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Abstract—Neural circuits which route motor activity to sensory In Neuroscience, studies carried out with a great number
structures play a fundamental role in perception. Their purpose  of different species showed that there is strong evidence to
is to aid basic cognitive processes by integrating knowledgabout believe that neural pathways which route motor commands
an organism’s actions and to predict the perceptual consegnces . ..
of those actions. This work develops a biologically inspir to sensory structures — also called corollary dischargiitsy
model of a visual stimulus prediction circuit and proposes a — are fundamental to nervous systems of all levels of com-
mathematical formulation for a computational implementation.  plexity [4], [5]. In particular, the prediction of sensorirsuli
We consider an agent with a visual sensory area consisting plays an important role in early sensorimotor processingj an
of an unknown rigid configuration of light-sensitive recepive is active much before we consciously execute a movement

fields which move with respect to the environment according t biect limb tair. In vi | tion f
to a given number of degrees of freedom. From the agent's 0 grasp an object or cimb a stair. In visual perception for

perspective, every movement induces a initially unknown cinge €xample, a neural circuit discussed further in Sect. livalst
to the recorded stimulus. In line with evidence collected fom predicts changes in visual stimuli when we move our eyes.
studies on ontogenetic development and the plasticity of neal In this work we develop an adaptive model of a corollary
circuits, the proposed model adapts its structure with respct  yicoharge circuit which learns to predict visual stimulsed
to experienced stimuli collected during the execution of aet of . . h .
exploratory actions. We discuss the tendency of the propode ©ON self-initiated d|splaqement actions. The model .cossm‘,t_
model to organize such that the prediction function is built @ layer of corollary discharge neurons (CDNSs) integrating
using a particularly sparse feedforward network which requires input from a visual motor area projecting to a region which
a minimum amount of wiring and computational operations. processes visual sensory signals. A learning process is pro
We also observe a dualism between the organization of an ,,qeq capable of minimizing the prediction error based on
intermediate layer of the network and the concept of self- . . .
similarity as introduced by [1]. the adaptation qf the spatlal_ Iayout_of cqrollary d_lscharge
neurons. Observing the resulting configurations of this ehod
we discuss that the introduced layer of corollary discharge
neurons tends to cover the motor space according to the given
(but unknown) topology of the recording visual sensor. We
note that such an organization leads to a particularly gmpl

The ability to learn and recognize causal relationshiggediction model able to predict a visual stimulus with less
between motor actions and sensory feedback is fundamer@hputational operations and physical connections.
to autonomous systems. In biological organisms, this nmappi
is done by neural circuits which are continuously trained
and refined while the system interacts with its environmerft; Related Work
Human infants for example learn to predict sensory feedbackin robotics and artificial intelligence, the learning of sen-
during playful interaction from the earliest period of thifie motor relationships traditionally focuses on tuning a eyss
on [2]. The skills acquired during this phase of sensorimotparameters such that sensory input can be translated into a
learning allow them later to perceive the world in a spatiallmotor action appropriate for a task at hand [6]. This typjcal
and temporally coherent manner where sensory experiengeslves learning a generally nonlinear coordinate tramsf-
are interlaced over sequences of actions. As adults, we kntiwn from a sensor related reference frame to motor space [7]
from our own experience that predicted sensory feedbakk this sense, work in visual sensorimotor learning often
usually integrates with effectively experienced stimalisuch concentrates on the learning of oculomotor actions reduire
a seamless manner that we are hardly aware of its ubiquiteasenter a target stimulus on the visual sensor, or on how to
presence. For example, when we grasp an object, our sersasslate visual signals into coordinated eye-hand mowésne
report a vast amount of visual and tactile feedback which vfer reaching [8], [9]. A recent review on sensorimotor leag
— well accustomed to our body and environment — merefgcusing more in depth on mappings in the opposite direction
use to acknowledge anticipated sensations. Rather disturb- i.e. forward models like the one proposed in this work — can
on the other hand, is the situation where expected feedb&ekfound in [10].
is inaccurately predicted: anybody climbing a stair in the In developmental robotics, prediction of sensory feedback
dark expecting a nonexistent step is acquainted with thads been previously addressed for example in work described
experience [3]. in [11]. There, a general concept referred to egpected

, _ _ perceptionis advocated. Related, in [12] an implementation
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a predefined motion model, a binocular visual system learlearned?), obtained by an error-based learning strategyy i
to follow and predict the sinusoidal movement of a pendulurit.learned?), stored as the spatial layout of a number ofl€oro
Directly modeled after the same biological prototype wkary discharge neurons and the strength of their feedfatwar
consider in this work, Quaia et al. propose in [13] a modebnnections (how are sensorimotor relationships repted@h
describing a remapping process which can keep track of theDespite similar inspirations, our model differs in impata
location of saccade targets in eye-centered coordinates. Tvays from the implementations presented e.g. in [11] an{l [12
model is inspired by results obtained from recordings in thehis is due to mainly two reasons. First, we believe it is
SC-MD-FEF pathway reviewed in Sect. II-B and aims dh general desirable to keep knowledge required to train
explaining observations made during a double saccadea(a.khe agent or robot to a minimum. Secondly, we think it is
double-step task in the literature). absolutely crucial for a truly adaptive system that it does
In a broader context, [14] analyses the causal structuret require any externally designed model to solve a task
present in the information flow induced by sensorimota@t hand. This constraint is violated if for example a priori
activity using information theoretic measures. Their tessu knowledge about the motion model of an observed object is
essentially confirm that the characteristics of the geedratassumed. Thus, different from the approach described i [12
signals have strong ties to spatiotemporal relationshgfiseld the work presented in this paper attempts to implement the
by the physical embodiment and the movement strategies egeediction of sensory stimuli with meairgrinsic to the agent,
cuted by the system under consideration. Based on thishifasig.e. by exploiting the structure of the agent’s own sensotan
it is concluded that a tight coupling between physical stmee  system. Consequently, learning to predict sensory feddbac
behavior and neural information processing is essential finvolves the adaptation of the agent’s internal structume rzot
embodied systems. merely the tuning of parameters of a model which is unrelated
Work on explicitly deducing the topology of unknown visuato the agent’s embodiment. Compared to the model described
sensor layouts has been described in [15]. There, an unknowr{13], our model aims at predicting the complete sensory
sensoritopic map of a visual sensor is reconstructed usingfaedback and does not focus on tracking a single target stimu
entropy maximization method relying on information distan lus. Furthermore, we focus on learning the spatial orgaioiza
measures between sensor elements. Furthermore, in a secdribie prediction circuit which is not considered in [13]. On
part of the work, a method to deduce sensorimotor laws tise other hand, we do not address the dynamics of an action,
proposed. The approach relies on a second learning st@géconsider a one-step ballistic movement which is elicitg
where the sensor topology learned in the first step is knowhe selection of a particular location in a given action gpac
and optical flow computed according to the Lucas-Kanaddis means, we consider actions to be signals denoting a
algorithm is used. change in motor position with respect to the current stalte. T
The authors of this article investigated in previous workiological analogy to this setup are motor spaces spanned by
the structure of linear stimulus prediction models for wisu neural motor layers using population coding to select paler
sensors composed of an unknown distribution of light simesit actions according to the sum of activated motor neuronsh Suc
receptors. We found that the pairing of a particular sensaotor layers exist for example in the superior colliculu€lS
topology and sensor actuation strategy has a profound impeentrolling visual saccades and body orientation as restew
on the complexity of the prediction operator [16]. This mganin Sect. 1I-B. We also note, we do not intend to present
the prediction of visual stimuli can become computatignalla model able to explain specific empirical data recorded in
less complex when combining a sensor topology with reuroscientific experiments; but we propose a general model
suitable action space or vice versa. — i.e. one based on a very limited set of assumptions - which
is able to acquire the functionality provided by the SC-MD-
FEF pathway as described in recent neuroscientific studies
reviewed in Sect. II-B, and which is adaptive in the sense of
We formulate an adaptive computational model of a visuakural plasticity as reviewed in Sect. lI-C. In particuldnis
stimulus prediction circuit primarily inspired by a weluslied means that the proposed model adapts its stimulus predlictio
corollary discharge pathway found in primates. The model ¢srcuit such that a non-linear function is implemented tdpa
developed from a representation which has a direct traoslatof predicting visual stimuli for any action in the given axti
to a physical implementation of a signal transmitting cdircu space. This function is optimized by observing visual stimu
The versatility of the model is demonstrated by training #xperienced before and after executing actions definedghro
to correctly predict future visual stimuli from visuomotora set of randomly chosen action signals covering the given
commands by minimizing the prediction error for a set adction space in the sense of an agent exploring its sensnimo
explorative motor actions and stimulus samples. We shot tlmapping by executing available motor actions and observing
the model is able to learn a continuous prediction functiahe resulting stimulus after taking the action.
covering the given motor space, and that the proposed optifollowing ideas presented in [14], the adaptation process
mization discovers configurations which are particuladgye of the proposed model discovers and exploits spatiotenhpora
to construct in a physical realization while at the same tingausalities induced by sensorimotor activities in ordesttape
minimizing the prediction error and computational operasi. the organization of the predictive circuit according to tfieen
Referring to the three key topics in sensorimotor learnisig aensor layout and action space. In this way, the mapping
discussed in [10], this paper proposes a forward model (ishabf sensor and motor spaces is achieved in a topologically

B. Contribution



coherent manner. As we will see, this means the given terice principlewas proposed in [17].The proposed concept
completely unknown topology of the visual area influencgwovided an explanation for why sensory stimuli caused by
the organization of the corollary discharge layer on theanotself-initiated movementgreafference)can be distinguished
side. Such an adaptation procedure is partly related to, [16pm external signalgéexafference)von Holst and Mittelstaedt
where the previously unknown topology of a visual sensor siggested that a copy of a motor command gffierence copy
deduced. Though, our methodology differs from [15] insofdEC), is used to distinguish the reafferent part of the signal
as in our approach the learning of sensorimotor laws and tinem the exafferent part. At the same time, similar condusi
discovery of spatial relationships take place conjointlyone led Sperry coin the terncorollary discharge (CD) [18].
step, guided solely by the minimization of the predictioroer Nowadays, despite the conceptual similarity between EC and
The structure of this paper is organized as follows. To giveD, the commonly used terminology makes a slight difference
an overview of forward models and their importance in livingpetween the two. CD is in general used to refer to signals
organisms, we first review in the next section a number wihich are transmitted along feedforward connections froen t
examples of stimulus prediction in nature. In particulag wmotor pathway to the sensory processing stream. Thesatsircu
discuss in Sect. 1I-B the corollary discharge circuit whiga can connect from any tier of the motor pathway to any other
consider the closest biological prototype to the model psepl tier in the sensory processing stream. EC on the other hand
in this work. This circuit, found in primates, is believed tds considered to be a motor signal affecting sensory channel
be responsible for the prediction of visual stimuli based atlose to the effector / sensor periphery. Fig. 1 illustrates
visuomotor commands. It leads from the motor layers of thiifferent levels of feedforward connections. For furtheaating
superior colliculus (SC) to the frontal eye field (FEF, a waisu on these circuits including this definition and an attempt to
sensory area in the frontal cortex). In Sect. II-C, a brigfew  classify them, see [4], [5].
of neural plasticity and ontogenetic adaptivity in the sigre
colliculus (SC) — the motor side of the previously discussed General Mechanisms of Stimulus Prediction

circuit — is presented. Plasticity in the SC is of major ralese  On a first level, prediction of sensory feedback is often used
to this work, as its motor layers represent the biologicgly an organism to distinguish between external signalsh(wit
equivalent to the motor space from which corollary discBargrigin in the environment) and signals induced by selfidétd
neurons as proposed in this work integrate input. Based gétions. Male crickets for example filter their self-proddc
the reviewed material, we deduce a graphical interpretaifo pursts of sound by generating a neural signal which antiegpa
the discussed circuit. Subsequently in Sect. I, we foateul the auditory stimulus [19], [20]. By doing so, the animal idea
a mathematical model of the introduced network architectuto suppress its own chirping while focusing on the respofiise o
Analogously to the biological prototype, this formulatiomks  female crickets. The same filtering strategy has been discov
the action space of the considered neural motor layer (in thged in a number of other species which elicit escape rewtio
SC) to a visual sensory area (the FEF) and does not inclugihending on whether a sensory signal is self-generated or
any motor plant present between the neural motor layers agdyits from an event in the environment [21], [22].
peripheral actuators, e.g. the pathway between SC and then a higher level, stimulus prediction is believed to be
oculomotor plant. a basic mechanism used to achieve stable perception. For
The proposed model features two important properties: L)ty organism, the acquisition of a coherent percept of the
is based on a reduced set of initial assumptions which allowavironment is not a passive one-step action but is thetresul
us to consider given but unknown sensor topologies andractief a continuous process of sensorimotor interactions which
spaces, and 2) it is able to learn, thus, the circuit can adaptake place over a number of iterations. Rats for example
different sensor topologies and sensor movement strategie explore objects by tactile whisking; bats “see” the world by
Sect. V, we demonstrate the learning process for two differdistening to the echo of their self-produced ultrasonic esv
sensor topologies and action spaces. With a regular ded-liand many animals relying on vision continuously have to
layout we address stimulus prediction for sensor configuiat move their eyes and body to sweep their visual field over
commonly found in artificial image sensors, e.g. CCD sensaif observed scene [23], [24]. The motor actions involved in
available off-the-shelf. A non-uniform fovea-inspired/dait these exploration movements often induce drastic chamges i
serves to investigate the organization of the modeled itircgensory stimuli which we can understand when trying to focus
for sensors as found in animals relying on binocular visiofer example on the image stream recorded by an abruptly
The obtained results are discussed in Sect. VI. We obsewve tijoved camera. The question arises, how is the brain able to
interesting and interrelated properties: the circuit @mtimg assemble a stable and coherent percept in light of suchaladic
motor and sensor areas converges to a particularly spagéithulus changes? Neuroscientists suggest that the rervou
configuration in terms of number of connections; and thg/stem takes advantage of knowing how motor actions affect
geometry of the circuit’s connection nodes shows stronfy seensory stimuli in order to relate sensory input recordethdu
similarity properties. action sequences. We will resume on this topic in particular

for visual perception in the next section.
[I. STIMULUS PREDICTION IN LIVING ORGANISMS 1In neuroscientific termsyfferencecomprises all the sensory signals coming
. . . from the periphery of the central nervous system. TheseaEgre composed
Research targeted at CorO”ary dlscharge circuits becameeaﬁerent signals which are self-induced stimuli andfferent signals

especially popular during the last century when thaffer- caused by changes in the environment.



Last but not least, stimulus prediction is important fo sensory Processing Stream
Exafference

fast action sequences from a dynamical point of view. | __ Sensory )
a signal providing sensory feedback for a previous actic sensor Neurons Lower Higher
reaches the motor system ondifter the next action has to 4 Y \ 3 )

be initiated, then prediction is indispensable to plan eateu [ Efference Copy ] , [ Corollary Discharge ]

fference

motor commands. This is for example the case for a sequer

of fast eye movements (saccades). Studies with primat™ 1 1 1
showed that the brain actually relies on a predictive cdntr ““
strategy: motor commands for subsequent saccades aré iss

before proprioceptive or visual sensory feedback from tr Motor Pathway

previous movement is available to the motor system [25]-

[29]. Furthermore, considering that primates execute up #@. 1. Efference copy and corollary discharge circuitsngldhe sensory
three visual saccades per second during normal behavidr, &fpcessing stream and motor pathway. Adapted from [4].

knowing that neurons in the frontal and parietal visual area

of the primate brain record afferent signals with a latenfcgto

least 60 ms, relying on purely passive afferent signals douye movements via the motor pathway, they also travel in
mean that the cortical representation of the visual world {8€ opposite direction ascending the SC-MD-FEF pathway
inaccurate during almost 20% of the time [13], [30], [31]§h_rough which they eventually reach the frontal eye field; se
Such delay and accuracy is likely to be compensated by nedrid- 2.

pathways like the one discussed in the next section. In the frontal eye field, the corollary discharge signalsrfro
the SC are integrated with visual signals which reach the

FEF through the main sensory processing stream. Typically,

B. The SC-MD-FEF Pathway the receptive field (RF) of a stimulus processing neuron is

An important and well studied neural circuit for stimuluspatially fixed with respect to the underlying input neutons
prediction in higher vertebrates is the SC-MD-FEF pathwdjut, neuroscientific studies showed that in several areas in
in the primate cortex leading from the superior collicul8€} the visual system, there are neurons which feature so called
via the medial dorsal nucleus (MD) to the frontal eye fielghifting receptive fields. In the FEF these neurons modify
(FEF). This circuit is responsible for visual stimulus agdion their RFs influenced by the CD signal arriving from the SC-
during eye saccades and serves as the biological protatypeMD-FEF pathway. That is, when a saccade is executed, the
our model. RFs of these neurons are modulated to integrate visuallsigna

At the beginning of the SC-MD-FEF pathway lies thdrom the target location of the saccade. A shifted RF is then
superior colliculus, a phylogenetically ancient struetim the called future field (FF) Consequently, the presaccadic FF
vertebrate midbrain known to be responsible for triggeringnd the postsaccadic RF sample the same absolute location
eye and head movements [32]. The outer layers of the 8Cvisual space. Comparison of presaccadic and postsaccadi
receive multi-modal somatosensory input, while the deepeEF neuron activation can therefore in principle be used for
layers of the SC are concerned with attention orienting motboth, stabilization purposes, and to distinguish exaifefi@m
movements. Optic input layers are retinotopically orgedjz reafferent stimuli (filtering). This view is held by a number
meaning the topological map of the recording sensor (tleé authors: [36]-[38] hypothesize that neurons with shti
retina) is still present in the SC. This topology is presdrveRFs are able to perform comparative operations. The SC-MD-
through several layers and as far as down to the deepdrF pathway in general has been extensively studied by [25],
motor areas. As a result, neural activity in the motor layef88]-[42]. Other areas in the visual system where neurotis wi
of the SC code eye saccades in a gaze-related retinotoifting RFs have been found include the lateral intrapairie
reference frame. This layout of movement fields in the SC waslcus (LIP) [36], [43], [44] and extrastriate visual ardike
first revealed in studies done by [33]. Using microstimaiati V4 [45], [46].
the spatial layout of the motor map was deduced in terms

of relative gaze orientation angles. In [34] further evicen
Exafference

was collected which supports a population coding theol .
for the motor layers in the SC which remains valid unti _’[ Retina Hpr\éf:;'is;giz‘a’m}{ Frontal Eye Field ]
today. According to this theory, a blob-like activation of &g

[}

number of neurons in the motor layer triggers a sacca(§

to a target location which is encoded as the sum of &%
active motor neurons where each neuron acts like a spal™
target vector weighted according to its activatfofihe motor

signals generated by this activation do not only commar Corollary Discharge Circuit

2We note, to eventually move the eyes, retinotopic motor afgimave Fig. 2. The SC-MD-FEF corollary discharge circuit connegtthe Superior
to undergo a non-trivial transformation while travellingrh the SC to the Colliculus via the Medial Dorsal Nucleus with the FrontaleEfield. Note
oculomotor nuclei [35]. However, in this work, we considée tremaining the inverted (feedforward) direction with respect to thetangathway and
motor pathway as given. sensory processing stream.



map in the SC due to lacking neuronal activity in the early
retina. It was found that without previous visual stimuligt

' projection layers in the SC are a coarse retinotopic map
given by morphogenetic development. Subsequently, during
growth, the spatially correlated firing of retinal ganglioells
refines the organization of the retinotopic layers in the SC.
This organization is defective if natural neural activityed

to lacking or disturbed visual input is not present aftethbir
Hence, like in the striate and extrastriate cortices, the tiim-

ing of the SC clearly depends on sensorimotor contingencies
experienced while the animal interacts with its environten
This form of reafference exploration is a commonly found
learning strategy in nature [53]. An equivalent methodglog
termedmotor babblingcan be applied in artificial embodied
systems.

As described later, the CD circuit proposed in Fig. 3
incorporates plasticity by implementing a flexible network
topology: corollary discharge neurons and their recepiglds
(b) adapt in shape and position with respect to the undeylyin
SC motor layer while feedforward connections (c) can alter
their amount of discharge.

Motor Area (SC)

Fig. 3. Model of a visual corollary discharge circuit. A pdgion of motor
neurons in the superior colliculus (SC) codes visual saaul a retinotopic [1l. COMPUTATIONAL MODEL

reference frame (a). An intermediate layer of corollarycd@ge neurons o . . -
(b) collects activation from the underlying motor layer gmjects through After compiling the graphical model shown in Fig. 3, we

feedforward connections (c) to the frontal eye field (FEFyjsual area (d). unfold our interpretation in this section into a mathensltic
The corollary discharge signals modulate the activatiorvisfial receptive model.

fields and their connections such as to predict a future vigimaulus resulting

from an activation in (a).

A. Observation and Action Model

In Fig. 3, we introduce a graphical interpretation of the W& consider an agent with an arbitrary number of degrees
topological and functional relationships reviewed heign8ls of freedom and a given rigid visual sensor consisting\of
travelling along the SC-MD-FEF pathway originate from shatially distributed visual receptive fields. The rep@ﬁelds
peak of activation in a layer of SC motor neurons coding'® located on a surface which refle(;ts a projection of the
eye movements in a retinotopic reference frame which is dgdvironment given as a function : R* — R defining a
noted (a) in Fig. 3. Along the corollary discharge pathwhig t !umlnance vglue for eac_h point on t.he surface when t_he agent
activation is integrated by corollary discharge neuror@gg, 'S N @ certain state. Given such & (x), we model visual
(b) in Fig. 3). The CDNs project in turn through feedforward€ceptive fields by a functior, like

connections (c), to visual neurons and their connectiohs (d ) ,
We will resume on this interpretation when proposing the 0n(is) = /f"(x)“(x) dz, @)
gggiztrj]tatlonal model of the SC-MD-FEF circuit in the nex\t/vhereon(z's) is the value observed by theth receptive field
' and the receptive field functiof), is modeled as a multivariate
. Gaussian onigs(x). We choose Gaussians as a possible set
C. Plasticity

of functions for f,, because Gaussians are particularly well
In addition to highly dynamical prediction mechanisms, theuited to describe receptive field functions, both for hielo

visual cortex is long known for its plasticity during earlyical plausibility as well as for their amenable mathematica

life. The influential work described in [47], [48] showed thaproperties [7].

ontogenetic development of the visual areas V1-V5 involvesAfter observing states, the agent can perform an action

a high degree of adaptivity. Based on single-unit recorglingvhich can changé,. Here we assume that an actieis linear

the formation of orientation sensitive cells in striate angnd changes, in a predictable way tai(is). Appendix A

extrastriate cortices could be observed, clearly infludnme describes the constraints posed @om@and how it relates to a

experienced stimuli [49]. Since then, a great body of workhysical agent acting in a 3-dimensional world. Hence rafte

confirmed that plasticity is present along the entire visugdking actiona the agent observes

sensory processing stream, see e.g. [50]. Moreover, gtgsti

also plays a major role in the superior colliculus. In [51] on (a(is)) = /fn(:v)a(is)(:v) dz. 2

it is for example described how visual and auditory maps

in the SC are topographically aligned during early life; anBor convenience we defing; = a(is). In what follows,

recent work reported in [52] studied alterations of the alsuwe use the notation; andos; to denote the receptive field



activation values before and after applying action o Gaussian Receptive Fields: We model receptive field
functions with multivariate Gaussians.

01(is) 01(is11) _ ) o
02(is) 02(is41) Under these assumptions, we can now write the prediction
0, = ) , 0541 = ) . (3) model following directly Fig. 3. We interpret feedforward
: : connections (gray) as manipulators which control the cisgh
on (is) on (is+1) rate of receptive field connections (yellow). Grouping the

In some occasions we writa instead ofa when referring connections of a single corollary discharge neuron (CDN)
to a particular location in the action space which inducest@gether, we can write the feedforward connection weights
transformationa as shown in Fig. 4. This notation directlyof the j-th CDN as a matrixP;, where an entry(q,r)

relates to a peak of activation in the motor layer as shown $ipecifies how much the observatio(i;) of receptive fieldy
Fig. 3. contributes to the predicted observationi;,,) of receptive

field ». Combining contributions of different corollary dis-
B. Prediction Model charge neurons according to the CDN layer (b) of Fig. 3, we
gompose the eventually predicted sensor stimulus as arlinea

The general form of stimulus prediction for the age S
combination

described refers to functions® : RY — RN which, when
applied to the initially observed sensor valugsare able to
approximate the sensor values obtained after applyingracti Os+1 = Z Aj(@)P; | og, (6)
j
0541 ~ p” (0s) - (4) L .

o ) ) o where \;(a) denotes the activation of a particular CDN
Considering a static world and a spatlally rigid sensor layo depending on the action coded by the underlying motor
we observe that the class of functions from whjchshould  neyrons. Hence, matricéB; and their activation functions
be chosen can be restricted. In Appendix B, we provide a1 together define the prediction functi@(a) defined over
argument that motivates a reduction of these functions&o e entire action space. Because the funcfigrmodels the
linear fgnction set. The argument relies on the assumplu'ghtreceptive field of a CDNj on the underlying population
the actions executed by the agent lead to perfectly prefl&tags motor neurons, we follow our previous assumption and

changes ofi(z) on the sensor surface. Taking into accounfyplement each\; as a multivariate Gaussian like
linear prediction functions, we can rewrite Eq. 4 as '

_lla—u) " 2 Y a—wu,
0511 ~ P(a)os. (%) Aj(a) = em 3@ By A, )
In summary, we make the following assumptions: Wheregj |fs tl?je (f:(évarignce matrix and; is thg Io.catioréof thg
« Predictability: The agent only executes actions inducin:ﬁceptlve 1e1a 0 DM._Mea;urements motivating a Gaussian
predictable transformations on i(z), i.e. of the form odel for movement fields in the SC-MD-FEF pathway are
w1 — ali,). See appendix A for a %uli descri tion presented in [39]. Additionally to the argument for biologji
bot1 = Glls)- pp ption. plausibility given in this section, we will present in Sekt.

* Lmeanty: We. m_odel prephctmn O.f observat.|oo§+1 W'th results which reveal the actual required shape for thisataee
a linear prediction functiop®. This constrains the action _. .
Peld (see also Fig. 10).

transformatioru to be linear. As the example at the end o In conclusion, the free parameters of our modelRye ;.

appendix A shows, this is not as restrictive as it appeazq w;. These parameters define the plasticity of the mod-
eled corollary discharge circuit. WhilP; directly defines a
prediction operator based on feedforward connection wgjgh
3; and u; code for topological plasticity in the CDN layer
allowing for changes in position and shape of each field with
respect to the underlying motor area. Note, a natural cainstr

for the entries oP; is to require them to be greater or equal to
zero. Negative values would not make sense in the described
scenario. Also note, given the equivalence of the bioldlyica
inspired interpretation of the corollary discharge citcas

a, a, ®--- /4 described in the previous section and the mathematical mode
| a proposed in this section, we use in the reminder of thislartic

! the terms “feedforward connection activation” and “preidic

' matrix entry” interchangeably as they have the same meaning
log(0.5) zoom (log(z)) to us.

rotation (rad)

C. Plasticity
Fig. 4. Relation of locations in the action spaaeand transformation
functions a: the selection of locationa; or as induces the transformation To learn the free parameters of our model, the agent

functions a; or as. The action space corresponds to the motor area (a) @Xecutes a number of actions to experience and cover a given
Fig. 3 where a locatiom is coded by a peak of activation. action space in the sense of reafference exploration ormoto



babbling described in II-C. During this exploration phase, In experiments which include actions leading to a dilation
triplets (a®, 0¢,0%, ;) consisting of before and after stimuliof the stimulus, the action is encoded like= log(z) where

for a given action are sampled. Given such stimulus samplescan be seen as a zoom factor whilecan be interpreted

we choose the adaptation process of the model to followaa the distance of the visual sensor to the observed scene.

minimization on the prediction error like For example, in a setup as introduced in the next section and
illustrated in Fig. 5, an actiot means moving the sensor along
(P}Ej,uj) = the vertical direction changing the distance to the obgkrve
argmin 3", [0, ) (a%) P, 0% — of H2 @) imageigp. With this c.hoice, we optain a situaFion-independen_t,
a|le=i ™V I s Tetd and at the same time energetically plausible representatio

st P; >0 of an action dilating the stimulus. Situation independeisce

This optimization problem can be addressed by a numberasghieved in the sense that an action compositionikg— ¢,
methods. For example, to find a (locally optimal) solutiorleaves the sensor stimulog invariant. This means the agent's
different gradient descent methods are applicable andlyeadurrent state does not influence the effect of an action
available in both batch and online versions. In a batch vdenergetically plausible refers to the fact that in a physica
sion, the optimization is solved given a number of collecteg£tup,¢ might directly relate to voltage or current applied
(a%,0%,0%, ) triplets, while in the online case, sample pairf0 an actuator moving the agent for example towards or away
are sequentially becoming available as experienced. Acparfrom an observed scene. Thus, encoding dilatioq aslog(z)

ular approach to solve Eq. 8 is presented in the next sectigipears reasonable, as moving away,( or towards {(,)
a scene requires the same amount of energy which would not

V. METHOD be reflected by the zoom facter
To find P%, % and p}, we first collect a batch of triplets V. RESULTS
(a?,0%,0%, ;) sampled from the considered motor space andWe will now consider a specific instance of the model
a given environment. Each triplet is acquired as followssti introduced above. An agent with four degrees of freedom and
the agent is placed at a randomly chosen position at whichaitjiven sensor topology observeg-dimensional environment
records stimulus?. Then, a random actioa® is chosen and given as a grayscale imagg(z). The agent can modify
the agent is displaced in a discrete step to a new positiontlaé¢ current observatiom, by executing actions from a 4-
which it records the stimulus?, ;. The number of triplets used dimensional action space spanned by translations (x- and y-
to train a setup of the model as presented in Sect. V is 50@fkection), rotations, and changes in distancetddilation).
We then solve Eq. 8 with the Levenberg-Marquardt algorithimhe setup and the four available degrees of freedom are
which we found to have nice convergence properties whilgustrated in Fig. 5. The sensor can be seen as moving over
being relatively simple to implement, see for example [54}, which in Eq. 2 is expressed as moving framto 4, ;.
Based on empirical evidence presented in Sect. V-D, we geduc Note, the oculomotor system of primates and other animals
33, to a diagonal matrix thereby constraining the receptive fielvith binocular vision does not directly implement actions
functions of corollary discharge neurois to be axis-aligned leading to stimulus rotation and dilation. However, confirgn
Gaussians. The constraiRt; > 0 was implemented by addingthe versatility of the proposed model, we are going to presen
an exponential penalty function to the optimization. Whilis in this section an experiment which also covers self-induce
no problem to find a solution fdP, 3% andu; with an online  stimulus rotation and dilation. Such actions are in pakiicu
method, convergence is much slower, we therefore choose heilevant for the development of artificial systems as thateel
the batch approach for practical reasons. However, we ng&nsorimotor interaction patterns do play an importang rol
that under different circumstances an online implememtatie.g. for visual processing during locomotion or for visual
might be preferable, e.g. for a purely biologically insgireperception during object manipulation.
implementation in a robot with stronger memory constraints In what follows, we explore two specific sensor layouts
and a longer exploration phase. as shown in Fig. 6. The foveal layout shown in Fig. 6(b)
The experiments presented in Sect. V were initialized asms generated according to a logarithmic spiral. Retirotop
follows: The locations of CDN receptive fielgs; were set layouts found in living organisms with binocular vision ol
according to a uniform random distribution. The siZ8s of closely such a density distribution up to a small area in
CDN receptive fields were set to a fixed value. The predictighe very center which deviates from this law. In [55] an
matrices (feedforward connections) were initialized t@oze approximation of this deviation is formulated, however we
It is important to note that with a randomized initializatjo do not consider this area. We investigate each layout under
nothing prevents the adaptation process from convergingaosubspace of the full 4-dimensional action space. For the
a locally optimal solution. However, from a biological pergrid layout, we choose to analyze the adaptation process of
spective the initialization of the CDN layer corresponds tthe proposed model under translational actions (subsdéguen
a topology generated by ontogenetic development (compasdledgrid/translationsetup). The foveal layout is used to train
Sect. 1I-C). Hence, we can in fact expect a coarse structurethhe model for rotation and dilation actions (subsequerglied
be present before ontogentic adaptation starts. We caomgectfovea/rotation-dilationsetup). A more in depth discussion on
here that an initialization provided by morphogenetic dlevethe choice of this pairing of sensor topologies and action
opment might be relatively close to the final solution. spaces is given in Sect. VI.



motor layer as described in Sect. Ill and by Eqg. 7. Comparing
with Fig. 3 these ellipses represent the gray layer (b). The
center of each ellipse is determined by the corresponging
of the depicted CDN, the size and shape of each ellipse is
drawn according to the correspondiy. In both figures,
— Fig 7 and Fig. 8, the sub-figures (a) illustrate the initial
configuration from which the optimization was started: CDN
locations pv; were initialized randomly and alt; were set
Fig. 5. Model instantiation considered in Sect. V. The agentrigid (0 @ default value. Sub-figures (b) illustrate CDNs in their
sensor with a given configuration of a number of receptivedsiglyellow), converged configuration 33 and DI optimized according
observes a-dimensional worldig(z). The action model is implemented {4 Eq. 8. Note, we have to be aware of boundary effects
as sensor translation actions in x- and y-directions, imtaaround the axis L ! o
perpendicular tao, and changes in distance 1. Wh_en_ inspecting the results of t_he motor layer organization
This is due to the fact that we inevitably have to rely on a
finite range for action sampling. Thus, we expect to observe
A. Visualization some disturbances for corollary discharge neurons locatted
i . i _ the sampling border. Sub-figures on the right side of Fig. 7
The results for the investigated topologies and action&pag,j Fig. 8 show the activation of feedforward connections in
are summarized in Fig. 7 and Fig. 8. On the left of Fig. 7 and4tix format for nine selected CDNs. Comparing with the
Fig. 8. the motor layer of the respective setup is shown. FBFaphicaI model of the proposed corollary discharge dirasi
the grid/translation setup shown in Fig. 7, the motor layerghqwn in Fig. 3, each depicted matrix describes the aativati
covers the shown range of actions inducing horizontal ap{ teedforward connections linking one CDN in layer (b) to
vertical stimulus shifts. For théovea/rotation-dilationsetup e visual area (d). The activation of all connections coded
shown in Fig. 8 the motor layer covers the actions leading, 5 matrixP; is initially set to zero (black). In sub-figures
to stimulus rotations and dilations in a range as denotegly Fig 7 and Fig. 8, matrice®, are plotted after one
. - . - 1 J
Each point on the motor layer represents an action relati{gration of maximizing Eq. 8. Sub-figures (d) show the same
to the sensor's original position. Thus, in Fig. 7 each poipfiatices but now in converged configuratiBh. As described
on the motor layer corresponds to a motor signal leadifg sect. |1, an activation matri®; is in mathematical terms
to a shift in horizontal or vertical direction of the visualy |inear prediction operator which can be used to predict a
stimulus. In Fig. 8 e.ach point on thg mptor Igyer corres_ponﬂﬁure stimulusos 1, given the current stimulus, and an
to a motor signal triggering an action inducing a rotation Qfcfiona as shown in Eq. 6. Hence, the 9 prediction operators
dllatlon_of the wsugl stimulus. Comparing ywth the grap_thc shown in Fig. 7 (d) and Fig. 8 (d) are the prediction operators
model introduced in Sect. 1I-B, the selection of a particulgyjig for the 9 central nodes and their influence areas learne

location in the motor layers shown on the left in Fig. 7 andg s+ gnq w* in Fig. 7 (c) and Fig. 8 (c). Their values are
Fig. 8 is analogous to determining the resulting motor gignéhovdn graysjcale coded.

for a population coded motor layer by summing active motor

neurons as illustrated in red in Fig. 3 layer (a); hence atpoin

the shown motor layers is the analogon to a peak in activationln summary, sub-figures (c) and (d) in Fig 7 and Fig. 8
in the red layer in Fig. 3. Points in light gray depict the 5008lustrate the visual stimulus prediction function as fesut
random actions taken while training the model. Black edips by the proposed model. Sub-figure (d) depicts the activation
depict the location and variance of the multivariate Gaarssiof feedforward connections or the prediction operaldy

used to model the corollary discharge neurons (CDNs) on tig@rned for each CDN. Sub-figure (c) illustrate the topatabi
organization and influence area of each CDN as defingd’by

andX?. The result is a smooth, non-linear prediction function
constructed as the combination of linear prediction opesat
with overlapping influence areas.
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How this model and the learned function can be used
to predict visual stimuli for any action contained in the
covered motor space is illustrated in Fig. 9. In Fig. 9 (a)
the converged configuration for thgrid/translation setup is
shown and a randomly selected motor action — not contained

() Grid Layout (b) Log-spiral Layout in the set of actions used to train the model — is marked bold
Fig. 6. The two sensor topologies considered for the predemisults. Circles red. Indices in this sub-figure enumerate corollary disgéar

represent the standard deviation of the Gaussian recefitids. Axis units Neurons. According to the previously learned CDN topology
refer to the size of the-dimensional world on which the sensor moves anghown in Fig. 9 (a), CDN24 and CDN21 are the corollary

which extends over a range pf1, +1] in x- and y-direction. Outlined areas 4: : : :
denote action sampling ranges. a) Uniform grid-likex 5 layout with 25 discharge neurons most activated by the chosen actionr Thei

receptive fields. b) Foveal layout parametrized accordng growth spiral activations are given by Eq. 7 according to their receptive
with 12 branches each with receptive fields followingo = 0.0063¢°3¢.  fields yielding Ao4 = 0.71 and \o; = 0.24 for the chosen
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action® Fig. 9 (b) shows the prediction operatoPy, and is best described by values of previously close receptive
P,;. They are linearly combined according to Eq. 6 usinfields. Despite the fact that we expeBt; to be sparse in
A24 @nd \y; to obtain the prediction operator optimal for thegeneral due to spatiotemporal relationships between lisua
chosen action. In the upper half of Fig. 9 (c) an example inpreceptive fields, we find the converged configuration to fieeatu
stimulus is shown. Circles correspond to visual receptaledi prediction matrices with an exceptionally small number of
as shown in layer (d) in Fig. 3. The grayscale color-code abn-zero entries. We will get back to this observation in enor
each circle filling represents the recorded input stimulus fdetail in Sect. VI.

each visual receptive field. At the bottom of Fig. 9 (c) the To address questions regarding the global optimal solution
predicted stimulus is shown as obtained from the given inpwe ran a number of optimizations where each run started from
stimulus and the prediction operator assembled accordingat different randomly initialized configuration. Measurifay

the triggered action. Note, the action selected in sub-igueach converged configuration the total prediction error alle

(a) corresponds to a shift of the visual area by one visusdmpled actions, we are able to confirm with a high degree
receptive field distance to the right and a bit more thaof certainty that the globally optimal configuration is theeo
half a visual receptive field distance upwards. Therefdre, twhere all25 CDNs are arranged on a regularx 5 grid.
predicted visual stimulus is shifted one visual receptieddfi We were unable to find another configuration with a smaller
distance to the left and approximately half a visual recepti overall prediction error.

field distance down. The downward shift results in a blur due

to the resolution of the visual system. Also note, indices 8. Results Foveal Layout

sub-figures (b) and (c) are related and denote visual reeepti

fields When training the model using the foveal layout with

actions leading to stimulus rotation and dilation, we find

that the CDN layer converges to a configuration where CDN
B. Results Grid Layout receptive fields are regularly distributed on concentricles.

When training the model using the grid layout under transldhis configuration can be seen in Fig. 8(c), where the lopatio

tional actions, we find that the motor layer converges to a coand size of CDNs is plotted with respectdaas described in
figuration where corollary discharge neurons are disteithim  Sect. IV (x-axis), and the angle of rotation (y-axis). Note,
the action space on a regular grid. This is visible in Fig)8(sas the vertical axis in Fig. 8 (a) and (c) denotes rotation,
in particular for non-boundary CDNs. Notably, their locats vertical lines in these plots describe circular arcs, anticadly
in action space coincide with the spacing of receptive fielédigned CDNs lie on concentric circles. Thus, as for the
in the sensor layout. We note that the prediction matrix ef tlgrid layout, the organization of CDN receptive fields in the
CDN with index 14 converged to zero and has no impact oaction space happens to reflect the spatial layout of thelisu
the final cost function. From our privileged perspectivecaa receptive fields in the sensor area. In Fig. 8(d) the learned
see that CDNL4 should have been placed somewhere betweprediction matrices of nine selected CDNs are shown. As
CDN 16 and4 to improve the present solution. In the showifor the grid layout, visual receptive fields which cannot be
case, the algorithm converged to a local optimal solutioeneh predicted accurately happen to be approximated by their own
CDN 14 has no contribution and the area between CDIN previous value (diagonal entries). And again, we obseraé th
and4 is covered by slightly more outstretched neighbor CDHIl P; are exceptionally sparse.

receptive fields. This slightly increases the predictiomein Unlike for the grid-like setup, the results presented fa th
this neighborhood of the action space but has no severe impiayeal setup represent what we suspect to be the global aptim
on the prediction ability. solution. This assumption is supported again by the fadt tha

In Fig. 8(b), the learned prediction matrices of nine seldct no other solution found led to a smaller overall prediction
CDNSs are shown. For a graphical interpretation of the shovatiror. We therefore have strong reasons to believe that the
prediction matrices, read an entgyin row r of a prediction positioning of the CDNs as shown in Fig. 8(c) corresponds to
matrix for actiona as the activation of the receptive fieldthe globally optimal one.
connection between receptive field and r. For example,

CDN number15 located in the action space &b,0), not D. Result Validation

surprisingly shows a single diagonal of non-zero entrighe® F
P; show non-zero entries with according offsets. For example,
CDN number25 covers actions where the values of the ﬁrsae
column of visual receptive fields (indicesto 5) contribute
to predict future values of the second column (indiéeto
10 in Fig. 6(a)). Interestingly, the entries for the unpredide
receptive fieldd to 5 converged to be non-zero in the diagona
This is due to the fact that for natural images with lo
spatial frequency and small sensor translation distartbes,
future activation of a receptive field with unpredictablu

rom the above presented results it is not directly visible
y the organization of the motor layer converges to the
scribed configurations. To get a notion of the driving éorc
behind the organizing process, it is useful to first insphet t
underlying functionP (a). This is difficult asP(a) defines for
Fvery action a matri®“ of size N x N. Nonetheless, to get
an impression of what the trained model is actually approx-
VYmating, we visualize a particular entry of this matrix for a
number of random actions. In Fig. 10(a) we plot the selected
entry using prediction matricd3® learned by linear regression
3In favour of a comprehensive illustration, we discard irstakample the from multiple samples for each action. For a comparison,
contribution of all other less activated CDNSs. Fig. 10(b) shows the same matrix entry obtained from our
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(a) Initial configuration of the receptive fields of each dlamy dischargg(b) Prediction matrices after one iteration of the Levegbdtarquardt opti-
mization algorithm. Each matrix was initialized to zero tration0 (black).
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(c) Final configuration of the receptive fields of each camglldischarge neurofd) Prediction matrices after 1000 iterations of the LewsgbMarquardt
(CDN) on the motor space (iteration 1000). Note, CDN 14 waspeessedptimization algorithm. The prediction matrices assatato the corollary

during the optimization, see also Sect V-B.

Fig. 7.

discharge neurons covering the center area of the motoe sgacshown.

Optimization of the proposed model for a visual ser@ea receiving input according to a retinotopic mappingtaawvn in Fig. 6(a) and a motor

space covering translational actions. Left: Represamtadf the visual motor space for translations where eacht pepresents a shift relative to the sensor’s
original position. In grey, the sampled displacements usetlain the model (5000). In black, the receptive fields (alized as ellipses) of each corollary
discharge neuron3{, p). Right: Feedforward connection weights of nine corollaigcharge neurons displayed in the format of predictionricest P as
described in Sect. lll. Each matrR; is shown as a table of siz5 x 25 with matrix entries color-coded in grayscale (blagko, white = 1). Note, without
any specific assumptions, the receptive fields of corollasghdirge neurons converged to locations in the motor spddehveorrespond to translational
actions which match exact shifts of visual receptive fieldsd which allow for a particularly small number of feedfordi@onnections (i.e. particularly sparse

prediction operator® ;).

model}_ . A;(a)P; using the parameters learned in Sect. V-C. VI.

Comparing the two plots, two things become apparent: first

of all, the values plotted in Fig. 10(a) resemble closely a we have proposed an adaptive model of a visual corollary
multivariate Gaussian and are therefore well approximatggcharge circuit (CDC) following state of the art functin
by the linear interpolation shown in Fig. 10(b); secondly;nderstanding of a particular visual CDC in the primate
even though we sampled a selected prediction matrix eniyain. The mathematical formulation of the proposed maslel i
for the non-uniform sensor layout and the rotation—dilatiodirecﬂy deduced from a biologically inspired represeotat
action space, the resulting distribution resembles an- axighere we translated neurons and neural feedforward connec-
aligned Gaussian. The second observation justifies théqu®V tions to a weighted linear combination of prediction matsic

In particular, we were interested in modelling the capgpbili
of a CDC to adapt during ontogenetic development in order
to optimize the prediction of visual stimuli for previously
unknown sensor topologies and movement behaviors. Irtspire

decision to restric®; to be diagonal matrices.

DiscussIiON
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(c) Final configuration of the receptive fields of each camglldischarge neurofd) Prediction matrices afte600 iterations of the Levenberg—Marquardt
on the motor space (iteratio00). optimization algorithm. The prediction matrices ass@dato the corollary
discharge neurons covering the center area of the motoe spacshown.

Fig. 8. Optimization of the proposed model for a visual ser@ea receiving input according to a retinotopic mappingt®vn in Fig. 6(b) and a motor
space covering rotational actions and dilation. Left: Repntation of the visual motor space for rotations andidilatwhere each point represents a rotation
and change in distancerelative to the sensor’s original position. In grey, the plad displacements used to train the model (5000). In bltek receptive
fields (visualized as ellipses) of each corollary dischargeron &, ). Right: Feedforward connection weights of nine corolldigcharge neurons displayed
in the format of prediction matrice® as described in Sect. Ill. Each matrR; is shown as a table of siz&6 x 36 with matrix entries color-coded in
grayscale (black= 0, white = 1). Note, without any specific assumptions, the receptiveldielf corollary discharge neurons converged to locationthen
motor space which correspond to rotational actions andialiis which match exact shifts of visual receptive fieldsd arhich allow for a particularly small
number of feedforward connections (i.e. particularly spaprediction operatorP ;).

by neuroscientific evidence of neural plasticity, we introeld the typical pinhole camera model, the imposed constraint is
an adaptive intermediate layer of corollary discharge omsir fulfilled for example for a spatially fixed camera allowed to
(CDNs) able to adjust to an unknown sensor layout amdtate along all axes, or for a camera observing a planar
movement behavior by changing location and size of thescene and moving such that it is always facing the plane. The
receptive fields with respect to the underlying layer of mot@equirement is violated if a given action in combinationtwit
neurons. We presented results which demonstrate theingsulthe observed environment leads to motion parallax.
adaptation process which is driven by the minimization @ th on the basis of the obtained results, we observed that
stimulus prediction error. Notably, we deliberately kepgd  optimal configurations of the proposed model feature cargl|
time the layout of the sensor and the effects of executedr@ti gischarge neurons with very sparsely activated feedfatwar
as a black box implementation of which we knew nothingonnections, or in other words, have particularly sparge pr
about. Considering a physical agent acting in a 3-dimensigiction matrices associated. Hence, the optimizationodists

nal world, the proposed model is applicable respecting th@q takes advantage of locations in the action space where
constraint described in Appendix A. For a sensor followingisyal stimulus prediction can be done with an especially
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(a) Motor space with a particular action marked red. Reeepfields of (b) Feedforward connections of (c) Input stimulus (top), and pre-

corollary discharge neurons are shown according to the &oafiguration  corollary discharge neuron24 and  dicted stimulus (bottom), where the

shown in Fig. 7. 21 (in the format of prediction latter was obtained using a predic-
matricesP24 andPo1). tion operatorP according to Eq. 6.

Fig. 9. Example usage of the obtained corollary dischargriitias presented in Fig. 7: a) The agent selects an actithreiavailable motor space; the action
is marked red and corresponds to a shift of the visual arela avitorizontal component to the right and a vertical compbrgmwards. Indices enumerate
CDNSs. b) Corollary discharge neurons (CDNs) are activatetbraing to their receptive fields. For the action shown id, ihe two CDNs with highest
contribution are24 and 21 with activations 24 = 0.71 and A21 = 0.24 (according to Eq. 7). c) Using feedforward connectids activated according
to Eqg. 6, the future stimulus can be predicted from a givermgte stimulus. Note, the selected location in the motor spamresponds to a shift of the
visual area by one visual receptive field distance to thet @gid a bit more than half a visual receptive field distancearga: Therefore, the predicted visual
stimulus is shifted one visual receptive field distance ®l&ft and approximately half a visual receptive field disedown. The downward shift results in
a blur due to the resolution of the visual system. Note, ieslim sub-figures (b) and (c) are related and denote visuaptige fields. In sub-figure (c), the
activation of visual receptive fields is color-coded in gregle.

simple prediction model. Even though we expect the actvati approximate best the actually required activation of recep
of feedforward connections to be sparse in general duetiee field connections and are at the same time particularly
spatiotemporal constraints between visual receptivedijdlte sparse. However, the existence of actions which allow for
number of active (non-zero) feedforward connections in tleeich configurations is defined by a particular sensor/agtion
found solutions is sparser than expected. Of course, actigrairing (SAP). In [16], we investigated the relationship- be
which fall in between such locations still require a more eontween sensor topology, sensor movements and linear stimulu
plex prediction operator, however, with the proposed mod@redictors by presenting a measure which — given a particula
appropriate prediction networks are accurately composed gensor layout and behavior — qualifies locations in the actio
such locations by linearly interpolating the result of sale space according to the complexity of the prediction model
CDNs as described by Eg. 6. Inspecting Fig. 7 and Fig. 8,rgzquired at that location. The application of this measore t
also becomes apparent that the organization of CDNs on the grid and foveal sensor layout under translation, rotati
motor space follows the discretization of the visual arddsT and dilation showed that, while the SAP grid/translationd an
essentially means, the density distribution of receptiettl§i fovea/rotation-dilation define a clear set of actions foriakih
in the visual area is projected onto the motor space, whigharticularly simple prediction models exist, the remagnin
according to the above stated observation, proves to be aambinations, grid/rotation-dilation and fovea/tratislia, do
efficient mapping for a corollary discharge circuit. not define a similarly clear defined set of actions suitabte fo
The reason for the observed tendency towards solutiosimple prediction models. In the present work, we presented
with a sparser feedforward network can be understoodmstartresults for SAPs which are known to define a set of actions
from observations made in Sect. V-D. As shown in Fig. 10(a)ith particularly sparse prediction matrices. We obseted
the activation of a single entry of a linear prediction matrithis choice facilitates a clear and unique organization of
plotted over the action space resembles closely a mubitearithe CDN layer. For other pairings, the adaptive organizatio
Gaussian. Therefore, to best approximate such an activataf the introduced model finds just as well a solution, but
function, a CDN with a Gaussian receptive field has to beptimal configurations are not as well defined as for the
located at the center of this distribution adapting its ptive chosen pairings. This means, for the grid/rotation-dilatind
field size according to the given shape of the activation.areéhe fovea/translation pairings we could not identify sioing
Configurations for which this can be best achieved for alhich we reproducibly and conclusively encountered to be
receptive field connections of the CDN'’s prediction matrix
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globally optimal configurations. correspondences for the two scenarios:

In conclusion, particularly sparse CDCs have a number OE:IippingdaIe our work
advantages. First of all, considering a physical imple o, receptors CDNsS
the feedforward network of a sparse CDC can be built Withreceptor distances non-zeRo entries
a small number of neural connections. With respect to th%ctions are fixed topology of visual area fixed

visualization of the model in Fig. 3 this means, a majority of inds opt. receptor conf finds optimal actions
the feedforward connections (c) can be completely removeJ. o ) _ _
Furthermore — in a computational sense — the generatiﬁﬁcord'ng to these relations, the duality between both- situ
of the predicted stimulus is facilitated because a small@fions can be sketched as follows: while Clippingdale and
number of operations is required due to the reduced numi¥ison consider a given set of actions and find a receptor
of connections. configuration which has optimal self-similarity in terms of
Apart from direct physiological and computational impticaPCint distances, we consider a given sensor layout and find
tions, a second characteristic of the obtained solutions wiansformation actions that transform this layout in suetes
observed. We find that the tendency of the CDN layer {hat the activation of transformed receptors can be predict
organize as a sparsely activated feedforward network H&ING input from a minimum number of previous receptors.
parallels with a concept termesklf-similarity introduced by NOte, in our case we observe this tendency even though we
[1]. They showed in an inventive work the following: ad® not explicitly optimize for self-similarity. _
set of points randomly distributed on a disk converges to a/" SUmmary, the introduced model of a corollary discharge
stable configuration with a highly regular structure if, fjet Circuit successfully leams to predict visual stimuli veniat
points are conjointly transformed by rotations, dilaticarsd € same time optimizes its topological structure as toeiase
translations applied according to a given probabilityriist (e Sparsity of feedforward connections. Hence, the adapta
tion: and ii) when after each iteration each point is movef0c€ss implicitly not only optimizes prediction abilityf o
towards transformed points lying closest. Interestinglyder the nétwork but also discovers — if they exist — locations in
the introduced rules, certain action probability disttibns the given action space which allow for a particularly simple
induce point distributions which resemble closely reaepti Prediction model with the given sensor layout. Applicagion
field distributions as found in foveal sensor layouts. Thipac €XPloiting this relationship remain to be explored in fetur
probability distributions which lead to such configuragare WOrk. Forexample, if we are interested in generating beftavi
composed of rotation and dilation actions uniformly dited  SUPPOrting simplified corollary discharge signals, CDNshwi
over an arbitrary range, combined with translation actioifsParticularly sparse feedforward network are good carnetda
distributed over dimited range. For a visualization, the readef© COMpose corresponding action sequences. Or conveirsely,
might refer to Fig. 11 in [1]. With respect to our work, the>®arch for a good sensor/actions pairing, a good combmatio
organization of such a set of visual receptors — represasedndht be found by tracing the presence of corollary discaarg
simple points — can be seen in a duality with the adaptati6ffurons with a particularly sparse feedforward network.

of the CDN layer. Receptors distributed on a disk are in
our situation spatially extended receptive fields of camyll APPENDIX A

discharge neurons integrating input from the motor space. RELATIONS BETWEEN STATES AND OBSERVATIONS
Self-similarity, measured by Clippingdale and Wilson as th The introduced model of a corollary discharge circuit as-
average distance of transformed receptors to closestquvisumes that actions can be modeled by Eq. 2. Here we revisit
receptors, is expressed in our case by the sparsity of pieulic this point and provide more detail as to how this model links
matricesP; specifying how many previous receptors influencith real world agents.

a transformed receptor. The following listing summarizes When modeling agents one usually considers a state space
S describing not just the agent but the whole world. An agent

action is represented by a functiean S — S which changes
1 this world state. In this work, the agent is allowed to observ
08 the world using a visual sensor which works in two steps.

|
1 0.8 | . o . . . .
g | g First it is assumed that there is a surface onto which light is
= i 0.6 = ‘ 0.6 . . .
50 50 projected represented as a functipn S — Z. HereZ is a
g 04 8 ‘ 04 function space where each elementR? — R is a function
—1} 02 -1 0.2 returning the projected intensity at each point on the serfa
_0‘ 5 5 0 _01 = 5 o5 0 As a second step, this surface has several receptive fieidh wh
scale (log(2)) scale (log(2)) are able to integrate the projected intensities on a pdaticu
(a) Sampled (b) Interpolated area, each producing a stimulus to the agent. In the diagram

shown in Fig. 11, the space of these stimulus is callecnd

Fig. 10. Activation of the receptive field connecti¢ng, 18) in the foveal IS captured by the observation model presented in the text as
layout plotted over the rotation-dilation action spaceeThft plot shows Eqg. 1.

P (15,18), Where for each locatiol? was explicitly computed by linear regres- ; " . ; ;
sion. The right plot Shows 15 15, approximated by~ A; (a)P 15 1x) Considering the establishment of the proposed CD circuit,

with parameters learned as shown in Fig. 8(c) and 8(d).Giheies inP than @ constraint is posed on the agent actigrrequiring that it
(18, 18) show similar activation distributions centered at différéocations. jnduces a transformation : Z — Z. This means that the
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projection on the sensor surface after an acttomust be satisfied, meaning that each receptive field value satisfies
perfectly reconstructable solely from the previous prijec

If one constrains the set of actions to have this propergn th Os+1 = p*(0s)

for all agent purposes an action can be fully described as the o1(a(i)) 01(i)

function a instead of considering the full agent state model 02(a(i)) o)

acted on by functiongi. Unfortunately this requirement is = : =P : : ©)
too strict to satisfy exactly for most general applicatioDse on(a(i)) on (i)

particular exception arising in biology is the consideredec
of eye movement actions. In this case the surface onto whiSincea ando; are linear, given any two imagés andi, and
the world is projected is a sphere and the eye movement sotR8Y WO scale factorsy and 5, the previous satisfies

the projection on the sphere. o1(a(aiy + Biz)) 7 o1(air + Biz)
This work focuses not on representimgbut instead in Oz(a(anfﬁw)) e 02(0‘“I+ fia)
predicting the observed stimulus after an action is taken, T R
solely from the previously observed stimulus. Notice tHt t ~ Lon(a(ais + Biz)) on(adr + fiz) 1/
existence of: does not guarantee that the observed stimuli are [ ¢/} o1(a(iz)) o1(i1) 01(i2)
) . ; 2(a(i1)) oz2(a(iz)) 02(i1) 02(i2)
predictable. For this to happen, the action must be suchihtbat « : +8 . =p" || . +8

integrating receptive fields line up before and after theads on(a(in) ON(GZ(Q))_ on{in) o i)

taken, corresponding to a permutation of the observed kisnu ] _ )

in line with the concept of self-similarity introduced byl[We Which, when equation (9) is replaced on the left hand side
emphasize that it is this interrelation which we explorehis t

work and which allows for a particularly sparse feedforward a1i o1t R o)
network. The fact that the organization of such a network is «»® : + 8% : I R
implicitly dependent on a well concerted pairing of sensor on (i1) on (i2) on (i) on (i)
topology and action space is consistent with observations X v M v

made for living organisms. Animals typically feature a High a el a

specific pairing of behavior and sensor structure which is ap®(x) + fp*(y) = p* (ax + By),

favorable from this point of view, see also [16]. proves linearity ofp® whenever the action is perfectly pre-
The model presented in Sect. IlI-A also imposes thée dictable.

linear for technical reasons. Note that sincés actually an

operator acting from a function space to a function spads, th ACKNOWLEDGMENT

is not as limiting as it might seem at first glance. Consider th
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ap(z) : R? — R? are any linear or nonlinear functions. Th

corresponding operatar is linear as can be quickly checke
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