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Abstract— Humanoid robots are complex sensorimotor sys-
tems where the existence of internal models are of utmost
importance both for control purposes and for predicting the
changes in the world arising from the system’s own actions.
This so-called expected perception relies on the existence of
accurate internal models of the robot’s sensorimotor chains.

We assume that the kinematic model is known in advance
but that the absolute offsets of the different axes cannot be
directly retrieved from encoders. We propose a method to
estimate such parameters, the zero position of the joints of
a humanoid robotic head, by relying on proprioceptive sensors
such as relative encoders, inertial sensing and visual input.

We show that our method can estimate the correct offsets of
the different joints (i.e. absolute positioning) in a continuous,
online manner. Not only the method is robust to noise but
it can as well cope with and adjust to abrupt changes in the
parameters. Experiments with three different robotic heads are
presented and illustrate the performance of the methodology
as well as the advantages of using such an approach.

I. INTRODUCTION

The application of robotic technologies in fields such
as military, industry, service or research has grown quite
significantly over the past years. As a consequence, the need
for these robots to perform a large number of specific tasks
has led to an impressive increase in their level of complexity
and sophisticated control and perceptual modalities. Re-
gardless of the concrete application domain, the availability
of internal, properly calibrated, sensorimotor models is an
ubiquitous and fundamental requirement.

Such internal models are instrumental for the control of
such complex robots, as they allow to predict the conse-
quences of the robot’s own movements in a certain physical
scenario. Perception can thus contrast predicted signals with
actually observed measurements. This mechanism of ex-
pected perception is believed to be used routinely by humans
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(a) iCub head (b) Actuators and Sensors

(c) Sample cameras motion

(d) 2o offsets

(e) 0.5o offsets

Fig. 1. The iCub head used in this work (a). Sensors and actuators in the
iCub head encompass two cameras, six motors and encoders, and one IMU
(b). Example of a trajectory of the stereo cameras (red arrows), that observe
an object in the scene (cyan square), to demonstrate the effect of the offsets
in the expected perception (c). Images of the cyan square seen by the left
camera and expected perception (dashed lines) when all the joints have 2o

offsets (d). Expected images of the cyan square when the joints have just
0.5o offsets (e).

when addressing a variety of tasks including locomotion,
grasping, manipulation, etc [1], [2], [3].

It is however important to note that the increased com-
plexity of such robot systems, in particular the large number
of degrees of freedom and sophisticated sensing, makes the
calibration process quite challenging. Indeed, the calibration
can be prohibitively time consuming and subject to errors,
even if manually performed by experts. An alternative way,
that we adopt in this work, is to exploit the robot’s own
embedded sensors and design automated calibration methods
which are faster and more accurate than manual tuning, able
to adjust to dynamic changes over time.

While the discussion is valid for many different systems,
in this paper we focus on the specific case of humanoid
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robot heads. The heads are usually equipped with inertial
sensors (IMU) and motor encoders that provide information
concerning the rotation of the joints. This type of sensors can
describe the movements of the robot, which is useful for cali-
bration purposes, in terms of sensorimotor constraints. Since
encoders provide relative measurements only, the absolute
zero position of the head is normally assigned to the initial
position when the system is turned on. The angular offsets
of the joints need to be estimated in order to determine the
system’s real configuration at startup and ensure repeatability
of operation.

The importance of having accurate internal models of the
robot’s sensorimotor chains has been stressed in a recent
review [4]. Several works have addressed the problem of
calibrating sensorimotor chains, by combining information
provided by embedded or external sensors, like the IMU
or cameras, with readings from encoders, to estimate the
absolute offsets required for calibration. In [5] the authors
present an algorithm that enables a humanoid robot to learn
its kinematic function by visually observing its end-effectors
when moving them. However this algorithm assumes an
artificial form of measuring the information of the joints
using specific known objects attached to the end-effector that
needs to be always in the field of view of the cameras. A
similar approach is presented in [6] where specific visual
markers are used to learn the kinematic function of the robot.
This algorithm finds the optimal set of robot configurations
and observations that improve the learning process thus
minimizing the required amount of data. Other works do
not need specific markers or known objects to calibrate the
robotic kinematic model, using restrictions in the signals
sensors produced by the movements of the robot joints.
The work described in [7] proposes a mathematical solution
and implements a vision based method for the automatic
calibration of a small pan-tilt system. This method is able
to find the joints initial angles by tracking visual features in
the images provided by a camera mounted at the end of the
kinematic chain and by calculating the homography induced
by rotations of the tilt joint. However, the authors point
out that the estimation of the offsets of the joints depends
largely on the quality of the tracker, since this system does
not include filtering to attenuate the bad influence of such
measurements. A different calibration method is presented in
[8], to automatically calibrate the neck joints of a humanoid
robot using measurements from the IMU. The approach uses
the algorithm described in [9] to obtain - in real time - the
values of the joints that allow the correct calibration of the
head. However, like the previous work, this system does not
include any type of noise filtering or disturbance rejection.

Ultimately, a good calibration result is always hard to
obtain since it depends on the quality of the sensors, on the
presence of noise or non-linearities such as joint backlash,
where the encoders can no longer provide information about
the actual rotation. As most robots are equipped with relative
encoders, calibration of the absolute positions has to be
done at startup time as well as during operation. A robust
method is then required to provide the best results under any

Fig. 2. iCub head main frames. The IMU (box on the top) is rigidly attached
to frame {3}. Joint angles, θi are obtained from the encoder readings, ei,
after subtracting the offsets, i.e. zero position encoder readings δi.

conditions.
Our contribution is thus an approach for online calibration

of a real humanoid robotic head, in terms of its joints angles,
and taking the kinematic model into account. The method
proposed operates in a continuous manner, it is robust to
noise and uses information from the embedded IMU, visual
data from the cameras and the relative measurements from
the encoders, in the presence of noise and other disturbances.
This system does not use any type of specific visual markers
or known objects in the world or attached to the robot body.

The structure of the paper is as follows. Section II does an
introduction to the calibration problem. Section III describes
the proposed methodology for the calibration of a robotic
head. Results obtained with different robotic platforms are
shown in section IV and conclusions are drawn in section V.

II. PROBLEM FORMULATION

It is common for humanoid robots to be equipped with
encoder sensors which lack the capability of providing
an absolute encoder position with respect to some factory
calibrated value. These encoders fix their zero value at the
position in which they are turned on, consequently needing
to be calibrated each time the system is powered on.

We define the head absolute zero position as having the
cameras looking forward, with parallel projection planes
orthogonal to the floor, and a chosen gravity vector reading
given by the IMU, usually corresponding to a perfectly
vertical gravity vector pointing down. These sensors are
commonly placed on top of the head thus not influenced
by eye movement. For these sensor readings, we define the
zero position of the reference frames as having the axis
orientations x pointing to the right, y pointing down and
z pointing to the front (see figure 2).

The complete rotation iR0 of a certain reference frame i
relative to the base of the kinematic chain 0 can be repre-
sented as a composition of elementary rotations around each
joint. Considering that the joints are numbered sequentially,
the kinematic model from the base frame {0} to frame {n}
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is written as

nR0 (θ0 . . . θn) =
nRn−1 (θn−1) . . .

2R1 (θ1)
1R0 (θ0) (1)

where the different θi and i+1Ri represent the angle and
the one axis rotation function of each individual joint. This
kinematic model can predict the measurements of each
sensor since their spatial orientation in each time instant is
known. In this work we assume the base of the kinematic
chain is static and aligned with gravity in a planar horizontal
surface, the world is static and infinite (all the objects seen
by the cameras are at a very large distance) and there are no
mounting errors of the sensors.

Due to the referred encoder resetting when powered up,
the joint angles θi are given by the encoder readings ei
subtracted by a constant δi which needs to be estimated.
The objective of this work is to estimate the offsets δi such
that the relation

θi = ei − δi (2)

holds. Collecting the joint offsets δi in a vector χΔ, the
system state χ which is to be estimated at each time step
is:

χ =
[
χG, χ

T
Δ

]T
(3)

where χG denotes the norm of the gravity, also to be
estimated online in order to compensate offsets in the ac-
celerometer readings.

III. CALIBRATION METHODOLOGY

The base of our system is an Implicit Kalman Filter [10],
which, given the state transition and the sensor observation
equations is able to update the state in order to reduce the
measurement error, thus providing the best estimates for the
joints offsets.

A. State Transition Model

In our system state χ both the gravity norm as well as the
joint offsets are assumed to be constant over time, thus the
state transition equation F simply propagates the previous
values. To allow for small changes of the values over time,
e.g. due to mechanical wear or slippage, we allow for some
state transition noise wk .

The system state transition model F is therefore simply:

χk|k−1 = χk−1 + wk. (4)

Here wk ∼ N
(
0, Qk

)
where Qk represents the covariance

matrix of the zero mean state transition noise wk. The system
can be adapted to be more or less sensitive to variations in the
estimate of the offsets by changing this covariance matrix.

B. Observation Model

In this work we are considering robotic platforms equipped
with three types of sensors: IMU, cameras and encoders. In
order to describe the observation model, we first introduce
the notation for the measurements that we take from each of
the sensors.

The IMU provides measurements at time k for linear
accelerations Zk

A =
[
akx aky akz

]
and angular velocities Zk

W =

Fig. 3. Image acquired at time instant k with the corresponding features,
represented by image patches (red solid). Features detected at time instant
k (yellow dashed) are tracked at time instant k+1 (red solid).

[
wk

x wk
y wk

z

]
for the three principal axis of the frame that

the IMU is rigidly attached to. We assume that the linear
accelerations measured by the IMU correspond to the effects
of the gravity vector decomposed in the three components
of x, y and z affected by sensor noise.

The cameras provide M image features represented by
their image coordinates fi = [ui vi] which can be collected
in the feature measurement vector at an instant k

Zk
F =

[
fk
0 . . . fk

M−1

]
. (5)

We are interested in image movement induced by joint
movement hence we always consider a pair of consecutive
frames as measurements (for example Zk

F and Zk−1
F ). The

features are assumed to be matched between the two time
instants which is accomplished by applying the Harris Corner
Detector [11] to image k− 1 and then tracking the obtained
features in image k using an image patch to perform Nor-
malized Cross Correlation within a given area, as seen in
figure 3.

Considering N kinematic joints, a scan of all the encoders,
Zk
E consists of N measurements of the relative position of

the joints taken at time instants k,

Zk
E =

[
ek0 . . . ekN−1

]
. (6)

The encoders are sampled at the same instants as the other
measurements, IMU or cameras.

Since the IMU seldomly works at the same frequency as
the image acquisition sensors, these readings are usually not
simultaneously available. Hence at each time step we either
have an IMU observation or an image observation which
needs to be filtered. The system measurements Zk are thus
given by one of two possibilities at each time step k:

Zk =
[
Zk
A Zk

W Zk
E Zk−1

E

]
+ vkI (7)

or
Zk =

[
Zk
F Zk−1

F Zk
E Zk−1

E

]
+ vkC (8)

where vkI ∼ N
(
0, Rk

I

)
and vkC ∼ N

(
0, Rk

C

)
are the

observation noise in case of IMU or image measurements
respectively, assumed to be a zero mean Gaussian with
covariance matrix Rk

I or Rk
C . These measurements provide

physical constraints which are used by the filter to improve
the state estimates.

In order to predict the sensor measurements the absolute
value of each joint is needed to compute the complete
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rotations iR0 from the base of the kinematic chain to the
reference frame where each sensor is mounted. Collecting
equations 2 in vector form, the absolute values of the joints
Θ are given by

Θk = Zk
E − χk

Δ (9)

Considering that the IMU is mounted on reference frame I
we represent the base to IMU coordinate transformation by
IR0 (Θ). The linear accelerations measurement prediction
ẐA are obtained by mapping the world constant gravity
vector by this rotation:

ẐA(χ
k, Zk

E) =
IR0

(
Θk

)
.
[
0 −χk

G 0
]T

(10)

where χk
G is the prediction of the gravity norm present in the

state vector χ. Note the negative sign since the accelerometer
measures gravitational reaction.

The angular velocities measurement predictions ẐW are
computed from the derivative of the IMU reference frame,
here approximated by the change of this reference frame
between two consecutive time instants divided by the change
in time. Since the base of the robotic platform does not move
these velocities can be obtained from

Ẑk
W (χk, Zk

E , Z
k−1
E ) =

log
(
IR0(Θ

k).IR−1
0 (Θk−1)

)
dT

(11)

where the log function is implemented as the inverse Ro-
drigues function providing the instant angular change1 and
dT is the time interval between the two encoder readings.

When a camera is available, mounted in reference frame
C, the position of a set of previously observed features can
be predicted assuming the world is infinite (image features
only affected by rotation). The prediction of the ith image
feature fi is given by

f̂k
i = P

(
CRk

0 .
(
CRk−1

0

)−1
.
[
fk−1
i 1

]T)
(12)

where P is a function that divides the x and y components
by z. This equation provides a set of constraints, two for
each image feature, which can be collected as

ẐF (χ
k, Zk

E , Z
k−1
E , Zk−1

F ) =
[
f̂k
0 . . . f̂k

M−1

]T
. (13)

Thus, depending on the set of measurements available at
a given time step (either equation 7 or 8) the observation
function Hk of the implicit Kalman filter is either

Hk(χk, Zk) =

[
Zk
A − Ẑk

A(χ
k, Zk

E)

Zk
W − Ẑk

W (χk, Zk
E, Z

k−1
E )

]
= 0 (14)

or

Hk(χk, Zk) = Zk
F − ẐF (χ

k, Zk
E , Z

k−1
E , Zk−1

F ) = 0. (15)

By using this function as the filter’s innovation, the system is
able to correctly estimate all the joint offsets. As previously
mentioned, an Implicit Kalman Filter is used since none of
the measurement equations can be written in explicit form,
defining instead a constraint that the measurements, together
with the state need to satisfy.

1The inverse Rodrigues formula provides a closed form solution to the
Lie logarithm function on the rotation Lie group.

IV. RESULTS

This section describes the experiments realized to test the
behavior and performance of the proposed online calibration
system. The experiments involved three humanoid heads
/ robots: the iCub robotic head at IST/UTL University
[12], the KOBIAN robot at Waseda University [13] (see
Figure 7(a)), and the Vizzy robot also at IST/UTL University
(see Figure 7(b)).

The testing of multiple robots allows verifying the adapt-
ability of the proposed system to different robotic platforms,
in particular having different schema and numbers of joints.
The kinematic model of the iCub head encompasses six
rotational joints, namely tilt, swing, pan, eyes tilt, left eye
pan and right eye pan (see Figure 2). The KOBIAN robot
is a humanoid platform with seven rotational joints in the
head, namely swing, tilt, pan, tilt, eyes tilt, left eye pan and
right eye pan. The Vizzy robot has also six rotational joints
in the head, but in a different configuration (order) from the
iCub head, namely tilt, pan, tilt, eyes tilt, left eye pan and
right eye pan.

The calibration procedure common to all experiments,
consists of initializing the head in an arbitrary uncalibrated
position and rotating it randomly, either by hand or by motor
control, as shown in figure 4 for the case of the iCub.

Two specific sets of experiments were realized with the
iCub head (i) testing the absolute positioning error as read
by the gravity measurements, and (ii) testing the repeatability
of the calibration results obtained. The standard deviations
of the observation noises were measured in order to have an
accurate characterization of the sensors. The measured values
are shown in table I along with the frequency associated to
each sensor.

TABLE I

CHARACTERIZATION OF THE SENSORS

Sensor Noise Std. Dev. Frequency (Hz)
IMU (Linear Acceleration) 0.22 m/s2 10
IMU (Angular Velocity) 0.10 rad/s 10

Cameras 3 pixel 30
Encoders 0.0005 rad > 30

A. Offset estimation with homing to the zero position

To test and analyze the convergence of the system and the
homing to the zero position we used the iCub robotic head
as previously described. Figure 5 shows the convergence
of the system to the offsets of the joints in approximately
70 iterations or 2.3 seconds, starting at iteration 260, corre-
sponding to the moment the head was first moved. The filter
was initialized with all offsets set to zero and it is worth
noting that immediately after the first iteration the system
has already assimilated the first reading of the accelerometer
(the first 260 iterations in the figure). Since different head
configurations can provide the same accelerometer readings
(e.g. different pan angles with a fully upright head), this
initial measurement is not enough to converge to the final
configuration nor does it provide any information about the
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(a) Sample random positions.

(b) Vertical, front and back positions.

(c) Gravity observed (IMU, black) and estimated (red).

Fig. 4. A visual description of the calibration process for the iCub head.
A sequence of positions acquired during the random movement of the
head (a). The calibrated position of the head completely vertical and the
response of the head to a rectangular signal on the tilt motor (b). After
converging the calibration, the head is successfully commanded to a vertical
position, Gx = 0 and Gz = 0, and correctly shows a leaning forward and
backwards pattern, Gx = 0 and Gz alternates max./min., corresponding to
the rectangular signal applied to the tilt motor (c).

eye joints. The head movements are required to disambiguate
these multiple solutions and provide the final offsets values.

As seen in the figure, the first three joints never fully
converge to a single value, oscillating inside an interval
([−46◦,−40◦], [29◦, 35◦] and [−55◦,−48◦] for each of the
first three joints respectively). These variations are due to
the presence of backlash zones where the joints can move
but the encoders provide no measurements. Since this system
fuses the information from three different sensors, it is able
to adapt the offsets estimates in order to compensate the lack
of information from the encoders.

Starting the iCub head in four different configurations with
a full reset of the encoders between each experiment, the
proposed system was run, calibrating the joint offsets. After
each experiment, the head was homed to the calibrated zero
position and the recorded gravity vector readings are shown
in table II.

TABLE II

GRAVITY VECTOR COMPONENTS IN THE ZERO POSITION

Exp. # gx(m/s2) gy(m/s2) gz(m/s2)
1 −0.022 −9.835 −0.016
2 0.034 −9.844 −0.096
3 −0.102 −9.829 −0.091
4 −0.051 −9.851 −0.010

Fig. 5. Calibration of the iCub joints offsets - joint 0 (red), joint 1 (yellow),
joint 2 (light blue), joint 3 (green), joint 4 (purple) and joint 5 (black).

We can see that the gravity vector is practically vertical
(with an accuracy of 99.99%). This experiment shows that
the system is able to converge to a solution which agrees
with the absolute gravity readings when started in different
head configurations.

B. Repeatability analysis of the calibration procedure

The correct behavior of the system is also validated by
ensuring its repeatability. To test the repeatability of the
calibration procedure, we ran the algorithm with the iCub
head started in six different configurations without a full
reset of the encoders, meaning the offsets were the same
for all experiments. Figure 6 shows the convergence of the
offset estimates in each experiment with the mean value
taken in the last 500 iterations shown in table III along with
the standard deviation. The results show that the different
experiments converge to similar values thus empirically
proving the robustness of the proposed method to different
starting conditions.

TABLE III

REPEATABILITY - MEAN VALUES OF THE OFFSET COMPONENTS

Exp.# δ0(◦) δ1(◦) δ2(◦) δ3(◦) δ4(◦) δ5(◦)
1 −43.8 31.7 −50.2 −2.1 37.3 −42.4
2 −43.4 32.6 −52.7 −3.4 35.5 −43.7
3 −43.4 31.4 −50.9 −1.5 36.9 −40.4
4 −43.1 32.0 −52.0 −3.9 37.4 −42.2
5 −43.4 32.8 −51.1 −2.3 39.8 −42.1
6 −43.0 33.0 −52.9 −3.9 35.7 −41.6

std. dev. 0.28◦ 0.64◦ 1.07◦ 1.02◦ 1.54◦ 1.08◦

C. Generality of the calibration system

As previously mentioned, the system was implemented
in two other robotic platforms (KOBIAN and Vizzy) with
different kinematic models from the iCub but with similar
sensors (cameras and IMU). The results for both calibrations
are shown in figure 7(c) and (d).

The convergence of the system to the correct offsets values
shows that the proposed online calibration methodology can
be applied to different robotic platforms regardless of the
kinematic chain, when equipped with either image or IMU.
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(a) KOBIAN head

(b) Vizzy head (c) KOBIAN, joint offsets (head moving) (d) Vizzy, joint offsets (head moving)

Fig. 7. Application of the online calibration procedure to other robot-heads, namely the KOBIAN head, Waseda University, (a), and the Vizzy head,
IST/UTL University, (b). Results for the KOBIAN joint offsets, joints 0 till 6, are coded in colors blue, green, red, light blue, purple, yellow and black
(c). Offsets estimated along time for the seven joints of the KOBIAN (c) and the six joints of the Vizzy (d).

Fig. 6. Repeatability: convergence of the joints offsets.

V. CONCLUSIONS

We have presented a robust, online calibration system for
the joints of a robot head. This calibration system is able
to provide accurate estimates for the offsets of the joints,
irrespective of the head initial configuration.

The approach uses information from the embedded inertial
sensor, the relative encoders of the joints and vision and it
performs robustly in the presence of noise and disturbances
such as backlash in some joints. As opposed to other
methors, our approach is very efficient and calibration can
be achieved in a matter of a couple of seconds and a few
movements of the robot head.

Our work provides a way of correctly initializing the
robot, no matter what the robot’s starting position might
be, which is absolutely mandatory before the robot can
engage in complex tasks. We present results with the iCub
head, as humanoid robots represent the best metaphor of
complex sensorimotor chains. To show the generality of the
method, we have also applied the same methodology to
other humanoid robots, such as the KOBIAN (from Waseda
University) and Vizzy (IST-Lisbon), with different kinematic
structures.

The relevance of this calibration procedure is that it allows
the system to maintain an accurate internal model of its

sensorimotor chains. These models are key for the control
of humanoid robots, as the complexity of the tasks and
diversity of the operational environments may be overwhelm-
ing. Instead, these models allow the system to contrast
its observations to model-based predictions, substantially
simplifying certain tasks, a mechanism similar to the one
presumably used by humans.
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