∣yij , ̂ψ
)

∝ p̂1 N
(

yij ;T
̂θ(x̄

i +Di
̂b), σi2I

)

(9)

and wij
0 = p

(

kij=0
∣

∣yij
)

= p̂0 U (Vxi) such that wij
0 + wij

1 = 1. These weights
correspond to the probability of the observation being a valid observation or an
outlier.

3.2 M-step

Let us assume that the most recent estimates of the unknown parameters in
iteration t − 1 are given by ̂ψ(t − 1). Parameter update is achieved by solving
the following optimization problem

̂ψ(t) = argmax
ψ

Q(ψ, ̂ψ(t− 1)) (10)
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The maximization with respect to ψ = (θ,b,p) is performed in three steps
that will be described in the sequel.

Estimation of θ: First we optimize the auxiliary function Q(., .) with respect

to A =

[

a1 −a2
a2 a1

]

, t =

[

t1
t2

]

. The optimization can be analytically done and

leads to a linear system of equations

⎛

⎜

⎜

⎝

X1 −X2 W 0
X2 X1 0 W
Z 0 X1 X2

0 Z −X2 X1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

â1(t)
â2(t)
̂t1(t)
̂t2(t)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

Y1

Y2

C1

C2

⎞

⎟

⎟

⎠

, (11)

where

X1 =
N
∑

i=1

Mi
∑

j=1

wij
1

σi2 x
i
1 Z =

N
∑

i=1

Mi
∑

j=1

wij
1

σi2 (x
i
1
2
+ xi

2
2
)

X2 =
N
∑

i=1

Mi
∑

j=1

wij
1

σi2 x
i
2 W =

N
∑

i=1

Mi
∑

j=1

wij
1

σi2

Y1 =
N
∑

i=1

Mi
∑

j=1

wij
1

σi2 y
ij
1 C1 =

N
∑

i=1

Mi
∑

j=1

wij
1

σi2 (x
i
1y

ij
1 + xi

2y
ij
2 )

Y2 =
N
∑

i=1

Mi
∑

j=1

wij
1

σi2 y
ij
2 C2 =

N
∑

i=1

Mi
∑

j=1

wij
1

σi2 (x
i
1y

ij
2 − xi

2y
ij
1 ) .

Estimation of b: To update the deformation parameters, we maximize Q(., .)
with respect to b. This leads again to a linear system of equations

⎛

⎝

N
∑

i=1

Mi
∑

j=1

wij
1

σi2
Di�

̂A
�
̂ADi

⎞

⎠
̂b(t) =

⎛

⎝

N
∑

i=1

Mi
∑

j=1

wij
1

σi2
Diᵀ

̂A
� [

yij − ̂Ax̄i −̂t
]

⎞

⎠ .

(12)
The deformation parameters obtained from (12) may correspond to an unex-
pected shape. Therefore, we use the protection mechanism proposed in [1]. First
we compute the Mahalanobis distance, d, and compare it to threshold, dmax,

d2 =

K
∑

l=1

̂b2l
λl

≤ d2max. (13)

where ̂bl denotes the l-th component of ̂b, and λl is the eigenvalue associated to
the l-th deformation mode. The threshold is chosen so that most of the shapes
in the training set satisfy (13) (a typical value is dmax = 3 [1]). If ̂b does not
satisfy (13), we rescale it as follows
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̂b(t) ← ̂b(t)
dmax

d
, if d > dmax. (14)

Estimation of p: Finally, we update the probabilities of valid and invalid data
by maximizing Q(., .) with respect to p0, p1. This yields

p̂1(t) =

N
∑

i=1

Mi
∑

j=1

wij
1

N
∑

i=1

Mi
∑

j=1

wij
1 + wij

0

, p̂0(t) = 1− p̂1(t) . (15)

The shape estimation algorithm described in this section will be denoted as
EM Robust Active Shape Model (EM-RASM).

4 Experimental Evaluation

This section shows examples and statistical results of the EM-RASM method
applied to the segmentation of the endocardium of the left ventricle in ultrasound
images.

In all the tests, the model was initialized with the average shape x̄ (i.e.,
b = 0). The initial guess for the transformation parameters was obtained by
aligning the average shape x̄ with a contour obtained by human input using the
standard least squares method. The initial guess for the models probabilities was
p0 = p1 = 0.5. We found no evidence suggesting that the initial values for these
probabilities significantly changed the output of the algorithm.

In this work, the observation points were obtained by searching for edge points
along lines orthogonal to the contour at each model point. The feature detection
algorithm used was a matched filter designed for edge detection (see [14], Section
5.2). This detector convolves the intensity profile along each search line with an
edge operator. Edge points correspond to the maxima of the filtered signal that
can be detected by applying thresholding followed by non-maximum suppression.
The threshold allows us to modify the sensitivity of the edge detector, which
may depend on the application. The length of the search line is also application-
dependent since it depends on the uncertainty associated to the contour.

The standard ASM [1] performs a similar search method, but the observation
points correspond to the strongest edge along each search line, without guaran-
teing that they belong to the object boundary. Consequently, the total number
of detected observation points is typically greater in the EM-RASM approach.

4.1 Performance Measures

The segmentations were evaluated by comparing the obtained contours with the
true object boundary (ground truth). The accuracy of the segmentations were
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quantitatively determined by using the Dice coefficient [15], and the average
distance of each model point to the ground truth. The former metric measures
the agreement between two contours as follows. Let R1 be the region delimited
by the first contour and R2 the region delimited by the second contour. The
Dice coefficient is computed as follows

D(R1, R2) = 2
A(R1 ∩R2)

A(R1) +A(R2)
, (16)

where A(·) denotes the area of the region and ∩ denotes the intersection. A Dice
coefficient of 1 means there is a perfect match between the two contours and a
value of 0 means the corresponding regions do not even overlap.

4.2 Left Ventricle Segmentation

We applied the EM-RASMmethod in the segmentation of the left ventricle in 2D
ultrasound image sequences. The dataset is composed of five 2D sequences (five
different patients), each with 16-20 frames. The shape model was trained using
medical annotations of the left ventricle contours (ground truth). Each training
example was obtained by resampling, in arc-length, the medical contours with
a fixed number of points from the bottom left to the apex (top) and from the
bottom right to the apex. We tested the proposed algorithm and the standard
ASM using a leave-one-sequence-out scheme, i.e., learning the shape model with
four sequences and testing in a fifth, and repeating this for each test sequence.

As previously mentioned, the initial guess for the transformation parameters
was obtained by aligning the average contour x̄ with a contour obtained by
human input using the standard least squares method. A different human input
contour was used for each test sequence, and the resulting initial guess was used
in all the frames of the sequence (i.e., we did not propagate the contours from
one frame to the next).

Table 1. Performance statistics for the segmentation of the LV: average value and
standard deviation

ASM EM-RASM
Dice coefficient 0.78 (0.06) 0.88 (0.04)
Average distance 20.4 (4.6) 10.3 (3.0)

Figure 1 (top) shows four examples of the segmentation obtained with EM-
RASM and with the standard ASM. In all the examples, a large number of
the detected observations (red dots) were outliers. The figure shows that the
EM-RASM performed better than the standard ASM and was able to fit the
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Fig. 1. Segmentation of the left ventricle in ultrasound images. The green dashed line
shows the ground truth and the blue lines correspond to the estimated contour. The
red dots represent the detected observations in the last iteration.

LV boundary, whereas the contour obtained using the standard ASM was ham-
pered by the outliers. Statistical results are presented in Table 1 and in the
boxplots of Figure 2, showing that the EM-RASM method, leads to a significant
improvement in the segmentation accuracy.
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Fig. 2. Boxplots of the error metrics for the segmentation of the left ventricle in ultra-
sound images (the average distance is measured in pixels)

5 Conclusion

This paper combines active shape models (ASM) with robust estimation of the
model pose and deformation using an outlier model. The estimation of the model
parameters is achieved using the EM method, that assigns confidence degrees
(weights) to each observation and take confidence degrees into account during
the estimation of the model parameters. We show that this approach is robust
in the presence of outliers since outlier observations tend to receive confidence
degrees close to zero and have a small influence on the model estimates.

Future work should focus on extending the proposed framework to more re-
liable observations, such as edge strokes [12]. Since edge points along the same
edge often belong to the same object in the image, the computation of the weights
associated to observations can be improved. The use of application-specific fea-
tures is another direction to be explored.
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