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Language bootstrapping: Learning word meanings
from perception-action association

Giampiero Salvi, Luis Montesano, Alexandre Bernardino, Member, IEEE, José Santos-Victor, Member, IEEE

Abstract—We address the problem of bootstrapping language
acquisition for an artificial system similarly to what is observed
in experiments with human infants. Our method works by
associating meanings to words in manipulation tasks, as a robot
interacts with objects and listens to verbal descriptions of the
interactions. The model is based on an affordance network, i.e.,
a mapping between robot actions, robot perceptions and the
perceived effects of these actions upon objects. We extend the
affordance model to incorporate spoken words, which allows us
to ground the verbal symbols to the execution of actions and the
perception of the environment.

The model takes verbal descriptions of a task as the input,
and uses temporal co-occurrence to create links between speech
utterances and the involved objects, actions and effects. We show
that the robot is able form useful word-to-meaning associations,
even without considering grammatical structure in the learning
process and in the presence of recognition errors. These word-
to-meaning associations are embedded in the robot’s own under-
standing of its actions. Thus, they can be directly used to instruct
the robot to perform tasks and also allow to incorporate context
in the speech recognition task. We believe that the encouraging
results with our approach may afford robots with a capacity to
acquire language descriptors in their operation’s environment as
well as to shed some light as to how this challenging process
develops with human infants.

I. INTRODUCTION

TO interact with humans, a robot needs to communicate
with people and understand their needs and intentions.

By far the most natural way for a human to communicate is
language. This paper deals with the acquisition by a robot
of language capabilities linked to manipulation tasks. Our
approach draws inspiration from infant cross situational word
learning theories that suggest that infant learning is an iterative
process involving multiple strategies [1], [2]. It occurs in an
incremental way (from simple words to more complex struc-
tures) and involves multiple tasks such as word segmentation,
speech production, and meaning discovery. Furthermore, it is
highly coupled with other learning processes such as manipu-
lation, for instance, in mother infant interaction schemes [3].

Out of the multiple aspects of language acquisition, this
paper focuses on the ability to discover the meaning of words
through human-robot interaction. We adopt a developmental
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robotics approach [4], [5] to tackle the language acquisition
problem. In particular, we consider the developmental frame-
work of [6] where the robot first explores its sensory-motor
capabilities. Then, it interacts with objects and learns their
affordances, i.e. relations between actions and effects. The
affordance model uses a Bayesian network to capture the sta-
tistical dependencies among a set of robot basic manipulation
actions (e.g. grasp or tap), object features and the observed
effects by means of statistical learning techniques exploiting
the co-occurrence of stimuli in the sensory patterns.

The main contribution of the paper is the inclusion in
the affordance model [6] of verbal descriptions of the robot
activities, provided by a human. The affordance model encodes
possible meanings in terms of the relation between actions,
object properties and effects grounded in the robot experience.
The extended model exploits temporal co-occurrence to asso-
ciate speech segments to these affordance meanings. Despite
we do not use any social cues or the number and order of
words, the model provides the robot with the means to learn
and refine the meaning of words in such a way that it will
develop a rough understanding of speech based on its own
experience.

Our model has been evaluated using a humanoid torso able
to perform simple manipulation tasks and to recognize words
from a basic dictionary. We show that simply measuring the
frequencies of words with respect to a self-constructed model
of the world, the affordance network, is sufficient to pro-
vide information about the meaning of these utterances even
without considering prior semantic knowledge or grammatical
analysis. By embedding the learning into the robot’s own task
representation, it is possible to derive links between words
such as nouns, verbs and adjectives and the properties of the
objects, actions and effects. We also show how the model can
be directly used to instruct the robot and to provide contextual
information to the speech recognition system.

Although the paper follows the approach in [7], the results
are based on new data and on a different treatment of the data.
In particular, the design of the sentence material describing
the affordance experiments and the speech recordings and
recognition of the material have been improved. In addition to
this, we have analyzed the impact of the model in ambiguous
situations by comparing the robot answers to human answers.

The rest of the paper is organized as follows. After dis-
cussing related work, Section III briefly describes, through our
particular robotic setup, the problem and the general approach
to be taken in the learning and exploitation phases of the word-
concept association problem. Section IV presents the language
and manipulation task model and the algorithms used to learn
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and make inferences. In Section V we describe the experiments
and provide some details on the speech recognition methods
employed. Results are presented in Section VI and finally, in
Section VII, we conclude our work and present ideas for future
developments.

II. RELATED WORK

Computational models for cross situational word learning
have only been studied recently. One of the earliest works is
the one by Siskind [8] who proposes a mathematical model
and algorithms for solving an approximation of the lexical-
acquisition task faced by children. The paper includes com-
putational experiments, using a rule based logical inference
system, that shows that the acquisition of word-to-meaning
mappings can be performed by constraining the possible
meanings of words given their context of use. They show that
acquisition of word-to-meaning mappings might be possible
without knowledge of syntax, word order or reference to prop-
erties of internal representations other than co-occurrence. This
has motivated a series of other research in cross-situational
learning. For instance, Frank, Goodman and Tenenbaum [9]
presented a Bayesian model for cross-situational word-learning
that learns a ”word-meaning” lexicon relating objects to words.
Their model explicitly deals with the fact that some words do
not represent any object, e.g., a verb or an article. By modeling
the speaker’s intentions, they are also able to incorporate social
cues typically used by humans.

In the last years, there has been an effort to understand
the language acquisition process during the early years of life
of an infant. Analysis from the recordings of the first three
years of life of a children suggest that caregivers fine tune
their interaction in a way that can definitely shape the way
language is acquired [10].

In order to develop natural human-robot interfaces, recent
works have established bridges between language acquisition
models, natural language processing techniques and robotic
systems. One of the challenges arising from such a com-
bination is that robots do not deal only with speech. As
humans, they operate in a continuous world, perceive it and
act on it. The multi-modal information may greatly help
developing language skills, but also requires to consider the
different nature of the information and their coordination. Two
related recurrent topics in the literature for robot language
acquisition are embodiment [11] and symbol grounding [12].
The former states that learning is shaped by the body. As a
result, the internal representations of information tie together
action and perception. A relevant example in the context of
language is the affordance concept [13]. More specifically,
object affordances have been pointed out as a promising
internal representation to capture the relations between objects,
actions and consequences [6].

On the other hand, language grounding links the symbolic
nature of language with the sensory-motor experience of the
robot. Most of the works, in this case, focus on associating
names to objects through their perceptions. For instance,
in [14] the robot learns word-object associations through
incremental one-class learning algorithms. The focus is on

open-ended, long term learning. Objects are represented using
many different shape-based features and categories are simply
represented by instances.

Recent works have also addressed actions and their conse-
quences. The work in [15] exploits object behavior (resulting
effects of an action) to create object categories using reinforce-
ment learning. Without considering learning, [16] proposed a
layered grounded situation model comprised of three layers
that go from the continuous to a symbolic representation and
allows the robot to understand the current situation, reason
about its own experience and make predictions. In [17], af-
fordances have been used to ground language by constructing
object schemes. An object schema is a hand-coded description
of the object in terms of potential interactions related to the
object and allow to plan, predict or recognize according to
them.

Probably, one of the most interesting works, in our per-
spective, is the one presented in [18], [19]. Here a human
subject was instrumented with devices to perceive its motor
actions, speech discourse and the interacting objects (camera,
data glove and microphone), and an automatic learning system
was developed to associate phoneme sequences to the per-
formed actions (verbs) and observed objects (nouns). Common
phoneme patterns were discovered in the speech sequence by
using an algorithm based on Dynamic Programming. These
patterns were then clustered into similar groups using and
Agglomerative Clustering Algorithm in order to define word-
like symbols to associate to concepts.

Finally, [20] proposed a self-organizing incremental neural
network to associate words to object properties. The system
uses fixed rules where the teacher provides the labels to
specific objects via pointing. A single label-perception pair
is used to create the model. Once nouns have been learned,
the same procedure is used to learn verbs.

Our approach is similar to the one presented in [19] in
the sense that we also consider the interaction between robot
and object to be described by multiple sources of information
(acoustic, visual and motor). However, due to the embodiment
inherent to the robot, the latter has access to its own actions
which removes the need to estimate the action from video-
recorded sequences. Also, the robot interacts with a single
object at a time and, consequently, there is no need for a
mechanism to infer attention. Finally, we assume that the robot
has already learned the acoustics of a set of words and is
able to recover them from the auditory input. We leave out
of the current study the problem of learning the words from
sequences of acoustic classes as in [18], [21] and learning the
acoustic classes from the speech signal as in [22]. In spite
of these simplifying assumptions, in this study, objects are
represented by their features (shape, color, size) rather than
by their category, thus allowing for a more flexible descrip-
tion than some previous approaches. As a result, our model
automatically incorporates adjectives (object properties). The
affordance model includes the description of effects (outcomes
of actions), therefore addressing the acquisition of concepts
related to behaviors (e.g “the ball is moving”, “the box is
still”).
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Fig. 1. Baltazar, the humanoid torso used in the experiments.

III. APPROACH

In this section, we provide an overview of the full system.
As mentioned before, we assume that the robot is at a devel-
opmental stage where basic manipulation skills have already
been learned up to a maturity level that includes a model of the
results of these actions on the environment (see [6] for further
details). In order to make the presentation less abstract, we
describe the particular robotic setup used in the experiments
and the skills already present in the system.

A. Robot skills and developmental stage

We used Baltazar, a 14 degrees of freedom humanoid torso
composed by a binocular head and an arm (see Figure 1).

The robot is equipped with the skills required to perform a
set of simple manipulation actions denoted by ai on a number
of objects. In our particular experiments we consider the
actions grasp, tap and touch. In addition to this, its perception
system allows it to detect objects placed in front of it and
extract information about them. More precisely, it extracts
from the raw sensory data some continuous visual descriptors
of its color, size and shape. These continuous descriptors are
clustered in an unsupervised way to form symbolic descrip-
tions (discrete labels) of the object characteristics. These are
represented in a feature vector f = (f1, f2, f3), where f1,
f2 and f3 are, respectively, the color, size and shape discrete
feature labels. After performing the action, the robot detects
and categorizes the effects produced by its actions. Effects
are mainly identified as changes in the perception such as the
object velocity (e1), the velocity of the robot’s own hand (e2),
the relative velocity between object and hand (e3) and the
persistent activation of the contact sensors in the hand (e4).
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Fig. 2. Overview of the setup.

This information is also obtained from unsupervised clustering
of corresponding continuous sensory data, and stored in feature
vector e = (e1, e2, e3, e4).

Once these basic action-perception skills have been ac-
quired, the robot undergoes a self-exploratory training period
that allows it to establish relations between the actions a, the
object features f and the effects e. This model captures the
world behavior under the robot actions. It is important to note
that the model includes the notion of consequences1 and, up to
a certain extent, an implicit narrative structure of the execution
of an action upon an object.

The robot is also equipped with audio perception capabili-
ties that allow it to recover an uncertain list of words ({wi})
from the raw speech signal (s) based on a previously trained
speech recognizer.

B. Incorporating speech

Based on the existing cognitive capabilities of the robot,
described above, we aim at exploiting the co-occurrence of
verbal descriptions and simple manipulation tasks to associate
meanings and words. Our approach is the following:

1) During the execution of an action (a), the robot listens
to the users speech and recognizes some words ({wi}).
The words are stored in a bag of words model, i.e. an
unordered set where multiple occurrences are merged.

2) These recognized words are correlated with the con-
cepts of actions (a), object features (f) and effects
(e) present in the world. Our objective is to learn the
correct relationships between the word descriptions and
the previous manipulation model through a series of
robot-human interaction experiments. These relations
implicitly encode word-meaning associations grounded
to the robot’s own experience.

We model this problem in a Bayesian probabilistic frame-
work where the actions A, defined over the set A = {ai},
object properties F , over F = {fi} and effects E, over E =
{ei} are random variables. We will denote X = {A,F,E}
the state of the world as experienced by the robot. The joint
probability p(X) encodes the basic world behavior grounded
by the robot through interaction with the environment. The
verbal descriptions are denoted by the set of words W = {wi}.

1One should be always careful about causality inference. However, under
certain constraints one can at least guess about induced statistical dependen-
cies [23].
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Figure 2 illustrates all the information fed to the learning
algorithm.

If we consider the world concepts or meanings being
encoded by X , then, to learn the relationships between words
and concepts, we estimate the joint probability distribution
p(X,W ) of actions, object features, effects, and words in the
speech sequence. Once good estimates of this function are
obtained, we can use it for many purposes, for example:
• to compute associations between words and concepts, by

estimating the structure of the joint pdf p(X,W );
• to plan the robot actions given verbal instructions from

the user in a given context, through p(A,F | W );
• to provide context to the speech recognizer by computing

p(W | X).

IV. MODEL - ALGORITHMS

In this section, we present the model and methods used
to learn the relations between words and the robot’s own
understanding of the world. Our starting point is the affordance
model presented in [6]. This model uses a discrete Bayesian
network to encode the relations between the actions, object
features and the resulting effects. The robot learns the net-
work from self-experimentation with the environment and the
resulting model captures the statistical dependencies among
actions, object features and the consequences of the actions.

A. Learning Word-to-Meaning Associations

Here we explain how the model of [6] is extended to
include also information about the words describing a given
experience. Recall that X denotes the set of (discrete) variables
representing the affordance network. For each word in W ,
let wi represent a binary random variable. A value wi = 1
indicates the presence of this word, while wi = 0 indicates
the absence of this word in the description. We impose the
following factorization over the joint distribution on X and
W

P (X,W ) =
∏

wi∈W
p(wi | Xwi

)p(X) (1)

where Xwi
is the subset of nodes of X that are parents of

word wi. The model implies that the set of words describing
a particular experience depends on the experience itself2. On
the other hand, the probability of the affordance network is
independent of the words and, therefore, is equal to the one
in [6]. Figure 3 illustrates the generic model proposed in the
paper. On one hand, effects may depend on the object features
and the action applied upon the object. On the other hand,
meaning of words is encoded in the dependencies of words on
the affordance network. In other words, the affordance network
provides the set of possible meanings for the words grounded
on the own robot experience with the environment.

A strong simplifying assumption of our model is represent-
ing phrases and sentences as an unordered set of words, disre-
garding grammar, word order, and repetitions. This is actually

2This point requires a careful treatment when dealing with baby language
learning and, usually, explicit attention methods are required to constrain the
relations between words and the meanings they refer to.

W W ...
21

1 2
E E ...

A
1 2

F F ...

Fig. 3. Graphical representation of the model. The affordance network is
represented by three different sets of variables: actions (A), object features
(Fi) and effects (Ei). Each word wi may depend on any subset of A, Fi and
Ei.

known as the bag of words assumption and is widely used,
for instance, in document classification [24], and information
retrieval. Furthermore, we assume words in the collection are
mutually independent. Given a network structure, i.e. the set
of Xwi

per each word wi, our model simply computes the
frequency of such a word for each configuration of the parents.

The most challenging part of the problem is to select,
based on the data, which affordance nodes actually are related
to each of the words. This is basically a model selection
problem and has been widely studied in the machine learning
literature in the context of graphical models and Bayesian
networks (see [25] for a review). As mentioned above, the
model of Eq. 1 does not consider relations among the different
words. Therefore, we explore possible dependencies between
each word with each affordance node using a simple greedy
approach known as K2 algorithm [26] to select the most likely
graph given a set of training data D = {(di)}. Each example
di = {Xi,Wi}, i.e. it is a pair of a network configuration Xi

and a verbal description Wi.

B. Exploiting Cross-Modal Associations

After the model has been learned, we can use it for several
different tasks. Let us briefly describe some inference queries
that can be solved by our model. As mentioned in Section III,
the network allows to perform several speech based robot-
human interactions.

First, the robot can be instructed to perform a task. This
corresponds to recovering the (set of) action(s) given the
words Ws recognized from the operator’s speech signal, e.g.
p(A | Ws). When dealing with a particular context, i.e. a set
of potential objects to interact with, the robot may maximize:

< a∗, o∗ > = argmaxai,oi∈Osp(ai, Foi | WS) (2)

∝
∏

wi∈Ws

p(wi | ai, Foi)p(ai, Foi) (3)

where Os is the set of objects detected by the robot and Foi

the features associated to object oi.
Assuming that we have non informative priors over the

actions and objects, the robot seeks to select the action and
object pair that maximizes the probability of Ws, i.e. it is
more “consistent” with the verbal instruction. Alternatively,
the robot may compute the k-best pairs. Notice that the model
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allows for incomplete and flexible inputs: The verbal input
may specify object properties in a possibly ambiguous way, it
may specify an effect we want to obtain rather than explicitly
an action we want the robot to perform (e.g. “move the ball”,
rather than “grasp” or “tap”).

Second, the proposed model also allows to use context to
improve recognition. Consider the case where the recognizer
provides a list of m possible sets of words W j

s , j ∈ 1..m. The
robot can perform the same operation as before to decide what
set of words is the most probable or rank them according to
their posterior probabilities. In other words, one can combine
the confidence of the recognizer on each sentence with the
context information to select among the possible sets of words
by computing for each W i

s

p(W j
S | X) ∝

[∏
wi∈W j

s
p(wi | X)

]
p(W j

S) (4)

where p(W j
S) is the probability of sequence j according to the

recognizer.

V. EXPERIMENTS

A. Affordance Data

The manipulation experiments used to train the network
are the same as in [6]. Actions were discrete by design
(touch, tap and grasp). Objects were described based on
continuous descriptors for three object features: Shape, color
and size. Shape was encoded in six region based descriptors,
convexity, eccentricity, compactness, roundness, squareness
computed directly from the segmented image of the object.
Size was extracted from the two axis of the object bounding
box. The color descriptor is given by the hue histogram of
pixels inside the segmented region (16 bins). These descriptors
were clustered separately for each object feature to obtain
a symbolical description of the object. Clustering was done
using a variation of K-means, X-means, that computes the
number of clusters from the data [27]. Changes in the image
were recorded as velocities for the hand and the object. A liner
regression was fitted to the trajectories of each experiment
and the corresponding coefficients were clustered. Table I
summarizes the obtained clusters.

TABLE I
SUMMARY OF SYMBOLIC VARIABLES AND VALUES OBTAINED FROM

CLUSTERING.

Name Description Values
Action Action grasp, tap, touch
Color Object color lightgreen, darkgreen, yel-

low, blue
Shape Object shape sphere, box
Size Object size small, medium, big
ObjVel Object velocity slow, medium, fast
HandVel Hand velocity slow, fast
ObjHandVel Object-hand velocity slow, medium, fast
Contact Contact duration short (none), long

Based on the clustered data, the resulting affordance net-
work captures the dependencies between actions, object prop-
erties and effects. Figure 4 shows the affordance network
used to discover word meanings. Some characteristics are
as expected. Color is not linked to any other node since it

Action

ObjVel

ObjHandVel

HandVel

Contact

ColorShapeSize

Fig. 4. Affordances learned by experience.
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Fig. 5. Occurrence of words in the Dw dataset (1270 descriptions)

is irrelevant to the behavior of the object. Shape and size
provide for every possible action the corresponding conditional
probabilities of effects. However, the links to the effects reflect
the specificities of the robot interaction with the objects and,
given the used features, the dependencies among them. We
refer the reader to [6] for a full description of the experiments
and the resulting affordance network. It is worth to mention
that words can be attached to any network configuration,
not only to a specific node or label and, consequently, the
affordance network provides the set of possible meanings for
the words.

B. Speech Data

The data from each experiment was augmented with a
verbal description describing first the action the robot performs
on a certain object and then the effects that the action has
produced. Examples of this are: “Baltazar is grasping the
ball but the ball is still.”, “The robot touches the yellow box
and the box is moving.”, “He taps the green square and the
square is sliding.”. Each action, object property and effect
is represented by a varying number of synonyms for a total
of 49 words. The descriptions were generated automatically
from the affordance data using a pseudo-random controlled
process in order to randomly pick different synonyms for each
concept but retaining a balanced distributions of the words.
This procedure was improved comparing to [7]. Although this
procedure is based on a strong simplification of the speech
based interaction, it generates utterances that are complex
enough to study the phenomena of interest in the scope of
this experiment.

The speech recording from [7] were also disregarded be-
cause of technical problems. New recording were performed
in a quiet room with a Shure WH20 Dynamic Headset Mi-
crophone connected to a TASCAM US-122 sound card. Two
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TABLE II
EXAMPLE OF RECOGNITION ERRORS MEASURED IN ACCURACY AND

BAG-OF-WORDS

Accuracy scoring: (3 substitutions, 1 insertion)
LAB: the robot is grasping the big yellow sphere but the sphere is inert
REC: the but is grasping the big still is sphere but is sphere is inert

Bag-of-words scoring: (2 false rejections and 1 false acceptance)
LAB: big but grasping inert is robot sphere the yellow
REC: big but grasping inert is sphere still the

speakers, one male and one female, recorded five alternative
descriptions for each of the 254 manipulation experiments,
for a total of 1270 recording. Figure 5 shows the distribution
of the words in the speech material. The histogram does not
count repetitions of the same word in each sentence. This
in agreement with the bag of word assumption used in the
Bayesian network that only observes if a word is present or
not in a particular sentence.

Besides the training data described above, a number of
54 sentences were designed in order to test the ability of
our model to interpret verbal instructions to the robot. The
same 49 words used for the description utterances are used
in the set of instructions. Particular care has been put in
the design of these sentences to test different aspects of the
model. Most instructions are incomplete and ambiguous, only
specifying certain aspects of the desired object and action.
Some instructions specify an impossible combination of object
properties, actions or effects. Other specify only the effect we
want to achieve and the model needs to infer the proper action
for the proper object. Some of such examples are:
• “Tap the green small cube” (complete instruction where

the action and all object features are clearly defined),
• “Rise the ball” (incomplete instruction, ball can be of any

color or size, moreover, the robot needs to infer which is
the best action to make an object rise),

• “Roll the small cube” (impossible request: cubes can not
be made to roll).

Because the instructions are often incomplete and ambigu-
ous, it was not straightforward to define what the correct
answer from the model should be for evaluation. We asked,
therefore, 5 human subjects to give their opinion on what
they would expect a robot should do when presented with
each of the sentences from the set. The answers indicated
the possible set of object properties and actions that were
compatible with the given instruction. The subjects mostly
agreed on the answers, however, to solve the few cases of
disagreement, a majority vote was considered in order to define
the reference ground truth.

C. Speech input

As discussed in Section I, we assume that one of the basic
skills of the robot is the ability to classify speech input into
sequences of words.

The speech-to-text unit is implemented as a hidden Markov
model (HMM) automatic speech recognizer (ASR). Each word
belonging to the language described above is modeled as a
sequence of phonemes each modeled by a left-to-right HMM.
Additionally a three-state-model is defined in order to model
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Fig. 6. Graph of the full Bayesian network. Left: network obtained with
labeled speech data. Right: network obtained with recognized speech data.
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Color

green yellow blue

Size

big small

Shape

ball sphere box square cube

Color

green yellow blue

Size

ObjVel

small

Shape

big

Size HandVel

Shape

the sphere box square cube

Fig. 7. Object properties words, top: labeled speech data, bottom: recognized speech data

Action

taps tapping tapped pushes pushing pushed touches touching touched pokes poking poked

Action

picking tapping pushes pushing pushed touches touching touched poked

Fig. 8. Action words (excluding grasping), top: labeled speech data, bottom: recognized speech data

silence. Speaker independent models from [28] are used, but
the recognizer adapts automatically to new voices by means of
Maximum Likelihood Linear Regression (MLLR) adaptation
[29]. This adaptation scheme is unsupervised in the sense that
does not make use of the knowledge about what was said
in the sentences. For this reason it is compatible with our
developmental approach.

During recognition, no grammatical structure other than a
simple loop of words was imposed to the decoder at run
time, in agreement with our hypothesis that a grammar is not
necessary in order to learn simple word-meaning associations.
Furthermore, the sequence of words output by the recognizer
is “flattened” in order to be input to the Bayesian network.
This means that out of each sentence, a Boolean vector is
constructed solely indicating if the word was or was not
present in the sentence.

The performance of the recognizer was computed in two
different ways as illustrated in Table II. The first is standard
in ASR research and is similar to the Levenshtein distance.
It is achieved by realigning the reference and recognized
sentences with dynamic programming, as illustrated in the
upper part of Table II, and counting the number of insertions I ,
deletions D, and substitutions S (bold in the table). A global
accuracy score is then computed as A = N−D−S−I

N = H−I
N

where N is the total number of reference words and H the
number of correct words. The second, more tightly connected
to our task, is a simple classification rate in the bag-of-
words assumption. In this case we count for each utterance
the number of false rejections and false acceptances over the
number of unique words in that utterance. The accuracy of the
recognizer was 83.9% and the bag-of-words classification rate
82.7% (with 8.9% false rejections and 8.3% false acceptance).
If we compute the bag-of-word classification rate over the size

of the vocabulary instead of the utterance lengths, we obtain
96.8% (with 1.7% false rejections and 1.5% false acceptance).
Perhaps a better indication of the amount of errors from the
recognizer is that, in average, there is a false acceptance every
1.3 utterances and a false rejection every 1.2 utterances.

VI. RESULTS

This section presents different aspects of the results obtained
in our experiments. Firstly, we analyze the structure learned
by the Bayesian network as an indication of word-meaning
associations acquired by the robot. Secondly, we analyze the
use of the model in practical applications, such as interpreting
instructions or using context in order to improve speech
recognition. In all cases we compared the model learned on
the transcribed data, also called labeled speech data, to the
one learned from the automatically recognized speech data.

A. Learning

The results of learning word meaning associations are
displayed in Figure 6 and detailed in the following figures.
Figure 6 displays the full graph of the Bayesian network,
where the affordance nodes are filled whereas word nodes
have white background. Both the network learned from labeled
data and from recognized data are shown. As explained in
Section V-C, the difference between labeled and recognized
data is that the recognizer may either miss certain words
or insert extra words in each linguistic description. The full
networks are included to give an impression of the overall
complexity of the model. In the following, we will focus on
subsets of words, by only displaying parts of the networks in
Figure 6, in order to simplify the discussion.
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HandVel

grasps grasping grasped picks picking picked

HandVel

grasps grasping grasped picks picked taps tapped

Fig. 9. Action words (grasping)

ObjVel

is still inert moves moving

ObjVel

is still inert moves moving rolls

Fig. 10. Effect words: generic movement, top: labeled speech data, bottom:
recognized speech data

Some of the word nodes do not display any relationship with
the affordance nodes. The so called non-referential words are:
“robot”, “just”, “the”, “he”, “Baltazar”, “has”. This result is
not surprising if we notice that the affordance network did
not include a representation of the robot itself (“robot”, “he”,
“Baltazar”), nor a representation of time (“just”). Moreover,
articles and auxiliary verbs were also expected to be non-
referential. When ASR data is used for learning, in addition to
the above non-referential words, the words “pokes” and “pok-
ing” also appear to have no connection with the affordance
nodes. In the labeled data, “pokes” and “poking” appear 74
times consistently in connection to the action touch. However,
these words are most often misrecognized by the recognizer
and in the ASR data they appear only 11 times of which 6
times in connection with the action touch, 4 times with grasp
and once with tap.

Words expressing object features are displayed in Figure 7
(top) for learning from labeled data. These are clearly linked
to the right affordance node. This result is in accordance with
previous research that showed that it is possible to learn word
object associations. However, the structure is not as clean for
the ASR data, as we can see in Figure 7 (bottom). In particular,
the size related words (“small”, “big”) are not only connected
to the Size node, but to spurious nodes such as ObjVel, Shape
and HandVel.

Top of Figure 8 shows the words that were linked to the
Action node in the labeled data learning. These include all the
action words apart from the words referring to the action grasp
that are treated differently by the model (see later). The ASR
case, shown in the bottom plot, is the same apart from the
words “pokes” and “poking” discussed above, and the words
“touching”, “taps” and “tapped”.

Words corresponding to the action grasp are linked by the
model to the node Hand Velocity (HandVel) as shown in

HandVel

rises rising

Contact ObjVel

but andfalls falling

HandVel Contact

Fig. 11. Effect words: vertical movement, both for labeled and recognized
data

Figure 9 for both labeled data and recognized data. The reason
for this is that, in our data, HandVel is high only for grasping
actions. The information on hand velocity is, therefore, suffi-
cient to determine whether a grasp was performed. Moreover,
HandVel can only assume two values (high and low, as a result
of the sensory input clustering), while Action can assume three
values (grasp, tap and touch), thus making the first a more
concise representation of the concept grasp. In the ASR case
also the words “taps” and “tapped” are connected to this node
probably due to recognition errors.

Words describing effects usually involve more affordance
nodes. In case of words indicating generic movement the link
is to the object velocity node, as expected (see Figure 10).
Note also that the auxiliary verb “is” is connected to this node
because it is only used in the expressions of movement such
as “is still” or “is moving” in our data.

Words describing vertical movement are shown in Fig-
ure 11. Interestingly in this case, exactly the same association
is obtained with the labeled speech data and with the recog-
nized speech data. In order to understand these associations
we have to consider that vertical movement in our data is only
obtained in case of attempted grasp. This is why Hand Velocity
and hand-object Contact are involved. The reason why in case
of falling objects we also need the Object Velocity is probably
that a short Contact is not enough to specify if the grasp failed
from the beginning and, therefore, the object is inert, or if it
failed after having lifted the object, thus making it fall. Also,
the reason why “and” and “but” are treated like “falls” and
“falling” is that the conjunction is chosen depending on the
success of the action, and the action grasp is the most likely
to fail in our experiments.

Finally the horizontal movements are displayed in Fig-
ure 12. These are also treated similarly in the labeled data
and recognized data case. The only difference is that the words
“rolls” and “ball” are switched.

Note that, although a clean and interpretable network struc-
ture is a desirable property, we should not focus only on
the structure. First, some dependencies cannot be directly
explained without taking into account the robot capabilities,
which differ from the humans’. Second, in a noisy environ-
ment, there are likely to be spurious connections as the ones
we can see in the figures above. These may or may not be
removed with more experience (more observations), however,
what is interesting to evaluate is the ability of the model to
predict the correct or reasonable answer in spite of the noisy
structure, as we will see in the following.
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TABLE III
EXAMPLES OF USING THE BAYESIAN NETWORK TO SELECT ACTIONS AND OBJECTS

(a) Network trained with labeled speech data
objects on the table Verbal input
(cluster lables) “small grasped” “moving green” “ball sliding” “big rolling” “has rising” “sliding small” “rises yellow”
lightgreen big sphere - grasp, p=0.01 - tap, p=0.12 grasp, p=0.01 - -
yellow medium sphere - - - - grasp, p=0.10 - grasp, p=0.40
darkgreen small box grasp, p=0.18 grasp, p=0.04 - - grasp, p=0.05 tap, p=0.48 -
blue medium box - - - - grasp, p=0.01 - -
blue big box - - - touch, p=0.01 - - -
darkgreen small sphere grasp, p=0.30 tap, p=0.10 - - grasp, p=0.12 - -

(b) Network trained with recognized speech data
objects on the table Verbal input
(cluster lables) “small grasped” “moving green” “ball sliding” “big rolling” “has rising” “sliding small” “rises yellow”
lightgreen big sphere - grasp, p=0.01 - tap, p=0.05 grasp, p=0.01 - -
yellow medium sphere grasp, p=0.05 grasp, p=0.01 - tap, p=0.02 grasp, p=0.10 - grasp, p=0.33
darkgreen small box grasp, p=0.12 grasp, p=0.04 tap, p=0.17 tap, p=0.08 grasp, p=0.05 tap, p=0.38 -
blue medium box grasp, p=0.01 - tap, p=0.05 tap, p=0.02 grasp, p=0.01 tap, p=0.02 -
blue big box - - tap, p=0.01 touch, p=0.01 - - -
darkgreen small sphere grasp, p=0.22 tap, p=0.10 - grasp, p=0.01 grasp, p=0.12 - -

Action

rolls slides sliding

Shape ObjVel

rolling

HandVel

Action

ball slides sliding

Shape ObjVel

rolling

HandVel

Fig. 12. Effect words: horizontal movement, top: labeled speech data, bottom:
for recognized speech data

TABLE IV
EXAMPLES OF USING THE BAYESIAN NETWORK TO IMPROVE ASR

(a) Network trained with labeled speech data
N-best list from ASR (N=3)

objects on the table
(cluster lables)

“tapping
small sliding”

p=0.100

“tapping box
slides”

p=0.070

“tapped ball
rolls”

p=0.010
lightgreen big sphere 0.0 0.0 3.409E-03
yellow medium sphere 0.0 0.0 2.926E-03
darkgreen small box 1.500E-03 1.357E-03 0.0
blue medium box 0.0 1.260E-03 0.0
blue big box 0.0 1.481E-03 0.0
darkgreen small sphere 0.0 0.0 2.926E-03
final score 1.500E-04 2.868E-04 9.261E-05

(b) Network trained with recognized speech data
N-best list from ASR (N=3)

objects on the table
(cluster lables)

“tapping
small sliding”

p=0.100

“tapping box
slides”

p=0.070

“tapped ball
rolls”

p=0.010
lightgreen big sphere 0.0 0.0 2.965E-03
yellow medium sphere 0.0 0.0 5.149E-03
darkgreen small box 1.708E-03 1.553E-03 3.496E-04
blue medium box 2.647E-04 1.447E-03 3.226E-04
blue big box 5.366E-05 1.691E-03 1.418E-04
darkgreen small sphere 0.0 0.0 5.248E-03
final score 2.027E-04 3.283E-04 1.418E-04

B. Using the model

As noted in the previous Section, the evaluation of the model
should be done considering its use in practical applications.
For this reason we performed some prediction experiments
were we test different ways the model can be used to perform
inference.

Table III shows some examples of using incomplete verbal
descriptions to assign a task to the robot. Table III (a) is
obtained with a model trained on the labeled speech data,
whereas the results in Table III (b) are obtained with rec-
ognized speech data. The robot has a number of objects in
its sensory field (represented by the object features in the first
column in the Table). The Table shows, for each verbal input
WS (column) and each set of object features Foi (row), the
best action computed by Equation 2 when the set of objects Os

is restricted to a specific object oi. The global maximum over
all actions and objects for a given verbal input, corresponding
to the general form of Equation 2, is indicated in bold face
in the table. Also, to simplify the table, probabilities that are
below the two-digit precision shown, are displayed as dashes
instead of zeros.

If the combination of object features and verbal input is
incompatible with any actions, P (ai, Foi | WS) may be 0
∀ai ∈ A. In case this happens for all available objects (as
for “ball sliding” in Table III (a)), the behavior of the robot
is not defined. A way to solve such cases may be, e.g., to
initiate an interaction with the human in order to clarify his/her
intentions. Note, however, that the ability of the model to
detect these inconsistent inputs is reduced when we used noisy
recognized data to train it. In this case the model may have
seen inconsistent input due to the recognition errors in the
training phase, and, therefore, output non-zero probabilities
as in the third column of Table III (b). Besides these cases,
Table III shows that, in spite of the different structure shown
in the previous Section, the model generates very similar
inferences given the same observations.

Another application of our model is to use the knowledge
stored in the Bayesian network to disambiguate between
possible interpretations of the same speech utterance, given
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the context. The speech recognizer can return an N-best
list of hypotheses, ranked by the acoustic likelihood. Our
model provides a natural way of revising such ranking by
incorporating information of the situation the robot is currently
facing.

Similarly to Table III, Table IV shows a situation in which
a number of objects are in the range of the robot’s sensory
inputs. As before, both results with the network trained on
labeled speech data (a) and recognized speech data (b) are
shown. The utterances corresponding to each column in the
Table are, this time, the simulated output of a speech recog-
nizer in the form of an N-best list with length three. The num-
bers below each hypothesis show the corresponding acoustic
probability returned by the recognizer (p(W j

S) in Eq. 4). The
other difference from Table III is that the probabilities in each
entry are computed as in the bracketed expression in Eq. 4, i.e.,
by multiplying p(wi|X) for each word wi in the hypothesis.
Finally, the final scores correspond to the full right term in
Eq. 4 summed over all available objects.

The probabilities in Table IV(a) and (b) are slightly differ-
ent, but the result is the same: In both cases, the hypotheses of
the recognizer are re-scored and the second hypothesis is se-
lected when the posterior probability over all possible actions
and objects is computed. Although this is just an illustrative
example, it does suggest that, in spite of the less clean structure
learned in the noisy conditions, the Bayesian network is still
able to perform meaningful and useful inference.

C. Quantitative Evaluation

In order to evaluate the model in a quantitative way, the set
of instructions described in Section V-B was used. The task
was to predict the object properties and the actions that are
compatible with each, possibly incomplete, instruction.

Because the verbal instructions are often ambiguous, the
right response is not unique. In order to score the model,
we considered two scoring criteria. The first includes the
response of the model for all the possibilities that were judged
compatible with the verbal instruction by the human judges.
We call this soft prediction accuracy. In the second case, called
hard prediction accuracy, we consider only the best answer
given by the model.

The soft prediction accuracy is computed in the follow-
ing way: We calculate the marginal distribution of object
properties and actions, given the verbal instruction. Then we
sum the probabilities only over the object properties and
actions that were considered correct by the human judges. The
sum constitutes our measure of prediction accuracy for that
particular example. If the model assigns non-zero probabilities
to all and only the cases that are compatible with the verbal
description, the sum is equal to 1. If the model gives non-zero
probabilities to cases that are incompatible with the verbal
instruction, the sum will be less that 1, and it will be closer to
zero the more incompatible cases are favored by the model.
These values are then averaged over the set of instructions in
the test set.

For example, with the instruction “move the small blue
ball”, all object properties are unambiguous (color=blue,

TABLE V
SUMMARY OF PREDICTION RESULTS

training data labeled recognized
prediction accuracy soft hard soft hard
without affordances 0.68 0.71 0.45 0.70
with affordances 0.90 0.94 0.64 0.81

size=small, shape=sphere), but the action could both be grasp
or tap. We, therefore, sum the probabilities we obtain from
the network for both actions. If the only non-zero proba-
bilities given by the model are for (color=blue, size=small,
shape=sphere, action=grasp) and (color=blue, size=small,
shape=sphere, action=tap), then the accuracy is 1, because the
marginal distribution must sum to one. In any other case the
accuracy will be less than 1.

The hard prediction accuracy, more simply, counts the
proportion of times the best prediction of the model is among
the right cases specified by the human judges. This measure is
more informative for the practical use of the model to control
the robot’s actions, but ignores the ability of the model to
predict all the alternative correct answers.

In order to measure the effect of the affordance network on
the results, we additionally trained a Bayesian network with no
dependencies between the affordance nodes and where there
is only a one-to-one relation between each word node and an
affordance node.

The prediction results are summarized in Table V. A two
way analysis of variance was also run separately for the
soft and hard scores using recognition method (lab,asr) and
network topology (with or without affordances) as independent
variables. Firstly, we observe a degradation caused by recog-
nition errors in all cases, effect that is significant with p=4.1e-
06 for the soft prediction accuracy but not significant for
the hard prediction accuracy, suggesting that the degradation
might not be relevant in practical situations. Secondly, we
can see that modeling affordances introduces a consistent
improvement (soft: p=1.5e-07, hard: p=0.002), compared to
modeling only dependencies between words and either an
action or an object visual property or an effect. This can
be explained by considering that the latter model is limited
when it comes to disambiguating an incomplete instruction
or detecting impossible requests. Also, as Figures 11 and 12
illustrate, effects are difficult to describe with single variables.

Another aspect that is interesting to measure is the depen-
dency of our results with the amount of training data. In order
to test this we trained the network with a varying number of
training examples from 100 to 1270 with steps of 200. For
each case the training was repeated 50 times (with randomly
selected examples out of the 1270 total) and the corresponding
network was tested on the instruction data set. The results
are shown in Figure 13 both for labeled speech data and for
recognized speech data with box-plots. The plots show the
medians, quartiles and outliers of the soft and hard prediction
accuracies for the 50 repetitions and for each stage. In the case
of 1270 training examples, no variation can be seen, because
there is only one way of selecting 1270 examples out of 1270.
In most cases it can be seen that above 300 training examples,
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Fig. 13. Staged learning with labeled (left) and recognized speech input (right). Top: soft prediction accuracy. Bottom: hard prediction accuracy

the prediction accuracy is relatively flat.

VII. CONCLUSIONS AND FUTURE WORK

This paper proposes a common framework to model af-
fordances and to associate words to their meaning in a
robotic manipulation task. The model exploits co-occurrence
between its own actions and a description provided by a
human to infer the correct associations between words and
actions, object properties and action’s outcomes. Experimental
results show that the robot is able to learn clear word-to-
meaning association graphs from a set of 49 words and a
dozen of concepts with just a few hundred human-robot-world
interaction experiences. The learned associations were then
used to instruct the robot and to include context information
in the speech recognizer.

Although the structure learned in the noisy conditions given
by the speech recognizer were somewhat less clean and inter-
pretable, the model learned was still able to produce reasonable
inference. A visible limit of the noisy model was the reduced
ability to detect verbal inputs that were incompatible with the
given situation, or even intrinsically. This is due to the fact that
the model has learned out of sometimes inconsistent inputs
caused by recognition errors. We believe that more training
examples and an iterative learning, where the context learned

so far is used to improve speech recognition, may solve this
problem.

Based on these results, there are many extensions for our
language acquisition model. On one hand, ongoing work on
learning affordances will provide more complex models of
the interaction of the robot with the environment [30], [31].
This will open the door to learn larger sets of meanings in
more complex and detailed situations. On the other hand,
we are currently investigating how to to relax some of our
assumptions. In particular, we plan to include more complex
robot-human interaction and social cues to allow a less rigid
language between the instructor and the robot. Furthermore,
it would be desirable to test if this model is able to predict
some of the results that are observed with situational learning
in early language acquisition experiments with human infants.

We believe that the encouraging results with our approach
may afford robots with a capacity to acquire language descrip-
tors in their operation’s environment as well as to shed some
light as to how this challenging process develops with human
infants.
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A. Žgank, K. Elenius, and G. Salvi, “A noise robust multilingual
reference recogniser based on SpeechDat(II),” in Proceedings of the

International Conference on Spoken Language Processing (ICSLP),
2000.

[29] C. J. Leggetter and P. C. Woodland, “Maximum likelihood linear
regression for speaker adaptation of continuous density hidden Markov
models,” Computer Speech and Language, vol. 9, no. 2, pp. 171–185,
1995.

[30] H. Kjellstrom, J. Romero, and D. Kragic, “Visual object-action recogni-
tion: Inferring object affordances from human demonstration,” Computer
Vision and Image Understanding, vol. 115, no. 1, pp. 81–90, 2011.

[31] D. Song, C. Ek, K. Huebner, and D. Kragic, “Multivariate discretization
for bayesian network structure learning in robot grasping,” in IEEE
International Conference on Robotics and Automation, Shanghai, China,
2011.


	Introduction
	Related Work
	Approach
	Robot skills and developmental stage
	Incorporating speech

	Model - Algorithms
	Learning Word-to-Meaning Associations
	Exploiting Cross-Modal Associations

	Experiments
	Affordance Data
	Speech Data
	Speech input

	Results
	Learning
	Using the model
	Quantitative Evaluation

	Conclusions and Future Work
	References

