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Abstract—In this paper, we propose a method to recognize
human body movements and we combine it with the contextual
knowledge of human-robot collaboration scenarios provided by
an object affordances framework that associates actions with its
effects and the objects involved in them. The aim is to equip
humanoid robots with action prediction capabilities, allowing
them to anticipate effects as soon as a human partner starts
performing a physical action, thus enabling interactions between
man and robot to be fast and natural.

We consider simple actions that characterize a human-robot
collaboration scenario with objects being manipulated on a table:
inspired from automatic speech recognition techniques, we train
a statistical gesture model in order to recognize those physical
gestures in real time. Analogies and differences between the
two domains are discussed, highlighting the requirements of
an automatic gesture recognizer for robots in order to perform
robustly and in real time.

I. INTRODUCTION AND RELATED WORK

In recent years, there has been a surge of interest in in-
terfaces whereby users perform uninterrupted physical move-
ments with their hands, body and fingers to interact with
smartphones, game consoles, kiosks, desktop computer screens
and more [1]. At the same time, the number of autonomous
service robots integrated in society —as opposed to industrial
ones— is ever-increasing. During 2011, 2.5M such robots were
sold: 15% more than in the previous year.a

Given these premises, it is important to develop pattern anal-
ysis techniques suited for recognizing physical gestures in the
context of task-based human-robot collaboration. This article
presents a vision-based approach to classifying human task
actions toward enabling robots to provide appropriate support
to humans, as illustrated in Fig. 1, by using statistical models
based on training data for recognizing real-time continuous
gestures.b

This work is set within the object affordances frame-
work [2], [3], which encodes causality relations between
actions, objects and the effects of actions on objects. Our
contribution to this probabilistic framework is that of explicitly
modeling and measuring action variables, as shown in the
upper part of Fig. 2. For a more detailed explanation of object
affordances, see Sec. I-B.

ahttp://www.ifr.org/service-robots/statistics/
bIn this article, the term “gesture” refers to intentional physical actions (see

also Sec. I-A), and we will use it interchangeably with the term “action”.

Figure 1: A robot capable of recognizing human gestures can
intervene before the action is finished and provide help.

We argue that physical gestures give a hint of the intention
over human action or aim, and we wish to capture this predic-
tive power so that robots can exploit it for smoother interac-
tions with their human counterparts. Our proposed system aims
at equipping robots with the possibility of predicting human
intentions by analyzing natural, continuous bodily gestures
and the contextual knowledge expressed in object affordances,
such as object shape and relationships between objects and
movements with certain dynamics or trajectories. The whole
system is sketched in Fig. 2, and in this paper we focus on
the continuous gesture recognition aspect with analysis and
results, on our planned experiments with a humanoid robot
and on how gestures fit into the affordance network learned
in previous work. Other components of the system, such as
human-robot mimicking, will be discussed in future work.

In the remainder of this paper we outline the nature of
dynamic gestures and related work in the automatic gesture
recognition literature, we present our model and experimental
results, and we show the feasibility of the proposed system in
a possible human-robot interaction setting.

A. Automatic Gesture Recognition

In a broad sense, gesture is a component of human com-
munication that involves the movements of different body
parts: the whole body, hands, arms, fingers and/or face. It
constitutes a primary modality for humans, who learn to use
it as early as during their first year of age, before they learn

http://www.ifr.org/service-robots/statistics/
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Figure 2: Affordance learning schema, with the proposed
extension that takes human and robot movement into account.
Because human actions and robot actions can be mirrored,
the dotted line indicates a possible shortcut to connect hu-
man actions with action primitives directly. Square nodes are
discrete-valued, round nodes are continuous, shaded nodes are
observable through robot sensory data or computer vision, and
edges indicate Bayesian dependency.

to speak [4]. The nature of human gestures is ambiguous
and context-dependent [5]: there exist many-to-one mappings
between gestures and conveyed concepts. In previous work [6],
we studied human interpretation of robot gestures; in this work
we tackle the opposite problem of how robots can recognize
human gestures.

Different approaches have been proposed to design au-
tomatic gesture recognition systems, both to decide which
features are salient for recognition [7] and which model best
classifies them. For more comprehensive reviews of these
systems, we refer the reader to [8]–[10].

Designing an automatic gesture recognizer poses two main
issues:

1) spatio-temporal variability: the same physical gesture can
differ in shape and duration, even for the same gesturer;

2) segmentation: the start and end points of a gesture are
difficult to define and identify.

Common features for gesture recognition systems include:
skin color segmentation, optical flow (the apparent visual
motion caused by the relative motion of objects and viewer),
arm-hand tracking in 2D or 3D, full body tracking.

Many gesture classifiers are designed to work in a controlled
environment, or they make strong assumptions:

• limited and fixed lexicon of permitted gestures

• availability of the whole test data sequence to classify
(system only works offline)

• constrained physical space (hands must move only within
a certain region of upper body)

• unnatural interaction (isolated gestures, to be preceded
and followed by a relaxed pose lasting several seconds)

• users must wear expensive hardware tracking devices.
Neuroscience experiments [11] have suggested that the area

of the human brain responsible for gesture processing is also
employed for speech processing, functioning in fact as a
modality-independent semiotic system, connecting meaning to
various types of symbols: words, gestures, images, sounds, or
objects. In particular, we propose that the link between gesture
and speech justifies the usage of tools that, as in automatic
language recognition, (i) permit an abstraction hierarchy and
(ii) are suited for capturing time series data. Hidden Markov
Models, explained below, are one such statistical tool. We
adopt an HMM-based approach to recognize human or robot
gestures that follow temporally dynamic patterns.

Hidden Markov Models (HMMs) [12] are a statistical tool
for modeling time series data. They have been applied to the
segmentation and recognition of sequential data with spatial
and temporal variability such as speech, machine translation,
genomics and financial data. One of the advantages of HMMs
—and a reason behind their popularity— is the fact that they
are computationally tractable thanks to dynamic programming
techniques: marginal probabilities and samples can be obtained
from an HMM with the Forward–Backward algorithm, and the
most likely sequence of hidden states can be estimated with
the Viterbi algorithm.

A continuous-output HMM is defined by a set of states S =
{s1, . . . , sQ} and by a set of parameters λ = {A,B,Π},
where A = {aij} is the transition probability matrix, aij is
the transition probability from state si at time t to state sj at
time t + 1, B = {fi} is the set of Q observation probability
functions (one per state i) with continuous input and output,
Π is the initial probability distribution for the states.

Selected related works in the dynamic gesture recognition
literature are described in the remainder of this section.

The system by Yamato et al. [13] was among the first
to apply HMMs for the recognition of human gestures and
actions, using 25 × 25 pixel subsampled images of tennis
strokes as features. However, this model required many ad-
hoc pre-processing and filtering steps and the outputs were
discrete, making the system not feasible or robust to be used
in other domains. By contrast, our proposed approach does not
assume prior filtering of the gestural feature points to reduce
noise — in doing so, we preserve all the information contained
in the raw data points, and we input these points to HMMs
without pre-processing (noise is addressed by having enough
diverse data samples of the considered scenarios); this way,
we can execute the system in real time on a robot platform
observing a continuous stream of human actions, not having to
wait for the input gesture to be finished in order to recognize
it.

Wilson et al. [14] developed a parameterized gesture rec-



ognizer where people’s motion was recorded with a Polhemus
motion capture system. This work is notable because it not
only can detect a general pattern (e.g., human gait), but it
is also able to extract context-dependent components of that
pattern (e.g. speed, style). The main drawback lies in the high
computational cost induced by the Parametric Hidden Markov
Model and Generalized Expectation-Maximization algorithm
during recognition. Our approach uses standard HMMs and
EM, making it more feasible to be run online by a robot; in
addition, the users of our human-robot interaction scenarios do
not have to wear motion capture devices, but they can perform
actions naturally in their everyday clothes.

Starner et al. [15] proposed a system to recognize sign
language, where each sign word is associated to an HMM
with an ad-hoc structure that fits their data (four states, each
state can cycle to itself or proceed to the next one, and state 1
can jump to state 3 directly), features are determined with
computer vision (users wear colored gloves), and a semantic
grammar is used to check the validity of phrases. Our system
does not require human users to wear colored attire or special
hardware, and our HMMs can have a varying number of
states with homogeneous transitions, as in Fig. 5b: not having
skip transitions between particular state pairs permits us to
modulate HMM parameters easily, handling gestural data of
different nature, for example with different temporal durations.
Alon et al. [16] also addressed the sign language recognition
problem, using sophisticated visual motion features and a
dynamic programming approach to prune multiple hypotheses,
thus taking into account concurrent subgesture relationships;c

their hand features are normalized with respect to the location
and scale of the human’s face, whereas our proposed approach
centers them around the torso (human center of gravity),
making it more versatile to recognize two gestures of the same
class that occur at different horizontal distance from the face.

Another interesting work is the one by Lee and Kim [17],
which analyzes gestures performed with one hand on a simple
visual background, introducing the notion of a nongesture
garbage threshold, similar to silence models in speech. How-
ever, their garbage model is ergodic (it is built by fully
connecting all the states from all the gesture models in the
system) and as such can incur in excessive computational
burden, due to the high number of model parameters to
optimize. Our proposed garbage model is more compact, being
trained with a low number of states, just like another gesture
model.

The article by Yang et al. [18] aims at recognizing complex
actions (e.g. sitting on the floor, jumping) using angles be-
tween human body parts as features, then clustering them with
Gaussian Mixture Models, partitioning the physical space into
regions and then training HMMs for gestures and between-
gesture transitions (garbage). One limitation of this approach
is that the HMM states are tied to the pre-defined physical
cluster or regions, thus this system cannot deal well with scale

cFor example, the “5” shape can also be interpreted as the first part of an
“8” shape.

variations (e.g. two gestures conveying the same message, one
with wide arms and the other one with narrow, less emphatic
movements). Our approach is less sensitive to scale, because
we train each gesture class with varying amplitude degrees and
we let the model assign states to spatial points automatically,
without clustering into regions.d

B. Object Affordances

The robot object affordances framework [2] takes its inspi-
ration in psychology, and considers affordances as a mapping
between actions, objects and the effects of actions on objects,
as displayed in Fig. 2. Such mapping can be hand-coded,
learned by demonstration, learned by robot self-exploration,
or by a combination of these methods. Using inferential
reasoning and Bayesian Networks (BNs, a probabilistic model
that represents random variables and conditional dependencies
on a graph), this framework allows robots to recognize objects
or actions (intentions) given the observations of object features
and motions, to predict the outcome of an action given the
observation of an effect, or to plan actions in order to achieve
a desired object/effect configuration.

Because the affordance network of Fig. 2 encodes the
dependency relations between the variables, we can compute
the marginal distribution of one or more variables, given the
values of the other ones (it is not necessary to know the
values of all the variables, in order to perform inference).
An affordance network can be seen as a knowledge system
which can be queried and contains three types of variables:
A (actions), observed object features (Fi) and observed object
effects (Ei). For example, to predict the resulting effects
when observing an action ai being performed on visual object
features fj , we have to compute p(E|A = ai, F = fj).

In [3], the robot affordance network of [2] was augmented
with spoken word nodes, where each word may depend on any
subset of A, Fi and Ei. This extension permits to associate
words to meanings in robotic manipulation tasks in the event
of co-occurrence between actions and verbal description of
actions, object properties and resulting effects.

In [2] and [3], actions were not measured explicitly in the
model: in fact, looking at the lower part of Fig. 2 (below the
dashed line), the “action” node does not have any output edge
that directly leads to an observation node. In this paper we
present a possible way to extend robot affordances, improving
action (intention) inference quality by the means of perceived
gesture motion (above the dashed line). In previous work, the
action (intention) could be inferred only indirectly through
the observation of the effect – and after it had occurred. In
the proposed approach, the action (intention) can be inferred
before it completes, therefore giving the robot the opportunity
to anticipate its effect and help the human accordingly. For

dWe rely on gestural data to be diversified enough in amplitude (e.g. each
movement having wide, narrow and medium-width examples), so that the
trained Gaussian probabilities will cover the physical space reasonably well for
the interaction scenarios that we consider. In the current version of our work,
we do not claim real robustness to scale, which would require a feature space
capable of interpolating between narrow and wide gestures (see Sec. II-A).



(a) Tap. (b) Grasp. (c) Push.

Figure 3: Some iCub robot gesture actions for object ma-
nipulation, with one hand reaching for an object for touch-
ing/grasping from different directions.

(a) RGB view. Hand trajectory
shown in green, elbow trajectory
in red.

(b) Depth skeletal view. Hand trajec-
tory shown in green, elbow trajectory
in light blue.

Figure 4: A dynamic human gesture, with temporal trajectory
of selected joints being highlighted. The 3D coordinates of the
joints of interest constitute the inputs of our statistical models
of Fig. 5.

humanoid robots with morphology and motion capabilities
similar to humans, we also consider the possibility to learn
the gesture recognition model from movements of the robot
itself. In that case, when observing the human, a map from
human motion to robot motion must be taken into account,
mimicking the role of mirror neurons [19] and allowing the
robot to automatically imitate the human.

Some robot actions are shown in Fig 3, as performed by the
iCub [20], a child-sized humanoid robot, possessing 53 de-
grees of freedom, facial expressions, tactile touch sensors,
fully articulated eyes and head, and the ability to perform
dexterous manipulation and gestures.

II. PROPOSED APPROACH

In this section we will formulate the action recognition
model, its properties and training phase, and how to evalu-
ate the presented tests. For the initial experiments presented
hereafter, we assume:
• a human action vocabulary of three simple manipulation

gestures (plus the “garbage” or “nongesture” action) that
involve one arm, analogous to the ones of Fig. 3;

• a feature space containing the 3D position coordinates of
the hand joint in time, obtained with an RGB-D camera;

• inputs: sequences of observation vectors as described in
the previous points;

• outputs consisting of either (i) the recognized, most
likely single action within an observation sequence or

subsequence segment (Forward–Backward algorithm), or
(ii) the estimated sequence of actions (Viterbi algorithm).

A. Feature Selection

The features we use to train our gesture classifier are
computed directly from the spatial 3D coordinates of one or
more human(oid) joints being tracked (hands, optionally also
elbows, shoulders, torso, head), and they can be calculated
online without having to wait for an input sequence to be
finished. For this reason, we perform no normalization or
filtering that requires knowledge of the completed sequence
(e.g. global minima and maxima). The 3D joints coordinates
can be obtained with general-pupose RGB-D cameras like the
Microsoft Kinect or the Asus Xtion Pro, or with specialized
computer vision algorithms. Fig. 4 illustrates the idea of
extracting a time series of 3D coordinate features from a
dynamic gesture.

For the simple one-hand actions shown in Figs. 3 and 4,
tracking one hand/arm is sufficient. While we do not apply
normalization steps to the coordinates, we do apply a simple
geometric transformation to the coordinates obtained with
RGB-D cameras and skeleton recognition algorithms: we set
our reference frame to be centered on the human torso, instead
of the default sensor-centered reference frame. This transfor-
mation has two motivations, a theoretical and a practical one:
from a theoretic perspective, it is coherent with the “human-in-
the-loop” model, placing a virtual mobile point on the human
user, and not on a fixed point attached to a camera or to a
corner of an experiment room; from a practical perspective,
this transformation provides invariance to starting point of a
physical gesture. In other words, the user can perform actions
at any distance or angle from the robot sensors, and these
actions will always be measured with regards to his torso
coordinate.

To disambiguate the gestural “words” of a domain, it is
sometimes beneficial to enrich the feature space to include
not only raw 3D coordinates of the joints of interest, but also
their first and second derivatives [7], curvature, other structural
geometric representations, and context-specific features (e.g.
distance to interaction partner, distance to object to manip-
ulate). In our current scenarios, however, we simply employ
the 3D coordinates of the most meaningful joint (the hand),
because it yields the highest recognition rate in initial tests.

B. Trained Models

We now present three different graphical models that were
used in our experiments. The first two models serve as a
baseline, while the third one is the final proposed approach,
because it is powerful enough to capture a continuous (unin-
terrupted) sequence of actions, with permitted passages from
one action to another being defined in its transition rules.

The first statistical model that we defined for our ex-
periments (“Model 1”) consisted of a Gaussian Mixture
Model (GMM: a linear superposition of Gaussian components)
–either trained with all the data, both gestural and nongestural,
or trained with nongestural data only– and several HMMs,
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(a) Model 1.

hmm1 1 2 . . . Q
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(b) Model 2.
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gesture2 (grasp)

gesture3 (push)
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Figure 5: “Model 1”: Hidden Markov Models trained with data from specific gestures, Gaussian Mixture Model trained with
garbage (non-gesture) data.
“Model 2”. Hidden Markov Models trained, respectively, with first gesture data, with second gesture data, with third gesture
data and with nongesture (garbage) data. Each model is independent from the other ones, therefore it can have arbitrary state
indexes 1, . . . , Q, with Q not necessarily the same number for all the models.
“Model 3”. Hidden Markov Models (previously trained, respectively, with first gesture data, with second gesture data, with
third gesture data and with nongesture/garbage data) after being merged. Each rectangle represents a gestural HMM like the
ones shown in Fig. 5b, however in this case the states must be uniquely numbered.

each one trained for one gesture, as illustrated in Fig. 5a.
This type of model allows to quickly test a gesture recognizer,
clearly separating between the garbage part from the gesture
part of a data sequence. On the other hand, the GMM nature
of the garbage model does not allow to capture the dynamic
nature which is also present in between-gesture transitions.

A second statistical model that we trained, “Model 2”,
improves on the previous model in the gesture/nongesture
separation criterion. Here, the garbage model consisted of an
HMM trained with garbage data, and other HMMs for actual
gestures, as in Fig. 5b. In the current version of our work, for
simplicity we have fixed the number of states Q to be equal
for all gestures.

So far, we have considered the models of Fig. 5b to be
independent from each other: each of them has its start, inter-
mediate and final states, as well as its own prior probabilities,
state transition probabilities and observation probabilities. In
Fig. 5c, we have merged those models into one HMM with
many states and appropriately combined probability matrices
(“Model 3”). Merging the previously trained statistical models
into one new HMM entails the following steps:

• weights matrix, means matrix, covariance matrix: con-
catenation of previous models’ matrices along the Q di-
mension;

• initial probability vector: stochastic concatenation of pre-
vious models’ priors, i.e., a column vector with (Q ·
#gestures) entries, all set to zero except for the first state
of each gesture, set to 1/#gestures;

• transition matrix: (Q · #gestures)× (Q · #gestures) block
diagonal matrix built from the previous (Q×Q) matrices,
allowing transitions from each of the previous HMMs’
end states into the first state of any previous HMM (this

allows the continuous gesture recognition algorithm to
enter a sequence j at the end of any finished sequence i).

In all of the models described above, HMMs were trained
with the incremental mixture splitting technique, inspired from
speech recognition, in order to obtain the desired number of
output Gaussians Mdes. Initially the mixture has M = 1 Gaus-
sian (with mean initialized to empirical mean and covariance
initialized to empirical covariance of gesture data, respec-
tively); we run the Baum–Welch algorithme to improve HMM
parameter estimates; then we enter a cycle, in which we run
UPMIX (adapted from [21, Sec. 10.6], sketched in Alg. 1) and
Baum–Welch, increasing the counter M ; the cycle terminates
when the weights matrix contains Mdes Gaussians as desired.
This technique allows us to achieve higher likelihoods than
with simple Baum–Welch (EM), as shown in Fig. 6.

In the current version of our work, we collected training
data of one person performing actions similar to the robot
gestures depicted in Fig. 3 without the manipulated objects
(because they are not considered at this stage), in other words
we trained the action recognizer with action pantomimes. Each
action was performed in three different amplitude classes: wide
gestures (emphatic arm movements), medium-width gestures
and narrow gestures (subtle movements). Each amplitude class
was acquired multiple times (12–14 times), thus providing
around 40 training repetitions for each of the manipulation
actions considered. This data set was used to train all the
statistical models described in this section.

In the next section, we show recognition results ob-
tained by employing common HMM inference methods [12]:
(i) Forward–Backward algorithm for isolated gesture recogni-

eThe Baum–Welch algorithm is an instance of the Expectation–
Maximization (EM) algorithm used to estimate HMM parameters.



Algorithm 1 Gaussian mixture splitting.
1: procedure UPMIX(weights, means, covariances)
2: weights: split heaviest entry
3: means: duplicate corresponding entry
4: means: perturb new entries to be means1,2(i)±=

√
cov(i, i) · pertDepth . pertDepth = 0.2

5: covariances: duplicate corresponding entry
6: M := M + 1 . M: current no. of Gaussians
7: end procedure
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Figure 6: Evolution of the likelihoods of the models, com-
paring Expectation–Maximization algorithm when initialized
with M=3 Gaussian outputs from the headstart (dashed red
line) and when employing the mixture splitting technique
(solid blue line, with points where the number of mixtures
was incremented being highlighted). This affects the whole
model, because the splitting applies to each GMM, but the
retraining requires the full HMM. With the exception of the
“push” gesture class, our method achieves a higher likelihood
than simple EM.

tion, which computes the most likely single action recognized
from a test data sequence; the major downside of this tech-
nique is that it requires the segmentation of test data, thus the
availability of all test data offline; (ii) Viterbi algorithm for
continuous gesture recognition: this method does not require
prior segmentation of test data, and it outputs the estimated
sequence of actions (state path) that best explain the test data
sequence.

III. EXPERIMENTAL RESULTS

Gesture recognition tests for the different models and al-
gorithms are shown in Figs. 7 for the baseline Models 1
and 2, in Figs. 9 and 10 for the proposed approach which
uses Model 3. Both training and test sequences were collected
by the authors using an RGB-D camera recording gestures
from one person. While we have yet to test how robust the
system is to people with different heights and sizes, we expect
it to be robust because we are applying a normalization step
in all the observed measurements, dividing them by average
shoulder width after a few frames (this can be done in real
time). The feature space that we use in the current version of
the work coincides with the 3D position coordinates of the
hand joint in time; enriching the space with the coordinates

of other joints such as shoulder and elbow actually decreased
the recognition performance in our tests.

Forward–Backward classification results with “Model 1” are
shown in Fig. 7a. The test sequence consists of nine continuous
gestures, specifically three triplets (tap, grasp, push), the first
triplet occurring at slow speed, the next one at medium speed,
and the final one at fast speed. In this experiment, the test
sequence was segmented similarly to how training data was
segmented. In general, this is not safe to assume in a real
time scenario, unless a delay is added. The problem here
is that the gesture threshold is “too strict”, voiding many
HMM assignment classifications, even where they are correct.

In the “Model 1” experimental setup described above,
gesture recognition performs poorly, with a recognition rate
below 50%, mainly due to the fact that the garbage GMM
cannot learn the temporal nature of nongesture (between-
gesture) transitions.

Taking “Model 2” (Fig. 5b) into account, Fig. 7b displays
improved Forward–Backward classification results. Compared
to “Model 1”, this model is better in correctly separating
garbage segments from gesture ones, which we expected
because the gesture classifier is richer here, being able to
capture the dynamic nature of between-gesture transitions with
its dedicated HMM. However, classification still suffers during
probabilistic gesture class assignment, confusing taps with
grasps for all velocities of the input sequence.

“Model 3” (Fig. 5c) allows us to illustrate the performance
of our system with the Viterbi algorithm results of Figs. 9 and
Fig. 10. The algorithm reconstructs the optimal (most likely)
gesture state path resulting from a given test sequence. In
these experiments, we assume that the context is described
as the human-robot manipulation scenario shown in Fig. 8,
whereby a user has to correctly move and grasp an object
on a table, without making it collide with other objects: the
correct strategy (intention) corresponds to the Push-Tap-Grasp
sequence, a fact known a priori by the system. In Fig. 9 (left),
the recognition accuracy is high (actions are detected in the
correct temporal regions, and they are classified correctly 3/3
times) and the intention of the user is inferred to be coincident
to the correct Push-Tap-Grasp strategy. On the other hand,
Fig. 9 (right) shows a case where the recognition is still correct
(the action sequence is correctly identified as Tap-Push-Grasp),
but the wrong intention or strategy on the part of the user
can be detected – thus allowing the robot to intervene, as
motivated by the scope of this paper. Finally, Fig. 10 shows a



(a) Initial configuration. (b) Intermediate configuration. (c) Final configuration.

Figure 8: Example scenario to be applied in a human-robot collaboration setting: a human user sitting on the left has to move
the mug next to the bottle, avoiding the red obstacle on the table, so that a robot bartender can fill the mug. The repertoire of
permitted actions corresponds to the three gestures of Fig. 3. Without delving into the planning problem, which is out of the
scope of this paper, we assume that the robot system knows that Push-Tap-Grasp is the correct strategy considering the initial
table configuration, while for instance Tap-Push-Grasp is an incorrect strategy due to constraints. Fig. 9 (left) and Fig. 9 (right)
reflect these two situations from the pattern recognition perspective.
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Figure 9: Two results of the proposed human-robot manipulation scenario of Fig. 8. Red plus signs: tap states, green stars:
grasp states, blue crosses: push states, rectangles: human-labeled ground truth segmentation.
Left: a Push-Tap-Grasp action sequence performed by the user is correctly recognized (3/3 score), the user intention is found
to be correct too, meaning that it is feasible given context and a table/object configuration. Right: a Tap-Push-Grasp action
sequence is correctly recognized (3/3 score), although the user intention can be detected by the system as being incorrect
considering the current context – allowing the system to alert the user.

test sequence which the system failed to recognize correctly
as Push-Tap-Grasp (the order of actions actually performed
by the user), due to limitations in training data, in the sensor
we use and in the general statistical robustness of our current
model.

IV. CONCLUSIONS

Gestures are a paramount ingredient of communication,
tightly linked with speech production in the brain: the ability
to interpret the physical movements of others improves the
understanding of their intentions and thus the efficiency of
interactions. We propose a method to recognize gestures in a
continuous, real time setting with statistical methods, and we
discuss how to incorporate the predictive power supplied by
human actions into robot affordance learning, ultimately al-
lowing robots to anticipate others’ intentions while interaction
partners are still performing their actions.

This article laid the foundations for adding action knowl-
edge in interactive affordance scenarios. Different probabilistic
models for gesture recognition were discussed and tested in
an object manipulation scenario, with encouraging results.
Future work includes performing tests in human-robot object
manipulation tasks, enriching the actions repertoire with more
complex gestures taken from contexts different than object
manipulation (e.g. kitchen activities), and mirroring human
and robot actions through optical flow methods.
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Figure 7: Likelihood computed with Forward–Backward al-
gorithm.
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