
Propagation Kernels for Partially Labeled Graphs

Marion Neumann marion.neumann@iais.fraunhofer.de
Knowledge Discovery Department, Fraunhofer IAIS,
Schloss Birlinghoven, 53754 Sankt Augustin, Germany

Roman Garnett rgarnett@cs.cmu.edu
Robotics Institute, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA 15213, United States

Plinio Moreno plinio@isr.ist.utl.pt
Electrical & Computer Engineering Department, Instituto Superior Técnico,
Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Novi Patricia, Kristian Kersting firstname.lastname@iais.fraunhofer.de
Knowledge Discovery Department, Fraunhofer IAIS,
Schloss Birlinghoven, 53754 Sankt Augustin, Germany

Abstract

Learning from complex data is becoming in-
creasingly important, and graph kernels have
recently evolved into a rapidly developing
branch of learning on structured data. How-
ever, previously proposed kernels rely on hav-
ing discrete node label information. Propa-
gation kernels leverage the power of continu-
ous node label distributions as graph features
and hence, enhance traditional graph kernels
to efficiently handle partially labeled graphs
in a principled manner. Utilizing locality-
sensitive hashing, propagation kernels are able
to outperform state-of-the-art graph kernels
in terms of runtime without loss in prediction
accuracy. This paper investigates the power
of propagation kernels to classify partially la-
beled images and to tackle the challenging
problem of retrieving similar object views in
robotic grasping.

1. Introduction

For attribute-valued data, sophisticated kernel ap-
proaches have been widely and successfully studied.

Appearing in Proceedings of the Workshop on Mining and
Learning with Graphs (MLG-2012), Edinburgh, Scotland,
UK, 2012. Copyright 2012 by the author(s)/owner(s).

Nowadays, however, data often is complex and highly
structured. Structured data is commonly represented
by graphs, which capture relations among entities, but
also naturally model the structure of whole objects.
Real-world examples are proteins or molecules in bioin-
formatics, image scenes in computer vision, text docu-
ments in natural language processing, and object and
scene models in robotics. Learning in such domains
and in turn developing meaningful kernels to take the
structure of these data into account is becoming more
and more important. For example, one of the basic
skills for a robot autonomous grasping is to select the
appropriate grasping point for an object. Learning
those grasping points from different types of features
extracted from a single image or from more complex
3D reconstructions is an important and challenging
problem in vision based robotic grasping (Montesano
& Lopes, 2012; Moreno et al., 2011; Bohg & Kragic,
2010). In this paper, we tackle the task of retrieving
similar views of objects represented as graphs derived
from 3D point clouds, cf. Figure 1 for an example, in
order to efficiently learn grasping points for unseen
object views.

Determining whether or not a point is graspable in-
volves setting up time-consuming and expensive ex-
periments on a real robot. Hence, it is costly or even
impossible to acquire complete label information. Nev-
ertheless, matching regions of graspable points from
similar (partially labeled) known objects in a given
database to a new, unseen object view is a compelling

Propagation Kernels for Partially Labeled Graphs

idea in order to efficiently learn where to grasp an
object. The first step in tackling the complex task of
learning robotic grasping is determining the similarity
among objects represented as partially labeled graphs
by graph kernels. Existing graph kernels developed
within the graph mining community can be catego-
rized mainly into four classes: graph kernels based on
walks (Gärtner et al., 2003; Vishwanathan et al., 2010)
and paths (Borgwardt & Kriegel, 2005), graph kernels
based on limited-size subgraphs (Shervashidze et al.,
2009), graph kernels based on subtree patterns (Ramon
& Gärtner, 2003), and graph kernels based on struc-
ture propagation (Shervashidze et al., 2011). Whereas
efficient kernel computations such as presented in (Vish-
wanathan et al., 2010) are able to compare unlabeled
graphs efficiently, Shervashidze et al. (Shervashidze
et al., 2011) specifically consider efficient comparisons
of large, labeled graphs. Unfortunately, these existing
graph kernels are either not computationally feasible
for online analysis or rely on unlabeled or fully labeled
graphs. As most of them can only handle discretely la-
beled, unweighted graphs in an efficient and principled
manner, we introduce propagation kernels (Neumann
et al., 2012) which leverage the power of continuous
node-level features derived from propagated label infor-
mation, i.e. node label distributions, in the graphs and
naturally handle partially labeled and weighted graphs
as the ones modeling objects to be grasped by a robot.

Triggered by previously introduced kernels on proba-
bilistic models (Jaakkola & Haussler, 1998; Tsuda et al.,
2002), propagation kernels exploit distributions from
propagation schemes like label propagation (lp) and in
general enhance existing graph kernel frameworks to
handle continuous, vector-valued node attributes. In
order to efficiently retrieve the similarity among node
label distributions propagation kernels leverage ran-
domization techniques from the theoretical computer
science community by defining locality-sensitive hash
(lsh) functions to create distance-preserving signatures
for each continuous node label distribution.

To summarize, the main contribution of this work is the
investigation of the power of propagation kernels to ef-
ficiently deal with partially labeled graphs. Specifically,
we consider two problems on real-world data: seman-
tic image classification and similar object retrieval in
robotic grasping.

We proceed as follows. After reviewing the family of
propagation kernels, we will briefly describe locality-
sensitive hashing for handling vector-valued node label
distributions. Then, we present experimental results for
a graph classification task for partially labeled graphs
on state-of-the-art image datasets. Before concluding,

Figure 1. 3D Point Cloud Data The figure shows an
example object view of a cup with 1230 data points with 43
graspable, 19 non-graspable and 1168 non-reachable points.
From the raw point cloud data of each object view a k-
minimum spanning tree graph is constructed with one node
per 3D point. The labels for each node are either graspable,
non-graspable or non-reachable.

we examine the robustness of propagation kernels with
respect to missing labels and the most similar retrieved
object views in a robotic grasping scenario.

2. Propagation Kernels

In the following, we review the family of propagation
kernels and several instances thereof based on propagat-
ing label information. The main insight that empowers
propagation kernels is that the intermediate node label
distributions, e.g., the iterative distribution updates
of a label propagation scheme, capture both label and
structure information of the graphs. Hence, the graph
features, i.e. kernel inputs, are based on the counts
of similar distributions among the respective graphs’
nodes during these updates.

2.1. General Definition

Here we will define a similarity measure (specifically a
positive semidefinite covariance function) K : X ×X →
R among graph instances G(i) ∈ X . The input space X
is a family of graphs G(i) = (V (i), E(i), L(i)), where Vi
is a set of nodes, L(i) are the corresponding node label
distributions,1 and E(i) is the set of edges in graph
G(i). Further, graph i has ni nodes and each node in
V (i) is endowed with one of k true labels Specifically,
these node labels do not have to be known for all
nodes. Propagation kernels can naturally be computed

1Note that L(i) could also represent continuous, vector-
valued node attributes, however, in this paper we focus on
label distributions.

Propagation Kernels for Partially Labeled Graphs

0

0

1

bin 1 bin 2 bin 3

G
(1)
0

1

0

1

0

bin 1 bin 2 bin 3

G
(2)
0

φ(G
(1)
0) = [2 1 3] φ(G

(2)
0) = [2 2 2]

< φ(G
(1)
0), φ(G

(2)
0) >= 12

(a) Initial label distributions and linear base kernel
value for t = 0

bin 1 bin 2 bin 3 bin 4

G
(1)
1

bin 1 bin 2 bin 3 bin 4

G
(2)
1

φ(G
(1)
1) = [1 1 3 1] φ(G

(2)
1) = [3 1 2 0]

< φ(G
(1)
1), φ(G

(2)
1) >= 10

(b) Updated label distributions and linear base kernel value
for t = 1

Figure 2. Propagation Kernel Computations Propagation kernel computations for two graphs G
(1)
t and G

(2)
t with

binary node labels using one iteration of label propagation, Eq.(8), as distribution update. Node label distributions are
decoded by color, white means `(i)0,j = [1, 0] and dark red stands for `(i)0,j = [0, 1], the initial distributions for unlabeled nodes
(light red) are `

(i)
0,j = [1/2, 1/2]. Panel (a) shows the initial distributions, bins, and respective kernel computation and panel

(b) depicts distributions, bins, features and linear base kernel for t = 1.

for partially labeled graphs as the features are only
built upon the node label distributions, which will be
initialized uniformly for unknown node labels. Note
that, observed node labels are represented by a trivial
delta distribution.

Propagation kernels are defined by applying the follow-
ing iterative procedure T + 1 times, from time t = 0 to
T , beginning with an initial set of graphs {G(i)

0 } with
label distribution initialized as above.

Step 1: count common node label distributions.
First, we generate feature vectors φ(G(i)

t) for each graph
by counting common label distributions induced over
the nodes among the respective graphs. Therefore,
each node in each graph is placed into one of a number
of “bins,” each one collecting similar label distributions,
and these vectors count the nodes in each bin for each
graph. The exact details of this procedure are given
below, in Section 2.2.

Step 2: calculate current kernel contribution.
Given these vectors, for each pair of graphs G(i) and
G(j), we calculate

k(G
(i)
t , G

(j)
t) = 〈φ(G(i)

t), φ(G
(j)
t)〉, (1)

where 〈·, ·〉 is an arbitrary base kernel. This value
will be an additive contribution to the final kernel
value between these graphs. Hence, the T -iteration
propagation kernel between two graphs G(i) and G(j)

is defined as

KT (G
(i), G(j)) =

T∑
t=0

k(G
(i)
t , G

(j)
t). (2)

Step 3: propagate node label distributions. Fi-
nally, we apply an iterative update scheme for the node
label distributions

L
(i)
t → L

(i)
t+1, (3)

e.g. label propagation. These new label distributions
replace those in the current set of graphs, and we
continue with Step 1. The exact choice for this update
results in different propagation kernels; examples are
provided in Section 2.4. An illustrative example of
propagation kernel computations for t = 0 and t = 1
for two graphs is shown in Figure 2.

2.2. Distribution-based Graph Features

The main ingredient of propagation kernels is the way
distribution-based graph features are generated. Let
`
(i)
t,j be the j-th row of L(i)

t and L =
⋃N

i

⋃ni

j {`
(i)
t,j} be

the set of all uniquely occurring label distributions on
the nodes of all graphs. The family of propagation
kernels is characterized by generating graph features
by counting similar node label distributions of the
respective graphs. This will be captured by a function
f mapping from the space of distributions Rk into the
space of standard basis vectors Ek′ = {e1, ..., ek′} with

Propagation Kernels for Partially Labeled Graphs

k′ = |L| ≤ n, where n is the number of nodes for all
graphs n =

∑N
i=1 ni. We now define

φ(G
(i)
t) =

ni∑
j=1

f(`
(i)
t,j). (4)

As the node label distributions `(i)t,j are k−dimensional
continuous vectors the cardinality of L might in fact
be equal to the total number of nodes n in the whole
graph database. This, however, means that the derived
features are not meaningful as, in this case, we never
get the same count feature for any two similarly dis-
tributed nodes and the kernel value for any two graphs
as defined in Eq. (1) is always zero. To ensure the
acquisition of meaningful features we leverage quanti-
zation (Gersho & Gray, 1991). Hence, the mapping f
is replaced by q : Rk → Ek′′ , where q is a quantization
function such that k′′ � |L| ≤ n. Note, that deriv-
ing a quantization function for distributions involves
considering distance metrics for distributions such as
Hellinger or total variation (tv) distance. Below, we
approach the quantization by defining locality-sensitive
hash functions with respect to these metrics.

2.3. Locality-Sensitive Hashing for
Propagation Kernels

Now, we briefly describe the quantization approach for
implementing propagation kernels on graphs with node
label distributions. The key insight here is, that the
used quantization functions should “probably” assign
points “close enough” to each other in a given metric
space to the same bin. This approach is known as
locality-sensitive hashing (Datar & Indyk, 2004). Each
node-label vector is considered as an element of the
space of discrete probability distributions on k items
equipped with an appropriate probability metric.

Let X be a metric space with metric d : X × X → R,
and let Y = {1, 2, . . . , k′}. Let θ > 0 be a threshold,
c > 1 be an approximation factor, and p1, p2 ∈ (0, 1)
be the given success probabilities. A set of functions H
from X to Y is called a (θ, cθ, p1, p2)-locality sensitive
hash (lsh) if for any function h ∈ H chosen uniformly
at random, and for any two points x, x′ ∈ X , we have
that

• if d(x, x′) < θ, then Pr(h(x) = h(x′)) > p1, and

• if d(x, x′) > cθ, then Pr(h(x) = h(x′)) < p2.

It is known that we can construct lsh families for Lp

spaces with p ∈ (0, 2] (Datar & Indyk, 2004). Let V
be a real-valued random variable. V is called p-stable

if for any {x1, x2, . . . , xd}, xi ∈ R and independently
sampled v1, v2, . . . , vd, we have∑

xivi ∼ ‖xi‖pV.

Explicit p-stable distributions are known for some p; for
example, the standard Cauchy distribution is 1-stable,
and the standard normal distribution is 2-stable. Given
the ability to sample from a p-stable distribution V , we
may define a lsh H on Rd with the Lp metric (Datar
& Indyk, 2004). An element h of H is specified by
three parameters: a width w ∈ R+, a d-dimensional
vector v whose entries are independent samples of V ,
and b ∈ [0, w], drawn from U [0, w], and defined as

h(x;w,v, b) =

⌊
v>x+ b

w

⌋
. (5)

We may now consider h(·) to be a function mapping our
label distributions to integer-valued bins, where similar
distributions end up in the same bin. If we number the
non-empty integer bins occupied by all the nodes in all
graphs from 1 to k′′, then we may define the function
f in Eq. (4) by f(·) = u ◦ h(·), where u : N→ Ek′′ and
k′′ denotes the number of non-empty bins.

Note, that we may use more than one hyperplane to
decrease the probability of collision , i.e., more than
one random vector v is chosen and the hash maps to
more than one integer. For propagation kernels we
only choose one hyperplane, as we effectively have T
hyperplanes for the whole kernel computation. Hence,
the probability of a hash conflict is reduced over the
iterations.

As we are concerned with the space of discrete prob-
ability distributions on k elements, endowed with a
probability metric d, we specifically consider the total
variation (tv) and Hellinger (h) distances:

dtv(p, q) = 1/2
∑
i

|pi − qi|

dh(p, q) =

(
1/2
∑
i

(√
pi −

√
qi
)2)1/2

.

The total variation distance is simply half the L1 met-
ric, and the Hellinger distance is also a scaled version
of the L2 metric after applying the map p 7→ √p. We
may therefore create a locality-sensitive hash family for
dtv by direct application of (5), and create a locality-
sensitive hash family for dh by applying (5) after ap-
plying the square root map to our label distributions.
These are the quantization schemes applied in our ex-
periments.

Propagation Kernels for Partially Labeled Graphs

Table 1. Average accuracy (and standard deviation) on 10 different sets of partially labeled images for label propagation
kernel using tv distance (Klp+tv), and for the WL-subtree kernel with unlabeled nodes treated as additional label Kwl

and with hard labels derived from converged LP (lp +Kwl).

labels missing

dataset method 20% 40% 60% 80%

Klp+tv 90.0 (1.2) 88.7 (1.0) 86.6 (1.3) 80.4 (1.8)
msrc9 lp +Kwl 90.0 (0.6) 87.9 (1.9) 83.2 (2.0) 77.9 (3.1)

Kwl 89.2 (1.5) 88.1 (1.5) 85.7 (1.9) 78.5 (2.7)

Klp+tv 86.9 (0.8) 84.7 (1.0) 79.5 (0.9) 69.3 (1.1)
msrc21 lp +Kwl 85.8 (0.6) 81.5 (0.8) 74.5 (1.0) 64.0 (1.2)

Kwl 85.4 (1.3) 81.9 (1.2) 76.0 (0.8) 63.7 (1.3)

2.4. Instances of Propagation Kernels

So far, we introduced the general family of propagation
kernels. Specific choices of label update schemes, cf.
Eq. (3), result in different instances of the propagation
kernel family. In particular, we define the diffusion
graph kernel and the label propagation kernel.

Diffusion Graph Kernel: For the diffusion graph
kernels we use the following update for the node label
distributions L(i)

t → L
(i)
t+1. Given the adjacency matrix

A(i) of graph G(i) label diffusion on each node is defined
as

L
(i)
t+1 ← T (i) L

(i)
t , (6)

where T (i) is the transition matrix, i.e., the row-
normalized adjacency matrix T (i) = (D(i))−1A(i),
where D(i) is the diagonal degree matrix with D(i)

aa =∑
bA

(i)
ab .

Label Propagation Kernel: The label distribution
update for the label propagation kernel differs in the
fact, that before each iteration of label diffusion the la-
bels of the originally labeled nodes are pushed back (Zhu
& Ghahramani, 2002). Let

L
(i)
0 =

[
L
(i)
0,[labeled], L

(i)
0,[unlabeled]

]>
(7)

be the original labels of graph G(i), where the distribu-
tions in L(i)

0,[labeled] represent hard labels and those in

L
(i)
0,[unlabeled] are initialized by a uniform label distribu-

tion. Then label propagation is defined by

L
(i)
t,[labeled] ← L

(i)
0,[labeled],

L
(i)
t+1 ← T (i) L

(i)
t . (8)

3. Empirical Evaluation

Our intention here is twofold. First, we show results
for partially labeled graphs for graph classification
on semantic image datasets. Second, we introduce
a graph representation for object views derived from
3D point clouds and investigate the power of propaga-
tion kernels for the task of retrieving similar graphs,
i.e. object views, in a vision based robotic grasping
scenario. To this aim, we implemented propagation
kernels in Matlab. All experiments were conducted
on an Apple Mac Pro workstation with two 2.26GHz
quad-core Intel Xeon “Gainestown” processors (model
E5520) and 28GB of RAM. We set the bin-width pa-
rameter w = 10−5; all results were fairly insensitive to
the exact choice of w.

3.1. Graph Classification

We compare classification accuracy and runtime for
several instances of propagation kernels: the diffusion
graph kernel and the label propagation kernel with
total variation distance and the WL-subtree kernel.
We choose the WL-subtree kernel for comparisons as
it is currently the most accurate and efficient graph
kernel (Shervashidze et al., 2011).

3.1.1. Experimental Setup and Datasets

The classification performance is evaluated by run-
ning C-SVM classifications using libSVM,2 in a 10-fold
cross-validation setup. The real-world image datasets
MSRC 9-class and MSRC 21-class3 are state-of-the-art
datasets in semantic image processing. For our exper-
iments we derived two datasets msrc9 and msrc21.
Each image is represented by a conditional Markov

2http://www.csie.ntu.edu.tw/~cjlin/libsvm/
3http://research.microsoft.com/en-us/projects/
ObjectClassRecognition/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://research.microsoft.com/en-us/projects/
ObjectClassRecognition/

Propagation Kernels for Partially Labeled Graphs14 Efficient Graph Kernels by Randomization

Klp+tv

Kwl(lsh)

lp + Kwl(lsh)
to

ta
lt

im
e

(s
)

iteration

2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

Fig. 3: Runtime for Partially Labeled MSRC21 Average time in seconds
over 10 different instances of the MSRC21 dataset with 50% labeled nodes
for kernel iterations T from 0 to 10. We compare the WL-subtree kerenl with
unlabled nodes treated as additional label (Kwl(lsh)), the WL-subtree ker-
nel with hard labels derived from converged label propagation distributions
(lp + Kwl(lsh)), and the label propagation kernel with total variation distance
(Klp+tv). Kwl(ref) required 36s and is not included in the figure.

other method could handle this dataset in less than 1 minute. On enzymes,
Kdiff+tv takes less then a second, whereas all other methods take several sec-
onds. Compared to Kwl(ref), it is two orders of magnitude faster. Comparing
the runtimes of Kwl+lsh and Kwl(ref), we clearly see that leveraging randomiza-
tion significantly outperforms the non-randomized approach. We also compared
the runtime of propagation kernels using label propagation to the WL-subtree
kernel on the msrc21 dataset with partially labeled graphs. We again compare
Klp+tv with Kwl(lsh) and lp+Kwl(lsh). The results are summarized in Figure 3.
Kwl(ref) is over 36 times slower than Klp+tv. These results again confirm that
propagation kernels have attractive scalability properties for large datasets. The
lp + Kwl approach wastes computation time while running LP to convergence
before it can even begin calcultating the kernel. The intermediate label distribu-
tions obtained by label propagation during the convergence process are already
extremely powerful for classification and allow one to save computation time.
All runtime results together clearly show that question (Q2) can be answered
affirmatively.

To summarize, propagation kernels turned out to be competitive in terms of
predictive accuracy and speed on all datasets, often by orders of magnitude.

Figure 3. Runtime for Partially Labeled msrc21 Av-
erage time in seconds over 10 different instances of the
msrc21 dataset with 50% labeled nodes for kernel itera-
tions T from 0 to 10. We compare the WL-subtree kernel
with unlabeled nodes treated as additional label (Kwl(lsh)),
and with hard labels derived from converged lp distribu-
tions (lp+Kwl(lsh)), and the label propagation kernel with
tv distance (Klp+tv).

random field graph. The nodes of each graph are de-
rived by oversegmenting the images using the quick
shift algorithm4 with an average of 40 superpixels per
graph. Hence, each node represents one superpixel and
the semantic (ground-truth) node labels are derived
by taking the mode ground-truth label of all pixels in
the corresponding segment. Note, that the number of
nodes varies from graph to graph.

3.1.2. Results

To assess the predictive performance of propagation
kernels on partially labeled graphs, we ran the following
experiments 10 times. We randomly removed 20–80%
of the labels in msrc9 and msrc21 and computed cross-
validation accuracies and standard deviations. Because
the WL-subtree kernel was not designed for partially
labeled graphs, we compare the label propagation kernel
to two variants: one where we treat unlabeled nodes
as an additional label “u” (Kwl) and another where we
use hard labels derived from running label propagation
until convergence (lp+Kwl). The results are shown in
Table 1. For larger fractions of missing labels Klp+tv
obviously outperforms the baseline methods.

We also compared the runtime of propagation kernels
using label propagation to the WL-subtree kernel Kwl
on the msrc21 dataset with partially labeled graphs.
We again compare Klp+tv with Kwl and lp + Kwl,
where we implemented two variants of Kwl, Kwl(lsh)
and Kwl(ref), where the former is a structure propaga-

4http://www.vlfeat.org/overview/quickshift.html

tion kernel implementation of the WL-subtree kernel
leveraging lsh (Neumann et al., 2012) and Kwl(ref)
is the original implementation introduced in (Sher-
vashidze et al., 2011). The results are summarized in
Figure 3. Note that Kwl(ref) is over 36 times slower
than Klp+tv and omitted in the figure. These results
clearly indicate that propagation kernels have attrac-
tive scalability properties for large datasets.

3.2. Robotic Grasping

Now, we investigate the power of propagation kernels
for the task of retrieving similar object views in robotic
grasping, where object views are modeled by partially
labeled graphs. We visually examine the most similar
object views retrieved by our kernel and compare the
robustness of the diffusion graph kernel and the WL-
subtree kernel w.r.t. missing labels.

3.2.1. Graph Representation of Object Views

We consider laser range data of objects for robot grasp-
ing (Moreno et al., 2011), see Figure 1 for an example.
The dataset consists of 8 objects, as for instance differ-
ent cups and glasses. And the final task for the robot
is to successfully grasp the objects. For each object
we have between 1-8 views represented by 3D point
clouds. From this data we derived 32 graphs, one per
object view, by building the k-minimum spanning tree
graph (k = 5) and assigning an edge weight reflecting
the tangent plane orientations of its incident nodes.
The weight for edge (i, j) between 2 nodes is given by
wi,j = 1−|ni ·nj |, where ni is the normal of point i. In
total the data considered consists of 26 073 nodes. The
nodes have 3 classes graspable, non-graspable, and non-
reachable. Note, that every reachable point is either
graspable or non-graspable. In the considered learning
scenario, we only assume partial knowledge for node la-
bels of reachable points, since the information whether
a point is reachable can be easily gained by applying
collision detection. Whereas, gathering information
whether or not a point is graspable involves setting up
time-consuming and expensive experiments on a real
robot performing several trials per point in order to
get reliable labels.

3.2.2. Retrieving Similar Objects

Figure 4 shows the top 6 retrieved object views for
three different example query objects. All results were
obtained by turning the diffusion graph kernel with
Hellinger distance Kdiff+h of height 4 into a correlation
matrix. These results show, that propagation kernels
on our graph representation of 3D point clouds give
meaningful results and label information is indeed rel-

http://www.vlfeat.org/overview/quickshift.html

Propagation Kernels for Partially Labeled Graphs

(a) Query object: mycup101 (view 2)

(b) Query object: rounded1104 (view 3)

(c) Query object: espressocup100 (view 7)

Figure 4. Similar Objects Query objects (first column) and top 6 most similar object views for unlabeled (first row) and
fully labeled graphs (second row) applying the diffusion graph kernel with Hellinger distance Kdiff+h of height 4.

evant for the retrieval of similar objects. We also ran
an experiment to test the robustness of kernels with
respect to missing node labels. We first calculated Kwl
and Kdiff+h on the fully labeled ground-truth graphs.
We then removed (uniformly at random) from 10% to
90% of the labels of the reachable nodes (at 10% incre-
ments) and calculated the kernels again. For the Kwl
kernel, we filled in missing labels with a placeholder.
For each partially labeled dataset, we calculated the
Spearman rank coefficient between the resulting kernel
values for the respective query objects and the database
versus the ground-truth kernel values. The hope is that
this rank coefficient is high even with many missing
labels. The results in Figure 5 indicate that our kernel
is ordering the database objects correctly according
to the kernel despite missing labels. Our kernel is
robust across the entire range of missing values and
exhaustively outperforms the WL-subtree kernel.

4. Conclusions and Future Work

Propagation kernels count common distributions in-
duced in each iteration of running inference on the
nodes of two graphs. They leverage locality-sensitive
hashing to do so efficiently. This allows propagation
kernels to efficiently deal with partially labeled graphs.
Experimental results clearly show an improvement over
state-of-the-art graph kernels in terms of quality and
runtime. Further, we demonstrated that propagation
kernels, can be utilized to augment the learning process
of graspable points in vision based robotic grasping,
The most exciting opportunity for future work is to
examine the potential for active learning that has been
opened up by our fast and robust kernel. Applications
like the robot grasping problem could benefit greatly
from actively selecting potentially graspable points,
and our kernel seems to be promising for this task.

Propagation Kernels for Partially Labeled Graphs

Kwl

Kdiff+h

ra
n
k
c
o
rr
e
la
ti
o
n

training percentage

0 25 50 75 100

0.9

0.92

0.94

0.96

0.98

1

(a) rounded1104 (view 3)

Kwl

Kdiff+h

ra
n
k
c
o
rr
e
la
ti
o
n

training percentage

0 25 50 75 100

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) espressocup100 (view 7)

Kwl

Kdiff+h

ra
n
k
c
o
rr
e
la
ti
o
n

training percentage

0 25 50 75 100

0.85

0.9

0.95

1

(c) Average over all objects

Figure 5. Rank correlation w.r.t. Partial Labels The rank correlation between the ground-truth kernel values (using
all labels) and the kernel values derived using partial node labels, for Kdiff+h and Kwl. Each plot shows the progression
for a different object: (a) rounded1104, (b) espressocup100, and (c) the average over all objects in the database.

Acknowledgments

We thank VisLab/IST Lisbon for the point cloud data.
This work was partly supported by the Fraunhofer
ATTRACT fellowship STREAM and by the European
Commission under contract FP7-248258-First-MM.

References
Bohg, J. and Kragic, D. Learning grasping points with
shape context. Robotics and Autonomous Systems,
58(4):362–377, 2010.

Borgwardt, K.M. and Kriegel, H.-P. Shortest-path ker-
nels on graphs. In Proc. of International Conference
on Data Mining (ICDM-2005), pp. 74–81, 2005.

Datar, M. and Indyk, P. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceed-
ings of the 20th Annual Symposium on Computa-
tional Geometry (SCG-2004), pp. 253–262, 2004.

Gärtner, T., Flach, P. A., and Wrobel, S. On graph
kernels: Hardness results and efficient alternatives. In
Proc. of Computational Learning Theory and Kernel
Machines (COLT-2003), pp. 129–143, 2003.

Gersho, A. and Gray, R. Vector quantization and signal
compression. Kluwer Academic Publishers, Norwell,
MA, USA, 1991. ISBN 0-7923-9181-0.

Jaakkola, T. and Haussler, D. Exploiting generative
models in discriminative classifiers. In Proc. of Neural
Information Processing Systems (NIPS-1998), pp.
487–493, 1998.

Montesano, L. and Lopes, M. Active learning of vi-
sual descriptors for grasping using non-parametric
smoothed beta distributions. Robotics and Au-
tonomous Systems, 60(3):452–462, 2012.

Moreno, P., Hornstein, J., and Santos-Victor, J. Learn-
ing to grasp from point clouds. Technical report,
Vislab-TR001/2011, Dept. of Electrical and Comput-
ers Eng., Instituto Superior Técnico, 2011.

Neumann, M., Patricia, N., Garnett, R., and Ker-
sting, K. Efficient Graph Kernels by Randomiza-
tion. In Proceedings of the European Conference
on Machine Learning and Knowledge Discovery in
Databases (ECML/PKDD-2012), 2012. To appear.

Ramon, J. and Gärtner, T. Expressivity versus effi-
ciency of graph kernels. In Proceedings of the 1st
International Workshop on Mining Graphs, Trees
and Sequences, pp. 65–74, 2003.

Shervashidze, N., Vishwanathan, S.V.N., Petri, T.,
Mehlhorn, K., and Borgwardt, K.M. Efficient
graphlet kernels for large graph comparison. Journal
of Machine Learning Research - Proceedings Track,
5:488–495, 2009.

Shervashidze, N., Schweitzer, P., van Leeuwen, E.J.,
Mehlhorn, K., and Borgwardt, K.M. Weisfeiler–
Lehman Graph Kernels. Journal of Machine Learn-
ing Research, 12:2539–2561, 2011.

Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S.,
and Müller, K.-R. A new discriminative kernel from
probabilistic models. Neural Computation, 14(10):
2397–2414, 2002.

Vishwanathan, S.V.N., Schraudolph, N.N., Kondor,
R.I., and Borgwardt, K.M. Graph kernels. Journal
of Machine Learning Research, 11:1201–1242, 2010.

Zhu, X. and Ghahramani, Z. Learning from labeled
and unlabeled data with label propagation. Tech-
nical report, CMU-CALD-02-107, Carnegie Mellon
University, 2002.

