
Open and Closed-Loop Task Space Trajectory Control of Redundant

Robots Using Learned Models

Bruno Damas Lorenzo Jamone José Santos-Victor

Abstract— This paper presents a comparison of open-loop
and closed-loop control strategies for tracking a task space
trajectory, using redundant robots. We do not assume any
knowledge of the analytical forward and inverse kinematics,
relying instead on learning these models online, while executing
a desired task. Specifically, we employ a recent learning
algorithm that allows to learn a probabilistic model from which
both the forward and inverse solutions can be obtained, as well
as the Jacobian of the kinematics map. Such learned model can
then be used to implement both types of control. Moreover, the
multi-valued solutions provided by the learned model can be
applied to redundant systems in which an infinite number of
inverse solutions may exist. We present experiments with a
simulated version of the iCub, a highly redundant humanoid
robot, in which this learned model is employed to execute
both open-loop and closed-loop trajectory control. We show the
advantages and drawbacks of both control strategies, and we
propose a way to combine them to deal with sensor noise and
failures, showing the benefits of using a learning algorithm that
can simultaneously provide forward and inverse predictions.

I. INTRODUCTION AND RELATED WORK

In this work we consider the general problem of trajectory

tracking for redundant robots based on learned models: for

a given sequence of desired task space points xi
d, together

with a corresponding sequence of task space velocities ẋi
d,

we want to control the joints of the robot in such a way

that the end-effector will visit each of the desired task

space points in sequence, reaching its vicinity with the

desired velocity. Moreover, we want to follow the trajectory

without any knowledge of the analytical structure of the

robot kinematics, relying only on models learned using data

collected from the robot movement. The need for learned

models arise from several different situations: while accurate

models for inverse dynamics may be difficult to obtain

due to a lack of knowledge of certain hard to measure

physical parameters and unmodeled non-linear interactions,

the kinematics analytical model may have inaccuracies due

to backlash, actuator unmodeled nonlinearities, time drifts

in the kinematics characteristics, produced by material wear,

and, for humanoid robots, calibration errors in cameras used

for end-effector tracking.

Given a learned model of a robot kinematics, trajectory

control methods fall broadly into two major categories: open-

loop controllers try to accomplish the desired trajectory

following task relying solely on the learned model, while

Bruno Damas, Lorenzo Jamone and José Santos-Victor are with the
Instituto de Sistemas e Robótica, Instituto Superior Técnico, Lisboa,
Portugal. Bruno Damas is also with Escola Superior de Tecnologia de
Setúbal, Portugal. {bdamas,jasv}@isr.ist.utl.pt. This work
was partially funded by EU Project POETICON++ (FP7-ICT-288382) and
FCT project [PEst-OE/EEI/LA0009/2011].

closed-loop methods also use sensory data to perform the

trajectory, many times in the form of the current end-effector

position feedback.

Resolved Motion Rate Control (RMRC) is a widely used

class of closed-loop trajectory control methods, that has seen

many adaptations and variants. In its original form, it uses

the inversion of the kinematics Jacobian, that relates joint

to task velocities, to obtain the joint velocities that will

drive the end-effector in the target direction. Ideally, when a

perfect kinematic model is available, straight line trajectories

in the operational space are obtained when using RMRC

schemes [1]. When using learned models the analytical

Jacobian is replaced by its estimate, as calculated using

the learning algorithm; some recent works [2], [3], [4] can

successfully track desired task space points using the Locally

Weighted Projection Regression (LWPR) algorithm [5] to

predict the Jacobian during online operation.

Open-loop controllers rely on obtaining accurate solu-

tions for the inverse kinematics problem. Learning inverse

kinematics, however, is by far a much more demanding

learning problem than Jacobian learning, due to the multi-

valued nature of the inverse map, where many joints values

typically map to the same end-effector position. The inverse

kinematics map learning scheme of [6], for instance, spatially

localizes the learning task, but this is ineffective for trajectory

planning, where a global set of inverse solutions should

be available. Another approach takes unsupervised learning

schemes and uses the learned density of the joint input-output

space to obtain the inverse kinematics map, by conditioning

such density on the output query points [7], [8]. Such

unsupervised learning methods, however, typically result in

convergence to sub-optimal solutions that do not take the

problem structure into account, as they ignore that the full

data, apart from noise corruption, lies in a lower dimensional

manifold. This is particularly problematic as the kinematics

map dimension increases. Finally, another work, related to

the approach proposed in this paper, uses a Mixture Density

Network (MDN) [9] to estimate the robot inverse kinematics

map [10]. This latter work, however, relies on an offline

training of the model, where the number of components

of the mixture must be defined beforehand. Additionally,

the learned model cannot be used for Jacobian or forward

prediction.

Closed-loop methods are known for their robustness

towards external perturbations and model uncertainties:

RMRC, for instance, works reasonably well even when the

Jacobian estimate is not accurate, as long as the actuated

joint velocities, calculated using the estimated Jacobian,

move the end-effector closer to the desired task space point.

However, since such methods need sensory feedback, they

suffer, in their original form, from excessive sensor noise

levels, many times resulting in robot jerky motions. Also,

they are condemned to failure whenever signals from the

sensors cease to be available, for instance when the end-

effector is occluded in a vision-based tracking system. Open-

loop controllers prove to be insensitive to these problems, as

they do not use such sensory information for control. Still,

they are not robust as closed-loop controllers with respect to

unexpected movement perturbations and inaccurate learned

models.

In this paper we propose the use of the Infinite Mixture of

Linear Experts algorithm (IMLE), a recent online learning

algorithm [11], [12], to provide a learned model that can

be simultaneously used for open and closed-loop control.

While several learning algorithms were used for both of

these control schemes, to our knowledge IMLE has the

unique feature of being able to provide single and multi-

valued forward, inverse and Jacobian estimates from the

same learned model. In closed-loop mode, IMLE provides

Jacobian estimates that are used to control the robot joints,

using a RMRC scheme. If an open-loop control is desired,

the multiple solutions resulting from the inverse prediction

queries are used to plan a trajectory in the joint space, as

described with more detail in Section IV. This results in a

general, learning based control scheme that can be switched

from closed to open-loop at any time, either due to a high

noise level in the sensors, occlusions in visual feedback or

simple sensor failure. In fact, IMLE can be used to compare

sensor readings to their expected values, as predicted from

its forward model, in this way enabling an automatic switch

to open-loop mode whenever there is a large discrepancy in

these values.

We first introduce the IMLE algorithm in Section II,

describing its most important features. After that, we explain

how this machine learning method is used for closed and

open-loop control, in Sections III and IV respectively. After

that, we proceed to several experiments comparing both

approaches in Section V. Section VI concludes the paper,

providing the final remarks.

II. THE IMLE MODEL

The IMLE algorithm is an online probabilistic algorithm

that uses a generalized expectation-maximization (EM) pro-

cedure to update its parameters, fitting an infinite mixture

of linear experts to an online stream of training data [11],

[12]. Its probabilistic model assumes the training data to be

described by a collection of linear models: a training point

consisting of an input part zi ∈ R
d and a corresponding

output xi ∈ R
D have its probability described by the

generative model

p(xi|zi, wij ; Θ) ∼ N (µj + Λj(zi − νj),Ψj) , (1)

p(zi|wij ; Θ) ∼ N (νj ,Σj) , (2)

where the mean νj and covariance Σj define a Gaussian

input region for each expert j. Parameter µj is the output

mean for each expert, while Λj defines the linear relation

from input to output. Ψj is a diagonal matrix that represents

the uncorrelated noise at each of the output dimensions.

The unobserved, latent indicator variable wij assigns training

points to experts, while the parameter vector Θ gathers all

the parameters to be learned. A set of priors for each of

the mixture parameters is also defined, in order to perform

some regularization and to enforce the principle of localized

learning, thus avoiding the interference of experts across

different regions of the input space.

Online training of the model is done using an online EM

algorithm: in the expectation step (E-Step) responsibilities

are assigned to experts for a new point (zi, xi), according

to:

hij ≡ E[wij |xi, zi; Θ̂] = p(wij |xi, zi; Θ̂) , (3)

where Θ̂ is the most recent estimate for the mixture parame-

ters being learned. Maximization step (M-Step) then updates

the parameters in Θ̂ according to the responsibilities hij

previously obtained. Based on a model for outlier points,

the mixture can grow by automatically adding new experts

whenever the perceived data points are not well explained by

the mixture. This and other aspects of the IMLE algorithm

are thoroughly detailed in [11]: for details, please refer to

the original paper.

Given a current set of mixture parameters, a conditional

mean prediction method will typically mixture the individ-

ual linear models predictions according to some weighted

average scheme, using weights wx
j (zq) that depend on how

strong each model is activated given only the input query

point zq . This works well for single-valued regression —

and this is the approach followed by IMLE single-valued

forward prediction mode — but for multi-valued regression,

as typically required for prediction of inverse kinematics

maps, this is unacceptable, as different solutions are then

merged together.

Given an output query xq , each of the linear models that

constitute the current mixture can assign an inverse point

estimate, together with an uncertainty, by conditioning the

full input-output probability density p(x, z|wj) to the query

xq . For multi-valued inverse prediction, the IMLE algorithm

tries to find, for such query xq , a set of estimated predictions
ˆ̄zk, by grouping and clustering the linear models point esti-

mates into a minimal set of predictions. It uses a probabilistic

model that relates linear models point predictions ẑj to the

unknown set of true multi-valued predictions z̄k, also taking

into account the weights wz
j (xq) and the estimation variances

Rj provided by each linear model. This process then has

to group linear models point estimates into a set of Npred

coherent predictions, choosing the appropriate number of

such predictions during the estimation process. The clus-

tering problem is solved using another EM procedure, by

assuming some latent variables sjk exist that assign models

point estimates ẑj to the unknown multi-valued predictions

z̄k. After the EM procedure is carried through, a statistical

hypothesis test is performed, with a given significance level

αmulti, to assess the fit of the resulting set of multi-valued

predictions: if the test rejects the goodness of fit hypothesis

then it is assumed that the number of predictions Npred is

insufficient. For a query point xq the IMLE algorithm starts

with the single-valued prediction: if the test finds evidence

to reject the hypothesis that the models point estimates are

distributed according to a single-valued prediction, the value

of Npred is increased to 2 and the EM clustering procedure is

carried on; if the goodness of fit hypothesis is again rejected

the number of predictions Npred is again increased, until

the test fails to reject the hypothesis and a final set of Npred

multi-valued predictions is obtained. Note that this clustering

process automatically deals with predictions coming from

non-relevant experts with low weights wz
j (xq), without the

need to filter such spurious predictions.

If the input space dimension d is greater than the output

dimension D, as is the case with redundant robots, the set

of solutions that the IMLE algorithm provides for a inverse

prediction query can be interpreted as a kind of sampling of

the full continuous solution space. Depending on the value of

αmulti, this sampling can be more or less coarse: in the limit,

IMLE can provide a set of M inverse solutions, where M is

the current number of linear models of the mixture, or, in the

opposite direction, a single global solution, merging all the

experts inverse predictions together, can be found. However,

we empirically found that the parameter αmulti does not

influence much the trajectories obtained using an open-loop

controller based on the inverse kinematics prediction, as

described in the following sections, as long as its value is

not high enough to only produce a single-valued estimate.

The IMLE algorithm features a very low computational

complexity: for every new training point presented the

learning algorithm is O(Md(d + D)), i.e., linear in the

number of active experts M and output dimensions D and

quadratic in the number of input dimensions d, thus making it

directly comparable to current state-of-the-art online learning

algorithms in terms of computational complexity per training

point. For inverse prediction, IMLE computational time also

grows linearly with Npred, the number of multi-valued

solutions found for each query.

Finally, note that IMLE also provides Jacobian estimates

at a given query point zq , by calculating the derivatives

of the forward solution(s) with respect to the input vector.

This makes the IMLE algorithm one of the most versatile

state of the art online learning algorithms, that can obtain

forward, inverse and Jacobian predictions from the same

learned model.

III. CLOSED LOOP POSITION TRACKING

To control the end-effector position in task space we fol-

low the approach originally proposed in [1], a RMRC scheme

where, due to the redundancy of the robot kinematics, the

null space of the main task can be used to keep the joints

values as far as possible from their physical limits. Motor

velocity commands q̇act(t) are thus computed as follows:

q̇act(t) = KmJ†(xd − x(t))−Ks(I − J†J)∇M(q(t)) ,
(4)

where the Jacobian matrix J , evaluated at the current joints

value q(t), maps from motor velocities to task velocities,

J† is its Moore-Penrose pseudo-inverse, (I − J†J) is the

null-space projector and ∇M(q(t)) is the gradient of the

cost function that penalizes joints values closed to their

limits. Km and Ks are gains, represented by positive

diagonal matrices. When the system is close to singularities

we introduce a regularization term in the pseudo-inverse,

similar to the damped least squares solution of [13], to avoid

numerical instabilities. The Jacobian J(q(t)) is obtained, at

each time step, from the current IMLE model, taking the

estimate of the local slope, for input query point q(t), of the

learned map from joint to task space at this point.

Following a trajectory in the task space, represented by a

sequence of task space points xi
d, can be accomplished, using

this closed-loop controller, by simply feeding the desired task

space points in sequence to the controller, switching to the

next available point whenever the current point xd is reached.

If additionally we wish to define the desired velocities ẋi
d

at the trajectory points, Eq. 4 can be easily modified to

accommodate these velocities, changing for instance its first

term to J†(ẋd +Km(xd − x(t))).

IV. OPEN LOOP TRAJECTORY PLANNING

Given a trajectory in the task space, represented by a

sequence of task space points xi
d, together with correspond-

ing desired velocities ẋi
d, the open loop trajectory planning

problem consists of finding joints positions and velocity

profiles, qd(t) and q̇d(t) respectively, that will generate

a task space trajectory satisfying the desired position and

velocity constraints. The problem, however, is ill-posed, as

redundant robots typically will have, for each desired task

space positions, a continuum of inverse solutions; in fact, it

is a well known result that even for non-redundant robots the

inverse kinematics model will usually generate more than a

single solution. To generate a feasible joint space trajectory,

the approach taken in this paper first uses IMLE to obtain,

for each task space point xi
d, a set of inverse kinematics

solutions qi
j . After that we obtain a single solution for each

of the inverse kinematics sets of solutions, by imposing a

penalty on the overall joint space displacement and on the

predicted forward error for the whole trajectory, choosing

the joint space trajectory that minimizes such cost. Finally,

position and velocity profiles are generated for each joint that

respect the velocity and acceleration constraints for the joints.

These steps are further detailed in the following sections.

A. Inverse Prediction

The IMLE model can directly provide inverse predictions

for a given query xi
d from the probabilistic model learned so

far. In general, as discussed in Section II, inverse predictions

may be not as accurate as predictions taken from the forward

model, due to the multi-valued nature of the inverse kinemat-

ics map. However, since forward and Jacobian estimates are

also readily available from the IMLE model, we can use these

estimates to improve each inverse kinematics solution. This

is achieved through the use of the Jacobian pseudo-inverse:

qi
j = q̂

i
j + J†(q̂i

j)
(

xi
d − x̂(q̂i

j)
)

(5)

where q̂
i
j is an inverse solution provided by IMLE and

J(q̂i
j) and x̂(q̂i

j) are respectively the Jacobian and forward

predictions evaluated at q̂
i
j , as predicted by IMLE. We can

think of Eq. (5) as performing a correction on the joints

positions vector that will drive the error (xi
d − x̂(q̂i

j)) to

zero, following a first order approximation to the estimated

forward kinematics map.

B. Trajectory Optimization

Having a set of candidate inverse solutions for each desired

task space point, qi
j , the main issue is then how to choose

an appropriate solution from each of these sets. A sensible

approach is to pick the inverse solutions in a way that

the overall joints displacement is minimized, avoiding large

jumps in the joint space, and also to prefer inverse solutions

with a low forward error, as estimated from the learned

model.

In this paper we closely follow the approach proposed

in [10], where a joint space trajectory is obtained, from the

full set of inverse solutions, by minimization of a global

penalty of the form

N
∑

i=1

‖qi − qi−1‖+ λ

N
∑

i=1

‖xi
d − f̂(qi)‖2 , (6)

for λ ≥ 0. The first term penalizes joint space discontinu-

ities, encouraging short trajectories, while the second term

imposes a penalty on inaccurate solutions given by inverse

prediction. Note that, contrary to the work of [10], we use

the IMLE model to get the predictions f̂(qi) — in the cited

work the Mixture Density Network used for learning the

inverse kinematics map cannot generate forward predictions,

and so the forward error must be calculated either using an

analytical model for the direct kinematics or an independent

learning algorithm. Also, another fundamental difference is

the online nature of the IMLE algorithm: in [10] the inverse

kinematics model must be learned offline, before being used

for control.

Minimization of (6) is computationally very cheap, using

Dijkstra’s algorithm over a directed acyclic graph; compared

to the computations involved in obtaining forward and in-

verse predictions, its cost is negligible.

C. Generation of motor commands

After the calculation of the joint space trajectory corre-

sponding to the desired trajectory in the task space, we need

to generate temporal positions and velocity profiles for each

of the joints. Additionally, we may wish to traverse each

of the task space points with a given desired velocity ẋi
d.

Fortunately, these velocities can easily be mapped back to

the joint space, once again using the pseudo-inverse of the

estimated Jacobian J†, making

q̇i
d = J†(qi

d) ẋ
i
d . (7)

Position, velocity and acceleration temporal profiles that

achieve such task, described by qi
d(t), q̇i

d(t) and q̈i
d(t)

respectively, can then be obtained for each joint, by resorting

to classic joint trajectory generation based on, for instance,

cubic polynomials or Bang-Bang acceleration policies [14]

that take the acceleration and velocity limitations of each

joint into account. These profiles can then be fed into the

low level joint controllers: for velocity control, for instance,

a possible control law is

q̇act(t) = q̇d(t) +Kp(qd(t)− q(t)) , (8)

where q̇act(t) is the motor command sent to the low level

controllers at each time step and q̇d(t) and qd(t) are the

desired position and velocity temporal profiles, as calculated

by the joint trajectory generator, and Kp is a positive gain.

V. EXPERIMENTAL EVALUATION

We perform our experiments on iCub, a 53 degrees of

freedom humanoid robot for research in embodied cognition.

We use the iCub simulator [15], a realistic software that uses

ODE (Open Dynamic Engine) for simulating rigid bodies

and collision detection algorithms to compute the physical

interaction with objects: a snapshot of this simulator is

displayed in Figure 1.

Fig. 1: A snapshot of the iCub Simulator used in the

experiments.

The right arm and the waist of the robot are actuated to

control the end-effector position in the 3D Cartesian space,

using the controllers presented in the previous sections. The

joint space vector used in the experiments has 7 degrees of

freedom, corresponding to the shoulder yaw, pitch and roll

rotations (elevation/depression, adduction/abduction and ro-

tation of the arm), the elbow flexion/extension, and the waist

yaw, roll and pitch rotations (rotation, adduction/abduction,

elevation/depression of the trunk). The corresponding joint

limits are defined in Table I. The end-effector 3D position is

taken with respect to a fixed reference frame placed on the

ground, between the robot feet.

arm waist

q
min

−80
◦

0
◦

0
◦

20
◦

−30
◦

−30
◦

−10
◦

q
max

0
◦

80
◦

80
◦

80
◦

30
◦

30
◦

30
◦

TABLE I: Joints limits of the iCub robot simulator.

A. Open and Closed-Loop Trajectory Following

The first experiment compares the performance of the

proposed open and closed-loop control schemes when fol-

lowing a desired trajectory in the task space. In this and

the following experiments, the robot was asked to perform a

square-like pattern in a X-Y plane in the task space, with side

length equal to 0.1m, using its end-effector. One of the main

advantages of the IMLE algorithm is the ability to work in an

online manner, learning and updating its internal parameters

while using the same model to make the predictions needed

to execute the desired actions. Figure 2 shows the results

obtained when trying to draw the square-like pattern, both for

open-loop (in the left) and closed-loop control (in the right).

In this experiment, the robot tried to perform the trajectory

from scratch, using an untrained IMLE probabilistic model1,

and updated the IMLE parameters on the fly, presenting it

with the training points as they where being acquired during

the robot movement. The robot then repeated the movement

for several iterations, trying to follow the desired square-like

trajectory in each iteration.

To follow the desired trajectory, the open-loop controller

planned, at each iteration, the joint space velocity and

position profiles that would take the end-effector to each of

the edges of the square, in sequence, stopping at each of

them. Additionally, some task space via points were defined

between the square edges, to guarantee a reasonably straight

trajectory in the task space, between the edges of the square.

As for the closed-loop controller, it sufficed to set its end-

effector position reference to each of the edges of the desired

square-like trajectory: each time the end-effector was close

enough to the target point or a time limit was reached the

reference in the task space would change to the next edge.

There was no need to set via points for the closed loop

controller, since the RMRC schemes are known to generate

straight line task space trajectories when the model being

used to obtain the Jacobian is accurate enough.

As expected, a poor controller performance was observed

during the first iterations of the movement, due to a not yet

properly learned model. However, as shown in Figure 2,

after about 10 iterations the kinematics model had been

learned and the robot could then properly follow the desired

trajectory, for both open and closed-loop control. Note that

in the first iterations the closed-loop controller was more

successful at performing the task: this is a consequence of

the online learning setup, since the closed-loop controller Ja-

cobian estimation at each time step used a IMLE model that

was also constantly being updated and improved. In contrast,

the open-loop controller planned the whole trajectory in the

1Actually some negligible babbling was performed by the robot before
the experiments, but only to acquire a couple of training points required to
initialize the mixture with a single expert.

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [
m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [

m
]

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [
m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [

m
]

(a) First Iteration.

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [
m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [

m
]

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [
m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [

m
]

(b) Second Iteration.

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [
m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [

m
]

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [
m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [

m
]

(c) Tenth Iteration.

Fig. 2: Online Learning and Trajectory Following: open-loop

(left) and closed-loop (right).

beginning of the movement, and would only use the updated

IMLE model in the next movement iteration. Alternatively,

the open-loop controller could be easily adapted to re-plan

the trajectory at a given time rate, to exploit the online update

of the kinematics model.

It can be argued that controlling the robot while simulta-

neously learning the model in an online fashion avoids the

potential problems that can arise when estimating the inverse

kinematics of a redundant robot, as the training data being

fed to the learning algorithm specializes in a single joint

space trajectory, corresponding to a specific solution of the

inverse kinematics. To evaluate the IMLE inverse prediction

capabilities in a more general setting, we performed a

random exploration in the joint space of the robot; this motor

babbling was executed until 100,000 training points were

acquired and processed by the IMLE algorithm, in order

to cover the whole workspace. After that, the task of the

previous experiment was executed. We didn’t observe any

noticeable changes on the final open-loop trajectory, and the

tracking error remained in the same level: this shows that,

despite the redundancy in the kinematics map, the open-loop

controller based on the inverse predictions provided by IMLE

could still achieve a good accuracy while performing the

desired task.

B. Sensitivity to Sensor Noise

Next, we studied the performance of both open and closed-

loop controllers under different sensor noise levels. While a

performance drop was to be expected for both controllers

when the noise increased, as a consequence of less precise

learned IMLE models, a larger sensitivity of the closed-loop

controller to the noise was expected, as this controller relied

on sensor readings to calculate the actuation at each control

step. This is confirmed in Figure 3, where RMSE is depicted

for both open and closed-loop controllers as a function of

the noise level, for the square-like target trajectory, after the

kinematics model has been properly learned2. The jerkiness

of the motion is also depicted in this figure: once more,

as expected, we can see that the jerk for the closed-loop

controller quickly increases for high output noise levels.

Figure 4 shows the attained trajectories, for open and closed-

0 0.025 0.05 0.075 0.1 0.2
0

0.01

0.02

0.03

0.04

Noise level [m]

T
ra

c
k
in

g
 e

rr
o
r

[m
]

Closed−loop
Open−loop

(a) Average error (RMSE).

0 0.025 0.05 0.075 0.1 0.2
0

100

200

300

400

500

600

Noise level [m]

A
v
e

ra
g

e
 j
e

rk
 [

m
/s

3
]

Closed−loop
Open−loop

(b) Average jerk (m/s3).

Fig. 3: Average error and jerk over the square-like trajectory,

for different sensor noise levels.

loop, for three different noise levels. Also, we show in

Figure 5 a comparison of the first joint position profile

under severe sensor noise, for both types of controllers; the

obtained results for the other joints were similar.

2A noise level of X in this paper means that the noise is uniformly
distributed between -X and X. We also tried a Gaussian distributed noise:
this didn’t visibly change the results.

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [
m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [

m
]

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [
m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [

m
]

(a) No noise.

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [
m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [

m
]

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [
m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [

m
]

(b) Moderate noise level.

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [
m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [

m
]

0.3

0.32

−0.1 −0.05 0 0.05

X [m]

Z
 [
m

]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [

m
]

(c) High noise level.

Fig. 4: Trajectory following after the learning phase, for

several noise levels: open-loop (left) and closed-loop (right).

C. Sensor Failure

Sometimes the sensors reading the end-effector task space

position may fail: this may be due to a sensor malfunction or,

for vision based systems, simply a consequence of some kind

of end-effector occlusion. When such kind of situation occurs

we must resort to open-loop control, as the sensory feedback

is no longer available. The IMLE learning algorithm can then

be used for both types of control: it can use the Jacobian

based RMRC scheme during normal operation, and when

the end-effector position feedback fails a seamless switch to

open-loop control, based on the same learned model, can be

applied. Figure 6 depicts this situation: in the left image

we show the task trajectory achieved by the closed loop

controller when, at a specific time, we simulated a sensor

malfunction. The figure to the right shows the recovery

using the open-loop controller: as soon as the failure was

0 2 4 6 8 10
−70

−65

−60

−55

−50

−45

−40

Time [s]

q
0
 [

°
]

(a) Open-loop.

0 5 10 15 20
−70

−65

−60

−55

−50

−45

−40

Time [s]

q
0
 [

°
]

(b) Closed-loop.

Fig. 5: Position profiles for the first joint, as the robot

executes the task with a high level of sensor noise.

detected, the controller switched to open-loop mode and a

new trajectory was planned and executed. As shown in the

figure, for the composite controller based on both open and

closed-loop control, there is no noticeable degradation on the

task performance when the failure occurs. Above each end-

effector trajectory is also depicted a position profile for the

first joint of the arm. Note that even when a sensor failure

is not properly communicated to the controlling algorithm,

resulting in a situation where the sensory feedback simply

returns erroneous values, the control system can detect such

situation by permanently comparing the sensor readings

to the corresponding predicted values, taken from forward

predictions given by the IMLE model.

0 5 10 15 20
−90

−80

−70

−60

−50

Time [s]

q0 [°
]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [

m
]

(a) Closed-loop controller.

0 5 10 15 20
−90

−80

−70

−60

−50

Time [s]

q0 [°
]

−0.15 −0.1 −0.05 0 0.05
0.65

0.7

0.75

0.8

0.85

X [m]

Y
 [

m
]

(b) Composite controller,
changing to open-loop
when the fault is detected.

Fig. 6: Simulating an end-effector position sensor fault.

VI. CONCLUSION AND FINAL REMARKS

We presented an application of IMLE, an online machine

learning method, to the trajectory control of the end-effector

in the task space of a robot. This learning algorithm is com-

putationally very efficient, being extremely well suited for

real-time operation, and is able to provide forward, inverse

and Jacobian predictions from the same probabilistic model.

Its multi-valued prediction capabilities allow the method

to recover multiple solutions for the inverse kinematics

problem, corresponding to different branches of the inverse

map, or a sample of the continuum space of inverse solutions

when redundant robots are considered. This characteristic,

combined with its forward and Jacobian prediction, makes

IMLE an invaluable algorithm for task space trajectory

control. We showed how this algorithm can be used in a

closed-loop RMRC scheme, updating its internal parameters

while executing a desired task, and also how its inverse

kinematics capabilities can be used for open-loop trajectory

planning. This suggests using IMLE to support a composite

controller that activates a closed or open-loop controller

whenever needed. As demonstrated in the previous sections,

the closed-loop scheme may be better suitable for normal

operation of the robot, but the existence of severe sensor

noise or delay, for instance, can be detected by the IMLE

algorithm, leading to an automatically switch to open-loop

trajectory planning. In the ultimate case of sensor failure,

where resolved motion rate controllers are simply ineffective,

the controller can seamless switch to open-loop, without any

considerable degradation of the task being performed.

REFERENCES

[1] A. Ligeois, “Automatic supervisory control of the configuration and
behavior of multibody mechanisms,” Transactions on System, Man and

Cybernetics, no. 7, pp. 868–871, 1977.
[2] C. Salaün, V. Padois, and O. Sigaud, “Learning forward models for the

operational space control of redundant robots,” From Motor Learning

to Interaction Learning in Robots, vol. 264, pp. 169–192, 2010.
[3] L. Jamone, L. Natale, M. Fumagalli, F. Nori, G. Metta, and G. San-

dini, “Machine-learning based control of a human-like tendon driven
neck,” in IEEE International Conference on Robotics and Automation,
Anchorage, AK, USA, 2010.

[4] L. Jamone, L. Natale, K. Hashimoto, G. Sandini, and A. Takanishi,
“Learning task space control through goal directed exploration,” in
IEEE International Conference on Robotics and Biomimetics (RO-

BIO), Phucket, Thailand, Dec. 2011, pp. 702–708.
[5] S. Vijayakumar, A. D’Souza, and S. Schaal, “Incremental Online

Learning in High Dimensions,” Neural Computation, vol. 17, no. 12,
pp. 2602–2634, 2005.

[6] A. D’Souza, S. Vijayakumar, and S. Schaal, “Learning inverse kine-
matics,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems, San Diego, CA, USA, pp. 298–303.
[7] Z. Ghahramani and M. Jordan, “Supervised Learning from Incomplete

Data via an EM approach,” Advances in Neural Information Process-

ing Systems 6, 1994.
[8] M. Lopes and B. Damas, “A learning framework for generic sensory-

motor maps,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems, San Diego, CA, USA, Oct. 2007, pp. 1533–1538.
[9] C. Bishop, Neural Networks for Pattern Recognition. Oxford Uni-

versity Press, USA, 1995.
[10] C. Qin and M. A. Carreira-Perpinán, “Trajectory inverse kinematics

by conditional density modes,” in IEEE International Conference on

Robotics and Automation, Pasadena, CA, USA, May 2008, pp. 1979–
1986.

[11] B. Damas and J. Santos-Victor, “An online algorithm for simultane-
ously learning forward and inverse kinematics,” in IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, Vilamoura,
Portugal, Oct. 2012, pp. 1499–1506.

[12] B. Damas and J. Santos-Victor, “Online Learning of Single and
Multivalued Functions with an Infinite Mixture of Linear Experts,”
Accepted for publication in Neural Computation, 2013.

[13] Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with
singularity robustness for robot manipulator control,” Transactions of

the ASME Journal of Dynamic Systems, Measurement and Control,
no. 108, pp. 163–171, 1986.

[14] J. Craig, Introduction to Robotics: Mechanics and Control. Addison-
Wesley Longman Publishing Co., Inc., 1989.

[15] V. Tikhanoff, P. Fitzpatrick, G. Metta, L. Natale, F. Nori, and A. Can-
gelosi, “An open source simulator for cognitive robotics research:
The prototype of the icub humanoid robot simulator,” in Workshop

on Performance Metrics for Intelligent Systems, National Institute of
Standards and Technology, Washington DC, August 19-21 2008.

