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We present a supervised learning algorithm for estimation of generic
input-output relations in a real-time, online fashion. The proposed
method is based on a generalized expectation-maximization approach
to fit an infinite mixture of linear experts (IMLE) to an online stream of
data samples. This probabilistic model, while not fully Bayesian, can ef-
ficiently choose the number of experts that are allocated to the mixture,
this way effectively controlling the complexity of the resulting model.
The result is an incremental, online, and localized learning algorithm
that performs nonlinear, multivariate regression on multivariate outputs
by approximating the target function by a linear relation within each ex-
pert input domain and that can allocate new experts as needed. A distinc-
tive feature of the proposed method is the ability to learn multivalued
functions: one-to-many mappings that naturally arise in some robotic
and computer vision learning domains, using an approach based on a
Bayesian generative model for the predictions provided by each of the
mixture experts. As a consequence, it is able to directly provide forward
and inverse relations from the same learned mixture model. We conduct
an extensive set of experiments to evaluate the proposed algorithm per-
formance, and the results show that it can outperform state-of-the-art
online function approximation algorithms in single-valued regression,
while demonstrating good estimation capabilities in a multivalued func-
tion approximation context.

1 Introduction

Online and incremental learning algorithms that can efficiently deal with
high-dimensional streams of data have become increasingly required in
the robotics community. As humanoid robots evolve and become more
complex, their sensorimotor relations becomemore difficult to understand,
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leading to situations where analytical models fail to provide accurate ap-
proximations of these sensorimotor maps. These situations range from lack
of knowledge of certain hard-to-measure physical parameters (e.g., friction)
to highly nonlinear physical interactions, such as actuator nonlinearities
and unmodeled mass distributions (Peters & Schaal, 2006; Nguyen-Tuong
& Peters, 2008). Resorting to modern learning techniques is, in these cases,
the only way to provide these systems with the necessary representation
capability. Approaches such as neural networks (Bishop, 1995), memory-
based learning (Hastie & Loader, 1993; Atkeson, Moore, & Schaal, 1997),
support vector regression (SVR) (Smola & Schölkopf, 2004) and gaussian
processes regression (GPR) (Rasmussen & Williams, 2006), among many
others, have been successfully applied to robotic learning tasks in the past
few decades.

Many of these learning techniques, however, are not suitable when we
desire to achieve a continuous and autonomous operation, such that in a
biologically plausible way, the robot continuously learns and adapts as it
interacts with the surrounding environment. In this setup, an offline learn-
ing phase does not exist. As a consequence, online learning algorithms are
needed that can keep their computational demands low in the presence of
potentially very large sensorimotor spaces to explore. This rules out many
state-of-the-art algorithms like SVR and GPR: these methods fit nonlinear
functions globally and require, in their original form, the presence of all
training points in memory and a computational effort that grows very fast
with the increasing number of samples to process. Other methods, like neu-
ral networks, can suffer from slow convergence anddestructive interference
when learning new data, a problem reported, for example, by Schaal and
Atkeson (1998). To overcome such computational burden, one can identify
two major trends: methods based on global, sparse approximations (Csató
& Opper, 2002; Ma, Theiler, & Perkins, 2003; Quiñonero-Candela & Ras-
mussen, 2005) try to keep a representative reduced set of training samples
to represent the function to approximate, while a second group of methods
is based on local approximations of the function to learn (Meeds & Osin-
dero, 2006; Nguyen-Tuong & Peters, 2008). The former class of methods
may become inadequate in the presence of large streams of online training
data as it tries to represent the function to learn in a global manner and is
particularly sensitive to shifts in the input data distribution.

Local methods have some strong support in neurobiology (see the ref-
erences in Atkeson et al., 1997, for instance), and their ability to perform
localized learning seems more suitable for an online operation: they often
can be seen as probabilisticmixtures ofmodels, where eachmodel describes
the function to be learned in a particular region of the input space. They
have their origins in the mixture of experts (ME) concept (Jacobs, Jordan,
Nowlan, & Hinton, 1991; Jordan & Jacobs, 1994), where competing experts,
assigned to different zones of the input space, are responsible for gener-
ating a corresponding output, being the final prediction produced by a
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gating network that combines their outputs. Particularly suited for real-
time operation, mixtures of local linear models avoid the need to keep all
training points in memory, getting a dramatic increase in the speed of op-
eration while possibly sacrificing the better approximation errors typical of
state-of-the-art GPmethods. Xu, Jordan, andHinton (1995) provided one of
the earliest examples of such mixture of linear experts architecture, trained
using the expectation-maximization (EM) algorithm (Dempster, Laird, &
Rubin, 1977); in its simplest form it is an offline algorithm, for which the
number of components—number of experts—must be set beforehand. Sato
and Ishii (2000) suggest an online version for the ME, based on the intro-
duction of a discount factor in the update of the sufficient statistics vector of
the mixture. Training, again, is done using the EM algorithm, although the
regularization and allocation of new experts are performed in a somewhat
heuristic way. LWPR (Vijayakumar, D’Souza, & Schaal, 2005) and XCSF
(Wilson, 2002) are two other popular nonprobabilistic algorithms based on
this mixture of linear experts concept. LWPR has been widely used for on-
line, real-time learning of robotic tasks; it uses a gradient descent on the
prediction error, based on a stochastic leave-one-out cross-validation algo-
rithm, to adapt the distance metrics of the receptive fields that partition
the input space. Within each receptive field, a linear relation from input to
output is obtained using an incremental partial least squares algorithm that
efficiently deals with redundant and high-dimensional input spaces. XCSF
updates the input distance metric of each model resorting to a steady-state
genetic algorithm, while each linear model is fitted using a recursive least
squares algorithm.

Unfortunately, almost all of the current state-of-the-art learning algo-
rithms fail to deal with multivalued functions; these relations, also known
asmultifunctions ormultimaps, are one-to-manymapswhere a single input
can be associated with one or more different outputs and can be thought
of as inverse relations for noninjective functions. They naturally arise in
some robotic domains, such as perceptual aliasing in reinforcement learn-
ing (Whitehead & Ballard, 1991) or robotic learning from demonstration
(Chernova & Veloso, 2008; Grollman & Jenkins, 2010). However, the most
evident example of multivalued functions comes from serial and parallel
robot kinematics that relate actuated joint space variables to the task space
configuration vector of the robot. The forward kinematics for serial robots
is straightforward to obtain and consists of a proper, single-valued function
of the joint variables, while the inverse kinematics for such type of manipu-
lators usually exhibits multiple joint space solutions for the same task space
variable, even for nonredundant robots, where the task and joint space have
the same dimension (Craig, 1989). The opposite situation occurs with par-
allel robots. Now, the same value of joint space variables may correspond
to different values of the task space vector. Inverse kinematics, however, is
usually easy to obtain and provides only a single solution for every task
space configuration (Merlet, 2006).
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For many supervised learning algorithms, this lack of ability to obtain
different multivalued predictions for the same input query point is a re-
sult of assuming the single-valued model during the training phase, either
explicitly or by allowing some sort of interference across multiple solu-
tion branches. As a consequence, many of the learning methods described
can provide only single-valued predictions, and no inverse predictions are
directly available from the learned forward model in its original form.
D’Souza, Vijayakumar, and Schaal (2001), for instance, used LWPR to learn
inverse kinematics for serial robots, but this approach, like other inverse
kinematics learning methods, obtains only a single, local inverse solution
by application of some sort of constraining or optimization criterion.

Three major approaches to the multivalued prediction problem that do
not rely on the single-valued model can be devised. The first approach
explicitly takes into account the multivalued model and mostly relies on
artificial neural networks, using recurrent neural networks (Tomikawa &
Nakayama, 1998), feedforward neural networks (Lee & Lee, 2001; Brouwer,
2004), or regularization networks that provided a direct algebraic rep-
resentation of the multivalued function to learn (Shizawa, 1994). These
implementations, however, were tested only in very low-dimensional toy
problems, leaving their performance inmore demanding problems an open
question.

Alternatively, as Ghahramani and Jordan (1994) suggested, unsuper-
vised learning algorithms can be applied to supervised learning tasks by
means of the conditional densities obtained from the learned joint density
function over both inputs and outputs. In principle, this makes it possible
to obtain multivalued predictions for both forward and inverse relations
(Lopes & Damas, 2007). Different techniques exist for learning the joint
density function of the data; the mixture model is a popular approach, for
which specializations exist such as the mixture of gaussians (Ghahramani
& Jordan, 1994) or the mixture of factor analyzers (Ghahramani & Hinton,
1997). One of themajor problemswith this type of model is the choice of the
number of components that constitute themixture; several extensions to the
mixture model exist that are capable of automatically selecting an appro-
priate number of components. The infinite mixture concept presented by
Rasmussen (2000), for instance, is a Bayesianmethod that assigns aDirichlet
process prior on the mixing proportions of the mixture, responsible for the
automatic generation of the correct number of components. This, however,
usually requires expensive offline computational training based onMarkov
chain Monte Carlo sampling methods, not suitable for real-time learning,
although some variational techniques can be used to accelerate the training
process. Other extensions rely on the EM algorithm, either using a greedy
approach to grow the mixture to an appropriate number of components
(Vlassis & Likas, 2002) or, using the opposite idea, starting with a large
number of components and, using carefully chosen priors, automatically
shrinking the number of components of the mixture in a Bayesian fashion
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(Figueiredo & Jain, 2002). Unsupervised learning, however, is a more dif-
ficult problem than its supervised counterpart and usually conducts to
worse results, as it ignores that joint data, apart from noise corruption, lie
in a lower-dimensional manifold. This is the main drawback of the unsu-
pervised approach to multivalued learning and prediction, as it typically
results in convergence to suboptimal solutions that do not take the problem
structure into account.

The last, and perhaps the most promising, approach to multivalued
learning is to consider an ME framework, where different experts are al-
lowed to share the same input space regions, while allocated to different
solutions in the output space. This is done, for instance, in Rasmussen and
Ghahramani (2002) and Meeds and Osindero (2006), using a mixture of
gaussian processes (GP) experts, or in Bishop (1994) and Qin and Carreira-
Perpinán (2008), resorting to the mixture density network (MDN). These
examples, however, fail to deal with two aspects of the learning process
that we would like to achieve. First, they are not originally designed for
online operation, assuming the training to be done in a batch, offline way.
The work of Grollman and Jenkins (2010) is based on the mixture of GP
experts of Meeds and Osindero (2006) and changes it to allow for an online
operation of the algorithm, using a sparse GPmodel for each of the experts;
however, a compromise between accuracy and speed reduces its flexibil-
ity, since training requires performing both a computationally expensive
Monte Carlo integration over particles and an equally expensive sparse
GP online training, which severely reduces the algorithm performance in
medium- to high-dimensional learning problems, as discussed in section 5.
MDN does not have such computational cost, but it requires the number of
experts to be set beforehand. Second, no explicit inversion of the relation to
be learned is available; this means that two distinct models, for inverse and
forward prediction, must be separately trained, for instance, when trying
to simultaneously learn direct and inverse kinematics.

The infinitemixture of linear experts (IMLE)proposed in this letter builds
on themixture of linearmodels concept to obtain an online, real-time super-
vised learning algorithm that is able to learn multivalued functions while
allocating experts to the mixture as needed, achieving, for single-valued
regression, performance at least comparable to state-of-the-art online learn-
ing methods like LWPR. It is, at its core, an infinite version of the model
for mixture of linear experts given by Xu et al. (1995) and Sato and Ishii
(2000), with a careful choice of priors for some of its parameters and the
adoption of a generalized EM approach that allows an online operation
based on the concepts present in Neal and Hinton (1999) and Cappé and
Moulines (2009) and the automatic allocation of experts to the mixture in
order to adapt to the complexity of the function to be learned. The training
procedure automatically rejects interference among different multivalued
function branches, and by considering simple linear local relations from in-
put to output, it is possible to easily obtain the inverse prediction from each
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local expert. The probabilistic model underlying the proposed algorithm is
described in section 2, and the training procedure is presented in section 3.
This is the first major contribution of this letter.

After the probabilistic model has been trained, an important question
that remains is how to generate a possibly multivalued set of predictions
for a given query data point. Qin andCarreira-Perpinán (2008), for instance,
use an MDN and obtain the set of modes for the resulting conditional dis-
tribution. We instead suggest a different approach, based on clustering the
individual expert predictions with a predictive probabilistic model that
relates multivalued solutions to individual expert predictions. This is the
topic of section 4, where we describe how to obtain forward and inverse
multivalued predictions for any query, given the current state of the IMLE
model. This topic is the second main contribution of this letter. Finally,
section 5 provides a large set of experimental evaluations of the proposed
algorithm, testing it in both single-valued and multivalued prediction situ-
ations. Section 6 provides the concluding remarks.

2 Probabilistic Model

The IMLE assumes the following generative model for a sample point
(zi, xi), where zi ∈ R

d is the input vector and xi ∈ R
D is the correspond-

ing output response:

xi|zi, wi j;� ∼N (µ j + � j(zi − ν j),� j), (2.1a)

zi|wi j;� ∼N (ν j,� j), (2.1b)

p(wi j;�) =
mj

M
, with M =

∞
�

k=1

mk. (2.1c)

Herewij denotes a latent or hidden indicator variable that equals 1 if data
point i was generated by linear model j and 0 otherwise, with

�

j wi j = 1

(sometimes we will use the shorthand notation wij to denote the event

wi j = 1, as in the above equations). These variables can be gathered, for

each i, in a binary vector wi whose jth component is equal to wij. The

parametermj indicates if expert j is activated, effectively contributing to the

mixture. It is equal to 1 if expert j is active and 0 otherwise. Each of the latent
indicator variables wij consequently has an associated probability of 1/M if

linear model j contributes to the mixture, where M is the total number of
active experts. This uniform probability distribution on the latent variables
is amore natural approach, in our opinion, to the online regression problem,
since fully learnedmixture coefficients dependheavily on the input training
data distribution. This can vary greatly in an online data acquisition setting.
Althoughwe use a probabilisticmixture representation, the ultimate goal of
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this model is to describe a mapping from inputs to outputs. In this context,
assigning the same importance to different parts of this mapping seems to
make more sense.

Given wij, input zi follows a normal distribution with parameters ν j
and � j, while output xi follows a linear relation from zi, with mean µ j,

design matrix � j, and diagonal covariance matrix � j, corresponding to

uncorrelated gaussian noise in x. Thismodel, apart the uniformdistribution
for wij, is similar to the one presented in Xu et al. (1995) and Sato and

Ishii (2000), where each expert j models a linear relation from input z to
output x in some region of the input domain, defined by input center ν j
and covariance � j, this way softly partitioning the input space among the
experts.

Unlike this previous work however, we define the following priors for
the parameters of the active experts in the mixture, for which mj = 1:

ν j|� j ∼N

�

ν0 j,
1

nν

� j

�

, (2.2a)

� j|�̄∼W−1(n��̄,n�), (2.2b)

� j(k)|� j(k) ∼N

�

�0 = 0,
� j(k)

n�

I

�

, (2.2c)

µ j|� j ∼N

�

µ0 j,
1

nµ

� j

�

, (2.2d)

� j(k)|�̄ ∼G−1
�n�

2
,
n�

2
ψk

�

, (2.2e)

and also define the following Bernoulli prior for mj:

mj ∼ Bern

�

1

j + 1

�

. (2.2f)

The prior on the activations mj imposes an increasing penalty on the

number of linear experts the learning phase tries to allocate. We detail this
in section 3.2. As for the remaining priors,W−1 and G−1 denotemultivariate
inverse-wishart and univariate inverse-gamma distributions, respectively.
� j(k) is the kth element of the diagonal of � j, while � j(k) corresponds to

the kth row of � j and µ j(k) is the kth element of µ j. Constants nν , n� , nµ,

n�, and n� determine the strength of the respective priors, ν0 j, �̄, µ0 j, �0,

and �̄, expressed as an equivalent number of “fake” data points. We choose
these distributions for convenience, since they are conjugate priors for the
observed data distribution. The purpose of �̄, the common elliptical prior
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on � j, is threefold: it introduces some regularization, so that � j always has

an inverse; it ensures that the experts’ input region shapes do not differ too
much from each other; and it prevents nonneighboring experts from com-
peting for the same data in the initial phase of the learning process of each
expert—a serious problem that occurs in ME models, referred to, for in-
stance, in Schaal andAtkeson (1998) and Vijayakumar, D’Souza, and Schaal
(2005), thus enforcing the principle of localized learning. The normal prior
on ν j, on the other hand, controls the degree of mobility of this parameter:

nν = 0 makes it dependent solely on the training data, while nν = ∞ leads
to a fixed center, as typically occurs in radial basis networks or in LWPR; the
prior on µ j has the same purpose. Finally, the inverse gamma prior on � j

defines a kind of average noise all experts share, while the prior �0 = 0 for
the rows of � j performs a coefficient shrinkage similar to ridge regression.

Its main purpose, however, is to impose a regularization mechanism in
order to make the matrix inversion required for the estimation of �; full
rank. Such prior introduces some bias in the expert prediction, and conse-
quently n� should be kept to a low value in order to make this undesired
effect negligible.

Diagonal matrices �̄ and �̄, with diagonal elements σk and ψk, respec-
tively, represent the prior knowledge for the common structure of � j and

� j. These values strongly depend on the specific map to learn, particu-

larly its characteristic input length scale and the output noise. We define
some vague hyperpriors on these matrices, here represented by scaled in-
verse chi-squared distributions, to avoid relying on such problem-specific
information:

σk ∼ Scale-Inv-χ2(nσ , σ0k), (2.3a)

ψk ∼ Scale-Inv-χ2(nψ,ψ0k), (2.3b)

with σ0k and ψ0k standing, respectively, for the kth diagonal elements
of �0 and �0, diagonal matrices representing the initial guesses for �̄

and �̄. Free parameters nσ and nψ control these hyperpriors’ strength:
setting nσ = 0 and nψ = 0, we get the uninformative priors p(σk) ∝ 1/σk
and p(ψk) ∝ 1/ψk, respectively. The (infinite) parameter vector � that de-
fines this mixture, to be learned from the data, is consequently given by
� = {�̄, �̄} ∪ {ν j,� j,µ j,� j,� j,mj}(1≤ j≤∞), and the graphical model corre-

sponding to the probabilistic model is shown in Figure 1.

3 Training

Given Z, a collection of input training data {z1, z2, . . . , zN}, and X , the
corresponding output, we would like to obtain the posterior distribution
p(�|Z, X ) and use it to obtain p(x|zq, Z, X ) and p(z|xq, Z, X ), respectively,
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nψ

Ψ0Σ̄

νj

Σj

mj

µj

Ψj

Λj

Ψ̄

wij

z
j
i x

j
i

j = 1 . . .∞

i = 1 . . .N j

Figure 1: Graphical model representing the infinite mixture of linear experts.
Lightly shaded rectangular boxes represent fixed parameters. Observed data

points are grouped according to their label: z
j
i and x

j
i represent the ith data

point generated by expert j.

the forward and inverse posterior predictive distributions. This is, however,
intractable without also considering the latent variables W = {w1,w2, . . . ,

wN}. Although several variational orMonteCarlo Bayesianmethods exist to
approximate p(�|Z, X ), in this letter, we use the EM algorithm (Dempster
et al., 1977) to find amaximumaposteriori (MAP) estimate for the unknown
� due to its easy adaptation to online learning schemes.

The log likelihood of parameter vector �, given the complete training
data {Z, X ,W }, is given by

l(�; Z, X ,W ) = log

�

p(�)

N
�

i=1

p(xi|zi,wi;�)p(zi|wi;�)p(wi;�)

�

,

(3.1)

where p(�) encompasses the priors defined in equations 2.2 and 2.3.
The probabilities appearing in equation 3.1 are given by p(xi|zi,wi;�) =
�∞

j=1 p(xi|zi, wi j;�)
w
i j , p(zi|wi;�) =

�∞
j=1 p(zi|wi j;�)

w
i j , and p(wi;�) =

�∞
j=1 p(wi j;�)

w
i j . The application of the EM algorithm to this log likelihood

produces a sequence of estimates �̂t by alternating between the expectation
step (E-step), which calculates the Q-functionQ(�, �̂t ), the conditional ex-
pectation of l(�; X , Z,W ) with respect to the latent variables W , for the
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current value of �̂t , and the maximization step (M-step), that finds the new

value of �̂t+1 given the previous expectation.

3.1 E-Step. The log likelihood is clearly linear with respect to the latent
variables wij, and hence it suffices, to obtain Q(�, �̂t ), to calculate hti j =

E[wi j|X , Z; �̂t], the estimate of the posterior probability that data point

i was effectively generated by expert j, also called the responsibility that
expert j has generated data point i. Since wij depends on only xi and zi, we

have, using Bayes’ theorem,

hti j ≡E[wi j|X , Z; �̂t] = E[wi j|xi, zi; �̂t] = p(wi j|xi, zi; �̂t )

=
p(xi|zi, wi j; �̂t )p(zi|wi j; �̂t ) m̂t

j
�∞

k=1 p(xi|zi, wik; �̂t )p(zi|wik; �̂t ) m̂t
k

. (3.2)

As a result, the Q-function becomes

Q(�, �̂t ) ≡EW [l(�; X , Z,W ); �̂t] = log p(�) +

+

N
�

i=1

∞
�

j=1

hti j[log p(xi|zi, wi j;�)

+ log p(zi|wi j;�) + log p(wi j;�)]. (3.3)

The complete data log likelihood in equation 3.1 belongs to the exponen-
tial family, and thus the Q-function depends on only training data through
St , the expected value of the sufficient statistics vector, given the observed

data and the current value of the parameter vector �̂t . For the mixture
model, equations 2.1 and 2.2, it comprises the terms Sth j, Sthz j, Sthx j, Sthzz j,
Sthxx j, and Sthxz j, for 1 ≤ j ≤ ∞, defined as follows:

Sth j =
�N

i=1 s
t
h j(i) sth j(i) = hti j,

Sthz j =
�N

i=1 sthz j(i) sthz j(i) = hti jzi,

Sthx j =
�N

i=1 sthx j(i) sthx j(i) = hti jxi,

Sthzz j =
�N

i=1 sthzz j(i) sthzz j(i) = hti jziz
T
i ,

Sthxz j =
�N

i=1 sthxz j(i) sthxz j(i) = hti jxiz
T
i ,

Sthxx j =
�N

i=1 sthxx j(i) sthxx j(i) = hti jxix
T
i . (3.4)
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We also define sti = {sth j(i), sthz j(i), sthx j(i), sthzz j(i), sthxz j(i), sthxx j(i)}(1≤ j≤∞)

for convenience, so that St =
�N

i=1 sti .
Performing the above E-step requires the availability of all observed

data, which of course is not admissible during online training. Neal and
Hinton (1999) present a view of the standard EM algorithm that allows for
partial E-steps to be implemented, resulting in an incremental version of
EM. It consists, at iteration t + 1, of performing an update of the sufficient
statistics using solely some data point i, according to St+1 = St + st+1i − sti ,
instead of the whole data set as in equations 3.4. For a continuous stream
of data, each point is visited and used only once, and thus its index i can be
associated with corresponding iteration number t. The partial E-step can be
written in this case as

St+1 = St + st+1, (3.5)

where st+1 ≡ st+1i for data point i = t + 1. We follow a more recent result by
Cappé andMoulines (2009),wheremore general conditions for convergence
of online EM algorithms are provided and where the following E-step is
suggested:

S̄
t+1

= S̄
t
+ γt+1(s

t+1 − S̄
t
), (3.6)

where γt is a step size. Setting γt = t−α , for α ∈ (0.5, 1], guarantees the
algorithm convergence under some mild assumptions, while introducing
a time decay in the sufficient statistics that may be beneficial when slowly
time-varying data are presented to the algorithm. Such a situation may
typically occur within the context of robotic applications. Equation 3.6 can

be reformulated if we use an equivalent set of sufficient statistics, St = S̄
t
/γt ,

then becoming

St+1 = λt+1S
t + st+1, where λt+1 = γt

�

γ −1
t+1 − 1

�

.

This is the decaying statistics formulation presented in Sato and Ishii (2000).
Setting λt = 1 corresponds to having γt = t−1, an accumulation of the suffi-
cient statistics with no forgetting over the time, equivalent to equation 3.5.

3.2 M-Step. The M-step picks the parameter vector � that maximizes
the current value of the Q-function. We can use the fact that most of the
priors are conjugate to the data likelihood to arrive at the followingnewesti-
mates (see the appendix fordetails) for j ∈ Mt ,whereMt = { j ∈ N : m̂t

j = 1}

is the set containing the experts effectively contributing to the mixture at
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iteration t:

ν̂
t+1
j =

Sthz j + nνν0 j

St
h j

+ nν

, (3.7a)

�̂
t+1

j =
Sthzz j − (Sth j + nν )ν̂

t+1
j ν̂

t+1T

j + n�
ˆ̄�t+1 + nνν0 jν

T
0 j

St
h j

+ n� + d + 2
, (3.7b)

�̂
t+1

j =

�

Sthxz j −
Sthx j + nµµ0 j

St
h j

+ nµ

(Sthz j)
T

� �

n�I+ Sthzz j −
Sthz j(S

t
hz j)

T

St
h j

+ nµ

�−1

,

(3.7c)

µ̂
t+1
j =

Sthx j + nµµ0 j

St
h j

+ nµ

+ �̂
t+1

j

�

ν̂
t+1
j −

Sthz j

St
h j

+ nµ

�

and (3.7d)

�̂
t+1

j =

n�
ˆ̄�t+1+diag{Sthxx j−�̂

t+1

j (Sthxz j)
T−(µ̂

t+1
j −�̂

t+1

j ν̂
t+1
j )(Sthx j+nµµ0 j)

T}

n� + St
h j

+ 2
.

(3.7e)

Diag{·} denotes a diagonal matrix equal to the diagonal of its argument.
For the common input variance parameter �̄, however, we must obtain the

partial derivatives of Q(�, �̂t ) with respect to each σk and equate them to
zero, getting

σ̂ t+1
k =

�

Mt+1

2
−

n
σ
+1

n
�

�

+

�

�

Mt+1

2
−

n
σ
+1

n
�

�2
+ 2

n
σ

n
�

σ0k
�

j∈Mt+1 �̂
−1

j (k)t+1

�

j∈Mt+1 �̂
−1

j (k)t+1
,

(3.7f)

where �̂
−1

j (k)t+1 denotes the kth element of the diagonal of the inverse of

�̂
t+1

j andMt corresponds to the effective number of experts in the mixture

at iteration t, that is, Mt =
�∞

j=1 m̂
t
j. When we use the same procedure, a

similar result holds for �̄:

ψ̂ t+1
k =

�

Mt+1

2
−

n
ψ
+1

n
�

�

+

�

�

Mt+1

2
−

n
ψ
+1

n
�

�2

+ 2
n

ψ

n
�

ψ0k

�

j∈Mt+1 �̂
−1

j (k)t+1

�

j∈Mt+1 �̂
−1

j (k)t+1
.

(3.7g)
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Online Learning of Single- and Multivalued Functions 13

Equations 3.7b and 3.7f, on one hand, and 3.7e and 3.7g, on the other,
are coupled, without an explicit closed-form solution for the parameters
being estimated. To deal with this issue, the maximization step is relaxed,
and each of these parameters is maximized individually, conditionally on
the others remaining fixed. This corresponds to the expectation conditional
maximization algorithm , a particular case of the generalized variant of the
EM algorithm, where the M-step is modified to an update that improves
the Q-function without necessarily maximizing it (Dempster et al., 1977).
Solving for the values of m̂t+1

j that maximize the likelihood is, however

intractable, as it requires evaluating all the infinite combinations of values
for mj and picking the one that maximizes the Q-function.

3.2.1 Growing the Mixture. Activations mj define the number of experts

constituting the currentmixture andplay a key role in defining the complex-
ity of the global probabilistic model. Choosing the appropriate number of
components for a mixture is a difficult problem, and several methods have
been proposed to deal with it. Among them, Bayesian methods provide
an elegant framework that automatically generates a trade-off between the
fitness of the data to themodel and the complexity of the samemodel.More-
over, the infinite mixture models based on the Dirichlet process nonpara-
metric prior for the mixing coefficients allow for generative models where
the number of components of the mixture is not defined a priori (Antoniak,
1974; Rasmussen & Ghahramani, 2002; Meeds & Osindero, 2006).

Unfortunately, training these infinite mixtures usually requires either
computationally expensive Markov chain Monte Carlo sampling methods
or variational approaches that typically rely on some sort of truncation that
imposes a bound on the admissible number of components for the mixture.
Furthermore, the online operation we are trying to achieve in this work im-
poses some additional difficulties. In an offline setting, Bayesianmethods in
principle can efficiently grow or annihilate mixture components, but when
it is operating online, the full set of trainingpoints is no longer available, and
decisions concerning the allocationor removal of components of themixture
must be made, resorting only to the most recently available training points
and the current mixture state, a far more demanding learning challenge.
Sato (2001) derives an online variational Bayesian algorithm for learning
mixture models, but it requires the maintenance of a parallel hypothesis
about the number of components that can easily become too computa-
tionally expensive. Some recent work also views the variational Bayesian
learning model under an online perspective but is based on nondetermin-
istic approaches based on Gibbs sampling (Wang & Blei, 2012) or require
processing the training points in smaller batches of data (Gomes, Welling,
& Perona, 2008). For all these methods, an adequate computational speed
that allows the processing of hundreds of samples per second, as required
for online learning schemes for robotic applications, is yet to be shown.
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In contrast to Bayesian methods, it is more difficult to assess an optimal
value for the number of components of a mixture when using an EM algo-
rithm for training. A well-known drawback of EM-based techniques is the
fact that the maximized observed data likelihood will never decrease when
new components are added to the mixture. This allows the derivation of
a broad class of criteria to decide when to add new components, ranging
from only allowing the existence of a single component, equivalent to per-
forming a global linear regression on the data, to the activation of a new
one for each data point processed, which would correspond to a memory-
based learning approach, where predictions would be made resorting to all
available training data. As a consequence, most EM deterministic methods
impose some kind of penalty over the number of mixture components dur-
ing optimization, such asAkaike’s information criterion (AIC), the Bayesian
inference criterion (BIC), or the minimummessage length criterion (MML),
to name just a few. A comprehensive comparison and review of these kind
of penalty methods can be found in McLachlan and Peel (2000).

In the probabilistic model given in equations 2.1 and 2.2, the prior dis-
tribution on mj plays the role of such penalty, making a high number of

experts increasingly less probable. Changing, at iteration t, the value of a
particular parameter m̂ j from 0 to 1 will affect only the Q-function in equa-

tion 3.3 through the term log p(�), as the values hti j will still be equal to 0

for all i and this particular value of j, following equation 3.2. This results in
a decrease of the Q-function value every time a new expert is activated in
the M-step. In the absence of the prior, equation 2.2f, the Q-function value
would not change.

Although momentarily decreasing the Q-function, activating a new ex-
pert can nevertheless increase the observed data likelihood in the subse-
quent iteration. Of course, under the online paradigm followed in this letter,
it is not possible to calculate the likelihood of the entire observed data, as
each training point is discarded after the corresponding update of the mix-
ture sufficient statistics. However, at the end of M-step, we can evaluate the
log likelihood of the next training point (xt+1, zt+1) under the new parame-
ter vector �̂t+1. This log likelihood is given, considering also the priors on

�, by Lt+1(�̂t+1) = log[p(xt+1, zt+1|�̂
t+1)p(�̂t+1)], where p(xt+1, zt+1|�̂

t+1)

is obtained from the complete data likelihood by marginalizing out the
latent variables wij:

p(xt+1, zt+1|�̂
t+1) =

∞
�

j=1

p(xt+1, zt+1|w(t+1) j, �̂
t+1)p(w(t+1) j|�̂

t+1)

=
1

Mt

Mt
�

j=1

p(xt+1|zt+1, �̂
t+1
j )p(zt+1|�̂

t+1
j ).
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In this expression, �̂t+1
j refers to the current estimates of the parameters

associated with expert j. If, alternatively, expert j+ = Mt + 1 is activated
at the end of the M-step, by making m̂ j+ = 1 and initializing µ0 j+ and

ν0 j+ to xt+1 and zt+1, respectively, we obtain the alternative log likelihood

Lt+1(�̂t+1
+ ) = log[p(xt+1, zt+1|�̂

t+1
+ )p(�̂t+1

+ )], where �̂t+1
+ is a changed ver-

sion of parameter vector �̂t+1, with expert j+ activated and where the next
training point likelihood is now given by

p(xt+1, zt+1|�̂
t+1
+ )

=

∞
�

j=1

p(xt+1, zt+1|w(t+1) j, �̂
t+1
+ )p(w(t+1) j|�̂

t+1
+ )

=
Mt

Mt + 1
p(xt+1, zt+1|�̂

t+1) +
1

Mt + 1
p(xt+1, zt+1|�̂

t+1
j+ ).

Activating expert j+ will increase the log likelihood of the next training

point if Lt+1(�̂t+1
+ ) > Lt+1(�̂t+1), and this can be used as a criterion for

deciding when to activate a new expert. This approach, however, will often
lead to too many local models being allocated. Instead we take a statistical
approach of activating a new expert only when strong evidence supports
the alternative parameter vector �̂t+1

+ against the null hypothesis �̂t+1. This
later parameter vector can be seen as a special case of �̂t+1

+ , with one less
mixture component. This suggests using a likelihood ratio test to compare

them, where the test statistic T = 2Lt+1(�̂t+1
+ ) − 2Lt+1(�̂t+1) approximately

follows a chi-squared distribution with degrees of freedom equal to the
difference of free number of parameters between �̂t+1

+ and �̂t+1 (Kendall,
Stuart, Ord, Arnold, & O’Hagan, 1998). At the time of activation of a new
expert j+, only µ0 j+ and ν0 j+ are effectively defined, so the change in the
number of free parameters is equal to d + D. Let X 2(p0, d +D) be the
critical value of a chi-squared distribution with d + D degrees of freedom,
corresponding to the number of free parameters introduced in the mixture:
a new expert should be activated, according to the likelihood ratio, if, for a
significance value p0,

2Lt+1(�̂t+1
+ ) − 2Lt+1(�̂t+1) > X 2(p0, d +D).

Since changing mj+ affects only p(�̂t+1
+ ) through the term p(mj+), given

by equation 2.2f, we have p(�̂t+1
+ )/p(�̂t+1) = 1/(Mt + 1), and the above



NECO_a_00510-Damas neco.cls August 1, 2013 16:19

U
nc
or
re
ct
ed
P
ro
of

16 B. Damas and J. Santos-Victor

expression results in activating a new expert j+ when

Mt
�

j=1

p(xt+1, zt+1|�̂
t+1
j )≤

1

Mt+1
Mt − e

−0.5X 2 (p
0
,d+D)

Mt+1

·
e−0.5X

2(p
0
,d+D)

Mt + 1

·p(xt+1, zt+1|�̂
t+1
j+ ), (3.8)

where expert j+ parameters are equal to they prior values (expert j+ has not
yet accumulated any sufficient statistics). Since ν0 j+ = zt+1 and µ0 j+ = xt+1,

this results in

p(xt+1, zt+1|�̂
t+1
j+ ) =

1
�

(2π)D| ˆ̄�t+1|

·
1

�

(2π)d| ˆ̄�t+1|

.

The right side of equation 3.8 introduces an increasingly penalty on the
activation of new experts as the value ofM increases. Adjustable parameter
p0 can regulate the propensity to activate new experts: the lower its value,
the higher the critical value of the chi-squared distribution will be, making
the experts’ activation criterion harder to be met, resulting in fewer com-
ponents in the mixture. In a general way, equation 3.8 tells us that a new
expert should be activated when the next acquired training point is poorly
explained by the current probabilistic model. This is a sensible approach
to mixture grow in online algorithms. LWPR, for instance, creates a new
linear model each time an input training point zi fails to activate the nearest
receptive field by more than a given threshold. Of course, when learning
multivalued functions, an activation scheme must take into account both
the input and output part of the training point, as occurs in equation 3.8.

3.2.2 HandlingOutliers. Equation 3.8 canbeviewedunder adifferent and
equivalent perspective, if a special class w0 is considered, corresponding to
outliers that are not generated by any of the currently activated experts,
with an improper constant distribution

p(x, z|w0,�) =
1

�

(2π)D| ˆ̄�t+1|

·
1

�

(2π)d| ˆ̄�t+1|

e−0.5X
2(p

0
,d+D) (3.9)

and a prior distribution p(w0|�) = 1/(M+ 1)2. Then the probability that
a training point is an outlier generated by w0, given the current mixture
parameters, follows from Bayes’ rule:

p(w0|x, z, �̂) =
p(x, z|w0, �̂)p(w0|�̂)

�Mt

j=1 p(x, z|�̂ j)p(wi j|�̂) + p(x, z|w0, �̂)p(w0|�̂)
.
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This posterior probability is dominant over the posterior probabilities for

the ME experts if p(w0|xi, zi, �̂) > 0.5. This happens only at the end of
iteration t and for a new point (xt+1, zt+1) if

Mt
�

j=1

p(xt+1, zt+1|�̂
t+1
j ) ≤

1

Mt + 2
·

1
�

(2π)D| ˆ̄�t+1|

·
1

�

(2π)d| ˆ̄�t+1|

e−0.5X
2(p

0
,d+D).

This result is very similar to equation 3.8, since the first factor on right side
of equation 3.8 quickly approaches 1 as the number of active experts M
increases.

The probabilistic outlier model p(x, z|w0,�) in equation 3.9 depends on
the current estimates for output noise �̄ and input length-scale �̄. This is
a better approach than considering a fixed threshold, as tuning this latter
parameter would require some problem domain-specific knowledge. If we

consider a newly activated, not-yet-trained expert (for which �̂ j = ˆ̄�, �̂ j =

0 and �̂ j = ˆ̄�), p(x, z|w0, �̂) can be seen as the evaluation of the probability

density of the expert at a point (x, z) that lies over the equidensity contour
that encircles the region, centered at (µ̂ j, ν̂ j), corresponding to a 1− p0
probability.

The results above show us that the mechanisms for activating a new
expert or recognizing an outlier are essentially the same and correspond to
identifying training points poorly explained by the current mixture. How
do we know, then, if a training point satisfying equation 3.8 is an outlier
or, alternatively, an indication that a new expert is needed in the corre-
sponding region of the input-output space? This is challenging problem.
For single-valued regression, outliers can be detected as training points
that have enough support from the current model in the input space, while
presenting a large deviation from it in the output space. The same, how-
ever, does not happen in multivalued regression, where such a situation
may simply correspond to a yet unseen branch of the multivalued function
being learned. Furthermore, the online assumption does not allow us to
look at the whole training set, where identifying outliers in principle would
be made easier by searching for isolated points.

This question can be answered under the assumption that the training
data are temporally correlated, as often is the case in online learning. In
this situation, a training point will have a high probability of being poorly
explained by the current mixture if the same occurred with the previous
point. In contrast, the same does not happen with statistically independent
outliers. Observing two consecutive training points satisfying equation 3.8
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is then more likely to be caused by a lack of fit of the points to the current
model than the occurrence of two consecutive outliers. In such an event,
we decide to activate a new expert.

3.3 Computational Complexity. Learning with IMLE is very fast. For
a new observation (zt, xt ), a complete update of the mixture parameters
consists of (1) deciding whether a new expert should be activated in equa-
tion 3.8; (2) assigning responsibilities hij to active experts using equation

3.2 (E-step); (3) updating the sufficient statistics (E-step, equation 3.6); and

(4) obtaining the new value for �̂ (M-step, equations 3.7). All these calcula-
tions have a computational complexity of O(Md(d +D)), since the matrix
inversions required in this process can be efficiently performed using the
Sherman-Morrison formula to perform a rank 1 update for these quantities.
The computational complexity of a complete update of IMLE parameters is
consequently linear in D andM, the number of experts, and quadratic in d,
the number of input dimensions, making it directly comparable to the state-
of-the-art LWPR in terms of computational complexity per training point.
Like LWPR, this complexity can be made linear in d if the input distance
metrics � j are constrained to be diagonal.

4 Prediction

Under a full Bayesian paradigm, a forward prediction for an input query
zq is represented by a distribution p(x|zq, X , Z), where the dependence on

learned mixture parameters and latent variables is marginalized out. The
same occurs in inverse prediction, where now p(z|xq, X , Z) is considered.

However, these posterior distributions cannot be analytically calculated for
most probabilistic models. Instead, EM-based learning algorithms will nor-

mally provide predictions based on �̂, the point estimate for the parameter
vector being learned. For IMLE forward prediction, this results in

p(x|zq, �̂) =
�

j∈M

wx
j (zq)p(x|zq, w j, �̂), (4.1)

where

wx
j (zq) = p(w j|zq, �̂) =

p(zq|w j, �̂)
�

k∈M p(zq|wk, �̂)
,

andwherewj andwk are a shorthand forwq j = 1 andwk j = 1; p(x|zq, w j, �̂)

and p(zq|w j, �̂) follow from equation 2.1, with � replaced by its estimate.
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Inverse prediction, on the other hand, leads to

p(z|xq, �̂) =
�

j∈M

wz
j (xq)p(z|xq, w j, �̂), (4.2)

where now we have

wz
j (xq) = p(w j|xq, �̂) =

p(xq|w j, �̂)
�

k∈M p(xq|wk, �̂)
.

Distributions for p(z|xq, w j, �̂) and p(xq|w j, �̂) can be obtained from the

joint input-output distribution p(y|w j, �̂), where yT = [zT xT ]. The joint

distribution given wj is normal, with mean ȳTj = [νTj ,µ
T
j ] and covariance

matrix

R
y
j =

�

� j � j�
T
j

� j� j � j + � j� j�
T
j

�

.

From this result, it immediately follows that

z|xq, w j; �̂ ∼N (ẑ j(xq), Rz
j),

xq|w j; �̂ ∼N (µ̂ j, �̂ j + �̂ j�̂ j�̂
T

j ),

where ẑ j(xq) and Rz
j are given, respectively, by

ẑ j(xq) = ν̂ j + Rz
j �̂

T

j �̂
−1

j (xq − µ̂ j) and

Rz
j = (�̂

−1

j + �̂
T

j �̂
−1

j �̂ j)
−1.

The same reasoning for obtaining an inverse probability distribution
from the IMLEmodel can also be used to producemore general predictions.
Assuming the joint vector y to comprise a query part yq and an answer part

ya, such thaty = yq ∪ ya,we can easily derive p(ya|yq, w j, �̂), for each expert

j, by conditioning the joint distribution with respect to yq.

Although not being able to provide a complete Bayesian forward es-
timate, IMLE probabilistic model conjugacy relations make it possible to
marginalize out some of the learned parameters. This fact allows us to
improve equation 4.1, by incorporating the uncertainty in these parame-
ters in the final prediction. Given the training data, experts’ activations
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m̂ = {m̂ j}(1≤ j≤∞), and current predictions for �̄ and �̄, we now have

p(x|zq, X , Z, ˆ̄�, ˆ̄�, m̂) =
�

j∈M

wx
j (zq)p(x|zq, w j, St, ˆ̄�) (4.3)

and

wx
j (zq)=

p(zq|w j, St, ˆ̄�)p(w j|m̂)

�∞
k=1 p(zq|wk, St, ˆ̄�)p(wk|m̂)

=
p(zq|w j, St, ˆ̄�)

�

k∈M p(zq|wk, St, ˆ̄�)
, (4.4)

where we summarize the dependence on training data (X , Z) using the

sufficient statistics St ; distributions for p(x|zq, w j, St, ˆ̄�) and p(zq|w j, St, ˆ̄�)

are derived in the appendix and are given by equations A.5 and A.1, re-

spectively. To keep the notation simple we will use �̂∗ to refer to either �̂

or (St, ˆ̄�, ˆ̄�, m̂) in the rest of this section, depending on whether forward or
inverse prediction is considered.

The conditional densities, equations 4.3 and 4.2, can be understood as
a weighted mixture of M normal densities, each corresponding to a point
estimate provided by a different expert, together with an uncertainty value,
and where the mixture weights are given by the posterior probabilities that
the query point was generated by each expert. A single-valued forward
prediction, together with an associated uncertainty, can be obtained from
equation 4.3 by taking its mean and variance,

x̂ =E[x|zq, �̂
∗] =

�

j

wx
j x̂ j and (4.5)

R̂ =V[x|zq, �̂
∗] =

�

j

wx
jR

x
j +

�

j

wx
j (x̂ j − x̂)(x̂ j − x̂)T , (4.6)

where x̂ j and Rx
j are, respectively, the mean and variance of p(x|zq, w j, �̂

∗),

and where from now on, we drop the dependence on zq for notational con-

venience. This is the approach followed in LWPR, and it works reasonably
well under the single-valued hypothesis, although it tends to overestimate
the true variance of the data due to the cross-variance between expert esti-
mates, given by the last term in equation 4.6. However, when multivalued
functions are considered, this approach will be able to generate only a sin-
gle estimate, together with a large value of the associated uncertainty. As
reported, for instance, by Ghahramani and Jordan (1994), merging together
the distinct solutions provided by each expert might result in a poor overall
estimate for a nonconvex solution space, where the weighted mean of dif-
ferent experts’ predictionsmight itself be far from the true value to estimate.
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This is clearly unacceptable. Searching for all the modes of the underlying
distribution (Carreira-Perpiñán, 2000), on the other hand, can introduce
many low-weight spurious modes, corresponding to the contributions of
distant experts. In this case, some kind of filtering must be done to remove
them. Even after removing low weighted components, the topography of
the mixture can be complex in prediction spaces with more than one di-
mension, as analyzed by Ray and Lindsay (2005), where, counterintuitively,
there may exist more modes than mixture components. Consequently, in
order to obtain multivalued forward predictions, we must deal with two
major issues: (1) how to identify the correct number of solutions for a given
query zq and (2) how to group and merge the experts’ predictions accord-

ingly. These are the topics of the following sections. Although exemplified
by forward prediction, the concepts and techniques are exactly the same for
inverse, forward, or more general prediction.

4.1 Grouping Experts Predictions. If, for a query zq, the true number of

solutions Nsol is assumed to be known, estimating these solutions reduces
to the problem of clusteringM observations x̂ j intoNsol classes, where each

observation comes with an associated variance Rx
j and weight wx

j . To pro-

vide a Bayesian probabilisticmodel that relates experts’ predictions x̂ j to the

unknown multivalued solutions x̄k, for 1 ≤ k ≤ Nsol , and that additionally
takes Rx

j and wx
j into consideration, we propose the generative model

x j|s jk,� ∼ N (x̄k,� j/w
x
j ), (4.7)

where sjk is a latent indicator variable that signals if x j, expert j conditional

mean given zq, was produced by solution k. Expert j true conditional mean

x j is also unobserved: it relates to the point estimate x̂ j given by equationA.3

according to equation A.7, which takes uncertainty on current expert pa-
rameters into account. The rationale for the variance in the previous model
follows from the traditional probabilistic view of weighted least squares
and best linear unbiased estimators (Gelman, Carlin, Stern, & Rubin, 2004;
Vijayakumar et al., 2005), where we incorporate each expert weight wx

j in

the respective predictor variance. Using equationA.7 and compounding the

distribution, equation 4.7 with the posterior distribution for � j given �̂∗

results in an approximate normal distributionwith variance �̂ j/w
x
j . Putting

these facts together, we get

x̂ j|s jk, �̂
∗ ∼ N (x̄k, R j), with R j ≡ (1/wx

j + γ j)�̂ j. (4.8)

Estimates ˆ̄xk for solutions x̄k can be provided by a simple EM procedure.

The likelihood for the complete data is equal to Q =
�

j

�

k p(x̂ j|s jk; �̂∗)
s
jk ,
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and from this expression, the following EM iterations are easily obtained

(we dropped the dependence on �̂∗ for simplicity), for 1 ≤ k ≤ Nsol :

htjk =E[s jk|x̂ j,
ˆ̄x
t

k] = p(s jk|x̂ j,
ˆ̄x
t

k) =
p(x̂ j|s jk, ˆ̄x

t

k)

�

l p(x̂ j|s jl, ˆ̄x
t

l )
, (E-step) (4.9a)

ˆ̄x
t+1

k =





�

j

htjkR
−1
j





−1 



�

j

htjkR
−1
j x̂ j



 . (M-step) (4.9b)

We found that it takes only a few iterations for the algorithm to converge.
After that, predictions are hard-assigned to solutions according to the final
value of hjk, resulting in the following estimate for each solution k, where

the sums are over experts assigned to each particular solution:

ˆ̄xk = R̂k

�

j

R−1
j x̂ j, with R̂k ≡





�

j

R−1
j





−1

.

The uncertainty for prediction ˆ̄xk is given by R̂k. When wx
j = 1 for a par-

ticular expert j, meaning that only that expert contributes to the prediction,

this uncertainty becomes equal to R j = (1+ γ j)�̂ j, which agrees with the

predictive uncertainty of the ordinary least squares solution for multiple
linear regression.

4.2 ATest forMultivalued PredictionGoodness of Fit. For each x̂ j, the

quantity (x̂ j − x̄k)
TR−1

j (x̂ j − x̄k) follows a chi-squared distribution with D

degrees of freedom, given that x̂ j was indeed generated by solution k using

model 4.8. Under the null hypothesis that (1) generative model 4.8 corre-
sponds to the true distribution for observed x̂ j, (2) Nsol is the true number

of multivalued solutions for query zq, and (3) the previous EM algorithm

correctly grouped the experts’ predictions into Nsol different solutions, the
statistic Tk follows a chi-squared distribution for every solution k,

Tk =
�

j

(x̂ j −
ˆ̄xk)

TR−1
j (x̂ j −

ˆ̄xk) ∼ χ2
(M

k
−1)D, (4.10)

where again the sums are over experts assigned to solution k andMk is the
number of experts belonging to that solution. A low value for this statistic

indicates a good fit of observations x̂ j to the estimated solutions ˆ̄xk. On the

other hand, if the p-value for any solution k is lower than a given significance
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level αmulti, the current set of solutions ˆ̄xk is considered to be badly explained
by the data.

A practical detail of the above test is that x̂ j will not have arbitrary

large values for corresponding small values of wx
j , as predicted by model

4.8. As a consequence Tk will assume much lower values than the ones
expected under the null hypothesis distribution, since in a typical scenario,
most of the experts will have a negligible contribution to the prediction.
In this situation, we found that replacing Mk − 1 in equation 4.10 with
1/

�

(wx
j )
2 − 1, the effective degrees of freedom of the mixture, provides

a better fit of the statistic to its corresponding distribution, under the null
hypothesis.

4.3 Obtaining a Valid Set ofMultivalued Solutions. Multivalued pre-
diction starts with the single-valued estimation, Nsol = 1. If the test de-
scribed in the previous section rejects this single-valued solution, Nsol is
increased to 2 and the EM iterations in equation 4.9 are performed. If the
test for goodness of fit described in the previous section rejects at least one
of the solutions, Nsol is incremented, and this procedure is repeated until a
value of Nsol is found for which the test fails to reject the null hypothesis

for any of the solutions thus obtained. ˆ̄xk, for 1 ≤ k ≤ Nsol , is then the set of

multivalued forward solutions predicted by IMLE, while R̂k are the respec-
tive uncertainties. To speed up the prediction process, each EM procedure

initializes ˆ̄xk with the values found in the previous run of the algorithm,
while the extra solution starts near the solution k that produced the smallest
p-value in the previous goodness-of-fit test, this way dividing in two the
solution responsible for the null hypothesis rejection.

During this process, the significance level αmulti controls the number
of solutions found. The lower its value, the harder it is to reject the null
hypothesis, and fewer solutions are likely to be found. Increasing αmulti
helps to separate different solutions, but as an unwanted consequence,
predictions x̂ j for neighbor experts may stop being merged together due to

the function curvature around zq.

5 Experimental Results

In this section we evaluate IMLE in several different experimental settings,
especially focusing on large training sets arising from continuous stream
of data that particularly suit online learning. We compare our results with
different online learning algorithms, namely LWPR (Vijayakumar et al.,
2005), probably one of the most widely used state-of-the-art online learning
methods for robotic applications, SOGP; a sparse online approximation for
gaussian process regression (Csató & Opper, 2002), and ROGER, an online
infinite mixture of SOGP experts (Grollman & Jenkins, 2010). All of these
algorithms have their C++ implementation code available, and their most
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recent version to this date is used in our comparisons.1 A C++ implemen-
tation of the IMLE algorithm is also freely available for download.2 We
also compare IMLE to standard GPR. This is not an online algorithm in its
standard formulation, but it can give some insights into the performance
loss we expect when going to an online operation setting. In the following
experiments, we specify a gaussian likelihood to be used with an isotropic
squared exponential covariance function, using exact inference for training
and prediction. Optimal values for input length scale of the kernels and
output noise, the free hyperparameters of the model, are obtained using
standard optimization techniques over the training set, using the GPML
Matlab code.3

Parameters of interest for tuning the LWPR algorithm comprehend Dinit ,
αinit , wgen, and penalty γ (for details on these parameters’ meaning, consult

the relateddocumentation).Additionally, in all experimentswe set diagOnly
to false and useMeta and updateD to true. We use SOGP with a gaussian
kernel. The remaining tuning parameters for this algorithm are σ 2

k , the
kernel width, σ 2

0 , the expected output noise for the function to learn, and β,
the maximum number of training basis points to be kept by the algorithm.
SOGP behavior is supposedly similar to standard GPR if no upper limit
is set to this number of basis points. Besides the (common) parameters
for each of the SOGP experts, ROGER also needs same parameters to be
defined: the most important quantities, according to its authors, are P;
the number of particles, α; the Chinese Restaurant Process concentration
parameter that drives the propensity of new SOGP experts to be created
within each particle; and the common parameters for each of its SOGP
experts. In general, the higher the number of particles and SOGP capacity,
the slower ROGER will run.

As for IMLE, there are 11 parameters that can be tuned to change the
resulting behavior of the algorithm. Some of them typically do not need any
tweaking, and the following experiences, unless otherwise noted, will keep
them with their default values, namely, n� = 0.1 (a small value is needed
for regularization), nν = 0, and nµ = 0 (experts locations fully learned). As
the input space dimension increases, a stronger prior on input covariance
matrices � j and output noise � j is needed to make the learning process

relatively invariant with respect to the trajectory nature of the training
data acquisition process. A good rule of thumb is to set n� = n� = nσ = 2d

and then choose nψ based on the confidence on the value of �0, with
smaller values corresponding to a larger uncertainty on this parameter. A
typical value for the forgetting factor lies in the range α = 0.99 ∼ 0.999.

1LWPR 1.2.3: http://wcms.inf.ed.ac.uk/ipab/slmc/research/software-lwpr. SOGP
2.0, ROGER 1.5: http://cs.brown.edu/people/dang/code.shtml.

2IMLE 1.1: http://users.isr.ist.utl.pt/∼bdamas/IMLE.
3GPML 3.1: http://www.gaussianprocess.org/gpml/code/matlab/doc/.
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The remaining parameters, �0, �0, and p0, have a strong influence in the
experts’ activation process, equation 3.8, and ultimately on the number of
local experts created during the training phase. �0 represents the expected
output noise variance, while �0 corresponds to the input activation region
for which the function to be learned can be approximately represented by
a linear relation.

While setting and tuning such apparently high number of free param-
eters may appear to be challenging at first, the convergence of the proba-
bilistic model is not very sensitive to specific values of these parameters.
Perhaps the most sensible issue when considering the tuning of IMLE free
parameters is to ensure a correct convergence of �̄ and �̄, the input length
scale and output noise estimates; this problem is discussed thoroughly
next.

5.1 Single-Valued Function Aproximation. In this section we evaluate
IMLE ability to perform single-valued function approximation, applying
the algorithm to three different learning problems with different input di-
mensions and comparing its performance to LWPR, SOGP, and GPR. Some
care must be taken when confronting these different learning schemes. In
general, increasing the model complexity for each of the algorithms will
produce smaller approximation errors, while incurring some heavier com-
putational cost. The number of local linear models activated by IMLE and
LWPR is a good measure of model complexity for these online algorithms.
Its final value, after the training process, is a consequence of the choices for
their tunable parameters and the training data themselves. Since IMLE and
LWPR have the same computational complexity per training point, the final
number of activated models provides a fair comparison ground for IMLE
and LWPR in terms of the approximation error/computational complexity
trade-off. GRP and SOGPmodel complexity, on the other hand, ismeasured
by the number of stored training points used for posterior prediction over
the test data. For GPR, this number is set beforehand, while SOGP learns a
sparse subset of the training data to be used for prediction, possibly limit-
ing the maximum number of these inducing points to a value of β. IMLE
and LWPR computational demands are linear in the number of local mod-
els, while GPR and SOGP are much more penalized by the increase in the
number in stored training points or inducing points, respectively.

The amount of information implicitly available to the algorithms is an-
other important issue concerning a fair comparison between them: for re-
gression, the input length-scale of the data and the noise level present in
the output are two critical properties of the function to be learned. GPR
learns them offline by optimizing the likelihood of the training data with
respect to these hyperparameters. Since GPR is an offline algorithm, its
prediction performance strongly depends on the stored training points’ in-
put locations. If they efficiently cover all the input space, we expect GPR
to outperform methods based on local linear approximations in terms of
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prediction error. Yet such highly desirable informative training set may be
unavailable or can be difficult to generate, as in typical robotic applications,
where visiting all the input space can be very time-consuming.

Online methods alleviate this dependence on an initial representative
training set by learning their models on the fly, adapting them as new train-
ing data arrive. This is achieved in SOGP by maintaining a representative
subsample of the data. Parameters σ 2

k and σ 2
0 , however, are not adapted

during the learning process, and thus SOGP must rely on a good initializa-
tion of its input length scale and output noise parameters. Adequate values
can be obtained, for instance, from an initial offline optimization, similar to
GPR. Both IMLE and LWPR learn the input length scale and output noise
for each of their local linear models—in fact, they learn a full input dis-
tance metric, represented by covariance matrices � j and D−1

j , respectively.

They differ in the way they initialize these quantities: LWPR initializes the
input distance metrics to a constant value Dinit ; IMLE, on the other hand,
puts a common prior on � j, defining then a vague hyperprior for �̄. While

LWPR initialization strongly influences the number of receptive fields cre-
ated during learning, in IMLE the information conveyed in hyperpriors’
parameters �0 and �0 can quickly lose importance if nσ and nψ are small.
This capability to learn, in an online fashion, the characteristic input length
scale and output noise makes IMLE more robust to poor parameter initial-
ization and less dependent on problem-specific knowledge; this complex
probabilistic model structure, however, can make the learning convergence
depend more on the training data input distribution, since hyperparame-
ters �̄ and �̄ strongly influence the behavior of newly activated experts,
which also contribute to the estimation of �̄ and �̄. Ultimately this can lead
to convergence to poor local maxima of the likelihood function.

5.1.1 Cross Function. We first ran IMLE on a sequential stream of data
taken from the cross function suggested in Vijayakumar et al. (2005), a
two-dimensional input, univariate output function displayed in Figure 2a.
The training set consisted of points sampled from a random trajectory
performed in the input space and corresponding output data, for which we
added gaussian noise with 0.1 standard deviation. A small sample of such
training data can be seen in Figure 2a, superimposed on the target function.

We adopted all the suggested values for LWPR parameters presented
in the cross-2D example given in LWPR source code, namely, Dinit = 50I.
SOGPwas left with its default parameters of σ 2

k = σ 2
0 = 0.1, with no limit on

the number of inducing points. As for IMLE, we chose �0 = 0.02I to match
the LWPR initial input covariance matrix, while defining �0 = 0.12 and
making n� = n� = nσ = nψ = 2d = 4. For comparison purposes, we varied
the parameter p0, considering two values, p0 = 0.1 and p0 = 0.2. Since the
output was known to be single-valued, we did not group experts’ predic-
tions into different solutions when estimating the output for the test input
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ing data (also projected on the z-plane to en-

hance the trajectory nature of data acquisi-

tion).
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(c) Learning curves for the Cross 2D func-

tion: RMSE and number of models cre-

ated. For better visualization, we repre-

sent the number of stored induced points

of SOGP scaled by 10.

(d) Final RMSE, number of models and CPU

time spent (training + testing).

(a) Target function and a sample of the train-
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M

S
E RMSE # Models CPU time (s)

IMLE 0.0351 41.04 6.3 + 6.6

IMLE 0.0252 62.58 9.5 + 9.9

LWPR 0.0550 59.55 2.3 + 3.1

SOGP 0.0098 744 2600.9 + 593.9

GPR 0.0563 — —

GPR 0.0261 — —

(b) Reconstructed function using IMLE.
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Figure 2: The cross 2D data set.

data, setting αmulti = 1.0 for the hypothesis testing described in section 4.
Finally, we also trained a standard GP model, using a random, nonsequen-
tial training set with two different sizes (M = 1000 and M = 5000). All of
the online algorithms were trained on a set of 200,000 sequential points
coming from a random trajectory in the input space, and the prediction
root mean square error (RMSE) was evaluated on a noiseless test grid of
200 × 200 equally spaced input points and corresponding output values.
For accuracy, the IMLE and LWPR presented results are averages over 100
randomly trials.

Figure 2b shows a typical reconstruction of the original target function
after learning (p0 = 0.2). Figure 2c shows, for the onlinemethods, the evolu-
tion of RMSE and number of created models as a function of the processed
training points, and Figure 2d presents the final results after training. We
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can see that SOGP achieves the best RMSE, but at a high computational
cost, compared to the other online methods. LWPR, on the other hand, is
the fastest algorithm but has a worse function approximation error when
compared to IMLE, even when IMLE resorts to less local models (p0 = 0.1).
Note that increasing p0 results in a better function approximation, at a
penalty on the number of linear experts activated and consequent increase
in computation time. As for offline GPR, low error rates can be obtained if
the training set is large enough, but this comes at a prohibitive cost in terms
of offline computation time andmemory required to perform the necessary
matrix inversions. We also used a random set for training the GP. As stated
before, this may not be easy to generate inmany practical real-time applica-
tions. This may also explain why SOGP has a better RMSE than GPR while
using significantly fewer training points for prediction, since SOGP keeps
only the most informative points taken out of the full training set.

5.1.2 The PUMA 560 Serial Robot. The Unimation PUMA 560 is a well-
known six degrees of freedom industrial robotic arm. Its forward kine-
matics function is described, for instance, in Craig (1989). To evaluate the
single-valued prediction capabilities of IMLE, we simulated the PUMA 560
robot kinematics, defining a 10 cm tool extending along the z-axis of the
frame associated with the sixth joint, and generated random trajectories
over the joint space of the robot, calculating the corresponding 3D position
of the tool tip. The kinematic function to be learnedwas thus amap from an
input space of dimension 6 to an output space of dimension 3, even if the
last joint was irrelevant as it changed only the tool orientation. Note that
the fully stretched arm plus tool measured more than 90 cm, which made
the range of each of the output variables to be almost 2 m.

We trained both LWPR and IMLE with a set of 10 million training
points, evaluating the final achieved RMSE on a different test set compris-
ing 100,000 points. Output training values were corrupted with gaussian
noise, with standard deviation equal to 2 cm. This corresponds approxi-
mately to 1/100 of the output range and can model, for instance, moderate
noise in a vision-based end-effector tracking process. SOGP unfortunately
was left out of the comparisons. Its parameters turned out to be difficult to
tune and its behavior unstable and very slow in the face of a large stream of
highly correlated input data. We also considered standard GPR, generating
a random set of training data for hyperparameter optimization and testing
on the independent test set. Once again, the results thus obtained do not
compare fairly to the other online algorithms, as one of the most challeng-
ing difficulties that arise with this data set is the massive, sequential, and
correlated nature of the training data.

Experimental results are shown in Table 1, where the RMSE for two
different instances of the GPR algorithm, trained with 1000 and 5000 data
points, are presented. We set α = 0.999, p0 = 0.1 and the recommended
valuesnσ = n� = n� = 2d = 64, and sincewedidnotwish to give IMLEany
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Table 1: Results on the PUMA Data Set for IMLE, LWPR, and GPR Learning
Algorithms: Final RMSE, Number of Models, and CPU Time (Training +

Testing).

Method RMSE Number of Models CPU Time (s)

IMLE 0.0245 668 4181 + 141
LWPR 0.0560 4338 11,974 + 725
GPR1000 0.0513 — —
GPR5000 0.0144 — —
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(b) Learning curves for the PUMA dataset, for
a typical parameter configuration.

Figure 3: Learning the PUMA 560 Forward Kinematics Model.

information about the input length scale and output noise characteristics of
the function to be learned,we defined�0 = I and�0 = I, and set nψ to a low

value of 8 in order to quickly decay the influence of�0 in the estimate for �̄.
As for LWPR, we picked the combination of parameters that made LWPR
achieve the lowest error while not letting the number of created receptive
fields grow to inadmissible values: γ = 10−8, wgen = 0.1, Dinit = 10I, and

αinit = 50. Tuning these parameters to have roughly the same number of
allocated models as IMLE never produced an RMSE of less than 10 cm on
each output dimension. Figure 3b shows the corresponding learning curves
for IMLE and LWPR. Due to the conservative large parameter values for
�0 and�0, IMLE converged slowly in the initial learning phase but quickly
recovered after convergence of �̄ and �̄ to better output noise and input
length-scale estimates, respectively.

The LWPR algorithm was tested over an exhaustive combination
of parameters: γ ∈ {10−5, 10−6, 10−7, 10−8, 10−9}, wgen ∈ {0.1, 0.2}, Dinit ∈

{10, 20}I, and αinit ∈ {10, 20, 50, 150, 250}. These parameters affected the fi-
nal error through the number of receptive fields they tended to create:
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the larger this number, the lower the error, as expected. The same hap-
pened to IMLEwhenvarying its tunable parameters,with�0 ∈ {1.0, 0.0016,
0.0001}I, �0 ∈ {4.0, 1.0, 0.25}I, nψ ∈ {64, 32, 8}, nσ ∈ {64, 32, 8}, and p0 ∈

{0.03, 0.1, 0.3}. In general, a lower RMSE would be achieved at a cost of
an increasing number of local linear models. It is very illustrative to de-
pict the final RMSE as a function of the number of models created, for
each parameter configuration of IMLE or LWPR, as in Figure 3a, since
the number of local models affects the computational training and testing
time in a similar way for these two algorithms. In the figure we can iden-
tify, for IMLE, three convergence behaviors: the first one, marked IMLE
(Global), corresponds to a low value of �0 = 0.0001I. Since this value of �0

is lower than the actual outputnoise, IMLEactivates a largenumberof linear
experts in the initial learning phase, each one covering all the input space
(due to a high �0) and a particular region of the output space. This is of
course an undesirable behavior that goes against the principle of localized
learning. The second case, identified as IMLE (overfitting), is a consequence
of choosing a lowvalue of�0 in combinationwith a low ormediumvalue of
nσ , allowing the individual� j to shrink to a point where each new training

point has a high probability of activating a new expert. This may result in
a snowball effect, where more experts contribute to a decrease of �̄, which
will lead to a smaller� j and, consequently, more experts being activated. In

Figure 3a, this does not result in a reduction of RMSE in the test set, a good
indicator that IMLE is overfitting in that situation. These are, however, two
extreme situations, caused by setting�0 or�0 to smaller values than the out-
put noise and input length scale, respectively. All other combinations of pa-
rameters exhibit good robustness regarding the training convergence. Note
that in this case, IMLEhas amuchbetter performance thanLWPR, achieving
a much smaller RMSE while activating considerably fewer local models.

5.1.3 The SARCOS Inverse Dynamics Data Set. The SARCOS anthro-
pomorphic robotic arm is a 7 degrees of freedom manipulator that has
been used to test several function approximation algorithms. The learn-
ing task considered here is the estimation of its inverse dynamics from
training examples. This is a nonlinear map from a 21-dimensional input
space, consisting of positions, velocities, and accelerations of each joint to a
7-dimensional output space comprising the corresponding joint torques.
The learned model can then be used to estimate the torques that achieve a
desired trajectory in the joint space. The data set consists of 48,933 training
points and 4449 test points, taken from trajectories performed with the real
robot. Output values are normalized by the variance of the outputs of the
test set tomake the results presented here directly comparable to the ones in
Rasmussen and Williams (2006) and Vijayakumar, D’Souza, Shibata, Con-
radt, and Schaal (2002). We compare IMLE results on this data set to the
following models:
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Linear regression (LR): A linear regression model is fitted to the data to
provide a baseline for comparison.

Rigid body dynamics (RBD): This is a parametric physics-based model
for the inverse dynamics function that is estimated using a least-
squares approach with the available training data.

LWPR: This model was trained using diagonal distance metrics D j, cy-

cling through the training data over 6 million iterations. This roughly
corresponds to 123 passes over the full training data.

GPR:Due to the computational infeasibility of using the full trainingdata
for optimization of hyperparameters and prediction over test data, a
subset of regressorsmethodwas employed, with size 4096. A squared
exponential covariance function was used, and its hyperparameters
were optimized accordingly, using a subset of the training data.

As for IMLE, we used out-of-the-box default parameters, setting con-
servative large values for its noise and length-scale parameters,�0 = I and
�0 = I, while setting the usual value of p0 = 0.1. Using the input dimension
to set up the value of n� , n� , and nσ according to the rule of thumb we pre-
sented before would result in overly large prior strengths.We resort instead
to the notion that for actual robot movements, the generated data tend to
be low-dimensional, with around four to six effective dimensions (Schaal,
Vijayakumar, & Atkeson, 1998). This is a standard assumption in robotic
applications in order to circumvent the curse of dimensionality. Learning
a sensorimotor map would require a full exploration of the input space if
this condition did not hold. In such case, as the input dimension increased,
the time required for exploration and learning would grow exponentially,
making the learning task infeasible from a practical point of view. In our
experiments, we found that a value of seven effective dimensions could
provide satisfactory learning behavior and thus set n� = n� = nσ = 27. We
also set nψ to a low value of 8 due to the high uncertainty on�0. Varying nψ

over a considerably wide interval around this value did not change IMLE
convergence behavior significantly.

Unlike GPR and LWPR, the IMLE algorithm can directly provide multi-
variate output predictions without a need to train different models for each
of the output dimensions. If the maps from inputs to each output variable
have the same length-scale properties, as frequently happens in robotic
sensorimotor maps, a huge economy of computational resources can be
attained, as each local linear model can describe the interaction between
the inputs and the full output vector. We show in Table 2 the prediction
error when the output consists of only the first joint torque, comparing it
to the results presented in Rasmussen andWilliams (2006) for LWPR, GPR,
RBD, and LR. We also used IMLE to learn the full output torque vector. For
both situations, we present the MSE and number of activated experts after
(1) a full pass over the training data and (2) 10 consecutive passes over the
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Table 2: Results on the SARCOS Data Set for LR, RBD, LWPR, GPR, and IMLE
Methods.

Method MSE Number of Models Method MSE Number of Models

LR 0.075 — IMLE1D (1 epoch) 0.019 313
RBD 0.104 — IMLE1D (10 epochs) 0.010 563
LWPR 0.040 260 IMLE7D (1 epoch) 0.018 271
GPR 0.011 — IMLE7D (10 epochs) 0.010 550

Note: IMLE1D is the model corresponding to a map from R
21 to R

1, while IMLE7D is the

model obtained from the full map from R
21 to R

7.

same data. For confirmation purposes, we also trained IMLE with p0 = 0.0,
resulting in a model with a single expert that provided a global linear ap-
proximation to the training data. As expected, an MSE equal to that of the
LR model was then obtained.

The extremely good convergence of the IMLE algorithm is noteworthy.
After only a single pass through the training data, IMLE achieves a better
approximation error than LWPR (after more than 100 passes through the
same data) while activating a comparable number of linear models. If more
points are presented to IMLE, cycling through the data ten times, an MSE
comparable to state-of-the-art GPR is achieved. It is also worth noticing
that IMLE performance did not changed much when a full 7-dimensional
output vector was considered for the learning task: the MSE remained the
same, while, perhaps surprisingly, the number of experts even dropped a
bit.4 We did not notice any increased computational time in this situation,
as the slight increase in computation due to this higher-output dimension
was balanced by a smaller number of activatedmodels. In this aspect, IMLE
compares favorably to GPR and LWPR, which would require seven times
more computational power to learn the full inverse dynamics map.

5.2 Multivalued Function Aproximation. We now proceed to evalu-
ating IMLE learning capabilities under a multivalued target function sce-
nario. As stated in section 3.2, learning multivalued functions in an online
fashion poses several additional problems. Without further information,
it is difficult to distinguish noise or outliers from new multivalued func-
tion branches. In addition, it is no longer possible to set large values for �0

and�0, hoping that the learning process finds adequate values for the input
length scale andoutput noise estimate, asmultivalued relationsmay thenbe
interpreted as single-valued functions with large output noise. There is also
the problem of time-varying functions. This issue can easily be addressed
in online single-valued algorithms by introducing forgetting mechanisms

4This probably is explained by a lesser tendency for overfitting when the output
dimension increases.
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to allow for a quick adaptation of the internal model to the time-varying
data.However, things becomemore complicatedwithmultivalued function
approximation, where there is no clear border between fast time-changing
training data and multivalued functions.

We tested IMLE against ROGER whenever possible. This later algo-
rithm, however, consists of an infinite mixture of SOGPs, thus inheriting
the same limitationsmentioned in the previous section: the difficulty in get-
ting a good parameter configuration and the slow operation formedium- or
high-dimensional input spaces. Also, ROGER implementation code did not
provide a set of multivalued solutions for the function being approximated,
instead sampling a single solution from the infinite mixture. This feature
imposes severe limitations to real applications, as ROGER predictions will
permanently switch between different multivalued branches. To provide a
fair comparison to IMLE, we adapted ROGER code to provide a finite set
of prediction solutions. For each input query, ROGER was used to predict
a solution over 100 different trials, and the distinct solutions thus obtained
were gathered to become the set of predicted solutions.

The approximation error was measured by taking, for each input query,
the multivalued prediction closest to the true output. Note that we do not
address here the important problem of choosing a solution among the set
of multivalued predictions produced by the algorithm. This can be seen as
a context estimation, and it is a requirement when the multivalued model
is to be used for control purposes. In the following experiments, we set
αmulti = 0.9. The lower this value was, the higher the number of solutions
found for the same query on average. However, when the branches of the
multivalued function to learn are well separated in the output space, we
found that the value of this parameter did not influence the final prediction
much, and that setting it on a range of, say, αmulti ∈ [0.8, 0.99] resulted in
similar prediction results.

5.2.1 Synthetic Data Sets. To illustrate the fundamental differences be-
tween multi- and single-valued function approximation algorithms, we
start with a simple toy example consisting of a multivalued target sinu-
soidal function. Standard function approximation learning methods, like
LWPR or GPR, typically behave poorly in this setting. Training data were
generated by alternating sequential sweeps over each of the two branches
of the multivalued function, given, respectively, by f1(x) = cos(z) and
f2(x) = cos(z) + 4, and each output xi was corrupted with gaussian noise
with standard deviation equal to 0.1. Figure 4a represents a sample of the
training data,while Figure 4b depicts estimates from IMLE, ROGER, LWPR,
and GPR taken after training. As expected, LWPR and GPR tend to average
the two branches of the multivalued function, while IMLE and ROGER cor-
rectly identify the two solutions. In particular, ROGER achieves an almost
perfect approximation to the true function (RMSE= 0.014), when compared
to IMLE (RMSE = 0.039).
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(a) Training data.
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Figure 4: Synthetic multivalued sinusoidal relation.
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(b) IMLE prediction.

Figure 5: Toy example suggested by Shizawa (1996).

Shizawa (1996) suggests a synthetic data set that consists of amultivalued
function from R

2 to R
1, with two distinct branches, described by equations

f1(z1, z2)=
0.6

1+e−15(z1−0.5)
+0.1 and f2(z1, z2)=

0.6

1+e−15(z1−0.5)
+0.35.

The target function is depicted in Figure 5a, while IMLE multivalued
prediction, after conducting a 10,000-point training phase, is represented
in Figure 5b. This toy example is particularly challenging for multivalued
prediction. The two function branches are very close to each other and can
easily becomemergedduring learning. IMLEachieves anRMSEof 0.017 in a
grid-like independent, noise-free test set. ROGER was not able to generate
a good estimate. It systematically produced, for every tested parameter
configuration, more than 20 SOGP experts. This led to a severe output
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(b) IMLE active models.

Figure 6: Prediction using the toy example suggested by Lee and Lee (2001).

prediction interference, with typically more than 10 solutions generated for
each input query.5 Another toy example, presented now by Lee and Lee
(2001), consists of a cylindrical spiral surface, again a multivalued function
from R

2 to R
1, described by

x = tan−1

�

z2
z1

�

, where x ∈ [0, 4π), and 0.2 <

�

z21 + z22 < 5.

The codomain of the target function makes each input point have two
distinct solutions. IMLE was trained with random trajectories generated
over the target function, and after 50,000 points, it achieved an RMSE of less
than 0.065 on an independent random test set. The multivalued predicted
outputs for this test set are shown in Figure 6a, while the 39 linear models
allocated by the algorithm are represented in Figure 6b.

The final toy examplewe present consists of a randomly generated piece-
wise constant target function from R

2 to R
1, shown in Figure 7a. Although

not multivalued, many function approximation algorithms will not be able
to properly learn it, as their smoothness assumptions can conflict with the
discontinuities of the target function. This will typically result in either an
overfitting to the data, when the complexity of the model is increased to
approximate the function in the vicinity of the discontinuities, or in an over-
smoothing behavior, where the predictions average the two values of the
target function near the function transitions.

5This behavior was unfortunately observed in the following experiments, and so
ROGERwas removed from the remaining tests. Note that the ROGER good results shown
in Figure 4b were a consequence of a careful choice of its parameters: small changes in
these values would typically lead to more than two solutions being predicted in many
regions of the input space.
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(b) Reconstruction (single-valued learner).
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Figure 7: Learning functions with discontinuities.

Multivalued learning algorithms based on mixtures like IMLE can pro-
vide an elegant solution to this problem. During training, there is no output
interference near the discontinuities, since in those regions, the data are sim-
ply interpreted as coming from a multivalued function. When predicting, a
single-valued solution can nevertheless be provided by simply taking the
most important solution from the multivalued prediction set, according to
the sumofweightswx

j (zq) of the experts that contribute to that solution. This

procedure is able to generate sudden transitions of the prediction, like the
algorithm developed by Toussaint and Vijayakumar (2005) to specifically
deal with discontinuous functions. Prediction results are shown in Figure 7
for IMLE and a single-valued learner. We will not undergo a full compari-
son to other discontinuity function learning algorithms, as the main point
here is the proof of the concept that IMLE (and other multivalued learn-
ing algorithms) can also efficiently approximate discontinuous functions
without the need for any special modifications.

5.2.2 The Humanoid iCub Robot. The next experiment evaluates IMLE
multivalued prediction capabilities in a higher-dimensional problem. We
consider iCub, an anthropomorphic robot used for research into human
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Figure 8: Online learning of a sensorimotor map under switching kinematic
contexts.

cognition and artificial intelligence (Sandini, Metta, & Vernon, 2004). We
simulated random trajectories in a seven-dimensional input space consist-
ing of the joint angles of the robot waist (yaw, roll, and pitch) and right
arm (shoulder yaw, pitch and roll, and elbow flexion), the output space
being the 3D position of the end effector. During the training phase, after
acquiring 100,000 data points, a 28 cm tool was introduced in the kine-
matic chain of the arm, effectively changing the end-effector position. After
100,000 more training points, the tool was removed and training resumed.
From the viewpoint of the learning algorithm, this nonsignaled change of
the kinematic structure can be represented by a multivalued function with
two distinct branches corresponding to the tool and no-tool contexts. Tra-
ditional single-valued approximators must forget the previously learned
map when the tool is introduced in order to learn the new kinematics. This
wastes computational resources, as the original map must be learned again
when the tool is removed and the original kinematics structure is once again
presented to the robot. IMLE can keep both situations stored in its internal
model: there is almost no increase in the RMSEwhen the tool is removed, as
can be seen in Figure 8, where, for comparison with a single-valued learner,
we also show the results of training LWPR using the same data set.
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5.2.3 Simultaneously Learning of Forward and Inverse Models. In the fol-
lowing experiments, we show how IMLE can use the learned mixture to
predict both forward and inverse maps. We use the Puma 560 robot arm
described in section 5.1, controlling its first three joints to position the end
effector. The kinematic function for this robot configuration is a map from
R
3 to R

3. While the forward map consists of a single-valued function, the
inverse kinematics is multivalued and can exhibit up to four solutions. As
a second example, we consider the 3-RPR parallel manipulator described
in Merlet (2006). It consists of an end effector connected to a fixed base
through three prismatic links, each connecting to the base and end effector
using free, unactuated rotational joints. Its movement is restricted to the x-y
plane. Actuating on link lengths L1, L2, and L3 changes the x-y end-effector
position and θ orientation on this plane. The kinematic for this mechanism
is also a map from R

3 to R
3. Parallel robots typically exhibit a duality re-

lation to serial chains with respect to the forward and inverse kinematics
nature. While their inverse relation is usually unique and straightforward
to calculate, obtaining a closed formula for the end-effector position and
orientation as a function of actuator values is difficult and frequently yields
multiple valid solutions. This mechanism is known to have up to six dif-
ferent solutions for the same actuator configuration, which makes learning
its forward kinematics infeasible for most standard single-valued function
approximation techniques.

We trained IMLE over 1 million points taken from a simulated random
trajectory for bothmanipulators, adding gaussian noise to the outputs, with
standard deviation equal to 1/100 of the output range. We restricted the
movement of the 3-RPR parallel manipulator to a square of 40 cm by 40 cm
in the center of the mechanism, while the angle was constrained to the
interval [−π/2;π/2]. We ran 10 different trials, testing the resulting final
mixtures on a noiseless random sequence of 100,000 points. The results
are shown in Figure 9. Figure 9c also presents, for the PUMA robot, the
frequency of the number of solutions found by IMLE inverse prediction,
comparing it to the real value, obtained by explicitly solving the inverse
kinematics equations. The discrepancy between these numbers can be ex-
plained by the fact that close to the work space boundary of the PUMA 560,
there are pairs of inverse solutions that become close to each other. In this
situation, IMLE tends to merge these solutions. Lowering the value of αmulti
would reduce this behavior; however, due to the curvature of the map to
learn, this would have the undesired side effect of predictions of neighbor
experts being erroneously taken as separate solutions. In general, choosing
a value for αmulti is a compromise between this two effects. Nevertheless,
IMLE still achieves a good inverse prediction error rate, since in the work
space boundary, the merged solution provided by IMLE is approximately
the average of two reasonable similar true solutions. As for the 3-RPR ma-
nipulator, IMLE found on average 1.88 forward solutions per test point,
which, given the constrained work space, agrees with the expected number
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(a) Puma Serial robot.
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(b) Parallel 3-RPR robot.

Figure 9: Simultaneous learning of forward and inverse kinematic relations.

of solutions. For every point on the test set, only a single inverse solution
was found. This is in total agreement with the single-valued nature of the
inverse kinematics for these kind of mechanisms.

6 Discussion and Conclusion

The infinitemixture of linearmodels presented in this letter is, at its core, an
algorithm that can efficiently deal with nonlinear function approximation
in an online, incremental manner, comparable to current state-of-the-art
online learningmethods. It consists of a collection of linear experts, together
with appropriate priors on the parameters being learned and a mechanism
that efficiently grows the number of experts when the need to explain
outfitted data arises for newly acquired samples. Its training is based on the
generalized EM algorithm, where the expectation step is extended to allow
for incremental updating of the sufficient statistics of the mixture of experts
and themaximization step includes the allocation of a new expert each time
a training point is poorly explained by the current mixture. Put together,
this results in a very fast and scalable online learning algorithm, capable
of processing hundreds or thousands of samples per second, coming from
continuous streams of data. This is a difficult learning setting, since when
no knowledge is provided about the characteristics of the function to learn,
this information must be estimated from a sequence of correlated training
data that may correspond to only a small subset of the full input-output
space. We tested IMLE in this kind of situation for single-valued regression
and showed how it could equal or even surpass LWPR, a current state-
of-the-art online learning algorithm, in terms of convergence of prediction
error and number of allocated models.
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However, a distinctive feature of IMLE, when compared to other online
supervised learning algorithms, is its ability to deal with multivalued esti-
mates for the same query data. The applications for such kind of problems
range from learning forward models of parallel robots to learning switch-
ing models, where the function to be approximated can alternate between
different configurations over time. This constitutes an even more challeng-
ing learning problem. Besides the limitations coming from learning online
from a stream of data, we now face the expert allocation dilemma, where
it is difficult to distinguish between noise and outliers, on one hand, and a
mixture requiring a new component, on the other. Additionally, underlying
nonstationary relations make the problem even more difficult to learn. An-
alyzing the influence of nonstationarity in multivalued prediction, relating
it to separability of multivalued function branches, is perhaps a topic for
further research.

We have also shown in this letter that the same procedure used to obtain
a set of multivalued forward solutions can be applied to inverse queries,
making IMLE capable of delivering both forward and inverse multivalued
predictions from the same model, without need of further training. This is
a consequence of directly learning a multivariate output relation from R

d

to R
D instead of a set of D distinct univariate output maps. As seen in the

previous section, such multivalued learning capability can also prove to
be useful when learning discontinuous functions, for which an undesirable
prediction smoothing typically occurs in the vicinity of the discontinuities
when using standard function approximation algorithms.

A current limitation of the proposed algorithm is the lack of a mix-
ture shrinking mechanism that would be responsible for removing either
experts providing wrong predictions or redundant mixture components.
The experiments presented in section 5 show that the IMLE model will
activate new experts more and more sparingly as the training progresses,
but eventually, after a lifetime of learning, too many experts may become
activated, resulting in an increase of computational resources consump-
tion. Moreover, in the event of some episodic outlier bursts, some experts
may be activated to represent such erroneous training data. We do not yet
have a definite answer to this problem. As discussed in section 3.2, grow-
ing the mixture under incremental assumptions, for multivalued data is
a delicate matter, and shrinking the same mixture in a principled way is
even more troublesome. The main difficulty here is that there is no simple
way to detect experts wrongly activated by an outlier (or a sequence of
outliers), as they cannot easily be distinguished from experts originating
from a sporadic training on a new branch of themultivalued function being
learned. Such “incorrect” experts can be detected, for instance, by a strong
deviation from the characteristic input length scale or output noise (strong
disagreement between� j and �̄ or between� j and �̄) or by low support on
training data (low accumulation of sufficient statistics after a long period of
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training). However, removing an expert under this condition does not come
without the risk of lowering the likelihood of the training data, since no
guarantees exist that such an expert does not represent the true distribution
of the multivalued function being learned. In general, choosing an expert
to be removed from the mixture—due, for instance, to capacity limitations
imposed on the mixture—is not easy to do without access to the full set
of training points. Creating a probabilistically supported shrinking mecha-
nism for the mixture is surely an improvement to the IMLE model that we
would like to investigate in subsequent work.

IMLE has a large space for customization by choosing different priors
for the mixture parameters, the most evident being the prior on regression
coefficients � j. Feature selection is a very desirable property of a function

approximation algorithm that allows learning the input subspace that effec-
tively contributes to output variation. This typically makes the prediction
more stable and less influenced by irrelevant or strongly correlated input
dimensions. In a Bayesian setup, feature selection can be implemented if
adequate priors for loading matrices � j are defined. Adopting a gaus-

sian prior, as IMLE currently does, leads to the ridge regression (Hoerl &
Kennard, 1970), while a Laplacian prior induces the LASSO (Tibshirani,
1996). Both priors involve the choice of a hyperparameter to control the
degree of regularization and sparseness. Figueiredo (2003) uses a Jeffrey’s
prior to overcome the necessity of such a hyperparameter. More recently,
Ting, D’Souza, Vijayakumar, and Schaal (2010) proposed a slightly different
formulation of the generative model corresponding to the linear regression
performed by each expert, which together with a careful choice of priors for
the elements of � j can lead to a fast and efficient high-dimensional feature

selection and regression. In principle, any of these priors can be integrated
into IMLE; this is a topic for future work. Another research direction is the
inclusion of Dirichlet priors for mixture components, turning IMLE into a
fully Bayesian learningmethod. In this situation, themajor challengewould
be retaining the online and scalability properties of the algorithm.

Appendix: Posterior Distributions for IMLE

Wecanuse the fact that distributions 2.2 are conjugate to data likelihood (see
equation 2.1) to derive the posterior distribution for themixture parameters
at iteration t, given the current estimates for �̄ and �̄. Since the normal-
inverse Wishart is a conjugate prior for the center and covariance matrix of
a multivariate normal data distribution (Gelman et al., 2004), we have, for
each expert j,

ν j,� j|S
t, �̄ ∼ NW−1(ν∗,n∗

ν,�
∗,n∗

�),
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where

n∗
ν = nν + Sh j,

ν∗ =
nνν0 j + Shz j

nν + Sh j
,

n∗
� = n� + Sh j and

�∗ = n��̄ + nνν0 jν
T
0 j + Shzz j − n∗

νν
∗
jν

∗T
j .

Equations 3.7a and 3.7b directly follow from the preceding equations,
as the maximum value for the normal-inverse Wishart distribution is
achieved by ν̂ j = ν∗ and �̂ j = �∗/(n∗

� + d + 2). The predictive distribution

p(zq|w j, St, �̄) can then be obtained if we take the marginal distribution of

p(zq,� j, ν j|w j, St, �̄)with respect to unknown parameters� j and ν j, which

results in a multivariate t-Student distribution with n∗
� − d + 1 degrees of

freedom,

zq|w j, St, �̄ ∼ tn∗
�
−d+1

�

ν∗,
n∗

ν + 1

n∗
ν (n

∗
� − d + 1)

�∗

�

. (A.1)

The normal-inverse gammadistribution is a conjugate prior for the noise
and regression coefficients under the standard linear regression likelihood
model (O’Hagan & Forster, 1994). We can use a different parameterization
of equation 2.1a to infer the posterior distribution of � j, µ j, and � j at

iteration t, by defining �̃ j ≡ [� j, µ̄ j], where µ̄ j ≡ µ j − � jν j, and expanding

the input vector to accommodate a constant term, z̃ ≡ [zT , 1]T . We are then

able to rewrite equation 2.1a as xi|zi, wi j,� ∼ N (�̃ jz̃i,� j) and change the

corresponding priors, equations 2.2c and 2.2d accordingly, �̃ j(k)|� j(k) ∼

N (�̃0(k),� j(k)R̃�), with �̃0 = [0, µ0 j] and

R̃
−1

� =







n�I 0
...

0 · · · nµ






.

The posterior distribution for (�̃ j(k),� j(k)) then becomes

�̃ j(k),� j(k)|S
t, �̄ ∼ NG−1

�

�̃
∗
(k), R̃

∗

�,
n∗

�

2
,
�∗(k)

2

�

, (A.2)
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where

R̃
∗

� = (R̃
−1

� + S̃hzz j)
−1,

�̃
∗
= (S̃hxz j + �̃0R̃

−1

� )R̃
∗

� = [�∗, µ̄∗] ,

n∗
� =n� + Sh j,

�∗ =n��̄ + diag{Shxx j + �̃0R̃
−1

� �̃
T

0 − �̃
∗
(R̃

∗

�)−1�̃
∗T

},

with S̃hxz j = [Shxz j, Shx j] and

S̃hzz j =

�

Shzz j Shz j

SThz j Sh j

�

accounting for the extended input vector z̃. Noting that R̃
∗

� can be written
as

R̃
∗

� =







R∗
� −R∗

�

S
hz j

S
h j

+n
µ

−
ST
hz j

S
h j

+n
µ

R∗
� R∗

µ̄






, where

R∗
� =

�

n�I+ Shzz j −
Shz jS

T
hz j

Sh j + nµ

�−1

and

R∗
µ̄ =

1

Sh j + nµ

+
SThz j

Sh j + nµ

R∗
�

Shz j

Sh j + nµ

,

we easily arrive at

�∗ =

�

Shxz j −
Shx j + nµµ0 j

Sh j + nµ

SThz j

�

R∗
�,

µ̄∗ =
Shx j + nµµ0 j

Sh j + nµ

− �∗
Shz j

Sh j + nµ

and

�∗ = n��̄ + diag{Shxx j − �∗SThxz j − µ̄∗(Shx j + nµµ0 j)
T}.

Equation A.2 can be split as p(�̃ j(k)|� j(k), St )p(� j(k)|S
t, �̄), where

�̃ j(k)|� j(k), St ∼N (�̃
∗
(k),� j(k)R̃

∗

�) and

� j(k)|S
t, �̄ ∼G−1

�

n∗
�

2
,
�∗(k)

2

�

,
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and consequently � j(k) and µ̄ j(k) are jointly normal given � j(k), with

� j(k)|� j(k), St ∼N (�∗(k),� j(k)R
∗
�),

µ̄ j(k)|� j(k), St ∼N (µ̄∗(k),� j(k)R
∗
µ̄)

and cross-variance equal to−R∗
�

S
hz j

S
h j

+n
µ

. As a consequence, µ j(k) is also nor-

mally distributed given � j(k), with µ j(k)|� j(k), St ∼ N (µ∗(k),� j(k)R
∗
µ),

where

µ∗ =
Shx j + nµµoj

Sh j + nµ

+ �∗

�

ν̂ j −
Shz j

Sh j + nµ

�

and

R∗
µ =

1

Sh j + nµ

+

�

Shz j

Sh j + nµ

− ν̂ j

�T

R∗
�

�

Shz j

Sh j + nµ

− ν̂ j

�

.

Equations 3.7c to 3.7e arise from the previous posterior distributions,

since �̂ j = �∗, µ̂ j = µ∗ and �̂ j = �∗/(n∗
� + 2) are the modes of the respec-

tive distributions.
In order to obtain p(� j|S

t ) and p(µ j|S
t ), we must marginalize equation

A.2 with respect to � j. A well-known result states that the resulting distri-

bution becomes amultivariate t-Student with n∗
� degrees of freedom.When

this value is large, the distribution can be approximated by a multivariate
normal. For � j and µ j this results in

� j(k)|S
t ∼
a
N (�∗(k), R∗

� �∗(k)/n∗
� ) and

µ j(k)|S
t ∼
a
N (µ∗(k),R∗

µ �∗(k)/n∗
� ).

Finally, to obtain the posterior predictive distribution for x|zq, we use the

fact that the marginalization of p(xi|zi, wi j,�) with respect to the parame-

ters � j, µ j, and� j yields again a t-Student distribution, with n
∗
� degrees of

freedom, mean equal to

x̂ j(zq) = �̃
∗
z̃q = �̂ j(zq − ν̂ j) + µ̂ j (A.3)

and variance given by

Rx
j (zq) = (1+ z̃Tq R̃

∗

�z̃q)
�∗

n∗
�

= (1+γ j(zq))
�∗

n∗
�

≈ (1+γ j(zq))�̂ j, (A.4)
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where the factor

γ j(zq) =
1

Sh j + nµ

+

�

zq −
Shz j

Sh j + nµ

�T

R∗
�

�

zq −
Shz j

Sh j + nµ

�

reflects the uncertainty on the estimates µ̂ j and �̂ j used in the posterior

prediction. Note that as the training size increases, this term vanishes in
equation A.4, while the fundamental source of noise due to� j remains. Put

together, this results in

x|zq, w j, St, �̄ ∼
a
N (x̂ j(zq), Rx

j (zq)), (A.5)

where again we approximate the t-Student distribution to a normal one,
under the assumption of a large value of n∗

� . It is useful to view this result
under a different and equivalent formulation, given by the hierarchical
model

x|x j, w j, St, �̄ ∼
a
N (x j, �̂ j), (A.6)

x j|zq, St, �̄ ∼
a
N (x̂ j(zq), γ j(zq)�̂ j), (A.7)

which can be interpreted as a sample point x(zq) being generated, with

noise �̂ j, from an unknown mean x j, for which posterior distribution A.7

is available given the current set of sufficient statistics and input query zq.
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Carreira-Perpiñán, M. (2000). Mode-finding for mixtures of gaussian distributions.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1318–1323.

Chernova, S., & Veloso, M. (2008). Learning equivalent action choices from demon-

stration. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008

(pp. 1216–1221). Piscataway, NJ: IEEE.

Craig, J. (1989). Introduction to robotics: Mechanics and control. Reading, MA: Addison-

Wesley Longman.
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