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Abstract— We integrate software components that allow ef-
ficient and successful grasping of kitchenware objects. The
contributed components include: The object pose detector, the
gripper reaching motion and the grasp hypothesis selection. The
object pose detector of Drost et. al. [10] is improved, considering
rotationally symmetric objects. The reaching motion execution
combines two independent dynamical systems: The approach
direction system and its tangent space [21]. The coupling
provides a robust reaching component that copes with several
gripper configurations. The grasp hypothesis selection filters
the object poses by considering the table orientation.

I. INTRODUCTION

Grasping and manipulation of known objects have reached
already the industrial applications, where the environment is
totally predefined in order to avoid failures (e.g. [1]). In such
controlled environments, the common approach is to design
the shape of the fingers that fits best with the few objects
considered and the type of grasps. In addition, the sequence
of object poses are known in advance so the trajectory
of the arm is fully preprogrammed. By removing any of
the constraints of the industrial scenarios, grasping known
objects turns into a difficult problem due to uncertainty in
the object pose, selection of the best grasping hypothesis and
singularities in the trajectories during the reaching phase.
We present a grasping system that addresses these problems
with the following components: (i) a point cloud-based object
pose detector, (ii) a grasping hypothesis selection and (iii)
a reaching algorithm based on coupled dynamical systems.
The software components are deployed in a scenario with
the KUKA LightWeight Robot (LWR) [18], the Universal
Gripper WSG 50 [20] with two sensor fingers WSG-FMF
[19] and an Asus Xtion PRO [3].

Figure 1 shows the components of the grasping system.
The object dataset contains the point clouds and grasping
hypotheses (grasping point location and gripper orientation),
which are learnt off-line. The grasping hypotheses are ob-
tained from the interaction between the BADGr software
[11] and graspIt! [16]. BAGDr applies a box decomposition
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Fig. 1. Grasping system overview. Each box represents a software
component of the system. The boxes filled with gray color are executed
off-line and the rest are execute on-line

heuristic that generates a reduced number of hypotheses and
graspIt! is able to compute force-closure metrics [5], [6],
[9], [7] for each hypothesis. After the off-line selection of
grasping hypotheses, the object models are updated with this
information. The table top segmentation component is a ROS
service [17] that fits the dominant plane in the point cloud
through RANSAC and finds the point cloud clusters on top
of the table.

The pose detector component reads the object dataset and
receives the clusters provided by the table top segmenta-
tion. The object pose detector introduced by Drost et. al.
[10] is an efficient and robust method for matching point
clouds to known objects. The technique relies on a hash
table (i.e., global model) that provides efficient matching



between local features and point pairs. In addition to the
model, a two step matching procedure provides robustness:
Firstly, a local voting selects promising object candidates
and secondly, a clustering procedure selects the most likely
candidates. The advantages of this matching method include:
robustness to occlusion, noise and partial view of the object.
We introduce an important extension to the pose detector,
dealing efficiently with rotationally symmetric objects that
are common in many environments (e.g. kitchenware objects
like cups, glasses, cans, plates). We reduce drastically the
computational complexity of [10] when dealing with this
kind of objects. The output of the pose detector is the
top candidate for each cluster provided by the table top
segmentation.

The grasping hypothesis selection reads the grasping hy-
potheses from the object dataset and receives: (i) the object
poses from the detector and (ii) the table’s surface normal.
The grasping strategy algorithm just selects the hypothesis
whose approach vector is oriented towards the the surface
normal but with opposite sense. The selected grasping hy-
pothesis is then sent to the reaching motion module.

Planning and control of constrained grasping motions have
often been studied as two separate problems in which one
first generates the arm motion [4], [13] and then shapes the
hand to grasp stably the targeted object [15], [2]. The sheer
complexity of each of these two problems when controlling
high dimensional armhand systems has discouraged the use
of a single coherent framework for carrying out both tasks
simultaneously. We apply the coupled dynamical system
based controller of [21], whereby two dynamical systems
driving the direction of approach and the corresponding
tangent space are coupled. This offers a compact encoding
for reach-to-grasp motions that ensures fast adaptation with
zero latency for re-planning. Each dynamical system is
represented by a Gaussian Mixture Model (GMM), whose
parameters are learnt off-line. During the on-line phase, a
weighted contribution of the dynamical systems converge to
the target grasping hypothesis.

The system briefly explained above allow us to perform
successful grasping actions of kitchen objects such us mugs
and glasses. Section II explains in detail the object pose
detection method, section III the coupled dynamical system,
section IV the grasping hypothesis selection, section V
presents the experiments and section VI the conclusions and
future work.

II. OBJECT POSE DETECTION

Each object model is represented by a set of points and
associated surface normals, i.e. surflets [22]. Let M be the
set of all model surflets, M = {smi , i = 1..N} – upper
indices m and s will be further used to distinguish model
from scene, respectively. An object description suitable for
object recognition and pose estimation is created through the
analysis of all possible permutations of surflet pairs. Let A
be the set of all surflet pairs, A = {(smr , smt ), r 6= t}, which
has cardinality |A| = N × (N − 1).

Fig. 2. Experimental scenario

A. Model Description

For each surflet pair (sr, st), we compute a descriptive 4-
element feature vector as illustrated in figure 4. This could
be formally described by the following expression:

F (sr, st) = (f1, f2, f3, f4) = (‖d‖,∠(nr, d),∠(nt, d),∠(nr, nt))
(1)

The data structure used to represent the model description
is a hash table for quick retrieval, in which the key value
is given by the discrete point pair feature while the mapped
value is the respective surflet pair. Since one key could be
associated with several model surflet pairs, each slot of the
hash table contains a list of surflet pairs with similar discrete
feature.

Fig. 4. Point pair feature descriptor

1) Dealing with rotational symmetry: In order to effi-
ciently deal with rotationally symmetric objects, we incorpo-
rate a strategy that reduces drastically the size of A, by dis-
carding redundant surflet pairs, thus increasing dramatically
the recognition runtime performance. To accomplish this, a
Euler angle representation [8], is used to describe orientation.
In our work we chose the X-Y-Z Euler representation since
we assume that the object axis of symmetry is aligned with
the z axis of the object reference coordinate frame. During
the creation of the model description, for each surflet pair, we
compute the transformation with respect to the object model



Fig. 3. Example of surflet pairs with similar feature stored in the same slot of the hash table, during the creation of the object model description.

Fig. 5. An example of a rotationally symmetric object model. All illustrated
surflet pairs have similar discrete feature. In the figure, pairs represented
with similar color are redundant.

reference frame (see section II-B) that aligns it with each
similar pair already stored in the hash table. If there is at
least one pair for which the alignment transformation has no
translation and no roll and pitch components on the rotation
as expressed on eqs. (2) and (3) respectively, then, this surflet
pair corresponds to a rotation of the other (homologous)
around the symmetry axis, and is therefore redundant and
discarded.

d < dth (2)

αyaw=0 < αth (3)

The weight of the homologous surflet pair, stored in the
hash table, is then incremented by 1. This process is clearly
ilustrated in figures 5 and 3.

B. Pose Estimation

A set of reference surflets on the scene Rs ⊂ S – where
S is the set of all scene surflets, S = {ssi , i = 1..N} –
is randomly chosen and each of them is paired with all
the other surflets on the scene. For each scene surflet pair

(ssr, s
s
t ) ∈ S2 we compute a point pair feature F (ssr, s

s
t )

and then, using the extracted feature, we obtain a set of
model surflet pairs whose feature is similar to it. From every
match between a scene surflet pair (ssr, s

s
t ) ∈ S2 and a

model surflet pair (smr , s
m
t ) ∈ M2, we are able to extract

the rigid transformation that aligns the matched model with
the scene. This is done by first computing the transformations
Tm→g and Ts→g that align smr and ssr, respectively, to the
object reference coordinate frame x axis, and secondly the
rotation α around the x axis that aligns pmt with pst . The
final transformation that aligns the model with the scene is
then computed considering the ensuing expression:

Tm→s = T−1s→gR(α)Tm→g (4)

The transformations Tm→g and Ts→g translate pmr and psr,
respectively, to the reference coordinate frame origin and ro-
tates their normals nmr and nsr onto the x axis. After applying
these two transformations, pmt and pst are still misaligned.
The transformation R(α) applies the final rotation needed to
align these two points.

The transformation expressed in eq. (4) can be
parametrized by a surflet on the model and a rotation angle
α. In [10], this pair (smr , α) is mentioned as the local
coordinates of the model with respect to reference point ssr.

1) Voting Scheme: This method uses a voting scheme
similar to the GHT for pose estimation. For each scene
reference surflet, a two-dimensional accumulator array that
represents the discrete space of local coordinates is created.
The number of rows, Nm, is the same as the number of
model sample surflets |M |, and the number of columns Nangle
is equal to the number of sample steps of the rotation angle
α.

The voting procedure goes as follows: considering a given
reference surflet ssr on the scene surface S, we pair it with
every other surflet sst ∈ S. For each resulting surflet pair
we search on the model surface for similar surflet pairs,
with the aim of finding where it might be in the model.
This is done by querying the model descriptor for surflet
pairs with similar feature. The computed feature F (ssr, s

s
t )

is used as an index to the model hash table and a list of
matched surflet pairs, with similar feature, is returned. For



every match (smr , s
m
t ) the rotation angle α is computed and

a vote is placed in the accumulator array by incrementing the
position correspondent to the local coordinates (smr , α), by
the weight of the matched model surflet pair. After pairing
ssr with all sst , the highest peak – i.e. the position with more
votes – in the accumulator corresponds to the optimal local
coordinate. In the end, all retrieved pose hypotheses whose
position and orientation do not differ more than a predefined
threshold are clustered together.

To deal with symmetry, before clustering, we collapse all
redundant hypotheses to a single pose. This additional step
removes the rotational component around the object axis
of symmetry, i.e. yaw, ensuring that all redundant poses
are gathered in the same cluster, therefore allocating less
resources and reducing the number of computations. We
were able to discard near 93% surflet pairs during the
creation of the model description, and reduce the number of
computations during pose recognition. As shown in figure 6,
the recognition rate drops lightly for high levels of noise due
to sampling effects, but the recognition time performance
increases significantly. For |S| ≈ 5000, our method achieves
a recognition time 120 times faster than [10].
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Fig. 6. Comparison results of our method against the method of Drost et.
al. , with |Rs| = 0.05 |S| reference points.

III. ENCODING AND EXECUTING REACHING MOTIONS
WITH COUPLED DYNAMICAL SYSTEMS

In this section, we explain the coupled dynamical system
(CDS) model [21] used to generate trajectories for the robot’s
end-effector. It is worth mentioning here that for executing
reach-to-grasp motions, it does not suffice to have a simple
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Fig. 7. Separating the demonstration data (black dots) for reaching and
grasping an object into two subspaces - A (approach direction) and T (its
tangent space). The inference model is learned as a joint distribution on the
two subspaces P (ξA, ξT ).

trajectory interpolator. This is due to two key reasons -
a) The dynamics of the motion must be smooth and may
vary from object to object; b) Grasping an object requires
maintaining a specific approach direction towards the end
of the motion. Next, we will explain the CDS model with
respect to reach-to-grasp motions.

We model the reaching motion in two different but coupled
subspaces : the direction of approach A and the correspond-
ing tangent space T . The approach consists of learning two
different dynamical systems each operating in one of the
above mentioned subspaces and one inference model that
learns the task metric for coupling the two subspaces. Each of
these dynamical systems are learned as a Guassian Mixture
Model (GMM) [14]. The two dynamic models are then
coupled during task execution using the inference model.
Such a spatial coupling ensures that the trajectories retain
the approach direction while following the learned dynamics
as closely as possible, even in the presence of arbitrary
perturbations. Here we briefly summarize the CDS model
and the task execution algorithm. For more details the reader
is referred to [21].

2) Model Learning: Let ξA ∈ R denote the Cartesian
position of the end-effector along the direction of approach
and ξT ∈ R2 the same in its tangent space as shown in Fig.
7. We record several human demonstrations of reaching and
grasping the object and separate them in the two subspaces
for learning independent dynamical systems off them. For
convenience, we place the attractors of the dynamical sys-
tems at the desired grasping point. In other words, the motion
is expressed in a coordinate frame attached to the object to
be grasped, with its origin at the grasping point and any one
of the axes aligned with the direction of approach.

The following three joint distributions, learned as separate
GMMs, combine to form the CDS model:

1) P
(
ξT , ξ̇T |θT

)
: encoding the dynamics along the

approach direction, called the master subsystem
2) P (ξA, ξT |θAT ): encoding the joint probability dis-



Algorithm 1 Grasp Execution using CDS
Input: ξT (0); ξA(0); θT ; θA; θAT ; α; β; ∆t; ε

Set t = 0
repeat:

Update Tangent Space Motion: ξ̇T (t) ∼ P
(
ξ̇T |ξT ;θT

)
ξT (t+ 1) = ξT (t) + ξ̇T (t)∆t

Infer Approach: ξ̃A(t) ∼ P (ξA|ξT ;θAT )

Update Approach: ξ̇A(t) ∼ P
(
ξ̇A|β

(
ξA − ξ̃A

)
;θA

)
ξA(t+ 1) = ξA(t) + αξ̇A(t)∆t

t← t+ 1
until: Convergence

(
‖ξ̇A(t)‖ < ε and ‖ξ̇T (t)‖ < ε

)

tribution of the state variables along the approach
direction and its tangent subspace, called the inference
subsystem

3) P
(
ξA, ξ̇A|θA

)
: encoding the dynamics in the tangent

subspace, called the slave subsystem
Here θT , θA and θAT denote the parameter vectors of the
GMMs encoding the master, slave and the inference models
respectively. The distributions in 1) and 3) above are learned
using the stable estimator of dynamical system (SEDS) tech-
nique [14] which ensures that the learned dynamical system
has a single globally and asymptotically stable attractor. This
in turn ensures that the overall coupled system will terminate
at the desired targets for both hand pose and finger joint
angles. The probability distribution in 2) does not represent
a dynamics1, and hence is learned using a variant of SEDS
where we maximize the likelihood of the model under the
constraint:

E [ξf |0 ] = 0. (5)

It is to be noted that the master dynamical system runs
independently and the slave adapts accordingly to maintain
the desired coupling. This implies that perturbations in the
master subsystem are also mirrored onto the slave in order
to maintain the desired coupling behavior.

At execution time, the overall scheme works as shown in
Algorithm 1. Note that the free parameters α, β of the model
allow to tune the approach behavior of the trajectories by
changing their sensitivity w.r.t the different error terms. High
values of α ensure strict following of the coupling constraints
whereas high values of β make the behavior more sensitive
to deviations from the desired coupling.

IV. GRASPING HYPOTHESIS GENERATION

We implemented a two-stage approach in order to build the
map between grasp poses and regions of known object mod-
els, namely: (i) (Off-line) selection of promising hypotheses
using simulation tools and (ii) (On-line) execution of the
grasping hypotheses on the actual robot.

1Here the dimension of input and output variables is not equal. SEDS
can only be applied for learning dynamics, where the inputs are positions
and outputs are velocities and hence have the same dimensionality.

The selection of grasping hypotheses relies on the BADGr
software [11] that decomposes the object model into a hier-
archical set of oriented bounding boxes [12], which allows to
define one approach vector and two gripper orientations for
each face of the boxes. Then, collision detection algorithms
using the approach direction and the gripper model select
the reachable hypotheses of the computed bounding boxes.
Every reachable hypothesis (grasping approach vector and
gripper orientation) is sent to GraspIt! [16], where the finger-
tips of the gripper are closed. Since the grasp wrench space
can not be computed in most of the gripper configurations,
the hypotheses are selected by checking for collisions on
both fingertips. If there are collisions in only one fingertip,
the gripper is translated along the longitudinal direction up
to the distance to the other fingertip in that direction. All
the promising gripper configurations are stored for grasping
execution. Figures 8 and 9 illustrate the grasping trials using
the BADGr boxes and GraspIt! simulation on some models.

Fig. 8. Screenshot samples during the grasping trials in GraspIt! [16].
Left side shows the detail of the gripper and a soda can within the GraspIt!
window and right side shows a grasping hypothesis candidate.

V. EXPERIMENTS

The object pose detector, the grasping hypothesis selection
and the reaching motion execution are independent software
components interconnected through ROS topics.



Fig. 9. Samples of successful grasping trials in GraspIt!.

The object pose detector loads the object models and
grasping hypotheses at an initial step. Then, at each execution
of its callback, the detector: (i) Calls the table top segmen-
tation service, (ii) computes the best object pose hypothesis
for each cluster and (iii) publishes the object id and its pose
on a ROS topic.

The grasping hypothesis selection receives the object pose
hypothesis and the table orientation. Then, at each execution
of its callback, the selection algorithm computes the best
grasping hypothesis and publishes it on a ROS node.

Finally, the reaching motion execution: (i) reads the best
hypothesis from the topic, (ii) computes the arm trajectory
using the CDS, (iii) commands the gripper closing and (iv)
moves the arm up to evaluate the grasp.

The pipeline described above is executed 10 times, grasp-
ing two objects: (i) A mug and (ii) a wine glass. The system
grasped successfully 7 out of 10 times, failing 3 times due
to (i) very difficult configurations of the arm to reach the
grasping hypothesis and (ii) contact between the hand and the
object before grasping. Figure 10 shows two of the successful
grasping experiments.

Fig. 10. Samples of successful grasping trials

VI. CONCLUSIONS

We presented the software components of a system for
reaching and grasping kitchenware objects with a two-
fingered gripper. The most important components are: (i)
Object pose detector, (ii) Grasping hypothesis selection and
(iii) Reaching motion generation and grasp execution. The
components interact between each other through ROS topics

and are able to grasp successfully both fragile and heavy
objects. Future work should consider the on-line collision
detection in order to take advantage of the CDS approach.
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