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Abstract— We propose a method to plan in-hand manip-
ulation actions with a robotic anthropomorphic hand. We
consider in-hand manipulation actions as sequences between
canonical grasp types identified in the humans. Our work
concerns the generation of this sequence, which should be
autonomous and fast enough to be performed on-line. We use
a Markov Decision Process (MDP) governing the transitions
between grasp types, depending on the object and on the goal
grasp. The policy is learnt directly from human behavior, after
an initialization using an empirical estimation of the state action
probabilities of the MDP. Then, the policy is finely learnt from
samples of human in-hand manipulation records. These samples
are chosen using active learning, in order to maximize the
useful information of every record, and speed up the learning
process. For planning, the policy gives the sequence with highest
probability of success. We show a serie of realistic human-like
grasp transition sequences derived from the proposed method.

I. INTRODUCTION

The work presented in this paper concerns the planning
of movements to make a multi-fingered robotic hand exe-
cute in-hand manipulation. Some situations require in-hand
movements to execute fine actions, such as pressing a button,
unlocking a key or opening a bottle. In-hand movements
are also used to regrasp an object, because of a wrong
initial pose, a problem of accessibility, or to apply specific
manipulation actions like rolling the object at fingertips or
performing finger gaiting to relocate or substitute fingers. A
useful robotic hand should autonomously decide what to do
with a given object, provided the high level objective (task) is
known, and execute human-like movements, while adapting
to the world context in real time.

As most of the work on this subject [1]-[12], we con-
sider in-hand manipulation tasks decomposed in a two level
hierarchy. The lower level focuses on the continuous con-
trol of the manipulation physical aspects (finger motions,
contacts, forces) in order to achieve desired hand-object
configurations. The higher level decomposes a manipulation
task into discrete primitive actions, and focus on the rules
for composing these actions to execute elaborate tasks. Due
to the complexity of in-hand manipulation it is essential to
choose a suitable set of primitive actions. A too abstract
set will demand complex low-level controllers, whereas very
elementary primitive actions will increase the complexity
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Fig. 1. Grasp sequence may require more or less intermediate grasps.

of the higher level. We adopt a representation based on
canonical grasps identified in humans [2] and model in-hand
manipulation actions as sequences of canonical grasps. As
[3] suggests, transitions between canonical grasps are the
key to in-hand manipulation.

Dominant approaches to high-level in-hand manipulation
use graph search techniques: a graph is first built and a path is
searched in the graph to link initial and final configurations.
The graph can represent the feasible transitions between
either hand states (finger configurations) or object states
[1] [4] [5]. Both require an additional lower level planner
to check if a transition can be performed according to
the constraints imposed by the object and by the fingers,
respectively. The graph is constructed in a preliminary phase,
and contains the nodes relevant to a specific task, which
dramatically limits its versatility and adaptability.

Other solutions set up hybrid system control techniques:
the hand-plus-object manipulation planning is represented as
a hybrid system planning problem combining continuous as
well as discrete aspects. The control law is then in charge of
driving the system from the current state to a desired state
through the evolution of its continuous state variables. One
hybrid representation is in the form of a stratified system of
the whole configuration space [6] [7] [8], each strata contain-
ing only configurations where specific fingers are in contact.
The main difficulty is to determine links between strata that
are necessary to resolve any manipulation problem. Another
hybrid representation is an hybrid automaton [9] that divides
a manipulation task into a sequence of sub-manipulations
described by continuous variables and separated by discrete
transitions (switches between nodes). In all these works the
contact positions are considered as fixed which does not
allow rolling (nor sliding) motions at fingertips.

In another approach, probabilistic techniques are used
to plan in-hand manipulation. Probabilistic path planning
methods are applied to the hand considered as a whole
system, randomly sampling hand-plus-object configurations



to build a tree-like graph in a high-dimensional configuration
space. Proposed solutions are all variants of the classical
PRM or RRT methods [10], with some modifications aimed
at reducing the search space when determining the path
[11], [12], [9]. These methods still remain time consuming.
The probabilistic nature of the solution very often leads to
unwanted movements: the generated hand motion does not
look natural, and is far from being optimal.

The solution we consider in this work is also a prob-
abilistic model but its constitutive elements are different.
States are not high-dimensional hand-plus-object configura-
tion vectors but discrete canonical grasps, said grasp classes
in the grasp taxonomy described in [2], simply defined by
numbered labels. Transitions are not exhaustively validated
through numerous tests related to hand mechanics, object,
task and environment, but initialized from humans empirical
knowledge and refined through learning from human trials.
Tasks are encoded as desired states in the probabilistic model
whose transition probabilities represent the plausibility of
human-like grasps. Object information is encoded in a dis-
crete set analogous to [13] which allows a parsimonious
representation. The simplicity of the proposed model allows
the system to quickly sketch a realistic plan of actions in
run-time, in the form of a grasp sequence (see Fig.1). Lower
level planners/controllers will then just have to check for
a limited number of grasp transitions. This method tackles
the complexity of an in-hand manipulation movement, by
dividing it into short steps from a stable grasp to another.

At first, the method used is explained (II), starting with
description of the MDP modeling in-hand manipulation (II-
A and II-B). Then, it is explained how a policy is modeled
(II-C), and which is the optimal one (II-D). Then, in (III),
the policy is first given a coarse estimation (III-A), and
subsequently learnt from human movements(III-B). Results
obtained so far are then described (IV), before concluding
and presenting future work (V).

II. A MODEL OF HIGH-LEVEL IN-HAND MANIPULATION

The starting point for our model is the representation of
manipulation actions by a sequence of stable grasp config-
urations, linked by local movements making the hand-plus-
object reaching the next grasp configuration. A stable grasp is
a configuration in which the hand holds the object. Motivated
by studies in physiology, [2] has proposed a set of canonical
grasp types that are the most frequently observed in human
in-hand manipulation. The set includes power, precision and
intermediate grasps involving a variable number of digits and
contact surfaces (tips, pulp or lateral surfaces of the fingers).
A few examples of the taxonomy can be seen in Fig.(7)-(9)-
(10). Let us define the canonical grasp set as:

G = {g1, · · · ,gN} (1)

with N = 33 as in [2]
Transitions between grasp types are produced by hu-

man/robot actions. Let us consider the action set:

A = {ai j}, i, j ∈ {1, · · · ,N} (2)

Each ai j is the action primitive that drives the hand configu-
ration from gi to g j. An action ai j can only be applied if the
hand is in configuration gi. Depending on the grasp types and
manipulated objects, these transitions may be hard or easy,
comfortable or uncomfortable, efficient or not in terms of
energy, prone to failures or not, both in humans and in the
robot. An assumption of our work is that robot dexterous
hands tend to match human capabilities, therefore human-
like actions will mirror their characteristics to the robotic
implementation, i.e. human-like actions executed in the robot
will be more efficient, easy and less prone to failures.

Object characteristics are defined in prototypical object
shapes. A highly accurate model is not required for this
high level of planning, unlike planning the fine movements
of fingers, dealing with contact and stability of a grasp. In
[13], 6 basic shapes are defined as combinations of 2 discrete
shapes (flat, rounded) and 3 sizes (small, long, large). In
our work we consider a set of 9 objects that are typical of
everyday use (Fig.2).

Fig. 2. The set of representatve objects used for this work. The set of
object is: key, mug handle, mug body, pen, phone, ball, ladle, book, bottle.

In general, a set of M object types is defined:

O = om, m ∈ {1, · · · ,M} (3)

Given the above definitions, we are ready to model our
problem as an object dependent Markov Decision Process.

A. Markov Decision Processes

A Markov Decision Process (MDP) is a Dynamical
Bayesian Network that models the evolution in time of the
state of an agent according to the actions taken and the
dynamics of the environment. In our problem we consider
discrete states and actions. At each time step the agent
receives a reward or penalty from the environment reflecting
the successful (or not) accomplishment of tasks (see Fig.(3)).
A MDP is usually denoted as a 4-tuple (S ,A ,P,R), that in
our case is defined as:

• S is the set of possible states. At each time step t, the
state of the agent is represented by a random variable
St that can have values in S . In our problem the set
of possible states include the canonical grasp types gi
and a null state φ representing failures, infeasible or
non-human like transitions. Thus, S = G ∪φ .



• A is the set of available actions. In our case it is
the same set as defined in (2). A random variable At
represents the action taken at time t.

• P is a probabilistic transition model. It models the time
evolution of the state according to the executed action. It
is usually represented as a probability distribution over
next states St+1 give the current state St and action At :
P(St+1|St ,At). In our case it also depends on the object
being manipulated, therefore: P(St+1|St ,At ,O), where O
is the random variable taking values in the set O .

• R is a reward signal collected by the agent at each time
step. It depends on the MDP state, the action or both.

Fig. 3. A general MDP of duration D, with a reward signal.

The above definitions configure an object dependent MDP.
In particular, for each object in our set, the probability tran-
sition model have different parameters. Given the reasonably
low number of object types, this is not a very limiting fact
of our model. In particular, due to the nature of our problem,
there are several constraints on the probability transition
model that limit the number of required parameters.

• Because some actions can only be applied in certain
states, we have, ∀i, j,k, l,k 6= i or l 6= j:

P(St+1 = g j|St = gi,At = akl ,O) = 0 (4)

• As in the case above, k 6= i or l 6= j , infeasible actions
lead with certainty to the null state:

P(St+1 = φ |St = gi,At = akl ,O) = 1 (5)

• The null state is an absorbing state, i.e. when the system
is in the absorbing state, it will stay on that state
forever1. ∀i, j,k:

P(St+1 = φ |St = φ ,At = akl ,O) = 1 (6)
P(St+1 = gi|St = φ ,At = akl ,O) = 0 (7)

• An action that is feasible and leads to the same state
cannot fail:

P(St+1 = gi|St = gi,At = aii,O) = 1 (8)
P(St+1 = φ |St = gi,At = aii,O) = 0 (9)

1This can be interpreted as: if a grasp transition is not feasible, not human-
like or fails, the whole sequence is unfeasible, not human-like or failed.

• Finally, feasible transitions actions can have two out-
comes: either the transition succeeds or it fails2:

P(St+1 = g j|St = gi,At = ai j,O = om) = pi jm (10)
P(St+1 = φ |St = gi,At = aii,O = om) = 1− pi jm (11)

The values of pi jm are thus the important parameters to
define in our model. They encode the success likelihood
of a transition for an object. There are at most (N− 1)×
(N−1)×M such parameters. Learning from scratch all these
parameters is too costly, therefore we use human empirical
knowledge to initialize a coarse model, as presented in III-A.

The duration D of the MDP has to be known, so that t ∈
{0, · · · ,D}. We know from human observation that sequences
of grasps for in-hand manipulation are never longer than 6
grasps, thus we fix the duration to D = 5. Shorter sequences
fill the missing steps by nature, using actions that keep the
system under the same state with an unconditional success
(illustrated on Fig.(4)).

We want the MDP to be in the goal state SD = g f at
the last time step of the MDP, we then define the reward
depending on the state and on the time step, Rt(St): RD(g f )=
1, Rt(St) = 0 if St 6= g f or t 6= D. Giving a reward only on
the final time step avoids that sequences remaining in the
goal state for multiple time steps accumulate rewards.

Fig. 4. An instantiation of a MDP modeling a grasp sequence, valid for a
single object. The reward is 1 if the final state is the goal grasp. The grasp
sequence illustrated here is shorter than the length of the MDP. Actions
keeping the system under the same state fulfill the remaining time steps,
only obtaining the reward on the last time step.

B. Tasks and Rewards

In-hand manipulation tasks consist in the application of
forces and velocities in a certain object, whose performance
depends on the the way the hand grasps the object. For
instance the use of a spoon to stir coffee is more efficient
when the spoon is held with a tip pinch; the use of a pen
to write is more efficient with a writing tripod type of grip.
In this paper we concentrate on in-hand action sequences
required to achieve a desired grip on the object. Starting
from an initial grasp type go, our objective is to determine the
most human-like sequence of intermediate grasps to achieve
the task: reaching g f . This can be encoded in an MDP
by defining a reward function structure that promotes the
achievement of the task. As previously mentioned, without
any further constraints on the task, this can be implemented

2failure is taken latu sensu, i.e. the object can fall, the next state is
unstable or the transition leads to a non desired state.



by a reward function that assigns value 1 to the goal state in
the end of the sequence and 0 to all others states (RD = 1 if
and only if SD = g f , where D is the duration of the MDP).

With the aforementioned constraints, and assuming an ar-
bitrary sequence of actions A= {A0, · · · ,AD−1}, the expected
reward is given by:

R̄ = E [R(SD)] = P(SD = g f |S0 = go,A,O) (12)

This function has a recursive nature and can be more
adequately represented through the definition of a Value
function for each state, V (go) representing the expected
reward obtained if starting at an arbitrary state go.

V (go) = P(SD = g f |S0 = go,A,O)

= ∑
k

P(S1 = gk|S0 = go,A0 = aik,O)V (gk)

Because of the constraints on the state-action transitions
defined in our formulation (equations (4)-(9)), i.e. action ai j
only succeeds in the transition from gi to g j, with probability
pi jm, the only action sequences that return rewards are
the ones that form chains starting in the initial state and
terminating in the goal state. We define a feasible chain, for
initial state go and final state g f , as the ones with A0 = aok,
AD−1 = al f and whose end state of At is the initial state of
At+1. Constraining the action sequence to a feasible chain,
the sum on the previous recursion disappears:

V (go) = P(S1 = gk|S0 = go,A0 = aok,O)V (gk) (13)

Unfolding the recursion until the goal state is reached, we can
verify that the state value function is given by the transition
probabilities along the chain:

V (go) = P(S1 = gk|S0 = go,A0 = aok,O)×

×
D−2

∏
t=1

P(St+1 = g j|St = gi,At = ai j,O)×

×P(SD = g f |SD−1 = gl ,AD−1 = al f ,O)

Thus, given a feasible chain of actions A = {A0, · · · ,AD−1},
we can compute the expected reward by simply multiplying
the pi jm probabilities along the chain.

C. Stochastic Policies

It is common to represent the decision making process
as a policy function that chooses actions according to the
current state. Given the desired object (O) and task (T ),
we write such a policy as πOT (At ,St), and it represents
a probability distribution over actions at each state. This
reflects the probability that an agent performs some action
At at state St , which depends on the current object and task:

π
OT (At ,St) = P(At |St ,O,T ) (14)

The rationale for the adoption of a stochastic policy model
(probability distribution over actions) instead of a determin-
istic one (single choice on a given state) has to do with the
fact that humans have a certain variability in the choices of
actions that demand a probabilistic representation, not only
for learning purposes but also to plan the recording of human

trials. Under probabilistic representations, active learning
techniques can be used to design experiments that maximize
expected model improvement through learning (III-B.2).

The state value recursion, under a particular policy, is now
an expected value over the action distribution induced by the
policy :

V πOT
(go) = ∑

k
π

OT (aok,go)×

×P(S1 = gk|S0 = go,A0 = aok,O)V πOT
(gk)

As (14) suggests, this policy can be encoded as a Bayesian
Network P(At |St ,T,O) (see Fig.(5)), where the action node
depends on the parent nodes representing the current state,
the task (goal state), and the manipulated object. This con-
sists in a multinomial table with a set of weights:

qi j f m = P(At = ai j|St = gi,T = g f ,O = om) (15)

The process to initialize and learn this table is shown in (III).

Fig. 5. Bayesian Network modeling the policy of the MDP generating
modeling grasp sequences. At is the action at time t, St is the state at time
t, O is the object and T = g f is the task.

D. Optimal Policies

Optimal policies are the ones that maximize the expected
reward. At each time step, the agent should choose an action
that leads to a sequence of states with maximal pay off, i.e.
maximum state value:

aok = argmaxkP(S1 = gk|S0 = go,A0 = aok,O)V πOT
(gk)

This is the so called greedy approach, that actually leads to
the optimal policy π∗

OT
and optimal state value function V ∗

OT

[14]. We can define, for our setting, the optimal action-state
value function Q∗(A,S) representing the expected reward of
choosing action A in state S:

Q∗(A0 = aok,S0 = go) =

P(S1 = gk|S0 = go,A0 = aok,O)×max
(

V ∗
OT
(gk)

)
The optimal policy should choose actions according to the

values of Q∗
OT

. In a stochastic setting, the higher the value of
Q∗

OT
(A,S) is, the highest the probability of choosing action

A in state S should be. In this work we choose:

π
∗OT

(A,S)∼ Q∗
OT
(A,S) (16)

Using this policy, grasp sequences with highest probability
of reaching the goal state are generated.



III. INITIALIZATION AND LEARNING

A. Initializing the policy

For initializing the policy, we use the Markov Decision
Process (MDP) defined in II-A. A human expert estimates
empirically (III-A.1) the state transition probability values,
pi jm, and the policy is generated accordingly (III-A.2).

1) Empirical estimation of the state transition probability:
To give coarse values to pi jm, we realize an incremental
approach, starting by averaging out the object influence,
creating object independent model, with parameters pi j. The
obtained model is used in subsequent work to initialize
the multinomial tables depending on the object, creating a
complete model with parameters pi jm. To give the object
independent model estimations, we first classify the tran-
sitions in terms of difficulty, or probability of success. A
human expert is considering every transition from grasp gi
to grasp g j, and assesses the difficulty using three classes:
possible and easy (class a), possible and complex (class h),
or impossible (class N).

As the generic model is object independent, we have to
avoid object influence. Thus, we use a set of objects, but
every possible combination on any object is considered, and
the easiest will determine the class of the transition, to avoid
restricting the possibilities. For example, if a transition can
be performed with a complex combination of actions with
object A, and can be performed with a complex and an
easy combination of actions with object B, the transition is
classified as easy, so that no unwanted limitation appears.

To evaluate the difficulty of a transition, the number and
type of sub-actions composing it are considered. We refer to
the canonical in-hand movements defined in [15]. It presents
an exhaustive list of in-hand sub-actions, to which we add
finger gaiting, consisting in repositionning a finger, making
it stop contacting the object. The rules established for the
classification process are simple and intuitive. To convert this
classification into probabilities, we choose to give a sensible
probability of success to difficulty classes. A transition is:
• impossible: if no direct transition is possible, i.e. any

tentative of transition from grasp gi to grasp g j uses an
intermediate grasp (as defined in the grasps list), or if
the object and hand contact is stopped. Probability of
success: pi j = 0

• easy: if the direct transition from grasp gi to grasp g j
uses a single action. Probability of success: pi j = 0.8

• complex: if the direct transition from grasp gi to grasp
g j uses a combination of two actions or more. During
the transition, if the object is in contact with the hand on
one plane surface, even briefly, and then in an unstable
state, the transition is considered as complex: pi j = 0.2

On a second step, the influence of the object is taken into
account. It appeared during the preliminary analysis that the
object influences the possible grasps in a binary way: a grasp
is possible to perform on an object, or not possible at all. This
allowed the following analysis: impossible grasp classes for
every object has been listed, and the probability of success
of transitions using these grasps set to 0.

Now that the probability of success of every transition has
been assessed, we can generate a policy accordingly.

2) Policy generation: The policy is made of multinomials
(15): qi j f m = P(At = ai j|St = gi,T = g f ,O = om). For every
set of parents (St ,T,O), we try every feasible chain of actions
(13), and compute the Q∗OT (A,S) (16) using the MDP with
the values of pi jm obtained in (III-A.1). We update qi j f m
as Q∗OT (ai j,si). To have a multinomial distribution, these
values are normalized over At , so that ∑ j(qi j f m) = 1.

We obtain a policy that is used as initial policy, and refine
it using learning from the observation of human policy.

B. Learning the policy from humans
1) Learning: To update the parameters with experiments,

we use multinomial updates with Dirichlet priors [16]. The
method consists in counting how many times an action ai j
has been observed: Ni j(St ,T,O) in a set of Ni(St ,T,O) when
in state St , with task T and object O. A set of positive
hyperparameters hi j(St ,T,O) (hi(St ,T,O) = ∑ j hi j(St ,T,O))
defines the prior knowledge on the process, in our case, the
initialization: hi j(gi,g f ,om)= qi j f m ·hi(gi,g f ,om). Intuitively,
hi(St ,T,O) is the number of imaginary cases in which each
set of parents (St ,T,O) has been observed, and can be used
by the human expert to encode its certainty on the process.
If very certain, this number should be high, otherwise, low.
Then the probability of a transition is given by:

qi j f m = P(ai j|gi,g f ,om) =
hi j(gi,g f ,om)+Ni j(gi,g f ,om)

hi(gi,g f ,om)+Ni(gi,g f ,om)
(17)

We can update the policy using (17), choosing the impor-
tance of the empirical knowledge compared to the knowledge
obtained from learning by setting the number of imaginary
samples corresponding to the initialization hi(St ,T,O), ∀i.

2) Active learning: This can be done through an arbitrary
batch of human recordings, however it is not efficient, and
given that each human recording is time-consuming, we
choose another solution. We use the possibility of choosing
what values the parent variables (St = gi,T = g f and O = om)
will be in the samples. The learning process is therefore
guided by the information obtained previously. Active learn-
ing consists in choosing the training that would most improve
the system knowledge by learning. An interesting method
to do this is presented in [17]. A function representing the
probable reduction of risk of loss of information is calculated
for each set of parents (a query), and the one most reducing
the risk is selected and sampled in the next experiment.

We use a similar technique, but not using the same func-
tion. Our previous knowledge is obtained from an empirical
analysis, assumed sufficient for giving the appropriate policy
for obvious cases, where one solution is highly more likely
to succeed than the others. Learning is preferably used
to finely tune the policy in the cases where it is unclear
whether appropriate solution should be chosen. The concept
of entropy is used to describe this uncertainty. For every set
of parents, we compute the entropy over feasible actions ai j:

H(gi,g f ,om) = ∑
j
−(qi j f m) · ln(qi j f m) (18)



To make the entropies comparable between sets of possible
actions of different size, we normalize the entropies using the
entropy of the uniform ditribution of each size, and obtain
comparable entropy parameters (after simplification):

H ′(gi,g f ,om) =
H(gi,g f ,om)

ln(1/ j)
(19)

The sets of parents of highest entropy parameters H ′ are
the next samples to record from human demonstration.

IV. RESULTS

In this part is described the work that has been done
following the method presented previously. The empirical
initialization explained in (III-A) has been achieved. At first,
we performed the expert guess of grasp transition prob-
abilities of success (III-A.1), independently of the object.
This gives a Grasp Transition Graph (Fig.(6)) showing an
interesting fact: four groups of grasps have been identified.
• groupA : each grasp from groupA is connected to grasps

from every other groups. These grasps are likely to be
key grasps for in-hand manipulation.

• groupB: grasps from groupB are all connected to each
other, and only connected with grasps of groupA.

• groupC and groupD: grasps these groups are not con-
nected to grasps from other groups, exept from groupA.

Fig. 6. Object independent Grasp Transition Graph resulting from the
empirical analysis. Each transition has an associate probability.

We conducted the analysis of the possible grasps for each
object, extending the validity of the probabilities to the
whole set O . The estimated values have been used as state
transition probabilities of the MDP described in (II-A), in
order to compute an initialized policy, following the method
presented in (III-A.2). Using this policy, grasp sequences can
be generated, as shown on Fig.(7).

We performed the active learning technique described in
(III-B). The effects of the learning on the policy is a good
estimation of the quality of the initialization. We used the
value for the imaginary number of samples associated to
the empirical knowledge: hi(St ,T,O) = 30, ∀i. The learning
process has been performed for an object of the set: the
ball. We used the 20 sets of parents of highest entropy, as

Fig. 7. A generated sequence for a specific object and goal grasp, from
an initial grasp, using the initialization policy.

explained in (III-B.2), and recorded movements of 5 human
subjects for these sets. After learning from these samples,
the entropy of every set of parents has been updated, and
the variation of entropy before and after learning (∆entropy)
observed. These results are shown on the Fig.(8).

Fig. 8. Histogram of the entropy of every mission for the object: ”ball”,
after the initialization policy. The blue values are before learning, and the
yellow values are after learning the selected samples. The red values are the
difference of entropy. More than 20 sets of parents are modified, as every
transitions in a sequence modify its corresponding set of parents.

The entropy is slightly decreased by the learning process
for most of the sets of parents, confirming the policy in
its choice. The entropy is increased (∆entropy < 0) for three
sets, whose entropy was 0 after initialization. These sets had
only one possible next action before. The learning process
has shown other possible actions, increasing the entropy,
but giving the system new actions to consider. These sets
were updated through intermediate transitions that update
their respective sets of parents. Except for these transitions,
the learning process has proven that the initialized policy is
human-like, allowing us to use it efficiently for planning in-
hand manipulation. Some learning is however profitable, as
shown by the entropy increase of a few set of parents. As an
example to illustrate the effect of learning, we show one of
the few sequences which generation has been modified by
the learning process in Fig.(9).

Some sequences have been executed with a anthropomor-
phic robotic hand and arm. The lower level planning the in-
hand actions is for now really simple: it is an interpolation
of the joints angles from a grasp to another. Due to the
simplicity of the transition planning, failures are frequent,
but integrating a state of the art low level planner would
improve greatly this demonstration. The photos shown in
Fig.(10) illustrate an experimental sequence execution. The



Fig. 9. A generated sequence for the same object, goal grasp and initial
grasp as shown in Fig.(7), but using the policy after learning.

generation of a grasp sequence using the policy is extremely
fast, planning and replanning grasp sequences online during
an in-hand manipulation action are consequently possible.

V. CONCLUSION

We have presented a model for the high level planning
of human-like in-hand manipulation activity for a dexterous
robotic hand. A sequence of grasp taypes is autonomously
generated to reach the goal grasp from any initial grasp,
and in a negligible computation time. The choice of the
successive grasps is modeled as a Markov Decision Process,
object dependent and valid for any task, using the probability
of success of the transitions between canonical grasp types
to generate a policy. The work presented in this paper
shows how the policy is learnt from demonstration of human
movements, assessed as optimal. The policy is modeled as
a Bayesian network, used to generate the sequences, for any
task and object among a set of 9 objects. An initialization
of the policy from an empirical analysis of the probability
of success of transitions is provided to avoid starting from
scratch. Then, an active learning technique selects the next
learning samples with highest interest for the system.

Fig. 10. A grasp sequence generated automatically from grasp 22 to 29,
performed by the Shadow hand

For now, we have started the learning process for only
one object and a single set of samples, in order to prove
its concept and evaluate its efficiency. The results obtained
with the learning set highlight the quality of the initialization,
and confirm the model improvement. Human plausible grasp
sequences are generated instantly, illustrating the efficiency
and interest of the method. In a further work, the learning
will be continued, tuned and extended to other objects. An
analysis of the learning progress would allow to estimate
when it should be stopped. A low-level planner able to
control the hand from a grasp to another is required to
successfully perform a movement. Such a work combined
with the method presented in this paper would make a
robot able to perform in-hand manipulation autonomously,
provided the task is know.

On a different way, the state transition probabilities of the
MDP can be found, allowing to generate the policy, and not
use a predefined one. This can be done from the robot’s own
experience, trying to perform every transitions. This would
avoid the gap between a robotic anthropomorphic hand and
a human hand, with the drawbacks of a heavy experimental
process. Supervised learning from humans for state transition
probabilities is impossible to do directly because probability
of success of transitions cannot be observed from humans,
but it would be interesting to investigate indirect techniques
to infer state transition probabilities from the human policy.
Using the MDP, the generation of a sequence can even be
faster if the results are precomputed and stored. By then, the
formulation as a MDP allows the extension of the method
by enhancing the state used, now only the grasp and object
identification numbers. The reward, now goal oriented, can
be used to take into account other task related constraints.
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