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1Swiss Federal Institute of Technology, Lausanne, Switzerland, 2Instituo Superio Técnico, Lisbon, Portugal

Abstract— In this paper we present an approach to the
problem of stabilizating the gaze of legged robots using
Adaptive Frequency Oscillators to learn the frequency, phase
and amplitude of the optical flow and generate compensatory
commands during robot locomotion. Assuming periodic and
nearly sine shaped motion of the head of the robot, the system
successfully stabilizes the gaze of the robot, whether the robot
itself is moving, or an external object is moving relative to the
robot. We present experiments in simulation and, for object
tracking, with a real robotics setup, the Hoap 3, showing that
the system can be successfully applied to gaze stabilization
during locomotion, even when the feedback loop is very slow
and noisy.

I. INTRODUCTION

Vision is, for animals and robots, the most versatile sensor
to provide information about the surrounding environment.
However, vision is most efficient when the image (and thus
the gaze) is stable since a moving gaze causes motion
blur. Evolved animals use saccades when switching gaze
direction to minimize the time during which the image is
moving. During locomotion, compensatory movements of
the eyes and head aim at minimizing the retina slip. The
same issue is present when dealing with robots since most
vision processing algorithms reach optimal performance with
a stable image.

Head stabilization systems exist in the robotics literature,
many of them being based on models of the vestibulo-ocular
reflex observed in many vertebrates ([14]). These systems
typically use a vestibular sensor (IMU, accelerometer etc.)
as main sensory input to excite a leaky integrator. The
remaining retinal slip (usually measured by optical flow) is
then used to calibrate the gains of this integrator. Kawato’s
Feedback-Error-Learning model ([4]) is applied to the gaze
stabilization problem in [13] where it is extended with
a nonparametric regression network to improve the opto-
kinetic response. In [5], the authors implement the Recurrent
Decorrelation Control model [2] which forms a recurrent
network with an artificial brainstem getting as input rota-
tional speeds from the vestibular sensor, and an artificial
cerebellum getting input from the brainstem and the retinal
slip, and feeding back its output to the brainstem. A single
neural network is used in [8] and excited directly by both
the vestibular sensor output and the optical flow from the
camera image to estimate the optimal compensatory motor
command.

These systems reach very good performance but rely
highly on the availability of a fast (typically around 500Hz)
vestibular sensor in the head of the robot. Although this kind

of sensors becomes more accessible, many robots still do not
have an IMU in the head of the robot, but rather in the trunk.
Very few approaches tackle the problem of head stabilization
specifically during locomotion. The work in [11] relies on a
forward kinematics and genetic algorithm to build an internal
model of the head motion and compensate for it using a feed-
forward CPG based controller. This method however relies
on offline optimization for the CPG parameters which has to
be done for each different gait and is thus not very suitable
for gaits changing in time (to cope with environmental
specificities for instance).

In this paper we propose a system for stabilizing the head
of a legged robot during locomotion, which only relies on
optical flow information. Assuming a periodic movement
of the head (as is usually the case for legged locomotion),
the system uses Adaptive Frequency Oscillators to learn the
frequency and phase shift of the optical flow and generate
compensatory movements to minimize the head motion.
At convergence, the system is mostly feedforward and the
feedback signal (the optical flow) is only used to finely tune
the parameters of the oscillator. The system further shows
the same interesting properties in terms of control as other
oscillators (smooth modulation of parameters, resistance to
perturbations etc.) This system is efficient even when using
relatively slow cameras (< 30Hz) and is predictive in the
sense that unlike reactive systems which use the last few
sensor values to estimate the amplitude of the compensatory
movement at the next step, our controller generates a com-
pensatory signal which is phase locked with the optical
flow signal. It effectively tries to predict the future, as the
stabilizing commands are generated at a higher frequency
than the optical flow. Our system is able to track changes in
the movement applied to the robot and adapt its parameters
to go back to a stabilized gaze. We show that our system can
be used to stabilize the gaze of a moving robot using multiple
degrees of freedom in the head. Further, it can be applied
to tracking objects of arbitrary shape, colors and textures
moving rythmically.

In the following sections we present the system and its
properties, then explain the influence of the different open
parameters of the system. We explain how to use the system
to stabilize the gaze using multiple degrees of freedoms
in the head, and show that it can even stabilize the gaze
of a robot on a moving object. We show that the system
can be applied on legged locomotion (with the Hoap2
humanoid robot walking) and non legged locomotion (with
a swimming salamander robot), as long as the movement of
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Fig. 1: Outline of a simplified version of the system

the head is periodic and close to a sine wave. We present
the system applied on the real Hoap3 robot tracking a
periodically moving apple.

II. PRESENTATION OF THE SYSTEM
In this section we present the details of the head stabi-

lization controller. First we present a simplified version of
the controller using a standard Hopf Adaptive Frequency
Oscillator as first developed by Buchli, Righetti and Ijspeert
([1], [9]), and then show how we adapted it to satisfy the
requirements of the head stabilization problem. Note that
the AFOs are used here in a different manner as in the
previously cited papers. Here we use the AFO in fully closed
loop (the forcing signal changes the pattern generated by the
oscillator and the oscillator’s output influences the forcing
signal, the optical flow). Furthermore, the goal here is not
to learn the shape of the forcing signal as in [10], but to
learn a correcting signal which leads to the suppression of
the forcing signal. In contrast, AFOs were previously always
used in open loop except in [1] where the AFO changes, very
slowly, the frequency of the control and thus the teaching
signal (only the frequency is changed in closed loop though,
the amplitude remains constant).

Figure 1 outlines the architecture of the system. Images
from the camera to stabilize are processed to obtain a
measure of the optical flow using the standard OpenCV
implementation of the Lucas Kanade - Shi Tomasi algorithm
([6], [12]). The optical flow signal is fed negatively to an
Adaptive Frequency Oscillator which will tune its frequency,
amplitude and phase shift so as to generate a signal phase
locked with its teaching signal (in anti phase with the optical
flow), with the correct amplitude to minimize the optical
flow. The output of the AFO is then used to control the head
of the robot. We use here a slightly modified version of the
Hopf AFO in polar coordinates in which we removed the
influence of the forcing signal on the radius of the oscillator,
to avoid divergence with high coupling terms.

The equations of the AFO are given below:

ṙ = γ(1− r2)r (1)
φ̇ = ω − sinφβF (2)
ω̇ = − sinφκF (3)
x = r cosφ (4)
α̇ = −ηxF (5)
θ = αx+O (6)

where r is the radius of the oscillator (i.e. the amplitude of
its oscillations), φ its phase, ω its frequency and θ its output
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Fig. 2: Evolution of the frequency (left) and shape of the output (right) for
small scaling factors κ = β = 2 (top) and big scaling factors κ = β = 50
when the AFO is forced by the signal F = sin(2πt).

here used to control the position of the head actuator. α
here directly defines the amplitude of the oscillations and O
their offset. F is an external forcing signal (here the opposite
of the mean optical flow). κ and β are scaling factors for
the forcing signal. We describe the effect of these scaling
factors in Section III. Equations 1 and 2 describe a limit
cycle of radius 1. The forcing term in Equation 2 causes the
phase to synchronize with that of the forcing signal (as in a
standard forced Hopf oscillator), while a similar forcing on ω
(Equation 3) tunes the frequency to that of the forcing signal.
When the oscillations are synchronized (same frequency and
same phase) with the forcing signal, the correlation between
x and F is maximized and α starts increasing according
to Equation 5, causing the head of the robot to oscillate in
anti phase with the optical flow with increasing amplitude,
and thus decreasing the retinal slip, until the flow is about
null. All the parameters of the generated compensatory signal
are effectively learned such that they are conserved if the
forcing term F is removed. This is particularly useful to
deal with varying camera speeds, communication problems
or occlusions.

Theoretically, this system works by itself. However, the
convergence of the frequency is typically slow in the ex-
periments by Buchli and Righetti (a few hundred seconds).
This is mainly due to the fact that setting high values to
β and κ changes a lot the shape of the oscillations of the
AFO as well as issues discussed in Section III. Figure 2
shows how the output of the oscillator is modified when β
and κ are increased. When β and κ are high, the shape of
the oscillations is highly modified from the original cosine
wave. Furthermore, having too high coupling terms, when
dealing with head stabilization, would cause divergence of
the system. Indeed, since a jerky output as in Figure 2
(bottom) would cause a high optical flow which would in
term induce a higher forcing etc.

To solve this problem and obtain fast convergence of
the frequency while keeping control on the shape of the
oscillations we used two phases for the AFO. The first phase,
φ1, is used only to learn the frequency of the forcing signal.
The second phase φ2 is the actual phase of the oscillations,

272



and is coupled to the forcing signal for synchronization, with
a different coupling term ε. Typically we set ε � κ so that
the shape of the oscillations is not altered too much. These
two phases share the same value for ω, so that the frequency
learned is reflected on the oscillations of the head. Note that
this system is equivalent to an AFO passing its frequency
to a Hopf oscillator, and thus the proofs of convergence of
AFOs in [9] remain valid and the properties of the Hopf
oscillator are conserved.

The equations of the final system become :

ṙ = γ(1− r2)r (7)
φ̇1 = ω − sinφ1βF (8)
φ̇2 = ω − sinφ2εF (9)
ω̇ = − sinφ1κF (10)
x = r cosφ2 (11)
α̇ = −ηxF (12)
θ = αx+O (13)

III. PARAMETER TUNING

In this section we study the influence of the parameters κ
and β on the convergence of the frequency of the system.
Note that ε only acts on the second phase φ2 which has no
influence on the frequency modulation. Figure 3 shows the
results of systematic tests monitoring the convergence time
and the error after convergence for varying values of κ and β.
The forcing signal used for this experiment was obtained by
recording the optical flow when rotating a simulated camera
in the air in a texturized scene around its pitch axis with
a frequency of 2Hz (in the Webots robotics simulator [7]),
and normalizing its amplitude. We used eight instances of our
oscillator initialized at eight different frequencies uniformly
distributed around the desired frequency.

The convergence time Tc(S) and error after convergence
Ec(S) of a signal S (here the optical flow) to a desired value
s are defined as follows:

Tc(S) = min(t),∀t > Tc(S), |S(t)− s| < λ (14)

Ec(S) =
1

Tf (S)− Tc(S)

∫ Tf (S)

Tc(S)

|S(t)− s|dt (15)

where Tf (S) is the final time of the signal S and λ is
a chosen small value (in this study we used λ = 0.25). In
clear, Tc(S) is defined as the minimum time after which
the signal S stays bounded in a neighborhood of a desired
value s, and Ec(S) as the mean of the instantaneous distance
between S(t) and s after Tc(S). These two quantities are then
averaged over the eight oscillators.

The error after convergence Ec(S) (Figure 3, right) is
basically proportional to κ, although it sightly decreases
when β is increased for a given value of κ. The convergence
time Tc(S) (left) decreases monotonically with κ and meets
a minimum for a specific value of β which depends on the
value of κ. This minimum is however less visible when κ
increases.
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Fig. 3: Convergence time Tc(S) (left) and error after convergence Ec(S)
(right) for different values of κ and β when the system is forced by a
normalized optical flow signal of frequency 2Hz.

Figure 4 shows the evolution of the frequency of the
system for characteristic values of κ and β and for different
initial frequencies. For small values of κ and β (Figure
4a), the convergence takes a long time, especially for initial
frequencies far away from the frequency of the forcing
signal, while the remaining oscillations after convergence
have very small amplitude. When β and κ are increased
(Figures 4b and 4c), the convergence time decreases but
the oscillations after convergence amplify. Increasing only
β (Figure 4d) has a smoothing effect on the convergence.
The AFOs with initial frequency far away from that of the
forcing signal converge faster, while the others converge
more slowly. Increasing κ while keeping β low (Figure
4e) causes the convergence to be very jerky, and increases
the amplitude of the remaining oscillations at convergence
compared to when both parameters are set high (Figure
4c). Figure 4f shows an example of a compromise between
convergence speed and error after convergence.

This study will serve as a reference to choose the values of
these parameters depending on whether convergence speed or
precision at convergence is more critical, but also depending
on whether we can have a good estimate of the frequency
of the head movement (in which case we can afford to set
lower values for κ while still converging fast enough). Note
that only two parameters need to be tuned (η and ε can be
fixed once and for all, they do not influence the convergence
speed or quality). Also note that for any value of κ and
β tested, the system converges, so the values of these two
parameters is not too critical, but only define the quality of
the stabilization. Typically during locomotion and especially
for statically stable gaits, the frequency of the head motion
is nearly that of the controlled robot motion, so one would
want to initialize the oscillator frequency with this value.
In Section V however, we show that in the case of the
salamander robot swimming and the Hoap2 robot walking,
this is not true for the pitch axis.

IV. EXTENSION TO MULTIPLE AXIS
STABILIZATION

So far we have only considered one oscillator, for a single
degree of freedom. However the system is fairly easy to
extend to multiple degrees of freedom for the head. Typically
one would use one AFO per degree of freedom. The only
constraint here is finding the right forcing signal for each
AFO.
To result in a successful head stabilization, the forcing signal
for one degree of freedom should:
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(a) κ = 2.5, β = 2.5 (b) κ = 5, β = 5

(c) κ = 20, β = 20 (d) κ = 2.5, β = 20

(e) κ = 20, β = 2.5 (f) κ = 8.7, β = 7.8

Fig. 4: Evolution of the frequency of the system for typical values of κ
and β when the system is forced by a normalized optical flow signal of
frequency 2Hz and for AFOs initialized with various initial frequencies.

• have the same frequency as the motion of the robot
around this axis.

• decrease towards zero when the head is stabilized
around this axis.

• have zero mean.

Note however that the forcing signal does not need to be an
estimate of the head rotation speed around the considered
axis in any way. In this paper we typically use the optical
flow since it is the most basic information provided by a
camera, but we could just as well use for instance the position
of an object around the center of the image, or the position
and orientation of the horizon.

To extend the system to three axis (pitch, roll, yaw, as
commonly defined in aviation) stabilization, we use the
following forcing term for the corresponding AFOs:

• For the pitch: the mean of the y coordinate of the flow
vectors of the whole image.

• For the yaw: the mean of the x coordinate of the flow
vectors of the whole image.

• For the roll: the difference between the mean of the y
coordinate of the flow vectors of the left quarter and the
right quarter of the image.

These three forcing terms are applied negatively to the
AFOs, so that at convergence, the oscillators are in anti phase
with the optical flow. The following equations formalize the
forcing for the pitch, roll and yaw axis (respectively Fp, Fr

and Fy)

Fp = − 1

K

m∑
i=1

n∑
j=1

Fy
ij (16)

Fy = − 1

K

m∑
i=1

n∑
j=1

Fx
ij (17)

Fr = −

 1

Kl

m∑
i=1

n
4∑

j=1

Fy
ij −

1

Kr

m∑
i=1

n∑
j= 3n

4

Fy
ij

 (18)

where K is the number of non zero flow vectors in the
whole image, Kl and Kr are the numbers of non zero flow
vectors in the left and right quarters of the image, m and
n are the dimensions of the image, and F x

ij and F y
ij are the

x and y components of the optical flow vector computed at
position (i, j).

Note that these three forcing terms do not give a direct
measure of the rotation speed of the head around each axis.
This is not needed by our system. The forcing terms used
for each axis need however to satisfy the three conditions
given earlier. In our case, this implies that the pitch axis of
the head moves the image approximately along its y axis,
the yaw along its x axis, and that the roll rotates the image
around its center. In the case of a head with two cameras on
each side for instance, the forcing for the roll axis Fr may
not work as it is. It could be adapted by taking the difference
of the flow of the left part of the left camera image and the
right part of the right camera image.

V. RESULTS
In this section we present results of the system actually

applied to the head stabilization problem. All the experiments
described below have been carried out using Webots [7], a
physics based simulator for robotics. Here we only actuate
the head of the robot (not the eyes) but applying it to the eyes
also should be straightforward. The camera is a simulated
pinhole camera with a field of view of 45◦ and providing an
image of 320 x 240 pixels at 20Hz. (which is below standard
for robotics cameras). The optical flow is computed from the
camera images the same way in simulation and on the real
robot, and is thus subject to noise (image noise, processing
artifacts etc.). The reader is advised to refer to the video
attached to this paper for a better insight of the following
experiments.

Figure 5 shows the evolution of the frequency and the
amplitude of the system when a robot (here the Fujitsu Hoap
2 humanoid robot) is rotated in the air with sine waves of
different frequencies for the pitch, roll and yaw axis (see
Figure 6d). One instance of our oscillator is used per degree
of freedom with different forcing signals as explained in
Section IV. To demonstrate the self tuning ability of the
system, the frequency of the motion for the pitch axis is
set arbitrarily to 2Hz, for the roll 0.75Hz and for the yaw
1Hz. At t = 15s, the frequencies are switched to: pitch axis:
1Hz, roll axis: 1.5Hz, yaw axis: 2Hz. The AFO is initialized
with a frequency of 0.5 Hz.
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Fig. 5: Evolution of the frequency and the amplitude (α) of the oscillator
when the robot is rotated in the air around the three axis pitch, roll and
yaw, by sine waves of different frequencies. For the pitch axis: 2Hz, for the
roll axis: 0.75Hz and for the yaw axis: 1Hz. At t = 15s the frequencies
are switched to: pitch axis: 1Hz, roll axis: 1.5Hz, yaw axis: 2Hz. The AFO
is initialized with a frequency of 0.5 Hz. Figure 5d shows the evolution of
the norm of the mean optical flow vector over time.

The frequency of the AFOs controlling each actuator of
the head quickly converges to that of the motions applied
to the robot and the amplitude starts increasing until the
optical flow is minimum. When the frequencies of motion are
suddenly altered, the system tracks the change of frequency
and recovers until the optical flow is minimal again. The
resulting flow after convergence is reduced to less than 1
pixel/frame both times, in about 10 seconds.

Out system does not assume that the movement to com-
pensate is a rotation. It actually works even for pure transla-
tions. Figure 6 describes a similar experiment as the previous
one, but this time with the robot periodically translated along
the x and y axis (the y axis here is the vertical, while the x
axis is sideways with respect to the robot) with sine waves
of different frequencies: for the x axis 1Hz, for the y axis:
2Hz. At t = 10s, the frequencies are switched to 2Hz for the
x axis and 1Hz for the y axis. Again the system converges
quickly leading to lateral and vertical head movements that
almost completely suppress the optical flow. After the switch
in frequency, the system recovers and goes back to nearly
perfect stabilization.

As explained in Section II, our system generates oscilla-
tions whose shape can be slightly modified by the forcing
signal, but remains close to a sine. Figure 7 shows the
behavior of the system when the robot is rotated around its
pitch axis with waves of different shapes. For every shape,
the system manages to learn the main frequency of the
optical flow signal. It also manages to reduce the optical flow,
leading to a more stabilized gaze than without the system.
However, the further the shape of the rotation is from a sine,
the worst the performance, as expected.

Figure 8 shows the performance of the system when
the robot is rotated around its pitch axis with a chirp
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Fig. 6: Evolution of the frequency and the amplitude (α) of the oscillator
when the robot is translated in the air along the x and y axis by sine waves
of different frequencies. For the x axis: 1Hz and for the y axis: 2Hz. At
t = 10s the frequencies are switched to: x axis: 2Hz, y axis: 1Hz. The
AFO is initialized with a frequency of 2 Hz. Figure 6c shows the evolution
of the norm of the mean optical flow vector over time.
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Fig. 7: Evolution of the frequency (middle) of the head stabilizing oscillator
and the optical flow (bottom) when the robot is rotated around its pitch
axis with waves of different shapes (top), from near triangle to nearly step
functions.

(sin(2π(ω0 + kt)t)), first with a relatively slow changing
frequency, and then with a much faster changing one. When
the frequency of the robot rotation is changing slowly,
the system is able to track these changes fast enough to
enable good gaze stabilization. When the frequency of the
movement is changing faster, the system still tracks it but
not fast enough to lead to optimal performance stabilization.
Figure 8 also shows the actual range of effectiveness of the
system. For both cases, at frequencies higher than 5.5Hz
the system is not able find the frequency of the teaching
signal and the stabilization does not work anymore. However,
it is important to note that this limit is not instrisic to
Adaptive Frequency Oscillators, which have an infinite basin
of attraction. This limit is simply due to the low sampling
rate of the optical flow, causing the signal to noise ratio to
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optical flow when the robot is rotated around its pitch axis with a a sine wave
with frequency increasing in time. Top: slow changing frequency, Bottom:
fast changing frequency.
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Fig. 9: Evolution of the frequency and amplitude of the head stabilizing
oscillator (left) and the optical flow (right) when the robot is rotated around
its pitch axis with a a sine wave of frequency 2Hz. At t = 10s random
translation and rotation are applied to the robot for 0.2s and at t=15 for 2
seconds

be very high at 5.5Hz
Figure 9 shows the behavior of the system in the presence

of external perturbations. The robot is successively perturbed
by applying random rotations and translation for a short
period of time (0.2s at t = 10s) and then for a longer period
(2s at t = 15s). When the perturbation is short, the frequency
and amplitude of the oscillator hardly change at all, and
the stabilization recovers quickly. When the perturbation
lasts longer, the frequency is deviates and the amplitude
drops dramatically. When the perturbation stops, the system
relearns the frequency of the optical flow and restabilizes the
head.

Our system relying only on visual cues, it can also be used
to stabilize the gaze of the robot on periodically moving
objects of arbitrary shapes, colors etc. Figure 10 shows
results of the system applied to the Hoap 2 robot tracking a
sphere (the moon) being translated with a sine wave along
the x and y axis (vertical and sideways). The robot is not
moved in this experiment. The frequencies of the motion of
the sphere along the x and y axis are set respectively to 2Hz
and 1Hz. At t = 15s, the frequencies are switched to 1Hz
for the x axis and 2Hz for the y axis. The system is able to
stabilize the gaze of the robot on the object almost perfectly,
and tracks changes in the movement of the object. The result
is the object staying almost exactly in the center of the image
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Fig. 10: Evolution of the frequency and the amplitude (α) of the oscillator
when an object (here a sphere) is translated in the air along the x and y
axis by sine waves of different frequencies. For the x axis: 2Hz and for
the y axis: 1Hz. At t = 15s the frequencies are switched to: x axis: 1Hz,
y axis: 2Hz. The AFO is initialized with a frequency of 2 Hz. Figure 10c
shows the evolution of the norm of the mean optical flow vector over time.

after convergence (about 5s).
We now show the system applied to robot locomotion.

Figure 11 shows the evolution of the frequency and the
amplitude of the oscillators controlling the pitch, roll and
yaw axis of the camera attached at the tip of the head of
a simulated salamander robot swimming. The salamander
robot ([3]) is a modular 12DoF robot controlled with coupled
oscillators (central pattern generators), and is capable to
switch from walking to swimming. For this experiment,
it is swimming by generating a traveling wave along its
body whose frequency and amplitude can be modulated.
The frequency of this wave is initially set to 1Hz. At
t = 30s, the frequency is switched to 1.5Hz. The frequency
of the oscillators is initialized to 0.5Hz. Again the system
successfully stabilizes the gaze of the robot along the two
axis, and tracks the change of frequency of the motion. The
remaining optical flow after convergence is due partially to
the forward motion of the robot, as shown in Figure 11d.

In the case of the salamander swimming, we could have
initialized the frequency of the head stabilizing oscillator
to the frequency of the motion control (we did not to
demonstrate the tuning abilities of the system). Note however
that the frequency of the motion of the head around the pitch
axis is twice that of the general motion of the robot. The head
is diving in the water at each half period of the traveling wave
controlling the robot. This particularity is highly related to
the gait used here and is very difficult to predict a priori
(it would need complex modeling of the fluid dynamics).
Our system however learns the correct frequency for this
axis without the need of any modeling. Figure 12 shows
snapshots of the salamander swimming, with and without
the head stabilization system enabled.

Figure 13 shows a similar experiment as above with the
Hoap2 walking. Three axis stabilization is used in the same
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Fig. 11: Evolution of the frequency and the amplitude (α) of the oscillator
when the salamander robot swimming. The frequency of swimming is
initially 1Hz and at t = 30s the frequency is switched to 1.5Hz. The AFO
is initialized with a frequency of 0.5Hz. Figure 11d shows the evolution of
the norm of the mean optical flow vector over time as well as the flow due
to the forward motion of the robot

(a) (b) (c) (d) (e) (f)

Fig. 12: Snapshots of the salamander robot swimming without gaze stabi-
lization (a, b, and c) and with gaze stabilization (d, e and f). When the
camera stabilization system is enabled, the gaze (highlighted by the purple
camera frustums) always points in the direction of motion.

way as for the other experiments. The robot is controlled
using the default gait provided by Fujitsu. The frequency of
the motion is not altered for this experiment, since the gait is
only stable with the precomputed parameters. The frequency
of the AFOs is initialized to 2Hz (different from that of the
motion). Figure 13e shows the shape of the robot motion at
the base of the head, for each axis. Even though this motion
is quite far from a sine wave, the parameters of the system
converge and gaze stabilization reaches decent performance,
with the optical flow after convergence reduced to less than
7 pixels/frame. Note that, as in the case of the salamander
robot swimming, the frequency of the motion around the
pitch axis is about double that of the other axes.

We performed the object tracking experiment with the
real Hoap3 robot, which has embedded cameras in its head.
An apple was attached to a spring, allowing it to swing
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Fig. 13: Evolution of the frequency and the amplitude (α) of the oscillator
when the Hoap2 robot is walking. The AFO is initialized with a frequency
of 2Hz. Figure 13d shows the evolution of the norm of the mean optical
flow vector over time. Figure 13e shows the shape of the rotation speed of
the base of the head.

horizontally and vertically, with different frequencies. We
used here the exact same system as in the experiments in
simulation. Taking into account the framerate of the camera,
the computation time of the optical flow and communication
delays, we can provide our oscillator with visual forcing at a
frequency of about 10Hz. Figure 14 shows the evolution of
the frequency and amplitude of the two axis controlling the
head. Here, the optical flow was not a good measure of the
performance of the system, due to the high noise even after
stabilization (see attached video). Instead we used simple
blob tracking to compute the position of the apple in the
image frame (Figure 14c). Even with such a slow and noisy
optical flow, the system is able to stabilize the object around
the center of the image. Around t = 45s, the stabilization
around the yaw axis gets worse for a couple of seconds, but
quickly recovers. Note that the frequency of the apple motion
is not perfectly constant here due to the natural damping of
the spring and the air friction.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented a novel approach to the
head stabilization problem during periodic movements. Our
system uses only visual cues, here optical flow, to stabilize
the head of a robot subject to periodic motion, typically
during locomotion. The system tries to predicts the motion
of the robot, by learning the frequency, phase and amplitude
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Fig. 14: Evolution of the frequency and the amplitude (α) of the oscillator
when an apple is oscillating in front of the real Hoap3 robot. The apple is
attached to a spring allowing it to swing horizontally and vertically.

of the optical flow. All the learning is done online, and
embedded into the dynamics of the designed oscillator such
that changes in the parameters of the motion are tracked by
the system. We showed that our system can be applied to
stabilize the gaze when the robot is being moved, or when it
is tracking a periodically moving object. We also showed that
the system can successfully stabilize the head of the robot
during actual locomotion, with a biped and an anguilliform
robot, without the need for fast sensors. We demonstrated the
performance of the system on a real robotics setup. More
experiments on real robot should follow. Another planned
experiment would consist in stabilizing an actuated camera
attached to a real human or animal during locomotion.

The main limitation of the current system is the single
shape of the output of the oscillator. We assume that the
necessary compensatory motion to stabilize the head is close
to a sine wave (note that the optical flow does not need to
be sine wave, as long as the compensatory movements are).
This is not always the case during locomotion. The shape of
the oscillations is slightly modulated by the feedback term,
but being able to generate the exact right oscillation patterns
would surely increase the performance of our system. Future
work should include learning the whole shape of the robot
motion. This could be done for instance by deducing the
shape of the compensatory signals from the optical flow, and
adding a dynamical filter to our oscillator (for instance of a
combination of sine waves with different frequencies and
amplitudes), or by designing an adaptive Gaussian mixture
filter. Using a pool of coupled Adaptive Frequency Oscilla-
tors as done in [10] would be another solution to generate
more complex shapes for the head motion.

The approach described in this paper uses only vision as
sensory feedback. This is a big advantage of the system since
it can be applied to a wide variety of robots which do not
necessarily have a large set of sensors. However, this is not a
limitation of the system, and one could imagine fusing infor-

mation from more sensors, depending on the application. A
simple way to fuse information from a vestibular system and
cameras, for instance, could be to use two different forcing
signals for our oscillator. The forcing in Equation 8 would
come from the vestibular system while the one in Equation 9
would come from visual cues. This would increase the speed
and smoothness of the convergence of the frequency, while
keeping the head motion phase locked with the optical flow.

Finally, let us note that only the parameters of the nominal
gait of the robot are learned. Unexpected fast changes of the
head motion pattern are not stabilized. For some applications,
this could be a downside of the system. However, during lo-
comotion, fast changes of optical flow after head stabilization
could be a sign that some unexpected events are occurring,
e.g. the robot loosing balance, and this information could be
used to trigger a response in a higher level controller.
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