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Abstract

In this paper we extend a recent approach for 3D object recognition in
order to deal with rotationally symmetric objects. These are frequent in
daily environments and can be recognized with significant computational
savings if symmetrical features are jointly represented. We show improve-
ments up to 120x with respect to state-of-the-art methods.

1 Introduction

In recent past, Drost et al. [3] proposed an approach which extracts de-
scription from a given object model, using point pair features [6], which
encode the geometric relation between oriented point pairs. The match-
ing process is done locally using an efficient voting scheme similar to
the Generalized Hough Transform (GHT) [1]. Their method is robust to
sensor noise and outperforms other feature-based state-of-the-art meth-
ods like Spin Images [4] and Tensors [5], both in terms of robustness to
occlusion and clutter and in terms of computational speed.

In this paper we introduce an important extension to [3] for dealing ef-
ficiently with rotationally symmetric objects, which are common in many
environments (e.g. kitchenware objects like cups, glasses, cans, plates).
We drastically reduce the computational effort of [3] when dealing with
this kind of objects.

2 Method Overview

Each object model is represented by a set of points and associated sur-
face normals, i.e. surflets [6]. Let M be the set of all model surflets,
M = {sm

i , i = 1..N} – upper indices m and s will be further used to dis-
tinguish model from scene, respectively. An object description suitable
for object recognition and pose estimation is created through the analysis
of all possible permutations of surflet pairs. Let A be the set of all surflet
pairs, A = {(sm

r ,s
m
t ),r 6= t}, which has cardinality |A|= N× (N−1).

2.1 Model Description

For each surflet pair (sr,st), we compute a descriptive 4-element feature
vector as illustrated in figure 1. This could be formally described by the
following expression:

F(sr,st) = ( f1, f2, f3, f4) = (‖d‖,∠(nr,d),∠(nt ,d),∠(nr,nt)) (1)

The data structure used to represent the model description is a hash table
for quick retrieval, in which the key value is given by the discrete point
pair feature while the mapped value is the respective surflet pair. Since
one key could be associated with several model surflet pairs, each slot of
the hash table contains a list of surflet pairs with similar discrete feature.
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Figure 1: Point pair feature descriptor
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Figure 2: An example of a rotationally symmetric object model. All il-
lustrated surflet pairs have similar discrete feature. In the figure, pairs
represented with similar color are redundant.

2.1.1 Dealing with rotational symmetry

In order to efficiently deal with rotationally symmetric objects, we in-
corporate a strategy that reduces drastically the size of A, by discarding
redundant surflet pairs, thus increasing dramatically the recognition run-
time performance. To accomplish this, a Euler angle representation [2], is
used to describe orientation. In our work we chose the X-Y-Z Euler repre-
sentation since we assume that the object axis of symmetry is aligned with
the z axis of the object reference coordinate frame. During the creation of
the model description, for each surflet pair, we compute the transforma-
tion with respect to the object model reference frame (see section 2.2) that
aligns it with each similar pair already stored in the hash table. If there is
at least one pair for which the alignment transformation has no translation
and no roll and pitch components on the rotation as expressed on eqs. (2)
and (3) respectively, then, this surflet pair corresponds to a rotation of the
other (homologous) around the symmetry axis, and is therefore redundant
and discarded.

d < dth (2)

αyaw=0 < αth (3)

The weight of the homologous surflet pair, stored in the hash table, is then
incremented by 1. This process is clearly ilustrated in figures 2 and 3.

2.2 Pose Estimation

A set of reference surflets on the scene Rs ⊂ S – where S is the set of
all scene surflets, S = {ss

i , i = 1..N} – is randomly chosen and each of
them is paired with all the other surflets on the scene. For each scene
surflet pair (ss

r,s
s
t )∈ S2 we compute a point pair feature F(ss

r,s
s
t ) and then,

using the extracted feature, we obtain a set of model surflet pairs whose
feature is similar to it. From every match between a scene surflet pair
(ss

r,s
s
t ) ∈ S2 and a model surflet pair (sm

r ,s
m
t ) ∈M2, we are able to extract

the rigid transformation that aligns the matched model with the scene.
This is done by first computing the transformations Tm→g and Ts→g that
align sm

r and ss
r, respectively, to the object reference coordinate frame x

axis, and secondly the rotation α around the x axis that aligns pm
t with

ps
t . The final transformation that aligns the model with the scene is then

computed considering the ensuing expression:

Tm→s = T−1
s→gR(α)Tm→g (4)
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Figure 3: Example of surflet pairs with similar feature stored in the same slot of the hash table, during the creation of the object model description.

The transformations Tm→g and Ts→g translate pm
r and ps

r, respectively, to
the reference coordinate frame origin and rotates their normals nm

r and
ns

r onto the x axis. After applying these two transformations, pm
t and ps

t
are still misaligned. The transformation R(α) applies the final rotation
needed to align these two points.

The transformation expressed in eq. (4) can be parametrized by a sur-
flet on the model and a rotation angle α . In [3], this pair (sm

r ,α) is men-
tioned as the local coordinates of the model with respect to ss

r.

2.2.1 Voting Scheme

This method uses a voting scheme similar to the GHT for pose estima-
tion. For each scene reference surflet, a two-dimensional accumulator ar-
ray that represents the discrete space of local coordinates is created. The
number of rows, Nm, is the same as the number of model sample surflets
|M|, and the number of columns Nangle is equal to the number of sample
steps of the rotation angle α .

The voting procedure goes as follows: considering a given reference
surflet ss

r on the scene surface S, we pair it with every other surflet ss
t ∈ S.

For each resulting surflet pair we search on the model surface for similar
surflet pairs, with the aim of finding where it might be in the model. This
is done by querying the model descriptor for surflet pairs with similar fea-
ture. The computed feature F(ss

r,s
s
t ) is used as an index to the model hash

table and a list of matched surflet pairs, with similar feature, is returned.
For every match (sm

r ,s
m
t ) the rotation angle α is computed and a vote is

placed in the accumulator array by incrementing the position correspon-
dent to the local coordinates (sm

r ,α), by the weight of the matched model
surflet pair. After pairing ss

r with all ss
t , the highest peak – i.e. the position

with more votes – in the accumulator corresponds to the optimal local
coordinate. In the end, all retrieved pose hypotheses whose position and
orientation do not differ more than a predefined threshold are clustered
together.

To deal with symmetry, before clustering, we collapse all redundant
hypotheses to a single pose. This additional step removes the rotational
component around the object axis of symmetry, i.e. yaw, ensuring that all
redundant poses are gathered in the same cluster, therefore allocating less
resources and reducing the number of computations.

3 Results

To evaluate the quality of the poses recovered by the algorithm and its run-
time performance, we generated 200 synthetic scenes containing a single
instance of a symmetric cup. Each scene was then corrupted by different
levels of additive Gaussian noise, with standard deviation proportional to
the model size. By using synthetically generated scenes, we were able
to compare the algorithm pose results with a known ground truth. During
recognition we chose 5% of the scene points as reference points. A higher
percentage would increase the robustness to noise but also the recognition
runtime. A recovered pose was considered to be correct if the error rel-
ative to the ground truth pose was smaller than diameter(M)/10 for the
position and 12o for the orientation. Thresholds from expressions (2)
and (3) were set to 12o and diameter(M)/40, respectively. The method
was implemented in C++ and the experiment was run on a single core of

a dual-core 2.6 GHz computer with 4GB of RAM. We were able to discard
near 93% surflet pairs during the creation of the model description, and
reduce the number of computations during pose recognition. As shown in
figure 4, the recognition rate drops lightly for high levels of noise due to
sampling effects, but the recognition time performance increases signifi-
cantly. For |S| ≈ 5000, our method achieves a recognition time 120 times
faster than [3].
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Figure 4: Comparison results of our method against the method of Drost
et al., with |Rs|= 0.05 |S| reference points.
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